Merge branch 'for-3.19/core' of git://git.kernel.dk/linux-block
[cascardo/linux.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131
132 /*
133  * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
134  * types are passed around to enqueue and dequeue routines.  Note that
135  * often the functions passed are simply wrappers around memcpy
136  * itself.
137  *
138  * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139  * there's an unused last parameter for the hosted side.  In
140  * ESX, that parameter holds a buffer type.
141  */
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143                                       u64 queue_offset, const void *src,
144                                       size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146                                         const struct vmci_queue *queue,
147                                         u64 queue_offset, size_t size);
148
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151         struct mutex __mutex;   /* Protects the queue. */
152         struct mutex *mutex;    /* Shared by producer and consumer queues. */
153         size_t num_pages;       /* Number of pages incl. header. */
154         bool host;              /* Host or guest? */
155         union {
156                 struct {
157                         dma_addr_t *pas;
158                         void **vas;
159                 } g;            /* Used by the guest. */
160                 struct {
161                         struct page **page;
162                         struct page **header_page;
163                 } h;            /* Used by the host. */
164         } u;
165 };
166
167 /*
168  * This structure is opaque to the clients.
169  */
170 struct vmci_qp {
171         struct vmci_handle handle;
172         struct vmci_queue *produce_q;
173         struct vmci_queue *consume_q;
174         u64 produce_q_size;
175         u64 consume_q_size;
176         u32 peer;
177         u32 flags;
178         u32 priv_flags;
179         bool guest_endpoint;
180         unsigned int blocked;
181         unsigned int generation;
182         wait_queue_head_t event;
183 };
184
185 enum qp_broker_state {
186         VMCIQPB_NEW,
187         VMCIQPB_CREATED_NO_MEM,
188         VMCIQPB_CREATED_MEM,
189         VMCIQPB_ATTACHED_NO_MEM,
190         VMCIQPB_ATTACHED_MEM,
191         VMCIQPB_SHUTDOWN_NO_MEM,
192         VMCIQPB_SHUTDOWN_MEM,
193         VMCIQPB_GONE
194 };
195
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
198                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
199
200 /*
201  * In the queue pair broker, we always use the guest point of view for
202  * the produce and consume queue values and references, e.g., the
203  * produce queue size stored is the guests produce queue size. The
204  * host endpoint will need to swap these around. The only exception is
205  * the local queue pairs on the host, in which case the host endpoint
206  * that creates the queue pair will have the right orientation, and
207  * the attaching host endpoint will need to swap.
208  */
209 struct qp_entry {
210         struct list_head list_item;
211         struct vmci_handle handle;
212         u32 peer;
213         u32 flags;
214         u64 produce_size;
215         u64 consume_size;
216         u32 ref_count;
217 };
218
219 struct qp_broker_entry {
220         struct vmci_resource resource;
221         struct qp_entry qp;
222         u32 create_id;
223         u32 attach_id;
224         enum qp_broker_state state;
225         bool require_trusted_attach;
226         bool created_by_trusted;
227         bool vmci_page_files;   /* Created by VMX using VMCI page files */
228         struct vmci_queue *produce_q;
229         struct vmci_queue *consume_q;
230         struct vmci_queue_header saved_produce_q;
231         struct vmci_queue_header saved_consume_q;
232         vmci_event_release_cb wakeup_cb;
233         void *client_data;
234         void *local_mem;        /* Kernel memory for local queue pair */
235 };
236
237 struct qp_guest_endpoint {
238         struct vmci_resource resource;
239         struct qp_entry qp;
240         u64 num_ppns;
241         void *produce_q;
242         void *consume_q;
243         struct ppn_set ppn_set;
244 };
245
246 struct qp_list {
247         struct list_head head;
248         struct mutex mutex;     /* Protect queue list. */
249 };
250
251 static struct qp_list qp_broker_list = {
252         .head = LIST_HEAD_INIT(qp_broker_list.head),
253         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
254 };
255
256 static struct qp_list qp_guest_endpoints = {
257         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
259 };
260
261 #define INVALID_VMCI_GUEST_MEM_ID  0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
265
266
267 /*
268  * Frees kernel VA space for a given queue and its queue header, and
269  * frees physical data pages.
270  */
271 static void qp_free_queue(void *q, u64 size)
272 {
273         struct vmci_queue *queue = q;
274
275         if (queue) {
276                 u64 i;
277
278                 /* Given size does not include header, so add in a page here. */
279                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281                                           queue->kernel_if->u.g.vas[i],
282                                           queue->kernel_if->u.g.pas[i]);
283                 }
284
285                 vfree(queue);
286         }
287 }
288
289 /*
290  * Allocates kernel queue pages of specified size with IOMMU mappings,
291  * plus space for the queue structure/kernel interface and the queue
292  * header.
293  */
294 static void *qp_alloc_queue(u64 size, u32 flags)
295 {
296         u64 i;
297         struct vmci_queue *queue;
298         const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
299         const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
300         const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
301         const size_t queue_size =
302                 sizeof(*queue) + sizeof(*queue->kernel_if) +
303                 pas_size + vas_size;
304
305         queue = vmalloc(queue_size);
306         if (!queue)
307                 return NULL;
308
309         queue->q_header = NULL;
310         queue->saved_header = NULL;
311         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
312         queue->kernel_if->mutex = NULL;
313         queue->kernel_if->num_pages = num_pages;
314         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
315         queue->kernel_if->u.g.vas =
316                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
317         queue->kernel_if->host = false;
318
319         for (i = 0; i < num_pages; i++) {
320                 queue->kernel_if->u.g.vas[i] =
321                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
322                                            &queue->kernel_if->u.g.pas[i],
323                                            GFP_KERNEL);
324                 if (!queue->kernel_if->u.g.vas[i]) {
325                         /* Size excl. the header. */
326                         qp_free_queue(queue, i * PAGE_SIZE);
327                         return NULL;
328                 }
329         }
330
331         /* Queue header is the first page. */
332         queue->q_header = queue->kernel_if->u.g.vas[0];
333
334         return queue;
335 }
336
337 /*
338  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
339  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
340  * by traversing the offset -> page translation structure for the queue.
341  * Assumes that offset + size does not wrap around in the queue.
342  */
343 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
344                                 u64 queue_offset,
345                                 const void *src,
346                                 size_t size,
347                                 bool is_iovec)
348 {
349         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
350         size_t bytes_copied = 0;
351
352         while (bytes_copied < size) {
353                 const u64 page_index =
354                         (queue_offset + bytes_copied) / PAGE_SIZE;
355                 const size_t page_offset =
356                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
357                 void *va;
358                 size_t to_copy;
359
360                 if (kernel_if->host)
361                         va = kmap(kernel_if->u.h.page[page_index]);
362                 else
363                         va = kernel_if->u.g.vas[page_index + 1];
364                         /* Skip header. */
365
366                 if (size - bytes_copied > PAGE_SIZE - page_offset)
367                         /* Enough payload to fill up from this page. */
368                         to_copy = PAGE_SIZE - page_offset;
369                 else
370                         to_copy = size - bytes_copied;
371
372                 if (is_iovec) {
373                         struct iovec *iov = (struct iovec *)src;
374                         int err;
375
376                         /* The iovec will track bytes_copied internally. */
377                         err = memcpy_fromiovec((u8 *)va + page_offset,
378                                                iov, to_copy);
379                         if (err != 0) {
380                                 if (kernel_if->host)
381                                         kunmap(kernel_if->u.h.page[page_index]);
382                                 return VMCI_ERROR_INVALID_ARGS;
383                         }
384                 } else {
385                         memcpy((u8 *)va + page_offset,
386                                (u8 *)src + bytes_copied, to_copy);
387                 }
388
389                 bytes_copied += to_copy;
390                 if (kernel_if->host)
391                         kunmap(kernel_if->u.h.page[page_index]);
392         }
393
394         return VMCI_SUCCESS;
395 }
396
397 /*
398  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
399  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
400  * by traversing the offset -> page translation structure for the queue.
401  * Assumes that offset + size does not wrap around in the queue.
402  */
403 static int __qp_memcpy_from_queue(void *dest,
404                                   const struct vmci_queue *queue,
405                                   u64 queue_offset,
406                                   size_t size,
407                                   bool is_iovec)
408 {
409         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
410         size_t bytes_copied = 0;
411
412         while (bytes_copied < size) {
413                 const u64 page_index =
414                         (queue_offset + bytes_copied) / PAGE_SIZE;
415                 const size_t page_offset =
416                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
417                 void *va;
418                 size_t to_copy;
419
420                 if (kernel_if->host)
421                         va = kmap(kernel_if->u.h.page[page_index]);
422                 else
423                         va = kernel_if->u.g.vas[page_index + 1];
424                         /* Skip header. */
425
426                 if (size - bytes_copied > PAGE_SIZE - page_offset)
427                         /* Enough payload to fill up this page. */
428                         to_copy = PAGE_SIZE - page_offset;
429                 else
430                         to_copy = size - bytes_copied;
431
432                 if (is_iovec) {
433                         struct msghdr *msg = dest;
434                         int err;
435
436                         /* The iovec will track bytes_copied internally. */
437                         err = memcpy_to_msg(msg, (u8 *)va + page_offset,
438                                              to_copy);
439                         if (err != 0) {
440                                 if (kernel_if->host)
441                                         kunmap(kernel_if->u.h.page[page_index]);
442                                 return VMCI_ERROR_INVALID_ARGS;
443                         }
444                 } else {
445                         memcpy((u8 *)dest + bytes_copied,
446                                (u8 *)va + page_offset, to_copy);
447                 }
448
449                 bytes_copied += to_copy;
450                 if (kernel_if->host)
451                         kunmap(kernel_if->u.h.page[page_index]);
452         }
453
454         return VMCI_SUCCESS;
455 }
456
457 /*
458  * Allocates two list of PPNs --- one for the pages in the produce queue,
459  * and the other for the pages in the consume queue. Intializes the list
460  * of PPNs with the page frame numbers of the KVA for the two queues (and
461  * the queue headers).
462  */
463 static int qp_alloc_ppn_set(void *prod_q,
464                             u64 num_produce_pages,
465                             void *cons_q,
466                             u64 num_consume_pages, struct ppn_set *ppn_set)
467 {
468         u32 *produce_ppns;
469         u32 *consume_ppns;
470         struct vmci_queue *produce_q = prod_q;
471         struct vmci_queue *consume_q = cons_q;
472         u64 i;
473
474         if (!produce_q || !num_produce_pages || !consume_q ||
475             !num_consume_pages || !ppn_set)
476                 return VMCI_ERROR_INVALID_ARGS;
477
478         if (ppn_set->initialized)
479                 return VMCI_ERROR_ALREADY_EXISTS;
480
481         produce_ppns =
482             kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
483         if (!produce_ppns)
484                 return VMCI_ERROR_NO_MEM;
485
486         consume_ppns =
487             kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
488         if (!consume_ppns) {
489                 kfree(produce_ppns);
490                 return VMCI_ERROR_NO_MEM;
491         }
492
493         for (i = 0; i < num_produce_pages; i++) {
494                 unsigned long pfn;
495
496                 produce_ppns[i] =
497                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
498                 pfn = produce_ppns[i];
499
500                 /* Fail allocation if PFN isn't supported by hypervisor. */
501                 if (sizeof(pfn) > sizeof(*produce_ppns)
502                     && pfn != produce_ppns[i])
503                         goto ppn_error;
504         }
505
506         for (i = 0; i < num_consume_pages; i++) {
507                 unsigned long pfn;
508
509                 consume_ppns[i] =
510                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
511                 pfn = consume_ppns[i];
512
513                 /* Fail allocation if PFN isn't supported by hypervisor. */
514                 if (sizeof(pfn) > sizeof(*consume_ppns)
515                     && pfn != consume_ppns[i])
516                         goto ppn_error;
517         }
518
519         ppn_set->num_produce_pages = num_produce_pages;
520         ppn_set->num_consume_pages = num_consume_pages;
521         ppn_set->produce_ppns = produce_ppns;
522         ppn_set->consume_ppns = consume_ppns;
523         ppn_set->initialized = true;
524         return VMCI_SUCCESS;
525
526  ppn_error:
527         kfree(produce_ppns);
528         kfree(consume_ppns);
529         return VMCI_ERROR_INVALID_ARGS;
530 }
531
532 /*
533  * Frees the two list of PPNs for a queue pair.
534  */
535 static void qp_free_ppn_set(struct ppn_set *ppn_set)
536 {
537         if (ppn_set->initialized) {
538                 /* Do not call these functions on NULL inputs. */
539                 kfree(ppn_set->produce_ppns);
540                 kfree(ppn_set->consume_ppns);
541         }
542         memset(ppn_set, 0, sizeof(*ppn_set));
543 }
544
545 /*
546  * Populates the list of PPNs in the hypercall structure with the PPNS
547  * of the produce queue and the consume queue.
