x86: Move call to print_modules() out of show_regs()
[cascardo/linux.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
37
38 #include <asm/mach/flash.h>
39 #include <mach/mxc_nand.h>
40 #include <mach/hardware.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 #define nfc_is_v21()            (cpu_is_mx25() || cpu_is_mx35())
45 #define nfc_is_v1()             (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
46 #define nfc_is_v3_2()           (cpu_is_mx51() || cpu_is_mx53())
47 #define nfc_is_v3()             nfc_is_v3_2()
48
49 /* Addresses for NFC registers */
50 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
51 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
52 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
53 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
54 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
55 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
56 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
57 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
58 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
59 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
60 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
61 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
62 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
63 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
64 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
65 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
66 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
67 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
68 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
69 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
70 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
71 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
72
73 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
74 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
75 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
76 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
77 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
78 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
79 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
80 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
81 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
82 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
83
84 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
85
86 /*
87  * Operation modes for the NFC. Valid for v1, v2 and v3
88  * type controllers.
89  */
90 #define NFC_CMD                         (1 << 0)
91 #define NFC_ADDR                        (1 << 1)
92 #define NFC_INPUT                       (1 << 2)
93 #define NFC_OUTPUT                      (1 << 3)
94 #define NFC_ID                          (1 << 4)
95 #define NFC_STATUS                      (1 << 5)
96
97 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
98 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
99
100 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
101 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
102 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
103
104 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
105
106 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
107
108 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
109 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
110 #define NFC_V3_WRPROT_LOCK              (1 << 1)
111 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
112 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
113
114 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
115
116 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
117 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
118 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
119 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
120 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
121 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
122 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
123 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
124 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
125 #define NFC_V3_CONFIG2_PPB(x)                   (((x) & 0x3) << 7)
126 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
127 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
128 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
129 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
130
131 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
132 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
133 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
134 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
135 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
136 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
137 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
138
139 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
140 #define NFC_V3_IPC_CREQ                 (1 << 0)
141 #define NFC_V3_IPC_INT                  (1 << 31)
142
143 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
144
145 struct mxc_nand_host;
146
147 struct mxc_nand_devtype_data {
148         void (*preset)(struct mtd_info *);
149         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
150         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
151         void (*send_page)(struct mtd_info *, unsigned int);
152         void (*send_read_id)(struct mxc_nand_host *);
153         uint16_t (*get_dev_status)(struct mxc_nand_host *);
154         int (*check_int)(struct mxc_nand_host *);
155         void (*irq_control)(struct mxc_nand_host *, int);
156         u32 (*get_ecc_status)(struct mxc_nand_host *);
157         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
158         void (*select_chip)(struct mtd_info *mtd, int chip);
159         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
160                         u_char *read_ecc, u_char *calc_ecc);
161
162         /*
163          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
164          * (CONFIG1:INT_MSK is set). To handle this the driver uses
165          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
166          */
167         int irqpending_quirk;
168         int needs_ip;
169
170         size_t regs_offset;
171         size_t spare0_offset;
172         size_t axi_offset;
173
174         int spare_len;
175         int eccbytes;
176         int eccsize;
177 };
178