548  */
549 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
550 {
551         memcpy(call_buf, ppn_set->produce_ppns,
552                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
553         memcpy(call_buf +
554                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
555                ppn_set->consume_ppns,
556                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
557
558         return VMCI_SUCCESS;
559 }
560
561 static int qp_memcpy_to_queue(struct vmci_queue *queue,
562                               u64 queue_offset,
563                               const void *src, size_t src_offset, size_t size)
564 {
565         return __qp_memcpy_to_queue(queue, queue_offset,
566                                     (u8 *)src + src_offset, size, false);
567 }
568
569 static int qp_memcpy_from_queue(void *dest,
570                                 size_t dest_offset,
571                                 const struct vmci_queue *queue,
572                                 u64 queue_offset, size_t size)
573 {
574         return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
575                                       queue, queue_offset, size, false);
576 }
577
578 /*
579  * Copies from a given iovec from a VMCI Queue.
580  */
581 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
582                                   u64 queue_offset,
583                                   const void *src,
584                                   size_t src_offset, size_t size)
585 {
586
587         /*
588          * We ignore src_offset because src is really a struct iovec * and will
589          * maintain offset internally.
590          */
591         return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
592 }
593
594 /*
595  * Copies to a given iovec from a VMCI Queue.
596  */
597 static int qp_memcpy_from_queue_iov(void *dest,
598                                     size_t dest_offset,
599                                     const struct vmci_queue *queue,
600                                     u64 queue_offset, size_t size)
601 {
602         /*
603          * We ignore dest_offset because dest is really a struct iovec * and
604          * will maintain offset internally.
605          */
606         return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
607 }
608
609 /*
610  * Allocates kernel VA space of specified size plus space for the queue
611  * and kernel interface.  This is different from the guest queue allocator,
612  * because we do not allocate our own queue header/data pages here but
613  * share those of the guest.
614  */
615 static struct vmci_queue *qp_host_alloc_queue(u64 size)
616 {
617         struct vmci_queue *queue;
618         const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
619         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
620         const size_t queue_page_size =
621             num_pages * sizeof(*queue->kernel_if->u.h.page);
622
623         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
624         if (queue) {
625                 queue->q_header = NULL;
626                 queue->saved_header = NULL;
627                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
628                 queue->kernel_if->host = true;
629                 queue->kernel_if->mutex = NULL;
630                 queue->kernel_if->num_pages = num_pages;
631                 queue->kernel_if->u.h.header_page =
632                     (struct page **)((u8 *)queue + queue_size);
633                 queue->kernel_if->u.h.page =
634                         &queue->kernel_if->u.h.header_page[1];
635         }
636
637         return queue;
638 }
639
640 /*
641  * Frees kernel memory for a given queue (header plus translation
642  * structure).
643  */
644 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
645 {
646         kfree(queue);
647 }
648
649 /*
650  * Initialize the mutex for the pair of queues.  This mutex is used to
651  * protect the q_header and the buffer from changing out from under any
652  * users of either queue.  Of course, it's only any good if the mutexes
653  * are actually acquired.  Queue structure must lie on non-paged memory
654  * or we cannot guarantee access to the mutex.
655  */
656 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
657                                 struct vmci_queue *consume_q)
658 {
659         /*
660          * Only the host queue has shared state - the guest queues do not
661          * need to synchronize access using a queue mutex.
662          */
663
664         if (produce_q->kernel_if->host) {
665                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
666                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
667                 mutex_init(produce_q->kernel_if->mutex);
668         }
669 }
670
671 /*
672  * Cleans up the mutex for the pair of queues.
673  */
674 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
675                                    struct vmci_queue *consume_q)
676 {
677         if (produce_q->kernel_if->host) {
678                 produce_q->kernel_if->mutex = NULL;
679                 consume_q->kernel_if->mutex = NULL;
680         }
681 }
682
683 /*
684  * Acquire the mutex for the queue.  Note that the produce_q and
685  * the consume_q share a mutex.  So, only one of the two need to
686  * be passed in to this routine.  Either will work just fine.
687  */
688 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
689 {
690         if (queue->kernel_if->host)
691                 mutex_lock(queue->kernel_if->mutex);
692 }
693
694 /*
695  * Release the mutex for the queue.  Note that the produce_q and
696  * the consume_q share a mutex.  So, only one of the two need to
697  * be passed in to this routine.  Either will work just fine.
698  */
699 static void qp_release_queue_mutex(struct vmci_queue *queue)
700 {
701         if (queue->kernel_if->host)
702                 mutex_unlock(queue->kernel_if->mutex);
703 }
704
705 /*
706  * Helper function to release pages in the PageStoreAttachInfo
707  * previously obtained using get_user_pages.
708  */
709 static void qp_release_pages(struct page **pages,
710                              u64 num_pages, bool dirty)
711 {
712         int i;
713
714         for (i = 0; i < num_pages; i++) {
715                 if (dirty)
716                         set_page_dirty(pages[i]);
717
718                 page_cache_release(pages[i]);
719                 pages[i] = NULL;
720         }
721 }
722
723 /*
724  * Lock the user pages referenced by the {produce,consume}Buffer
725  * struct into memory and populate the {produce,consume}Pages
726  * arrays in the attach structure with them.
727  */
728 static int qp_host_get_user_memory(u64 produce_uva,
729                                    u64 consume_uva,
730                                    struct vmci_queue *produce_q,
731                                    struct vmci_queue *consume_q)
732 {
733         int retval;
734         int err = VMCI_SUCCESS;
735
736         retval = get_user_pages_fast((uintptr_t) produce_uva,
737                                      produce_q->kernel_if->num_pages, 1,
738                                      produce_q->kernel_if->u.h.header_page);
739         if (retval < produce_q->kernel_if->num_pages) {
740                 pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
741                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
742                                  retval, false);
743                 err = VMCI_ERROR_NO_MEM;
744                 goto out;
745         }
746
747         retval = get_user_pages_fast((uintptr_t) consume_uva,
748                                      consume_q->kernel_if->num_pages, 1,
749                                      consume_q->kernel_if->u.h.header_page);
750         if (retval < consume_q->kernel_if->num_pages) {
751                 pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
752                 qp_release_pages(consume_q->kernel_if->u.h.header_page,
753                                  retval, false);
754                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
755                                  produce_q->kernel_if->num_pages, false);
756                 err = VMCI_ERROR_NO_MEM;
757         }
758
759  out:
760         return err;
761 }
762
763 /*
764  * Registers the specification of the user pages used for backing a queue
765  * pair. Enough information to map in pages is stored in the OS specific
766  * part of the struct vmci_queue structure.
767  */
768 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
769                                         struct vmci_queue *produce_q,
770                                         struct vmci_queue *consume_q)
771 {
772         u64 produce_uva;
773         u64 consume_uva;
774
775         /*
776          * The new style and the old style mapping only differs in
777          * that we either get a single or two UVAs, so we split the
778          * single UVA range at the appropriate spot.
779          */
780         produce_uva = page_store->pages;
781         consume_uva = page_store->pages +
782             produce_q->kernel_if->num_pages * PAGE_SIZE;
783         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
784                                        consume_q);
785 }
786
787 /*
788  * Releases and removes the references to user pages stored in the attach
789  * struct.  Pages are released from the page cache and may become
790  * swappable again.
791  */
792 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
793                                            struct vmci_queue *consume_q)
794 {
795         qp_release_pages(produce_q->kernel_if->u.h.header_page,
796                          produce_q->kernel_if->num_pages, true);
797         memset(produce_q->kernel_if->u.h.header_page, 0,
798                sizeof(*produce_q->kernel_if->u.h.header_page) *
799                produce_q->kernel_if->num_pages);
800         qp_release_pages(consume_q->kernel_if->u.h.header_page,
801                          consume_q->kernel_if->num_pages, true);
802         memset(consume_q->kernel_if->u.h.header_page, 0,
803                sizeof(*consume_q->kernel_if->u.h.header_page) *
804                consume_q->kernel_if->num_pages);
805 }
806
807 /*
808  * Once qp_host_register_user_memory has been performed on a
809  * queue, the queue pair headers can be mapped into the
810  * kernel. Once mapped, they must be unmapped with
811  * qp_host_unmap_queues prior to calling
812  * qp_host_unregister_user_memory.
813  * Pages are pinned.
814  */
815 static int qp_host_map_queues(struct vmci_queue *produce_q,
816                               struct vmci_queue *consume_q)
817 {
818         int result;
819
820         if (!produce_q->q_header || !consume_q->q_header) {
821                 struct page *headers[2];
822
823                 if (produce_q->q_header != consume_q->q_header)
824                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
825
826                 if (produce_q->kernel_if->u.h.header_page == NULL ||
827                     *produce_q->kernel_if->u.h.header_page == NULL)
828                         return VMCI_ERROR_UNAVAILABLE;
829
830                 headers[0] = *produce_q->kernel_if->u.h.header_page;
831                 headers[1] = *consume_q->kernel_if->u.h.header_page;
832
833                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
834                 if (produce_q->q_header != NULL) {
835                         consume_q->q_header =
836                             (struct vmci_queue_header *)((u8 *)
837                                                          produce_q->q_header +
838                                                          PAGE_SIZE);
839                         result = VMCI_SUCCESS;
840                 } else {
841                         pr_warn("vmap failed\n");
842                         result = VMCI_ERROR_NO_MEM;
843                 }
844         } else {
845                 result = VMCI_SUCCESS;
846         }
847
848         return result;
849 }
850
851 /*
852  * Unmaps previously mapped queue pair headers from the kernel.
853  * Pages are unpinned.
854  */
855 static int qp_host_unmap_queues(u32 gid,
856                                 struct vmci_queue *produce_q,
857                                 struct vmci_queue *consume_q)
858 {
859         if (produce_q->q_header) {
860                 if (produce_q->q_header < consume_q->q_header)
861                         vunmap(produce_q->q_header);
862                 else
863                         vunmap(consume_q->q_header);
864
865                 produce_q->q_header = NULL;
866                 consume_q->q_header = NULL;
867         }
868
869         return VMCI_SUCCESS;
870 }
871
872 /*
873  * Finds the entry in the list corresponding to a given handle. Assumes
874  * that the list is locked.
875  */
876 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
877                                      struct vmci_handle handle)
878 {
879         struct qp_entry *entry;
880
881         if (vmci_handle_is_invalid(handle))
882                 return NULL;
883
884         list_for_each_entry(entry, &qp_list->head, list_item) {
885                 if (vmci_handle_is_equal(entry->handle, handle))
886                         return entry;
887         }
888
889         return NULL;
890 }
891
892 /*
893  * Finds the entry in the list corresponding to a given handle.
894  */
895 static struct qp_guest_endpoint *
896 qp_guest_handle_to_entry(struct vmci_handle handle)
897 {
898         struct qp_guest_endpoint *entry;
899         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
900
901         entry = qp ? container_of(
902                 qp, struct qp_guest_endpoint, qp) : NULL;
903         return entry;
904 }
905
906 /*
907  * Finds the entry in the list corresponding to a given handle.
908  */
909 static struct qp_broker_entry *
910 qp_broker_handle_to_entry(struct vmci_handle handle)
911 {
912         struct qp_broker_entry *entry;
913         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
914
915         entry = qp ? container_of(
916                 qp, struct qp_broker_entry, qp) : NULL;
917         return entry;
918 }
919
920 /*
921  * Dispatches a queue pair event message directly into the local event
922  * queue.
923  */
924 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
925 {
926         u32 context_id = vmci_get_context_id();
927         struct vmci_event_qp ev;
928
929         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
930         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
931                                           VMCI_CONTEXT_RESOURCE_ID);
932         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
933         ev.msg.event_data.event =
934             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
935         ev.payload.peer_id = context_id;
936         ev.payload.handle = handle;
937
938         return vmci_event_dispatch(&ev.msg.hdr);
939 }
940
941 /*
942  * Allocates and initializes a qp_guest_endpoint structure.
943  * Allocates a queue_pair rid (and handle) iff the given entry has
944  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
945  * are reserved handles.  Assumes that the QP list mutex is held
946  * by the caller.