179 struct mxc_nand_host {
180         struct mtd_info         mtd;
181         struct nand_chip        nand;
182         struct device           *dev;
183
184         void __iomem            *spare0;
185         void __iomem            *main_area0;
186
187         void __iomem            *base;
188         void __iomem            *regs;
189         void __iomem            *regs_axi;
190         void __iomem            *regs_ip;
191         int                     status_request;
192         struct clk              *clk;
193         int                     clk_act;
194         int                     irq;
195         int                     eccsize;
196         int                     active_cs;
197
198         struct completion       op_completion;
199
200         uint8_t                 *data_buf;
201         unsigned int            buf_start;
202
203         const struct mxc_nand_devtype_data *devtype_data;
204         struct mxc_nand_platform_data pdata;
205 };
206
207 /* OOB placement block for use with hardware ecc generation */
208 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
209         .eccbytes = 5,
210         .eccpos = {6, 7, 8, 9, 10},
211         .oobfree = {{0, 5}, {12, 4}, }
212 };
213
214 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
215         .eccbytes = 20,
216         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
217                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
218         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
219 };
220
221 /* OOB description for 512 byte pages with 16 byte OOB */
222 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
223         .eccbytes = 1 * 9,
224         .eccpos = {
225                  7,  8,  9, 10, 11, 12, 13, 14, 15
226         },
227         .oobfree = {
228                 {.offset = 0, .length = 5}
229         }
230 };
231
232 /* OOB description for 2048 byte pages with 64 byte OOB */
233 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
234         .eccbytes = 4 * 9,
235         .eccpos = {
236                  7,  8,  9, 10, 11, 12, 13, 14, 15,
237                 23, 24, 25, 26, 27, 28, 29, 30, 31,
238                 39, 40, 41, 42, 43, 44, 45, 46, 47,
239                 55, 56, 57, 58, 59, 60, 61, 62, 63
240         },
241         .oobfree = {
242                 {.offset = 2, .length = 4},
243                 {.offset = 16, .length = 7},
244                 {.offset = 32, .length = 7},
245                 {.offset = 48, .length = 7}
246         }
247 };
248
249 /* OOB description for 4096 byte pages with 128 byte OOB */
250 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
251         .eccbytes = 8 * 9,
252         .eccpos = {
253                 7,  8,  9, 10, 11, 12, 13, 14, 15,
254                 23, 24, 25, 26, 27, 28, 29, 30, 31,
255                 39, 40, 41, 42, 43, 44, 45, 46, 47,
256                 55, 56, 57, 58, 59, 60, 61, 62, 63,
257                 71, 72, 73, 74, 75, 76, 77, 78, 79,
258                 87, 88, 89, 90, 91, 92, 93, 94, 95,
259                 103, 104, 105, 106, 107, 108, 109, 110, 111,
260                 119, 120, 121, 122, 123, 124, 125, 126, 127,
261         },
262         .oobfree = {
263                 {.offset = 2, .length = 4},
264                 {.offset = 16, .length = 7},
265                 {.offset = 32, .length = 7},
266                 {.offset = 48, .length = 7},
267                 {.offset = 64, .length = 7},
268                 {.offset = 80, .length = 7},
269                 {.offset = 96, .length = 7},
270                 {.offset = 112, .length = 7},
271         }
272 };
273
274 static const char *part_probes[] = { "RedBoot", "cmdlinepart", "ofpart", NULL };
275
276 static int check_int_v3(struct mxc_nand_host *host)
277 {
278         uint32_t tmp;
279
280         tmp = readl(NFC_V3_IPC);
281         if (!(tmp & NFC_V3_IPC_INT))
282                 return 0;
283
284         tmp &= ~NFC_V3_IPC_INT;
285         writel(tmp, NFC_V3_IPC);
286
287         return 1;
288 }
289
290 static int check_int_v1_v2(struct mxc_nand_host *host)
291 {
292         uint32_t tmp;
293
294         tmp = readw(NFC_V1_V2_CONFIG2);
295         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
296                 return 0;
297
298         if (!host->devtype_data->irqpending_quirk)
299                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
300
301         return 1;
302 }
303
304 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
305 {
306         uint16_t tmp;
307
308         tmp = readw(NFC_V1_V2_CONFIG1);
309
310         if (activate)
311                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
312         else
313                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
314
315         writew(tmp, NFC_V1_V2_CONFIG1);
316 }
317
318 static void irq_control_v3(struct mxc_nand_host *host, int activate)
319 {
320         uint32_t tmp;
321
322         tmp = readl(NFC_V3_CONFIG2);
323
324         if (activate)
325                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
326         else
327                 tmp |= NFC_V3_CONFIG2_INT_MSK;
328
329         writel(tmp, NFC_V3_CONFIG2);
330 }
331
332 static void irq_control(struct mxc_nand_host *host, int activate)
333 {
334         if (host->devtype_data->irqpending_quirk) {
335                 if (activate)
336                         enable_irq(host->irq);
337                 else
338                         disable_irq_nosync(host->irq);
339         } else {
340                 host->devtype_data->irq_control(host, activate);
341         }
342 }
343
344 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
345 {
346         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
347 }
348
349 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
350 {
351         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
352 }
353
354 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
355 {
356         return readl(NFC_V3_ECC_STATUS_RESULT);
357 }
358
359 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
360 {
361         struct mxc_nand_host *host = dev_id;
362
363         if (!host->devtype_data->check_int(host))
364                 return IRQ_NONE;
365
366         irq_control(host, 0);
367
368         complete(&host->op_completion);
369
370         return IRQ_HANDLED;
371 }
372
373 /* This function polls the NANDFC to wait for the basic operation to
374  * complete by checking the INT bit of config2 register.
375  */
376 static void wait_op_done(struct mxc_nand_host *host, int useirq)
377 {
378         int max_retries = 8000;
379
380         if (useirq) {
381                 if (!host->devtype_data->check_int(host)) {
382                         INIT_COMPLETION(host->op_completion);
383                         irq_control(host, 1);
384                         wait_for_completion(&host->op_completion);
385                 }
386         } else {
387                 while (max_retries-- > 0) {
388                         if (host->devtype_data->check_int(host))
389                                 break;
390
391                         udelay(1);
392                 }
393                 if (max_retries < 0)
394                         pr_debug("%s: INT not set\n", __func__);
395         }
396 }
397
398 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
399 {
400         /* fill command */
401         writel(cmd, NFC_V3_FLASH_CMD);
402
403         /* send out command */
404         writel(NFC_CMD, NFC_V3_LAUNCH);
405
406         /* Wait for operation to complete */
407         wait_op_done(host, useirq);
408 }
409
410 /* This function issues the specified command to the NAND device and
411  * waits for completion. */
412 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
413 {
414         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
415
416         writew(cmd, NFC_V1_V2_FLASH_CMD);
417         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
418
419         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
420                 int max_retries = 100;
421                 /* Reset completion is indicated by NFC_CONFIG2 */
422                 /* being set to 0 */
423                 while (max_retries-- > 0) {
424                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
425                                 break;
426                         }
427                         udelay(1);
428                 }
429                 if (max_retries < 0)
430                         pr_debug("%s: RESET failed\n", __func__);
431         } else {
432                 /* Wait for operation to complete */
433                 wait_op_done(host, useirq);
434         }
435 }
436
437 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
438 {
439         /* fill address */
440         writel(addr, NFC_V3_FLASH_ADDR0);
441
442         /* send out address */
443         writel(NFC_ADDR, NFC_V3_LAUNCH);
444
445         wait_op_done(host, 0);
446 }
447
448 /* This function sends an address (or partial address) to the
449  * NAND device. The address is used to select the source/destination for
450  * a NAND command. */
451 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
452 {
453         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
454
455         writew(addr, NFC_V1_V2_FLASH_ADDR);
456         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
457
458         /* Wait for operation to complete */
459         wait_op_done(host, islast);
460 }
461
462 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
463 {
464         struct nand_chip *nand_chip = mtd->priv;
465         struct mxc_nand_host *host = nand_chip->priv;
466         uint32_t tmp;
467
468         tmp = readl(NFC_V3_CONFIG1);
469         tmp &= ~(7 << 4);
470         writel(tmp, NFC_V3_CONFIG1);
471
472         /* transfer data from NFC ram to nand */
473         writel(ops, NFC_V3_LAUNCH);
474
475         wait_op_done(host, false);
476 }
477
478 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
479 {
480         struct nand_chip *nand_chip = mtd->priv;
481         struct mxc_nand_host *host = nand_chip->priv;
482
483         /* NANDFC buffer 0 is used for page read/write */