947  */
948 static struct qp_guest_endpoint *
949 qp_guest_endpoint_create(struct vmci_handle handle,
950                          u32 peer,
951                          u32 flags,
952                          u64 produce_size,
953                          u64 consume_size,
954                          void *produce_q,
955                          void *consume_q)
956 {
957         int result;
958         struct qp_guest_endpoint *entry;
959         /* One page each for the queue headers. */
960         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
961             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
962
963         if (vmci_handle_is_invalid(handle)) {
964                 u32 context_id = vmci_get_context_id();
965
966                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
967         }
968
969         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
970         if (entry) {
971                 entry->qp.peer = peer;
972                 entry->qp.flags = flags;
973                 entry->qp.produce_size = produce_size;
974                 entry->qp.consume_size = consume_size;
975                 entry->qp.ref_count = 0;
976                 entry->num_ppns = num_ppns;
977                 entry->produce_q = produce_q;
978                 entry->consume_q = consume_q;
979                 INIT_LIST_HEAD(&entry->qp.list_item);
980
981                 /* Add resource obj */
982                 result = vmci_resource_add(&entry->resource,
983                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
984                                            handle);
985                 entry->qp.handle = vmci_resource_handle(&entry->resource);
986                 if ((result != VMCI_SUCCESS) ||
987                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
988                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
989                                 handle.context, handle.resource, result);
990                         kfree(entry);
991                         entry = NULL;
992                 }
993         }
994         return entry;
995 }
996
997 /*
998  * Frees a qp_guest_endpoint structure.
999  */
1000 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1001 {
1002         qp_free_ppn_set(&entry->ppn_set);
1003         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1004         qp_free_queue(entry->produce_q, entry->qp.produce_size);
1005         qp_free_queue(entry->consume_q, entry->qp.consume_size);
1006         /* Unlink from resource hash table and free callback */
1007         vmci_resource_remove(&entry->resource);
1008
1009         kfree(entry);
1010 }
1011
1012 /*
1013  * Helper to make a queue_pairAlloc hypercall when the driver is
1014  * supporting a guest device.
1015  */
1016 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1017 {
1018         struct vmci_qp_alloc_msg *alloc_msg;
1019         size_t msg_size;
1020         int result;
1021
1022         if (!entry || entry->num_ppns <= 2)
1023                 return VMCI_ERROR_INVALID_ARGS;
1024
1025         msg_size = sizeof(*alloc_msg) +
1026             (size_t) entry->num_ppns * sizeof(u32);
1027         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1028         if (!alloc_msg)
1029                 return VMCI_ERROR_NO_MEM;
1030
1031         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1032                                               VMCI_QUEUEPAIR_ALLOC);
1033         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1034         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1035         alloc_msg->handle = entry->qp.handle;
1036         alloc_msg->peer = entry->qp.peer;
1037         alloc_msg->flags = entry->qp.flags;
1038         alloc_msg->produce_size = entry->qp.produce_size;
1039         alloc_msg->consume_size = entry->qp.consume_size;
1040         alloc_msg->num_ppns = entry->num_ppns;
1041
1042         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1043                                      &entry->ppn_set);
1044         if (result == VMCI_SUCCESS)
1045                 result = vmci_send_datagram(&alloc_msg->hdr);
1046
1047         kfree(alloc_msg);
1048
1049         return result;
1050 }
1051
1052 /*
1053  * Helper to make a queue_pairDetach hypercall when the driver is
1054  * supporting a guest device.
1055  */
1056 static int qp_detatch_hypercall(struct vmci_handle handle)
1057 {
1058         struct vmci_qp_detach_msg detach_msg;
1059
1060         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1061                                               VMCI_QUEUEPAIR_DETACH);
1062         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1063         detach_msg.hdr.payload_size = sizeof(handle);
1064         detach_msg.handle = handle;
1065
1066         return vmci_send_datagram(&detach_msg.hdr);
1067 }
1068
1069 /*
1070  * Adds the given entry to the list. Assumes that the list is locked.
1071  */
1072 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1073 {
1074         if (entry)
1075                 list_add(&entry->list_item, &qp_list->head);
1076 }
1077
1078 /*
1079  * Removes the given entry from the list. Assumes that the list is locked.
1080  */
1081 static void qp_list_remove_entry(struct qp_list *qp_list,
1082                                  struct qp_entry *entry)
1083 {
1084         if (entry)
1085                 list_del(&entry->list_item);
1086 }
1087
1088 /*
1089  * Helper for VMCI queue_pair detach interface. Frees the physical
1090  * pages for the queue pair.
1091  */
1092 static int qp_detatch_guest_work(struct vmci_handle handle)
1093 {
1094         int result;
1095         struct qp_guest_endpoint *entry;
1096         u32 ref_count = ~0;     /* To avoid compiler warning below */
1097
1098         mutex_lock(&qp_guest_endpoints.mutex);
1099
1100         entry = qp_guest_handle_to_entry(handle);
1101         if (!entry) {
1102                 mutex_unlock(&qp_guest_endpoints.mutex);
1103                 return VMCI_ERROR_NOT_FOUND;
1104         }
1105
1106         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1107                 result = VMCI_SUCCESS;
1108
1109                 if (entry->qp.ref_count > 1) {
1110                         result = qp_notify_peer_local(false, handle);
1111                         /*
1112                          * We can fail to notify a local queuepair
1113                          * because we can't allocate.  We still want
1114                          * to release the entry if that happens, so
1115                          * don't bail out yet.
1116                          */
1117                 }
1118         } else {
1119                 result = qp_detatch_hypercall(handle);
1120                 if (result < VMCI_SUCCESS) {
1121                         /*
1122                          * We failed to notify a non-local queuepair.
1123                          * That other queuepair might still be
1124                          * accessing the shared memory, so don't
1125                          * release the entry yet.  It will get cleaned
1126                          * up by VMCIqueue_pair_Exit() if necessary
1127                          * (assuming we are going away, otherwise why
1128                          * did this fail?).
1129                          */
1130
1131                         mutex_unlock(&qp_guest_endpoints.mutex);
1132                         return result;
1133                 }
1134         }
1135
1136         /*
1137          * If we get here then we either failed to notify a local queuepair, or
1138          * we succeeded in all cases.  Release the entry if required.
1139          */
1140
1141         entry->qp.ref_count--;
1142         if (entry->qp.ref_count == 0)
1143                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1144
1145         /* If we didn't remove the entry, this could change once we unlock. */
1146         if (entry)
1147                 ref_count = entry->qp.ref_count;
1148
1149         mutex_unlock(&qp_guest_endpoints.mutex);
1150
1151         if (ref_count == 0)
1152                 qp_guest_endpoint_destroy(entry);
1153
1154         return result;
1155 }
1156
1157 /*
1158  * This functions handles the actual allocation of a VMCI queue
1159  * pair guest endpoint. Allocates physical pages for the queue
1160  * pair. It makes OS dependent calls through generic wrappers.
1161  */
1162 static int qp_alloc_guest_work(struct vmci_handle *handle,
1163                                struct vmci_queue **produce_q,
1164                                u64 produce_size,
1165                                struct vmci_queue **consume_q,
1166                                u64 consume_size,
1167                                u32 peer,
1168                                u32 flags,
1169                                u32 priv_flags)
1170 {
1171         const u64 num_produce_pages =
1172             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1173         const u64 num_consume_pages =
1174             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1175         void *my_produce_q = NULL;
1176         void *my_consume_q = NULL;
1177         int result;
1178         struct qp_guest_endpoint *queue_pair_entry = NULL;
1179
1180         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1181                 return VMCI_ERROR_NO_ACCESS;
1182
1183         mutex_lock(&qp_guest_endpoints.mutex);
1184
1185         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1186         if (queue_pair_entry) {
1187                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1188                         /* Local attach case. */
1189                         if (queue_pair_entry->qp.ref_count > 1) {
1190                                 pr_devel("Error attempting to attach more than once\n");
1191                                 result = VMCI_ERROR_UNAVAILABLE;
1192                                 goto error_keep_entry;
1193                         }
1194
1195                         if (queue_pair_entry->qp.produce_size != consume_size ||
1196                             queue_pair_entry->qp.consume_size !=
1197                             produce_size ||
1198                             queue_pair_entry->qp.flags !=
1199                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1200                                 pr_devel("Error mismatched queue pair in local attach\n");
1201                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1202                                 goto error_keep_entry;
1203                         }
1204
1205                         /*
1206                          * Do a local attach.  We swap the consume and
1207                          * produce queues for the attacher and deliver
1208                          * an attach event.
1209                          */
1210                         result = qp_notify_peer_local(true, *handle);
1211                         if (result < VMCI_SUCCESS)
1212                                 goto error_keep_entry;
1213
1214                         my_produce_q = queue_pair_entry->consume_q;
1215                         my_consume_q = queue_pair_entry->produce_q;
1216                         goto out;
1217                 }
1218
1219                 result = VMCI_ERROR_ALREADY_EXISTS;
1220                 goto error_keep_entry;
1221         }
1222
1223         my_produce_q = qp_alloc_queue(produce_size, flags);
1224         if (!my_produce_q) {
1225                 pr_warn("Error allocating pages for produce queue\n");
1226                 result = VMCI_ERROR_NO_MEM;
1227                 goto error;
1228         }
1229
1230         my_consume_q = qp_alloc_queue(consume_size, flags);
1231         if (!my_consume_q) {
1232                 pr_warn("Error allocating pages for consume queue\n");
1233                 result = VMCI_ERROR_NO_MEM;
1234                 goto error;
1235         }
1236
1237         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1238                                                     produce_size, consume_size,
1239                                                     my_produce_q, my_consume_q);
1240         if (!queue_pair_entry) {
1241                 pr_warn("Error allocating memory in %s\n", __func__);
1242                 result = VMCI_ERROR_NO_MEM;
1243                 goto error;
1244         }
1245
1246         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1247                                   num_consume_pages,
1248                                   &queue_pair_entry->ppn_set);
1249         if (result < VMCI_SUCCESS) {
1250                 pr_warn("qp_alloc_ppn_set failed\n");
1251                 goto error;
1252         }
1253
1254         /*
1255          * It's only necessary to notify the host if this queue pair will be
1256          * attached to from another context.
1257          */
1258         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1259                 /* Local create case. */
1260                 u32 context_id = vmci_get_context_id();
1261
1262                 /*
1263                  * Enforce similar checks on local queue pairs as we
1264                  * do for regular ones.  The handle's context must
1265                  * match the creator or attacher context id (here they
1266                  * are both the current context id) and the
1267                  * attach-only flag cannot exist during create.  We
1268                  * also ensure specified peer is this context or an
1269                  * invalid one.
1270                  */
1271                 if (queue_pair_entry->qp.handle.context != context_id ||
1272                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1273                      queue_pair_entry->qp.peer != context_id)) {
1274                         result = VMCI_ERROR_NO_ACCESS;
1275                         goto error;
1276                 }
1277
1278                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1279                         result = VMCI_ERROR_NOT_FOUND;
1280                         goto error;
1281                 }
1282         } else {
1283                 result = qp_alloc_hypercall(queue_pair_entry);
1284                 if (result < VMCI_SUCCESS) {
1285                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1286                         goto error;
1287                 }
1288         }
1289
1290         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1291                             (struct vmci_queue *)my_consume_q);
1292
1293         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1294
1295  out:
1296         queue_pair_entry->qp.ref_count++;
1297         *handle = queue_pair_entry->qp.handle;
1298         *produce_q = (struct vmci_queue *)my_produce_q;
1299         *consume_q = (struct vmci_queue *)my_consume_q;
1300
1301         /*
1302          * We should initialize the queue pair header pages on a local
1303          * queue pair create.  For non-local queue pairs, the
1304          * hypervisor initializes the header pages in the create step.
1305          */
1306         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1307             queue_pair_entry->qp.ref_count == 1) {
1308                 vmci_q_header_init((*produce_q)->q_header, *handle);
1309                 vmci_q_header_init((*consume_q)->q_header, *handle);
1310         }
1311
1312         mutex_unlock(&qp_guest_endpoints.mutex);
1313
1314         return VMCI_SUCCESS;
1315
1316  error:
1317         mutex_unlock(&qp_guest_endpoints.mutex);
1318         if (queue_pair_entry) {
1319                 /* The queues will be freed inside the destroy routine. */
1320                 qp_guest_endpoint_destroy(queue_pair_entry);
1321         } else {
1322                 qp_free_queue(my_produce_q, produce_size);
1323                 qp_free_queue(my_consume_q, consume_size);
1324         }
1325         return result;
1326
1327  error_keep_entry:
1328         /* This path should only be used when an existing entry was found. */
1329         mutex_unlock(&qp_guest_endpoints.mutex);
1330         return result;
1331 }
1332
1333 /*
1334  * The first endpoint issuing a queue pair allocation will create the state
1335  * of the queue pair in the queue pair broker.
1336  *
1337  * If the creator is a guest, it will associate a VMX virtual address range
1338  * with the queue pair as specified by the page_store. For compatibility with
1339  * older VMX'en, that would use a separate step to set the VMX virtual
1340  * address range, the virtual address range can be registered later using
1341  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1342  * used.
1343  *
1344  * If the creator is the host, a page_store of NULL should be used as well,
1345  * since the host is not able to supply a page store for the queue pair.