484         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
485
486         writew(ops, NFC_V1_V2_CONFIG2);
487
488         /* Wait for operation to complete */
489         wait_op_done(host, true);
490 }
491
492 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
493 {
494         struct nand_chip *nand_chip = mtd->priv;
495         struct mxc_nand_host *host = nand_chip->priv;
496         int bufs, i;
497
498         if (mtd->writesize > 512)
499                 bufs = 4;
500         else
501                 bufs = 1;
502
503         for (i = 0; i < bufs; i++) {
504
505                 /* NANDFC buffer 0 is used for page read/write */
506                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
507
508                 writew(ops, NFC_V1_V2_CONFIG2);
509
510                 /* Wait for operation to complete */
511                 wait_op_done(host, true);
512         }
513 }
514
515 static void send_read_id_v3(struct mxc_nand_host *host)
516 {
517         /* Read ID into main buffer */
518         writel(NFC_ID, NFC_V3_LAUNCH);
519
520         wait_op_done(host, true);
521
522         memcpy_fromio(host->data_buf, host->main_area0, 16);
523 }
524
525 /* Request the NANDFC to perform a read of the NAND device ID. */
526 static void send_read_id_v1_v2(struct mxc_nand_host *host)
527 {
528         struct nand_chip *this = &host->nand;
529
530         /* NANDFC buffer 0 is used for device ID output */
531         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
532
533         writew(NFC_ID, NFC_V1_V2_CONFIG2);
534
535         /* Wait for operation to complete */
536         wait_op_done(host, true);
537
538         memcpy_fromio(host->data_buf, host->main_area0, 16);
539
540         if (this->options & NAND_BUSWIDTH_16) {
541                 /* compress the ID info */
542                 host->data_buf[1] = host->data_buf[2];
543                 host->data_buf[2] = host->data_buf[4];
544                 host->data_buf[3] = host->data_buf[6];
545                 host->data_buf[4] = host->data_buf[8];
546                 host->data_buf[5] = host->data_buf[10];
547         }
548 }
549
550 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
551 {
552         writew(NFC_STATUS, NFC_V3_LAUNCH);
553         wait_op_done(host, true);
554
555         return readl(NFC_V3_CONFIG1) >> 16;
556 }
557
558 /* This function requests the NANDFC to perform a read of the
559  * NAND device status and returns the current status. */
560 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
561 {
562         void __iomem *main_buf = host->main_area0;
563         uint32_t store;
564         uint16_t ret;
565
566         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
567
568         /*
569          * The device status is stored in main_area0. To
570          * prevent corruption of the buffer save the value
571          * and restore it afterwards.
572          */
573         store = readl(main_buf);
574
575         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
576         wait_op_done(host, true);
577
578         ret = readw(main_buf);
579
580         writel(store, main_buf);
581
582         return ret;
583 }
584
585 /* This functions is used by upper layer to checks if device is ready */
586 static int mxc_nand_dev_ready(struct mtd_info *mtd)
587 {
588         /*
589          * NFC handles R/B internally. Therefore, this function
590          * always returns status as ready.
591          */
592         return 1;
593 }
594
595 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
596 {
597         /*
598          * If HW ECC is enabled, we turn it on during init. There is
599          * no need to enable again here.