1346  *
1347  * For older VMX and host callers, the queue pair will be created in the
1348  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1349  * created in VMCOQPB_CREATED_MEM state.
1350  */
1351 static int qp_broker_create(struct vmci_handle handle,
1352                             u32 peer,
1353                             u32 flags,
1354                             u32 priv_flags,
1355                             u64 produce_size,
1356                             u64 consume_size,
1357                             struct vmci_qp_page_store *page_store,
1358                             struct vmci_ctx *context,
1359                             vmci_event_release_cb wakeup_cb,
1360                             void *client_data, struct qp_broker_entry **ent)
1361 {
1362         struct qp_broker_entry *entry = NULL;
1363         const u32 context_id = vmci_ctx_get_id(context);
1364         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1365         int result;
1366         u64 guest_produce_size;
1367         u64 guest_consume_size;
1368
1369         /* Do not create if the caller asked not to. */
1370         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1371                 return VMCI_ERROR_NOT_FOUND;
1372
1373         /*
1374          * Creator's context ID should match handle's context ID or the creator
1375          * must allow the context in handle's context ID as the "peer".
1376          */
1377         if (handle.context != context_id && handle.context != peer)
1378                 return VMCI_ERROR_NO_ACCESS;
1379
1380         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1381                 return VMCI_ERROR_DST_UNREACHABLE;
1382
1383         /*
1384          * Creator's context ID for local queue pairs should match the
1385          * peer, if a peer is specified.
1386          */
1387         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1388                 return VMCI_ERROR_NO_ACCESS;
1389
1390         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1391         if (!entry)
1392                 return VMCI_ERROR_NO_MEM;
1393
1394         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1395                 /*
1396                  * The queue pair broker entry stores values from the guest
1397                  * point of view, so a creating host side endpoint should swap
1398                  * produce and consume values -- unless it is a local queue
1399                  * pair, in which case no swapping is necessary, since the local
1400                  * attacher will swap queues.
1401                  */
1402
1403                 guest_produce_size = consume_size;
1404                 guest_consume_size = produce_size;
1405         } else {
1406                 guest_produce_size = produce_size;
1407                 guest_consume_size = consume_size;
1408         }
1409
1410         entry->qp.handle = handle;
1411         entry->qp.peer = peer;
1412         entry->qp.flags = flags;
1413         entry->qp.produce_size = guest_produce_size;
1414         entry->qp.consume_size = guest_consume_size;
1415         entry->qp.ref_count = 1;
1416         entry->create_id = context_id;
1417         entry->attach_id = VMCI_INVALID_ID;
1418         entry->state = VMCIQPB_NEW;
1419         entry->require_trusted_attach =
1420             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1421         entry->created_by_trusted =
1422             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1423         entry->vmci_page_files = false;
1424         entry->wakeup_cb = wakeup_cb;
1425         entry->client_data = client_data;
1426         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1427         if (entry->produce_q == NULL) {
1428                 result = VMCI_ERROR_NO_MEM;
1429                 goto error;
1430         }
1431         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1432         if (entry->consume_q == NULL) {
1433                 result = VMCI_ERROR_NO_MEM;
1434                 goto error;
1435         }
1436
1437         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1438
1439         INIT_LIST_HEAD(&entry->qp.list_item);
1440
1441         if (is_local) {
1442                 u8 *tmp;
1443
1444                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1445                                            PAGE_SIZE, GFP_KERNEL);
1446                 if (entry->local_mem == NULL) {
1447                         result = VMCI_ERROR_NO_MEM;
1448                         goto error;
1449                 }
1450                 entry->state = VMCIQPB_CREATED_MEM;
1451                 entry->produce_q->q_header = entry->local_mem;
1452                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1453                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1454                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1455         } else if (page_store) {
1456                 /*
1457                  * The VMX already initialized the queue pair headers, so no
1458                  * need for the kernel side to do that.
1459                  */
1460                 result = qp_host_register_user_memory(page_store,
1461                                                       entry->produce_q,
1462                                                       entry->consume_q);
1463                 if (result < VMCI_SUCCESS)
1464                         goto error;
1465
1466                 entry->state = VMCIQPB_CREATED_MEM;
1467         } else {
1468                 /*
1469                  * A create without a page_store may be either a host
1470                  * side create (in which case we are waiting for the
1471                  * guest side to supply the memory) or an old style
1472                  * queue pair create (in which case we will expect a
1473                  * set page store call as the next step).
1474                  */
1475                 entry->state = VMCIQPB_CREATED_NO_MEM;
1476         }
1477
1478         qp_list_add_entry(&qp_broker_list, &entry->qp);
1479         if (ent != NULL)
1480                 *ent = entry;
1481
1482         /* Add to resource obj */
1483         result = vmci_resource_add(&entry->resource,
1484                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1485                                    handle);
1486         if (result != VMCI_SUCCESS) {
1487                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1488                         handle.context, handle.resource, result);
1489                 goto error;
1490         }
1491
1492         entry->qp.handle = vmci_resource_handle(&entry->resource);
1493         if (is_local) {
1494                 vmci_q_header_init(entry->produce_q->q_header,
1495                                    entry->qp.handle);
1496                 vmci_q_header_init(entry->consume_q->q_header,
1497                                    entry->qp.handle);
1498         }
1499
1500         vmci_ctx_qp_create(context, entry->qp.handle);
1501
1502         return VMCI_SUCCESS;
1503
1504  error:
1505         if (entry != NULL) {
1506                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1507                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1508                 kfree(entry);
1509         }
1510
1511         return result;
1512 }
1513
1514 /*
1515  * Enqueues an event datagram to notify the peer VM attached to
1516  * the given queue pair handle about attach/detach event by the
1517  * given VM.  Returns Payload size of datagram enqueued on
1518  * success, error code otherwise.
1519  */
1520 static int qp_notify_peer(bool attach,
1521                           struct vmci_handle handle,
1522                           u32 my_id,
1523                           u32 peer_id)
1524 {
1525         int rv;
1526         struct vmci_event_qp ev;
1527
1528         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1529             peer_id == VMCI_INVALID_ID)
1530                 return VMCI_ERROR_INVALID_ARGS;
1531
1532         /*
1533          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1534          * number of pending events from the hypervisor to a given VM
1535          * otherwise a rogue VM could do an arbitrary number of attach
1536          * and detach operations causing memory pressure in the host
1537          * kernel.
1538          */
1539
1540         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1541         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1542                                           VMCI_CONTEXT_RESOURCE_ID);
1543         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1544         ev.msg.event_data.event = attach ?
1545             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1546         ev.payload.handle = handle;
1547         ev.payload.peer_id = my_id;
1548
1549         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1550                                     &ev.msg.hdr, false);
1551         if (rv < VMCI_SUCCESS)
1552                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1553                         attach ? "ATTACH" : "DETACH", peer_id);
1554
1555         return rv;
1556 }
1557
1558 /*
1559  * The second endpoint issuing a queue pair allocation will attach to
1560  * the queue pair registered with the queue pair broker.
1561  *
1562  * If the attacher is a guest, it will associate a VMX virtual address
1563  * range with the queue pair as specified by the page_store. At this
1564  * point, the already attach host endpoint may start using the queue
1565  * pair, and an attach event is sent to it. For compatibility with
1566  * older VMX'en, that used a separate step to set the VMX virtual
1567  * address range, the virtual address range can be registered later
1568  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1569  * NULL should be used, and the attach event will be generated once
1570  * the actual page store has been set.
1571  *
1572  * If the attacher is the host, a page_store of NULL should be used as
1573  * well, since the page store information is already set by the guest.
1574  *
1575  * For new VMX and host callers, the queue pair will be moved to the
1576  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1577  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1578  */
1579 static int qp_broker_attach(struct qp_broker_entry *entry,
1580                             u32 peer,
1581                             u32 flags,
1582                             u32 priv_flags,
1583                             u64 produce_size,
1584                             u64 consume_size,
1585                             struct vmci_qp_page_store *page_store,
1586                             struct vmci_ctx *context,
1587                             vmci_event_release_cb wakeup_cb,
1588                             void *client_data,
1589                             struct qp_broker_entry **ent)
1590 {
1591         const u32 context_id = vmci_ctx_get_id(context);
1592         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1593         int result;
1594
1595         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1596             entry->state != VMCIQPB_CREATED_MEM)
1597                 return VMCI_ERROR_UNAVAILABLE;
1598
1599         if (is_local) {
1600                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1601                     context_id != entry->create_id) {
1602                         return VMCI_ERROR_INVALID_ARGS;
1603                 }
1604         } else if (context_id == entry->create_id ||
1605                    context_id == entry->attach_id) {
1606                 return VMCI_ERROR_ALREADY_EXISTS;
1607         }
1608
1609         if (VMCI_CONTEXT_IS_VM(context_id) &&
1610             VMCI_CONTEXT_IS_VM(entry->create_id))
1611                 return VMCI_ERROR_DST_UNREACHABLE;
1612
1613         /*
1614          * If we are attaching from a restricted context then the queuepair
1615          * must have been created by a trusted endpoint.
1616          */
1617         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1618             !entry->created_by_trusted)
1619                 return VMCI_ERROR_NO_ACCESS;
1620
1621         /*
1622          * If we are attaching to a queuepair that was created by a restricted
1623          * context then we must be trusted.
1624          */
1625         if (entry->require_trusted_attach &&
1626             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1627                 return VMCI_ERROR_NO_ACCESS;
1628
1629         /*
1630          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1631          * control check is not performed.
1632          */
1633         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1634                 return VMCI_ERROR_NO_ACCESS;
1635
1636         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1637                 /*
1638                  * Do not attach if the caller doesn't support Host Queue Pairs
1639                  * and a host created this queue pair.
1640                  */
1641
1642                 if (!vmci_ctx_supports_host_qp(context))
1643                         return VMCI_ERROR_INVALID_RESOURCE;
1644
1645         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1646                 struct vmci_ctx *create_context;
1647                 bool supports_host_qp;
1648
1649                 /*
1650                  * Do not attach a host to a user created queue pair if that
1651                  * user doesn't support host queue pair end points.
1652                  */
1653
1654                 create_context = vmci_ctx_get(entry->create_id);
1655                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1656                 vmci_ctx_put(create_context);
1657
1658                 if (!supports_host_qp)
1659                         return VMCI_ERROR_INVALID_RESOURCE;
1660         }
1661
1662         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1663                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1664
1665         if (context_id != VMCI_HOST_CONTEXT_ID) {
1666                 /*
1667                  * The queue pair broker entry stores values from the guest
1668                  * point of view, so an attaching guest should match the values
1669                  * stored in the entry.
1670                  */
1671
1672                 if (entry->qp.produce_size != produce_size ||
1673                     entry->qp.consume_size != consume_size) {
1674                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1675                 }
1676         } else if (entry->qp.produce_size != consume_size ||
1677                    entry->qp.consume_size != produce_size) {
1678                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1679         }
1680
1681         if (context_id != VMCI_HOST_CONTEXT_ID) {
1682                 /*
1683                  * If a guest attached to a queue pair, it will supply
1684                  * the backing memory.  If this is a pre NOVMVM vmx,
1685                  * the backing memory will be supplied by calling
1686                  * vmci_qp_broker_set_page_store() following the
1687                  * return of the vmci_qp_broker_alloc() call. If it is
1688                  * a vmx of version NOVMVM or later, the page store
1689                  * must be supplied as part of the
1690                  * vmci_qp_broker_alloc call.  Under all circumstances
1691                  * must the initially created queue pair not have any
1692                  * memory associated with it already.
1693                  */
1694
1695                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1696                         return VMCI_ERROR_INVALID_ARGS;
1697
1698                 if (page_store != NULL) {
1699                         /*
1700                          * Patch up host state to point to guest
1701                          * supplied memory. The VMX already
1702                          * initialized the queue pair headers, so no
1703                          * need for the kernel side to do that.
1704                          */
1705
1706                         result = qp_host_register_user_memory(page_store,
1707                                                               entry->produce_q,
1708                                                               entry->consume_q);
1709                         if (result < VMCI_SUCCESS)
1710                                 return result;
1711
1712                         entry->state = VMCIQPB_ATTACHED_MEM;
1713                 } else {
1714                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1715                 }
1716         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1717                 /*
1718                  * The host side is attempting to attach to a queue
1719                  * pair that doesn't have any memory associated with
1720                  * it. This must be a pre NOVMVM vmx that hasn't set
1721                  * the page store information yet, or a quiesced VM.