600          */
601 }
602
603 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
604                                  u_char *read_ecc, u_char *calc_ecc)
605 {
606         struct nand_chip *nand_chip = mtd->priv;
607         struct mxc_nand_host *host = nand_chip->priv;
608
609         /*
610          * 1-Bit errors are automatically corrected in HW.  No need for
611          * additional correction.  2-Bit errors cannot be corrected by
612          * HW ECC, so we need to return failure
613          */
614         uint16_t ecc_status = get_ecc_status_v1(host);
615
616         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
617                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
618                 return -1;
619         }
620
621         return 0;
622 }
623
624 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
625                                  u_char *read_ecc, u_char *calc_ecc)
626 {
627         struct nand_chip *nand_chip = mtd->priv;
628         struct mxc_nand_host *host = nand_chip->priv;
629         u32 ecc_stat, err;
630         int no_subpages = 1;
631         int ret = 0;
632         u8 ecc_bit_mask, err_limit;
633
634         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
635         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
636
637         no_subpages = mtd->writesize >> 9;
638
639         ecc_stat = host->devtype_data->get_ecc_status(host);
640
641         do {
642                 err = ecc_stat & ecc_bit_mask;
643                 if (err > err_limit) {
644                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
645                         return -1;
646                 } else {
647                         ret += err;
648                 }
649                 ecc_stat >>= 4;
650         } while (--no_subpages);
651
652         mtd->ecc_stats.corrected += ret;
653         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
654
655         return ret;
656 }
657
658 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
659                                   u_char *ecc_code)
660 {
661         return 0;
662 }
663
664 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
665 {
666         struct nand_chip *nand_chip = mtd->priv;
667         struct mxc_nand_host *host = nand_chip->priv;
668         uint8_t ret;
669
670         /* Check for status request */
671         if (host->status_request)
672                 return host->devtype_data->get_dev_status(host) & 0xFF;
673
674         ret = *(uint8_t *)(host->data_buf + host->buf_start);
675         host->buf_start++;
676
677         return ret;
678 }
679
680 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
681 {
682         struct nand_chip *nand_chip = mtd->priv;
683         struct mxc_nand_host *host = nand_chip->priv;
684         uint16_t ret;
685
686         ret = *(uint16_t *)(host->data_buf + host->buf_start);
687         host->buf_start += 2;
688
689         return ret;
690 }
691
692 /* Write data of length len to buffer buf. The data to be
693  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
694  * Operation by the NFC, the data is written to NAND Flash */
695 static void mxc_nand_write_buf(struct mtd_info *mtd,
696                                 const u_char *buf, int len)
697 {
698         struct nand_chip *nand_chip = mtd->priv;
699         struct mxc_nand_host *host = nand_chip->priv;
700         u16 col = host->buf_start;
701         int n = mtd->oobsize + mtd->writesize - col;
702
703         n = min(n, len);
704
705         memcpy(host->data_buf + col, buf, n);
706
707         host->buf_start += n;
708 }
709
710 /* Read the data buffer from the NAND Flash. To read the data from NAND
711  * Flash first the data output cycle is initiated by the NFC, which copies
712  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
713  */
714 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
715 {
716         struct nand_chip *nand_chip = mtd->priv;
717         struct mxc_nand_host *host = nand_chip->priv;
718         u16 col = host->buf_start;
719         int n = mtd->oobsize + mtd->writesize - col;
720
721         n = min(n, len);
722
723         memcpy(buf, host->data_buf + col, n);
724
725         host->buf_start += n;
726 }
727
728 /* Used by the upper layer to verify the data in NAND Flash
729  * with the data in the buf. */
730 static int mxc_nand_verify_buf(struct mtd_info *mtd,
731                                 const u_char *buf, int len)
732 {
733         return -EFAULT;
734 }
735
736 /* This function is used by upper layer for select and
737  * deselect of the NAND chip */
738 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
739 {
740         struct nand_chip *nand_chip = mtd->priv;
741         struct mxc_nand_host *host = nand_chip->priv;
742
743         if (chip == -1) {
744                 /* Disable the NFC clock */
745                 if (host->clk_act) {
746                         clk_disable_unprepare(host->clk);
747                         host->clk_act = 0;
748                 }
749                 return;
750         }
751
752         if (!host->clk_act) {
753                 /* Enable the NFC clock */
754                 clk_prepare_enable(host->clk);
755                 host->clk_act = 1;
756         }
757 }
758
759 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
760 {
761         struct nand_chip *nand_chip = mtd->priv;
762         struct mxc_nand_host *host = nand_chip->priv;
763
764         if (chip == -1) {
765                 /* Disable the NFC clock */
766                 if (host->clk_act) {
767                         clk_disable(host->clk);
768                         host->clk_act = 0;
769                 }
770                 return;
771         }
772
773         if (!host->clk_act) {
774                 /* Enable the NFC clock */
775                 clk_enable(host->clk);
776                 host->clk_act = 1;
777         }
778
779         host->active_cs = chip;
780         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
781 }
782
783 /*
784  * Function to transfer data to/from spare area.