1722                  */
1723
1724                 return VMCI_ERROR_UNAVAILABLE;
1725         } else {
1726                 /* The host side has successfully attached to a queue pair. */
1727                 entry->state = VMCIQPB_ATTACHED_MEM;
1728         }
1729
1730         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1731                 result =
1732                     qp_notify_peer(true, entry->qp.handle, context_id,
1733                                    entry->create_id);
1734                 if (result < VMCI_SUCCESS)
1735                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1736                                 entry->create_id, entry->qp.handle.context,
1737                                 entry->qp.handle.resource);
1738         }
1739
1740         entry->attach_id = context_id;
1741         entry->qp.ref_count++;
1742         if (wakeup_cb) {
1743                 entry->wakeup_cb = wakeup_cb;
1744                 entry->client_data = client_data;
1745         }
1746
1747         /*
1748          * When attaching to local queue pairs, the context already has
1749          * an entry tracking the queue pair, so don't add another one.
1750          */
1751         if (!is_local)
1752                 vmci_ctx_qp_create(context, entry->qp.handle);
1753
1754         if (ent != NULL)
1755                 *ent = entry;
1756
1757         return VMCI_SUCCESS;
1758 }
1759
1760 /*
1761  * queue_pair_Alloc for use when setting up queue pair endpoints
1762  * on the host.
1763  */
1764 static int qp_broker_alloc(struct vmci_handle handle,
1765                            u32 peer,
1766                            u32 flags,
1767                            u32 priv_flags,
1768                            u64 produce_size,
1769                            u64 consume_size,
1770                            struct vmci_qp_page_store *page_store,
1771                            struct vmci_ctx *context,
1772                            vmci_event_release_cb wakeup_cb,
1773                            void *client_data,
1774                            struct qp_broker_entry **ent,
1775                            bool *swap)
1776 {
1777         const u32 context_id = vmci_ctx_get_id(context);
1778         bool create;
1779         struct qp_broker_entry *entry = NULL;
1780         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1781         int result;
1782
1783         if (vmci_handle_is_invalid(handle) ||
1784             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1785             !(produce_size || consume_size) ||
1786             !context || context_id == VMCI_INVALID_ID ||
1787             handle.context == VMCI_INVALID_ID) {
1788                 return VMCI_ERROR_INVALID_ARGS;
1789         }
1790
1791         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1792                 return VMCI_ERROR_INVALID_ARGS;
1793
1794         /*
1795          * In the initial argument check, we ensure that non-vmkernel hosts
1796          * are not allowed to create local queue pairs.
1797          */
1798
1799         mutex_lock(&qp_broker_list.mutex);
1800
1801         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1802                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1803                          context_id, handle.context, handle.resource);
1804                 mutex_unlock(&qp_broker_list.mutex);
1805                 return VMCI_ERROR_ALREADY_EXISTS;
1806         }
1807
1808         if (handle.resource != VMCI_INVALID_ID)
1809                 entry = qp_broker_handle_to_entry(handle);
1810
1811         if (!entry) {
1812                 create = true;
1813                 result =
1814                     qp_broker_create(handle, peer, flags, priv_flags,
1815                                      produce_size, consume_size, page_store,
1816                                      context, wakeup_cb, client_data, ent);
1817         } else {
1818                 create = false;
1819                 result =
1820                     qp_broker_attach(entry, peer, flags, priv_flags,
1821                                      produce_size, consume_size, page_store,
1822                                      context, wakeup_cb, client_data, ent);
1823         }
1824
1825         mutex_unlock(&qp_broker_list.mutex);
1826
1827         if (swap)
1828                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1829                     !(create && is_local);
1830
1831         return result;
1832 }
1833
1834 /*
1835  * This function implements the kernel API for allocating a queue
1836  * pair.
1837  */
1838 static int qp_alloc_host_work(struct vmci_handle *handle,
1839                               struct vmci_queue **produce_q,
1840                               u64 produce_size,
1841                               struct vmci_queue **consume_q,
1842                               u64 consume_size,
1843                               u32 peer,
1844                               u32 flags,
1845                               u32 priv_flags,
1846                               vmci_event_release_cb wakeup_cb,
1847                               void *client_data)
1848 {
1849         struct vmci_handle new_handle;
1850         struct vmci_ctx *context;
1851         struct qp_broker_entry *entry;
1852         int result;
1853         bool swap;
1854
1855         if (vmci_handle_is_invalid(*handle)) {
1856                 new_handle = vmci_make_handle(
1857                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1858         } else
1859                 new_handle = *handle;
1860
1861         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1862         entry = NULL;
1863         result =
1864             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1865                             produce_size, consume_size, NULL, context,
1866                             wakeup_cb, client_data, &entry, &swap);
1867         if (result == VMCI_SUCCESS) {
1868                 if (swap) {
1869                         /*
1870                          * If this is a local queue pair, the attacher
1871                          * will swap around produce and consume
1872                          * queues.
1873                          */
1874
1875                         *produce_q = entry->consume_q;
1876                         *consume_q = entry->produce_q;
1877                 } else {
1878                         *produce_q = entry->produce_q;
1879                         *consume_q = entry->consume_q;
1880                 }
1881
1882                 *handle = vmci_resource_handle(&entry->resource);
1883         } else {
1884                 *handle = VMCI_INVALID_HANDLE;
1885                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1886                          result);
1887         }
1888         vmci_ctx_put(context);
1889         return result;
1890 }
1891
1892 /*
1893  * Allocates a VMCI queue_pair. Only checks validity of input
1894  * arguments. The real work is done in the host or guest
1895  * specific function.
1896  */
1897 int vmci_qp_alloc(struct vmci_handle *handle,
1898                   struct vmci_queue **produce_q,
1899                   u64 produce_size,
1900                   struct vmci_queue **consume_q,
1901                   u64 consume_size,
1902                   u32 peer,
1903                   u32 flags,
1904                   u32 priv_flags,
1905                   bool guest_endpoint,
1906                   vmci_event_release_cb wakeup_cb,
1907                   void *client_data)
1908 {
1909         if (!handle || !produce_q || !consume_q ||
1910             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1911                 return VMCI_ERROR_INVALID_ARGS;
1912
1913         if (guest_endpoint) {
1914                 return qp_alloc_guest_work(handle, produce_q,
1915                                            produce_size, consume_q,
1916                                            consume_size, peer,
1917                                            flags, priv_flags);
1918         } else {
1919                 return qp_alloc_host_work(handle, produce_q,
1920                                           produce_size, consume_q,
1921                                           consume_size, peer, flags,
1922                                           priv_flags, wakeup_cb, client_data);
1923         }
1924 }
1925
1926 /*
1927  * This function implements the host kernel API for detaching from
1928  * a queue pair.
1929  */
1930 static int qp_detatch_host_work(struct vmci_handle handle)
1931 {
1932         int result;
1933         struct vmci_ctx *context;
1934
1935         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1936
1937         result = vmci_qp_broker_detach(handle, context);
1938
1939         vmci_ctx_put(context);
1940         return result;
1941 }
1942
1943 /*
1944  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1945  * Real work is done in the host or guest specific function.
1946  */
1947 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1948 {
1949         if (vmci_handle_is_invalid(handle))
1950                 return VMCI_ERROR_INVALID_ARGS;
1951
1952         if (guest_endpoint)
1953                 return qp_detatch_guest_work(handle);
1954         else
1955                 return qp_detatch_host_work(handle);
1956 }
1957
1958 /*
1959  * Returns the entry from the head of the list. Assumes that the list is
1960  * locked.
1961  */
1962 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1963 {
1964         if (!list_empty(&qp_list->head)) {
1965                 struct qp_entry *entry =
1966                     list_first_entry(&qp_list->head, struct qp_entry,
1967                                      list_item);
1968                 return entry;
1969         }
1970
1971         return NULL;
1972 }
1973
1974 void vmci_qp_broker_exit(void)
1975 {
1976         struct qp_entry *entry;
1977         struct qp_broker_entry *be;
1978
1979         mutex_lock(&qp_broker_list.mutex);
1980
1981         while ((entry = qp_list_get_head(&qp_broker_list))) {
1982                 be = (struct qp_broker_entry *)entry;
1983
1984                 qp_list_remove_entry(&qp_broker_list, entry);
1985                 kfree(be);
1986         }
1987
1988         mutex_unlock(&qp_broker_list.mutex);
1989 }
1990
1991 /*
1992  * Requests that a queue pair be allocated with the VMCI queue
1993  * pair broker. Allocates a queue pair entry if one does not
1994  * exist. Attaches to one if it exists, and retrieves the page
1995  * files backing that queue_pair.  Assumes that the queue pair
1996  * broker lock is held.
1997  */
1998 int vmci_qp_broker_alloc(struct vmci_handle handle,
1999                          u32 peer,
2000                          u32 flags,
2001                          u32 priv_flags,
2002                          u64 produce_size,
2003                          u64 consume_size,
2004                          struct vmci_qp_page_store *page_store,
2005                          struct vmci_ctx *context)
2006 {
2007         return qp_broker_alloc(handle, peer, flags, priv_flags,
2008                                produce_size, consume_size,
2009                                page_store, context, NULL, NULL, NULL, NULL);
2010 }
2011
2012 /*
2013  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2014  * step to add the UVAs of the VMX mapping of the queue pair. This function
2015  * provides backwards compatibility with such VMX'en, and takes care of
2016  * registering the page store for a queue pair previously allocated by the
2017  * VMX during create or attach. This function will move the queue pair state
2018  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2019  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2020  * attached state with memory, the queue pair is ready to be used by the
2021  * host peer, and an attached event will be generated.
2022  *
2023  * Assumes that the queue pair broker lock is held.
2024  *
2025  * This function is only used by the hosted platform, since there is no
2026  * issue with backwards compatibility for vmkernel.
2027  */
2028 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2029                                   u64 produce_uva,
2030                                   u64 consume_uva,
2031                                   struct vmci_ctx *context)
2032 {
2033         struct qp_broker_entry *entry;
2034         int result;
2035         const u32 context_id = vmci_ctx_get_id(context);
2036
2037         if (vmci_handle_is_invalid(handle) || !context ||
2038             context_id == VMCI_INVALID_ID)
2039                 return VMCI_ERROR_INVALID_ARGS;
2040
2041         /*
2042          * We only support guest to host queue pairs, so the VMX must
2043          * supply UVAs for the mapped page files.
2044          */
2045
2046         if (produce_uva == 0 || consume_uva == 0)
2047                 return VMCI_ERROR_INVALID_ARGS;
2048
2049         mutex_lock(&qp_broker_list.mutex);
2050
2051         if (!vmci_ctx_qp_exists(context, handle)) {
2052                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2053                         context_id, handle.context, handle.resource);
2054                 result = VMCI_ERROR_NOT_FOUND;
2055                 goto out;
2056         }
2057
2058         entry = qp_broker_handle_to_entry(handle);
2059         if (!entry) {
2060                 result = VMCI_ERROR_NOT_FOUND;
2061                 goto out;
2062         }
2063
2064         /*
2065          * If I'm the owner then I can set the page store.
2066          *
2067          * Or, if a host created the queue_pair and I'm the attached peer
2068          * then I can set the page store.
2069          */
2070         if (entry->create_id != context_id &&
2071             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2072              entry->attach_id != context_id)) {
2073                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2074                 goto out;
2075         }
2076
2077         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2078             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2079                 result = VMCI_ERROR_UNAVAILABLE;
2080                 goto out;
2081         }
2082
2083         result = qp_host_get_user_memory(produce_uva, consume_uva,
2084                                          entry->produce_q, entry->consume_q);
2085         if (result < VMCI_SUCCESS)
2086                 goto out;
2087
2088         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2089         if (result < VMCI_SUCCESS) {
2090                 qp_host_unregister_user_memory(entry->produce_q,
2091                                                entry->consume_q);
2092                 goto out;
2093         }
2094
2095         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2096                 entry->state = VMCIQPB_CREATED_MEM;
2097         else
2098                 entry->state = VMCIQPB_ATTACHED_MEM;
2099
2100         entry->vmci_page_files = true;
2101
2102         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2103                 result =
2104                     qp_notify_peer(true, handle, context_id, entry->create_id);
2105                 if (result < VMCI_SUCCESS) {
2106                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2107                                 entry->create_id, entry->qp.handle.context,
2108                                 entry->qp.handle.resource);
2109                 }
2110         }
2111
2112         result = VMCI_SUCCESS;
2113  out:
2114         mutex_unlock(&qp_broker_list.mutex);
2115         return result;
2116 }
2117
2118 /*
2119  * Resets saved queue headers for the given QP broker
2120  * entry. Should be used when guest memory becomes available
2121  * again, or the guest detaches.
2122  */
2123 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2124 {
2125         entry->produce_q->saved_header = NULL;
2126         entry->consume_q->saved_header = NULL;
2127 }
2128
2129 /*
2130  * The main entry point for detaching from a queue pair registered with the
2131  * queue pair broker. If more than one endpoint is attached to the queue
2132  * pair, the first endpoint will mainly decrement a reference count and
2133  * generate a notification to its peer. The last endpoint will clean up
2134  * the queue pair state registered with the broker.
2135  *
2136  * When a guest endpoint detaches, it will unmap and unregister the guest
2137  * memory backing the queue pair. If the host is still attached, it will
2138  * no longer be able to access the queue pair content.
2139  *
2140  * If the queue pair is already in a state where there is no memory
2141  * registered for the queue pair (any *_NO_MEM state), it will transition to
2142  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2143  * endpoint is the first of two endpoints to detach. If the host endpoint is
2144  * the first out of two to detach, the queue pair will move to the
2145  * VMCIQPB_SHUTDOWN_MEM state.
2146  */
2147 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2148 {
2149         struct qp_broker_entry *entry;
2150         const u32 context_id = vmci_ctx_get_id(context);
2151         u32 peer_id;
2152         bool is_local = false;
2153         int result;
2154
2155         if (vmci_handle_is_invalid(handle) || !context ||
2156             context_id == VMCI_INVALID_ID) {
2157                 return VMCI_ERROR_INVALID_ARGS;
2158         }
2159
2160         mutex_lock(&qp_broker_list.mutex);
2161
2162         if (!vmci_ctx_qp_exists(context, handle)) {
2163                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2164                          context_id, handle.context, handle.resource);
2165                 result = VMCI_ERROR_NOT_FOUND;
2166                 goto out;
2167         }
2168
2169         entry = qp_broker_handle_to_entry(handle);
2170         if (!entry) {
2171                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2172                          context_id, handle.context, handle.resource);
2173                 result = VMCI_ERROR_NOT_FOUND;
2174                 goto out;
2175         }
2176
2177         if (context_id != entry->create_id && context_id != entry->attach_id) {
2178                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2179                 goto out;
2180         }
2181
2182         if (context_id == entry->create_id) {
2183                 peer_id = entry->attach_id;
2184                 entry->create_id = VMCI_INVALID_ID;
2185         } else {
2186                 peer_id = entry->create_id;
2187                 entry->attach_id = VMCI_INVALID_ID;
2188         }
2189         entry->qp.ref_count--;
2190
2191         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2192
2193         if (context_id != VMCI_HOST_CONTEXT_ID) {
2194                 bool headers_mapped;
2195
2196                 /*
2197                  * Pre NOVMVM vmx'en may detach from a queue pair
2198                  * before setting the page store, and in that case
2199                  * there is no user memory to detach from. Also, more
2200                  * recent VMX'en may detach from a queue pair in the
2201                  * quiesced state.
2202                  */
2203
2204                 qp_acquire_queue_mutex(entry->produce_q);
2205                 headers_mapped = entry->produce_q->q_header ||
2206                     entry->consume_q->q_header;
2207                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2208                         result =
2209                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2210                                                  entry->produce_q,
2211                                                  entry->consume_q);
2212                         if (result < VMCI_SUCCESS)
2213                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2214                                         handle.context, handle.resource,
2215                                         result);
2216
2217                         if (entry->vmci_page_files)
2218                                 qp_host_unregister_user_memory(entry->produce_q,
2219                                                                entry->
2220                                                                consume_q);
2221                         else
2222                                 qp_host_unregister_user_memory(entry->produce_q,
2223                                                                entry->
2224                                                                consume_q);
2225
2226                 }
2227
2228                 if (!headers_mapped)
2229                         qp_reset_saved_headers(entry);
2230
2231                 qp_release_queue_mutex(entry->produce_q);
2232
2233                 if (!headers_mapped && entry->wakeup_cb)
2234                         entry->wakeup_cb(entry->client_data);
2235
2236         } else {
2237                 if (entry->wakeup_cb) {
2238                         entry->wakeup_cb = NULL;
2239                         entry->client_data = NULL;
2240                 }
2241         }
2242
2243         if (entry->qp.ref_count == 0) {
2244                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2245
2246                 if (is_local)
2247                         kfree(entry->local_mem);
2248
2249                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2250                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2251                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2252                 /* Unlink from resource hash table and free callback */
2253                 vmci_resource_remove(&entry->resource);
2254
2255                 kfree(entry);
2256
2257                 vmci_ctx_qp_destroy(context, handle);
2258         } else {
2259                 qp_notify_peer(false, handle, context_id, peer_id);
2260                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2261                     QPBROKERSTATE_HAS_MEM(entry)) {
2262                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2263                 } else {
2264                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2265                 }
2266
2267                 if (!is_local)
2268                         vmci_ctx_qp_destroy(context, handle);
2269
2270         }
2271         result = VMCI_SUCCESS;
2272  out:
2273         mutex_unlock(&qp_broker_list.mutex);
2274         return result;
2275 }
2276
2277 /*
2278  * Establishes the necessary mappings for a queue pair given a
2279  * reference to the queue pair guest memory. This is usually
2280  * called when a guest is unquiesced and the VMX is allowed to
2281  * map guest memory once again.
2282  */
2283 int vmci_qp_broker_map(struct vmci_handle handle,
2284                        struct vmci_ctx *context,
2285                        u64 guest_mem)
2286 {
2287         struct qp_broker_entry *entry;
2288         const u32 context_id = vmci_ctx_get_id(context);
2289         bool is_local = false;
2290         int result;
2291
2292         if (vmci_handle_is_invalid(handle) || !context ||
2293             context_id == VMCI_INVALID_ID)
2294                 return VMCI_ERROR_INVALID_ARGS;
2295
2296         mutex_lock(&qp_broker_list.mutex);
2297
2298         if (!vmci_ctx_qp_exists(context, handle)) {
2299                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2300                          context_id, handle.context, handle.resource);
2301                 result = VMCI_ERROR_NOT_FOUND;
2302                 goto out;
2303         }
2304
2305         entry = qp_broker_handle_to_entry(handle);
2306         if (!entry) {
2307                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2308                          context_id, handle.context, handle.resource);
2309                 result = VMCI_ERROR_NOT_FOUND;
2310                 goto out;
2311         }
2312
2313         if (context_id != entry->create_id && context_id != entry->attach_id) {
2314                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2315                 goto out;
2316         }
2317
2318         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2319         result = VMCI_SUCCESS;
2320
2321         if (context_id != VMCI_HOST_CONTEXT_ID) {
2322                 struct vmci_qp_page_store page_store;
2323
2324                 page_store.pages = guest_mem;
2325                 page_store.len = QPE_NUM_PAGES(entry->qp);
2326
2327                 qp_acquire_queue_mutex(entry->produce_q);
2328                 qp_reset_saved_headers(entry);
2329                 result =
2330                     qp_host_register_user_memory(&page_store,
2331                                                  entry->produce_q,
2332                                                  entry->consume_q);
2333                 qp_release_queue_mutex(entry->produce_q);
2334                 if (result == VMCI_SUCCESS) {
2335                         /* Move state from *_NO_MEM to *_MEM */
2336
2337                         entry->state++;
2338
2339                         if (entry->wakeup_cb)
2340                                 entry->wakeup_cb(entry->client_data);
2341                 }
2342         }
2343
2344  out:
2345         mutex_unlock(&qp_broker_list.mutex);
2346         return result;
2347 }
2348
2349 /*
2350  * Saves a snapshot of the queue headers for the given QP broker
2351  * entry. Should be used when guest memory is unmapped.
2352  * Results:
2353  * VMCI_SUCCESS on success, appropriate error code if guest memory
2354  * can't be accessed..
2355  */
2356 static int qp_save_headers(struct qp_broker_entry *entry)
2357 {
2358         int result;
2359
2360         if (entry->produce_q->saved_header != NULL &&
2361             entry->consume_q->saved_header != NULL) {
2362                 /*
2363                  *  If the headers have already been saved, we don't need to do
2364                  *  it again, and we don't want to map in the headers
2365                  *  unnecessarily.
2366                  */
2367
2368                 return VMCI_SUCCESS;
2369         }
2370
2371         if (NULL == entry->produce_q->q_header ||
2372             NULL == entry->consume_q->q_header) {
2373                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2374                 if (result < VMCI_SUCCESS)
2375                         return result;
2376         }
2377
2378         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2379                sizeof(entry->saved_produce_q));
2380         entry->produce_q->saved_header = &entry->saved_produce_q;
2381         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2382                sizeof(entry->saved_consume_q));
2383         entry->consume_q->saved_header = &entry->saved_consume_q;
2384
2385         return VMCI_SUCCESS;
2386 }
2387
2388 /*
2389  * Removes all references to the guest memory of a given queue pair, and
2390  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2391  * called when a VM is being quiesced where access to guest memory should
2392  * avoided.
2393  */
2394 int vmci_qp_broker_unmap(struct vmci_handle handle,
2395                          struct vmci_ctx *context,
2396                          u32 gid)
2397 {
2398         struct qp_broker_entry *entry;
2399         const u32 context_id = vmci_ctx_get_id(context);
2400         bool is_local = false;
2401         int result;
2402
2403         if (vmci_handle_is_invalid(handle) || !context ||
2404             context_id == VMCI_INVALID_ID)
2405                 return VMCI_ERROR_INVALID_ARGS;
2406
2407         mutex_lock(&qp_broker_list.mutex);
2408
2409         if (!vmci_ctx_qp_exists(context, handle)) {
2410                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2411                          context_id, handle.context, handle.resource);
2412                 result = VMCI_ERROR_NOT_FOUND;
2413                 goto out;
2414         }
2415
2416         entry = qp_broker_handle_to_entry(handle);
2417         if (!entry) {
2418                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2419                          context_id, handle.context, handle.resource);
2420                 result = VMCI_ERROR_NOT_FOUND;
2421                 goto out;
2422         }
2423
2424         if (context_id != entry->create_id && context_id != entry->attach_id) {
2425                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2426                 goto out;
2427         }
2428
2429         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2430
2431         if (context_id != VMCI_HOST_CONTEXT_ID) {
2432                 qp_acquire_queue_mutex(entry->produce_q);
2433                 result = qp_save_headers(entry);
2434                 if (result < VMCI_SUCCESS)
2435                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2436                                 handle.context, handle.resource, result);
2437
2438                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2439
2440                 /*
2441                  * On hosted, when we unmap queue pairs, the VMX will also
2442                  * unmap the guest memory, so we invalidate the previously
2443                  * registered memory. If the queue pair is mapped again at a
2444                  * later point in time, we will need to reregister the user
2445                  * memory with a possibly new user VA.
2446                  */
2447                 qp_host_unregister_user_memory(entry->produce_q,
2448                                                entry->consume_q);
2449
2450                 /*
2451                  * Move state from *_MEM to *_NO_MEM.
2452                  */
2453                 entry->state--;
2454
2455                 qp_release_queue_mutex(entry->produce_q);
2456         }
2457
2458         result = VMCI_SUCCESS;
2459
2460  out:
2461         mutex_unlock(&qp_broker_list.mutex);
2462         return result;
2463 }
2464
2465 /*
2466  * Destroys all guest queue pair endpoints. If active guest queue
2467  * pairs still exist, hypercalls to attempt detach from these
2468  * queue pairs will be made. Any failure to detach is silently
2469  * ignored.
2470  */
2471 void vmci_qp_guest_endpoints_exit(void)
2472 {
2473         struct qp_entry *entry;
2474         struct qp_guest_endpoint *ep;
2475
2476         mutex_lock(&qp_guest_endpoints.mutex);
2477
2478         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2479                 ep = (struct qp_guest_endpoint *)entry;
2480
2481                 /* Don't make a hypercall for local queue_pairs. */
2482                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2483                         qp_detatch_hypercall(entry->handle);
2484
2485                 /* We cannot fail the exit, so let's reset ref_count. */
2486                 entry->ref_count = 0;
2487                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2488
2489                 qp_guest_endpoint_destroy(ep);
2490         }
2491
2492         mutex_unlock(&qp_guest_endpoints.mutex);
2493 }
2494
2495 /*
2496  * Helper routine that will lock the queue pair before subsequent
2497  * operations.
2498  * Note: Non-blocking on the host side is currently only implemented in ESX.
2499  * Since non-blocking isn't yet implemented on the host personality we
2500  * have no reason to acquire a spin lock.  So to avoid the use of an
2501  * unnecessary lock only acquire the mutex if we can block.
2502  */
2503 static void qp_lock(const struct vmci_qp *qpair)
2504 {
2505         qp_acquire_queue_mutex(qpair->produce_q);
2506 }
2507
2508 /*
2509  * Helper routine that unlocks the queue pair after calling
2510  * qp_lock.
2511  */
2512 static void qp_unlock(const struct vmci_qp *qpair)
2513 {
2514         qp_release_queue_mutex(qpair->produce_q);
2515 }
2516
2517 /*
2518  * The queue headers may not be mapped at all times. If a queue is
2519  * currently not mapped, it will be attempted to do so.