785  */
786 static void copy_spare(struct mtd_info *mtd, bool bfrom)
787 {
788         struct nand_chip *this = mtd->priv;
789         struct mxc_nand_host *host = this->priv;
790         u16 i, j;
791         u16 n = mtd->writesize >> 9;
792         u8 *d = host->data_buf + mtd->writesize;
793         u8 __iomem *s = host->spare0;
794         u16 t = host->devtype_data->spare_len;
795
796         j = (mtd->oobsize / n >> 1) << 1;
797
798         if (bfrom) {
799                 for (i = 0; i < n - 1; i++)
800                         memcpy_fromio(d + i * j, s + i * t, j);
801
802                 /* the last section */
803                 memcpy_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
804         } else {
805                 for (i = 0; i < n - 1; i++)
806                         memcpy_toio(&s[i * t], &d[i * j], j);
807
808                 /* the last section */
809                 memcpy_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
810         }
811 }
812
813 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
814 {
815         struct nand_chip *nand_chip = mtd->priv;
816         struct mxc_nand_host *host = nand_chip->priv;
817
818         /* Write out column address, if necessary */
819         if (column != -1) {
820                 /*
821                  * MXC NANDFC can only perform full page+spare or
822                  * spare-only read/write.  When the upper layers
823                  * perform a read/write buf operation, the saved column
824                   * address is used to index into the full page.
825                  */
826                 host->devtype_data->send_addr(host, 0, page_addr == -1);
827                 if (mtd->writesize > 512)
828                         /* another col addr cycle for 2k page */
829                         host->devtype_data->send_addr(host, 0, false);
830         }
831
832         /* Write out page address, if necessary */
833         if (page_addr != -1) {
834                 /* paddr_0 - p_addr_7 */
835                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
836
837                 if (mtd->writesize > 512) {
838                         if (mtd->size >= 0x10000000) {
839                                 /* paddr_8 - paddr_15 */
840                                 host->devtype_data->send_addr(host,
841                                                 (page_addr >> 8) & 0xff,
842                                                 false);
843                                 host->devtype_data->send_addr(host,
844                                                 (page_addr >> 16) & 0xff,
845                                                 true);
846                         } else
847                                 /* paddr_8 - paddr_15 */
848                                 host->devtype_data->send_addr(host,
849                                                 (page_addr >> 8) & 0xff, true);
850                 } else {
851                         /* One more address cycle for higher density devices */
852                         if (mtd->size >= 0x4000000) {
853                                 /* paddr_8 - paddr_15 */
854                                 host->devtype_data->send_addr(host,
855                                                 (page_addr >> 8) & 0xff,
856                                                 false);
857                                 host->devtype_data->send_addr(host,
858                                                 (page_addr >> 16) & 0xff,
859                                                 true);
860                         } else
861                                 /* paddr_8 - paddr_15 */
862                                 host->devtype_data->send_addr(host,
863                                                 (page_addr >> 8) & 0xff, true);
864                 }
865         }
866 }
867
868 /*
869  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
870  * on how much oob the nand chip has. For 8bit ecc we need at least
871  * 26 bytes of oob data per 512 byte block.