2520  */
2521 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2522                                 struct vmci_queue *consume_q)
2523 {
2524         int result;
2525
2526         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2527                 result = qp_host_map_queues(produce_q, consume_q);
2528                 if (result < VMCI_SUCCESS)
2529                         return (produce_q->saved_header &&
2530                                 consume_q->saved_header) ?
2531                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2532                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2533         }
2534
2535         return VMCI_SUCCESS;
2536 }
2537
2538 /*
2539  * Helper routine that will retrieve the produce and consume
2540  * headers of a given queue pair. If the guest memory of the
2541  * queue pair is currently not available, the saved queue headers
2542  * will be returned, if these are available.
2543  */
2544 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2545                                 struct vmci_queue_header **produce_q_header,
2546                                 struct vmci_queue_header **consume_q_header)
2547 {
2548         int result;
2549
2550         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2551         if (result == VMCI_SUCCESS) {
2552                 *produce_q_header = qpair->produce_q->q_header;
2553                 *consume_q_header = qpair->consume_q->q_header;
2554         } else if (qpair->produce_q->saved_header &&
2555                    qpair->consume_q->saved_header) {
2556                 *produce_q_header = qpair->produce_q->saved_header;
2557                 *consume_q_header = qpair->consume_q->saved_header;
2558                 result = VMCI_SUCCESS;
2559         }
2560
2561         return result;
2562 }
2563
2564 /*
2565  * Callback from VMCI queue pair broker indicating that a queue
2566  * pair that was previously not ready, now either is ready or
2567  * gone forever.
2568  */
2569 static int qp_wakeup_cb(void *client_data)
2570 {
2571         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2572
2573         qp_lock(qpair);
2574         while (qpair->blocked > 0) {
2575                 qpair->blocked--;
2576                 qpair->generation++;
2577                 wake_up(&qpair->event);
2578         }
2579         qp_unlock(qpair);
2580
2581         return VMCI_SUCCESS;
2582 }
2583
2584 /*
2585  * Makes the calling thread wait for the queue pair to become
2586  * ready for host side access.  Returns true when thread is
2587  * woken up after queue pair state change, false otherwise.
2588  */
2589 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2590 {
2591         unsigned int generation;
2592
2593         qpair->blocked++;
2594         generation = qpair->generation;
2595         qp_unlock(qpair);
2596         wait_event(qpair->event, generation != qpair->generation);
2597         qp_lock(qpair);
2598
2599         return true;
2600 }
2601
2602 /*
2603  * Enqueues a given buffer to the produce queue using the provided
2604  * function. As many bytes as possible (space available in the queue)
2605  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2606  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2607  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2608  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2609  * an error occured when accessing the buffer,
2610  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2611  * available.  Otherwise, the number of bytes written to the queue is
2612  * returned.  Updates the tail pointer of the produce queue.
2613  */
2614 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2615                                  struct vmci_queue *consume_q,
2616                                  const u64 produce_q_size,
2617                                  const void *buf,
2618                                  size_t buf_size,
2619                                  vmci_memcpy_to_queue_func memcpy_to_queue)
2620 {
2621         s64 free_space;
2622         u64 tail;
2623         size_t written;
2624         ssize_t result;
2625
2626         result = qp_map_queue_headers(produce_q, consume_q);
2627         if (unlikely(result != VMCI_SUCCESS))
2628                 return result;
2629
2630         free_space = vmci_q_header_free_space(produce_q->q_header,
2631                                               consume_q->q_header,
2632                                               produce_q_size);
2633         if (free_space == 0)
2634                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2635
2636         if (free_space < VMCI_SUCCESS)
2637                 return (ssize_t) free_space;
2638
2639         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2640         tail = vmci_q_header_producer_tail(produce_q->q_header);
2641         if (likely(tail + written < produce_q_size)) {
2642                 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2643         } else {
2644                 /* Tail pointer wraps around. */
2645
2646                 const size_t tmp = (size_t) (produce_q_size - tail);
2647
2648                 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2649                 if (result >= VMCI_SUCCESS)
2650                         result = memcpy_to_queue(produce_q, 0, buf, tmp,
2651                                                  written - tmp);
2652         }
2653
2654         if (result < VMCI_SUCCESS)
2655                 return result;
2656
2657         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2658                                         produce_q_size);
2659         return written;
2660 }
2661
2662 /*
2663  * Dequeues data (if available) from the given consume queue. Writes data
2664  * to the user provided buffer using the provided function.
2665  * Assumes the queue->mutex has been acquired.
2666  * Results:
2667  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2668  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2669  * (as defined by the queue size).
2670  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2671  * Otherwise the number of bytes dequeued is returned.
2672  * Side effects:
2673  * Updates the head pointer of the consume queue.
2674  */
2675 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2676                                  struct vmci_queue *consume_q,
2677                                  const u64 consume_q_size,
2678                                  void *buf,
2679                                  size_t buf_size,
2680                                  vmci_memcpy_from_queue_func memcpy_from_queue,
2681                                  bool update_consumer)
2682 {
2683         s64 buf_ready;
2684         u64 head;
2685         size_t read;
2686         ssize_t result;
2687
2688         result = qp_map_queue_headers(produce_q, consume_q);
2689         if (unlikely(result != VMCI_SUCCESS))
2690                 return result;
2691
2692         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2693                                             produce_q->q_header,
2694                                             consume_q_size);
2695         if (buf_ready == 0)
2696                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2697
2698         if (buf_ready < VMCI_SUCCESS)
2699                 return (ssize_t) buf_ready;
2700
2701         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2702         head = vmci_q_header_consumer_head(produce_q->q_header);
2703         if (likely(head + read < consume_q_size)) {
2704                 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2705         } else {
2706                 /* Head pointer wraps around. */
2707
2708                 const size_t tmp = (size_t) (consume_q_size - head);
2709
2710                 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2711                 if (result >= VMCI_SUCCESS)
2712                         result = memcpy_from_queue(buf, tmp, consume_q, 0,
2713                                                    read - tmp);
2714
2715         }
2716
2717         if (result < VMCI_SUCCESS)
2718                 return result;
2719
2720         if (update_consumer)
2721                 vmci_q_header_add_consumer_head(produce_q->q_header,
2722                                                 read, consume_q_size);
2723
2724         return read;
2725 }
2726
2727 /*
2728  * vmci_qpair_alloc() - Allocates a queue pair.
2729  * @qpair:      Pointer for the new vmci_qp struct.
2730  * @handle:     Handle to track the resource.
2731  * @produce_qsize:      Desired size of the producer queue.
2732  * @consume_qsize:      Desired size of the consumer queue.
2733  * @peer:       ContextID of the peer.
2734  * @flags:      VMCI flags.
2735  * @priv_flags: VMCI priviledge flags.
2736  *
2737  * This is the client interface for allocating the memory for a
2738  * vmci_qp structure and then attaching to the underlying
2739  * queue.  If an error occurs allocating the memory for the
2740  * vmci_qp structure no attempt is made to attach.  If an
2741  * error occurs attaching, then the structure is freed.
2742  */
2743 int vmci_qpair_alloc(struct vmci_qp **qpair,
2744                      struct vmci_handle *handle,
2745                      u64 produce_qsize,
2746                      u64 consume_qsize,
2747                      u32 peer,
2748                      u32 flags,
2749                      u32 priv_flags)
2750 {
2751         struct vmci_qp *my_qpair;
2752         int retval;
2753         struct vmci_handle src = VMCI_INVALID_HANDLE;
2754         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2755         enum vmci_route route;
2756         vmci_event_release_cb wakeup_cb;
2757         void *client_data;
2758
2759         /*
2760          * Restrict the size of a queuepair.  The device already
2761          * enforces a limit on the total amount of memory that can be
2762          * allocated to queuepairs for a guest.  However, we try to
2763          * allocate this memory before we make the queuepair
2764          * allocation hypercall.  On Linux, we allocate each page
2765          * separately, which means rather than fail, the guest will
2766          * thrash while it tries to allocate, and will become
2767          * increasingly unresponsive to the point where it appears to
2768          * be hung.  So we place a limit on the size of an individual
2769          * queuepair here, and leave the device to enforce the
2770          * restriction on total queuepair memory.  (Note that this
2771          * doesn't prevent all cases; a user with only this much
2772          * physical memory could still get into trouble.)  The error
2773          * used by the device is NO_RESOURCES, so use that here too.
2774          */
2775
2776         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2777             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2778                 return VMCI_ERROR_NO_RESOURCES;
2779
2780         retval = vmci_route(&src, &dst, false, &route);
2781         if (retval < VMCI_SUCCESS)
2782                 route = vmci_guest_code_active() ?
2783                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2784
2785         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2786                 pr_devel("NONBLOCK OR PINNED set");
2787                 return VMCI_ERROR_INVALID_ARGS;
2788         }
2789
2790         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2791         if (!my_qpair)
2792                 return VMCI_ERROR_NO_MEM;
2793
2794         my_qpair->produce_q_size = produce_qsize;
2795         my_qpair->consume_q_size = consume_qsize;
2796         my_qpair->peer = peer;
2797         my_qpair->flags = flags;
2798         my_qpair->priv_flags = priv_flags;
2799
2800         wakeup_cb = NULL;
2801         client_data = NULL;
2802
2803         if (VMCI_ROUTE_AS_HOST == route) {
2804                 my_qpair->guest_endpoint = false;
2805                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2806                         my_qpair->blocked = 0;
2807                         my_qpair->generation = 0;
2808                         init_waitqueue_head(&my_qpair->event);
2809                         wakeup_cb = qp_wakeup_cb;
2810                         client_data = (void *)my_qpair;
2811                 }
2812         } else {
2813                 my_qpair->guest_endpoint = true;
2814         }
2815
2816         retval = vmci_qp_alloc(handle,
2817                                &my_qpair->produce_q,
2818                                my_qpair->produce_q_size,
2819                                &my_qpair->consume_q,
2820                                my_qpair->consume_q_size,
2821                                my_qpair->peer,
2822                                my_qpair->flags,
2823                                my_qpair->priv_flags,
2824                                my_qpair->guest_endpoint,
2825                                wakeup_cb, client_data);
2826
2827         if (retval < VMCI_SUCCESS) {
2828                 kfree(my_qpair);
2829                 return retval;
2830         }
2831
2832         *qpair = my_qpair;
2833         my_qpair->handle = *handle;
2834
2835         return retval;
2836 }
2837 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2838
2839 /*
2840  * vmci_qpair_detach() - Detatches the client from a queue pair.
2841  * @qpair:      Reference of a pointer to the qpair struct.
2842  *
2843  * This is the client interface for detaching from a VMCIQPair.
2844  * Note that this routine will free the memory allocated for the
2845  * vmci_qp structure too.
2846  */
2847 int vmci_qpair_detach(struct vmci_qp **qpair)
2848 {
2849         int result;
2850         struct vmci_qp *old_qpair;
2851
2852         if (!qpair || !(*qpair))
2853                 return VMCI_ERROR_INVALID_ARGS;
2854
2855         old_qpair = *qpair;
2856         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2857
2858         /*
2859          * The guest can fail to detach for a number of reasons, and
2860          * if it does so, it will cleanup the entry (if there is one).
2861          * The host can fail too, but it won't cleanup the entry
2862          * immediately, it will do that later when the context is
2863          * freed.  Either way, we need to release the qpair struct
2864          * here; there isn't much the caller can do, and we don't want
2865          * to leak.
2866          */
2867
2868         memset(old_qpair, 0, sizeof(*old_qpair));
2869         old_qpair->handle = VMCI_INVALID_HANDLE;
2870         old_qpair->peer = VMCI_INVALID_ID;
2871         kfree(old_qpair);
2872         *qpair = NULL;
2873
2874         return result;
2875 }
2876 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2877
2878 /*
2879  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2880  * @qpair:      Pointer to the queue pair struct.
2881  * @producer_tail:      Reference used for storing producer tail index.
2882  * @consumer_head:      Reference used for storing the consumer head index.
2883  *
2884  * This is the client interface for getting the current indexes of the
2885  * QPair from the point of the view of the caller as the producer.
2886  */
2887 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2888                                    u64 *producer_tail,
2889                                    u64 *consumer_head)
2890 {
2891         struct vmci_queue_header *produce_q_header;
2892         struct vmci_queue_header *consume_q_header;
2893         int result;
2894
2895         if (!qpair)
2896                 return VMCI_ERROR_INVALID_ARGS;
2897
2898         qp_lock(qpair);
2899         result =
2900             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2901         if (result == VMCI_SUCCESS)
2902                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2903                                            producer_tail, consumer_head);
2904         qp_unlock(qpair);
2905
2906         if (result == VMCI_SUCCESS &&
2907             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2908              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2909                 return VMCI_ERROR_INVALID_SIZE;
2910
2911         return result;
2912 }
2913 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2914
2915 /*
2916  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2917  * @qpair:      Pointer to the queue pair struct.
2918  * @consumer_tail:      Reference used for storing consumer tail index.
2919  * @producer_head:      Reference used for storing the producer head index.
2920  *
2921  * This is the client interface for getting the current indexes of the
2922  * QPair from the point of the view of the caller as the consumer.
2923  */
2924 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2925                                    u64 *consumer_tail,
2926                                    u64 *producer_head)
2927 {
2928         struct vmci_queue_header *produce_q_header;
2929         struct vmci_queue_header *consume_q_header;
2930         int result;
2931
2932         if (!qpair)
2933                 return VMCI_ERROR_INVALID_ARGS;
2934
2935         qp_lock(qpair);
2936         result =
2937             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2938         if (result == VMCI_SUCCESS)
2939                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2940                                            consumer_tail, producer_head);
2941         qp_unlock(qpair);
2942
2943         if (result == VMCI_SUCCESS &&
2944             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2945              (producer_head && *producer_head >= qpair->consume_q_size)))
2946                 return VMCI_ERROR_INVALID_SIZE;
2947
2948         return result;
2949 }
2950 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2951
2952 /*
2953  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2954  * @qpair:      Pointer to the queue pair struct.
2955  *
2956  * This is the client interface for getting the amount of free
2957  * space in the QPair from the point of the view of the caller as
2958  * the producer which is the common case.  Returns < 0 if err, else
2959  * available bytes into which data can be enqueued if > 0.
2960  */
2961 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2962 {
2963         struct vmci_queue_header *produce_q_header;
2964         struct vmci_queue_header *consume_q_header;
2965         s64 result;
2966
2967         if (!qpair)
2968                 return VMCI_ERROR_INVALID_ARGS;
2969
2970         qp_lock(qpair);
2971         result =
2972             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2973         if (result == VMCI_SUCCESS)
2974                 result = vmci_q_header_free_space(produce_q_header,
2975                                                   consume_q_header,
2976                                                   qpair->produce_q_size);
2977         else
2978                 result = 0;
2979
2980         qp_unlock(qpair);
2981
2982         return result;
2983 }
2984 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2985
2986 /*
2987  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2988  * @qpair:      Pointer to the queue pair struct.
2989  *
2990  * This is the client interface for getting the amount of free
2991  * space in the QPair from the point of the view of the caller as
2992  * the consumer which is not the common case.  Returns < 0 if err, else
2993  * available bytes into which data can be enqueued if > 0.
2994  */
2995 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2996 {
2997         struct vmci_queue_header *produce_q_header;
2998         struct vmci_queue_header *consume_q_header;
2999         s64 result;
3000
3001         if (!qpair)
3002                 return VMCI_ERROR_INVALID_ARGS;
3003
3004         qp_lock(qpair);
3005         result =
3006             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3007         if (result == VMCI_SUCCESS)
3008                 result = vmci_q_header_free_space(consume_q_header,
3009                                                   produce_q_header,
3010                                                   qpair->consume_q_size);
3011         else
3012                 result = 0;
3013
3014         qp_unlock(qpair);
3015
3016         return result;
3017 }
3018 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3019
3020 /*
3021  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3022  * producer queue.
3023  * @qpair:      Pointer to the queue pair struct.
3024  *
3025  * This is the client interface for getting the amount of
3026  * enqueued data in the QPair from the point of the view of the
3027  * caller as the producer which is not the common case.  Returns < 0 if err,
3028  * else available bytes that may be read.
3029  */
3030 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3031 {
3032         struct vmci_queue_header *produce_q_header;
3033         struct vmci_queue_header *consume_q_header;
3034         s64 result;
3035
3036         if (!qpair)
3037                 return VMCI_ERROR_INVALID_ARGS;
3038
3039         qp_lock(qpair);
3040         result =
3041             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3042         if (result == VMCI_SUCCESS)
3043                 result = vmci_q_header_buf_ready(produce_q_header,
3044                                                  consume_q_header,
3045                                                  qpair->produce_q_size);
3046         else
3047                 result = 0;
3048
3049         qp_unlock(qpair);
3050
3051         return result;
3052 }
3053 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3054
3055 /*
3056  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3057  * consumer queue.
3058  * @qpair:      Pointer to the queue pair struct.
3059  *
3060  * This is the client interface for getting the amount of
3061  * enqueued data in the QPair from the point of the view of the
3062  * caller as the consumer which is the normal case.  Returns < 0 if err,
3063  * else available bytes that may be read.
3064  */
3065 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3066 {
3067         struct vmci_queue_header *produce_q_header;
3068         struct vmci_queue_header *consume_q_header;
3069         s64 result;
3070
3071         if (!qpair)
3072                 return VMCI_ERROR_INVALID_ARGS;
3073
3074         qp_lock(qpair);
3075         result =
3076             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3077         if (result == VMCI_SUCCESS)
3078                 result = vmci_q_header_buf_ready(consume_q_header,
3079                                                  produce_q_header,
3080                                                  qpair->consume_q_size);
3081         else
3082                 result = 0;
3083
3084         qp_unlock(qpair);
3085
3086         return result;
3087 }
3088 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3089
3090 /*
3091  * vmci_qpair_enqueue() - Throw data on the queue.
3092  * @qpair:      Pointer to the queue pair struct.
3093  * @buf:        Pointer to buffer containing data
3094  * @buf_size:   Length of buffer.
3095  * @buf_type:   Buffer type (Unused).
3096  *
3097  * This is the client interface for enqueueing data into the queue.
3098  * Returns number of bytes enqueued or < 0 on error.
3099  */
3100 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3101                            const void *buf,
3102                            size_t buf_size,
3103                            int buf_type)
3104 {
3105         ssize_t result;
3106
3107         if (!qpair || !buf)
3108                 return VMCI_ERROR_INVALID_ARGS;
3109
3110         qp_lock(qpair);
3111
3112         do {
3113                 result = qp_enqueue_locked(qpair->produce_q,
3114                                            qpair->consume_q,
3115                                            qpair->produce_q_size,
3116                                            buf, buf_size,
3117                                            qp_memcpy_to_queue);
3118
3119                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3120                     !qp_wait_for_ready_queue(qpair))
3121                         result = VMCI_ERROR_WOULD_BLOCK;
3122
3123         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3124
3125         qp_unlock(qpair);
3126
3127         return result;
3128 }
3129 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3130
3131 /*
3132  * vmci_qpair_dequeue() - Get data from the queue.
3133  * @qpair:      Pointer to the queue pair struct.
3134  * @buf:        Pointer to buffer for the data
3135  * @buf_size:   Length of buffer.
3136  * @buf_type:   Buffer type (Unused).
3137  *
3138  * This is the client interface for dequeueing data from the queue.
3139  * Returns number of bytes dequeued or < 0 on error.
3140  */
3141 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3142                            void *buf,
3143                            size_t buf_size,
3144                            int buf_type)
3145 {
3146         ssize_t result;
3147
3148         if (!qpair || !buf)
3149                 return VMCI_ERROR_INVALID_ARGS;
3150
3151         qp_lock(qpair);
3152
3153         do {
3154                 result = qp_dequeue_locked(qpair->produce_q,
3155                                            qpair->consume_q,
3156                                            qpair->consume_q_size,
3157                                            buf, buf_size,
3158                                            qp_memcpy_from_queue, true);
3159
3160                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3161                     !qp_wait_for_ready_queue(qpair))
3162                         result = VMCI_ERROR_WOULD_BLOCK;
3163
3164         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3165
3166         qp_unlock(qpair);
3167
3168         return result;
3169 }
3170 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3171
3172 /*
3173  * vmci_qpair_peek() - Peek at the data in the queue.
3174  * @qpair:      Pointer to the queue pair struct.
3175  * @buf:        Pointer to buffer for the data
3176  * @buf_size:   Length of buffer.
3177  * @buf_type:   Buffer type (Unused on Linux).
3178  *
3179  * This is the client interface for peeking into a queue.  (I.e.,
3180  * copy data from the queue without updating the head pointer.)
3181  * Returns number of bytes dequeued or < 0 on error.
3182  */
3183 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3184                         void *buf,
3185                         size_t buf_size,
3186                         int buf_type)
3187 {
3188         ssize_t result;
3189
3190         if (!qpair || !buf)
3191                 return VMCI_ERROR_INVALID_ARGS;
3192
3193         qp_lock(qpair);
3194
3195         do {
3196                 result = qp_dequeue_locked(qpair->produce_q,
3197                                            qpair->consume_q,
3198                                            qpair->consume_q_size,
3199                                            buf, buf_size,
3200                                            qp_memcpy_from_queue, false);
3201
3202                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3203                     !qp_wait_for_ready_queue(qpair))
3204                         result = VMCI_ERROR_WOULD_BLOCK;
3205
3206         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3207
3208         qp_unlock(qpair);
3209
3210         return result;
3211 }
3212 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3213
3214 /*
3215  * vmci_qpair_enquev() - Throw data on the queue using iov.
3216  * @qpair:      Pointer to the queue pair struct.
3217  * @iov:        Pointer to buffer containing data
3218  * @iov_size:   Length of buffer.
3219  * @buf_type:   Buffer type (Unused).
3220  *
3221  * This is the client interface for enqueueing data into the queue.
3222  * This function uses IO vectors to handle the work. Returns number
3223  * of bytes enqueued or < 0 on error.
3224  */
3225 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3226                           void *iov,
3227                           size_t iov_size,
3228                           int buf_type)
3229 {
3230         ssize_t result;
3231
3232         if (!qpair || !iov)
3233                 return VMCI_ERROR_INVALID_ARGS;
3234
3235         qp_lock(qpair);
3236
3237         do {
3238                 result = qp_enqueue_locked(qpair->produce_q,
3239                                            qpair->consume_q,
3240                                            qpair->produce_q_size,
3241                                            iov, iov_size,
3242                                            qp_memcpy_to_queue_iov);
3243
3244                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3245                     !qp_wait_for_ready_queue(qpair))
3246                         result = VMCI_ERROR_WOULD_BLOCK;
3247
3248         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3249
3250         qp_unlock(qpair);
3251
3252         return result;
3253 }
3254 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3255
3256 /*
3257  * vmci_qpair_dequev() - Get data from the queue using iov.
3258  * @qpair:      Pointer to the queue pair struct.
3259  * @iov:        Pointer to buffer for the data
3260  * @iov_size:   Length of buffer.
3261  * @buf_type:   Buffer type (Unused).
3262  *
3263  * This is the client interface for dequeueing data from the queue.
3264  * This function uses IO vectors to handle the work. Returns number
3265  * of bytes dequeued or < 0 on error.
3266  */
3267 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3268                           struct msghdr *msg,
3269                           size_t iov_size,
3270                           int buf_type)
3271 {
3272         ssize_t result;
3273
3274         if (!qpair)
3275                 return VMCI_ERROR_INVALID_ARGS;
3276
3277         qp_lock(qpair);
3278
3279         do {
3280                 result = qp_dequeue_locked(qpair->produce_q,
3281                                            qpair->consume_q,
3282                                            qpair->consume_q_size,
3283                                            msg, iov_size,
3284                                            qp_memcpy_from_queue_iov,
3285                                            true);
3286
3287                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3288                     !qp_wait_for_ready_queue(qpair))
3289                         result = VMCI_ERROR_WOULD_BLOCK;
3290
3291         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3292
3293         qp_unlock(qpair);
3294
3295         return result;
3296 }
3297 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3298
3299 /*
3300  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3301  * @qpair:      Pointer to the queue pair struct.
3302  * @iov:        Pointer to buffer for the data
3303  * @iov_size:   Length of buffer.
3304  * @buf_type:   Buffer type (Unused on Linux).
3305  *
3306  * This is the client interface for peeking into a queue.  (I.e.,
3307  * copy data from the queue without updating the head pointer.)
3308  * This function uses IO vectors to handle the work. Returns number
3309  * of bytes peeked or < 0 on error.
3310  */
3311 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3312                          struct msghdr *msg,
3313                          size_t iov_size,
3314                          int buf_type)
3315 {
3316         ssize_t result;
3317
3318         if (!qpair)
3319                 return VMCI_ERROR_INVALID_ARGS;
3320
3321         qp_lock(qpair);
3322
3323         do {
3324                 result = qp_dequeue_locked(qpair->produce_q,
3325                                            qpair->consume_q,
3326                                            qpair->consume_q_size,
3327                                            msg, iov_size,
3328                                            qp_memcpy_from_queue_iov,
3329                                            false);
3330
3331                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3332                     !qp_wait_for_ready_queue(qpair))
3333                         result = VMCI_ERROR_WOULD_BLOCK;
3334
3335         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3336
3337         qp_unlock(qpair);
3338         return result;
3339 }
3340 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);