872  */
873 static int get_eccsize(struct mtd_info *mtd)
874 {
875         int oobbytes_per_512 = 0;
876
877         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
878
879         if (oobbytes_per_512 < 26)
880                 return 4;
881         else
882                 return 8;
883 }
884
885 static void preset_v1(struct mtd_info *mtd)
886 {
887         struct nand_chip *nand_chip = mtd->priv;
888         struct mxc_nand_host *host = nand_chip->priv;
889         uint16_t config1 = 0;
890
891         if (nand_chip->ecc.mode == NAND_ECC_HW)
892                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
893
894         if (!host->devtype_data->irqpending_quirk)
895                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
896
897         host->eccsize = 1;
898
899         writew(config1, NFC_V1_V2_CONFIG1);
900         /* preset operation */
901
902         /* Unlock the internal RAM Buffer */
903         writew(0x2, NFC_V1_V2_CONFIG);
904
905         /* Blocks to be unlocked */
906         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
907         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
908
909         /* Unlock Block Command for given address range */
910         writew(0x4, NFC_V1_V2_WRPROT);
911 }
912
913 static void preset_v2(struct mtd_info *mtd)
914 {
915         struct nand_chip *nand_chip = mtd->priv;
916         struct mxc_nand_host *host = nand_chip->priv;
917         uint16_t config1 = 0;
918
919         if (nand_chip->ecc.mode == NAND_ECC_HW)
920                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
921
922         config1 |= NFC_V2_CONFIG1_FP_INT;
923
924         if (!host->devtype_data->irqpending_quirk)
925                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
926
927         if (mtd->writesize) {
928                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
929
930                 host->eccsize = get_eccsize(mtd);
931                 if (host->eccsize == 4)
932                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
933
934                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
935         } else {
936                 host->eccsize = 1;
937         }
938
939         writew(config1, NFC_V1_V2_CONFIG1);
940         /* preset operation */
941
942         /* Unlock the internal RAM Buffer */
943         writew(0x2, NFC_V1_V2_CONFIG);
944
945         /* Blocks to be unlocked */
946         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
947         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
948         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
949         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
950         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
951         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
952         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
953         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
954
955         /* Unlock Block Command for given address range */
956         writew(0x4, NFC_V1_V2_WRPROT);
957 }
958
959 static void preset_v3(struct mtd_info *mtd)
960 {
961         struct nand_chip *chip = mtd->priv;
962         struct mxc_nand_host *host = chip->priv;
963         uint32_t config2, config3;
964         int i, addr_phases;
965
966         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
967         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
968
969         /* Unlock the internal RAM Buffer */
970         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
971                         NFC_V3_WRPROT);
972
973         /* Blocks to be unlocked */
974         for (i = 0; i < NAND_MAX_CHIPS; i++)
975                 writel(0x0 |    (0xffff << 16),
976                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
977
978         writel(0, NFC_V3_IPC);
979
980         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
981                 NFC_V3_CONFIG2_2CMD_PHASES |
982                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
983                 NFC_V3_CONFIG2_ST_CMD(0x70) |
984                 NFC_V3_CONFIG2_INT_MSK |
985                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
986
987         if (chip->ecc.mode == NAND_ECC_HW)
988                 config2 |= NFC_V3_CONFIG2_ECC_EN;
989
990         addr_phases = fls(chip->pagemask) >> 3;
991
992         if (mtd->writesize == 2048) {
993                 config2 |= NFC_V3_CONFIG2_PS_2048;
994                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
995         } else if (mtd->writesize == 4096) {
996                 config2 |= NFC_V3_CONFIG2_PS_4096;
997                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
998         } else {
999                 config2 |= NFC_V3_CONFIG2_PS_512;
1000                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1001         }
1002
1003         if (mtd->writesize) {
1004                 config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
1005                 host->eccsize = get_eccsize(mtd);
1006                 if (host->eccsize == 8)
1007                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1008         }
1009
1010         writel(config2, NFC_V3_CONFIG2);
1011
1012         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1013                         NFC_V3_CONFIG3_NO_SDMA |
1014                         NFC_V3_CONFIG3_RBB_MODE |
1015                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1016                         NFC_V3_CONFIG3_ADD_OP(0);
1017
1018         if (!(chip->options & NAND_BUSWIDTH_16))
1019                 config3 |= NFC_V3_CONFIG3_FW8;
1020
1021         writel(config3, NFC_V3_CONFIG3);
1022
1023         writel(0, NFC_V3_DELAY_LINE);
1024 }
1025
1026 /* Used by the upper layer to write command to NAND Flash for
1027  * different operations to be carried out on NAND Flash */
1028 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1029                                 int column, int page_addr)
1030 {
1031         struct nand_chip *nand_chip = mtd->priv;
1032         struct mxc_nand_host *host = nand_chip->priv;
1033
1034         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1035               command, column, page_addr);
1036
1037         /* Reset command state information */
1038         host->status_request = false;
1039
1040         /* Command pre-processing step */
1041         switch (command) {
1042         case NAND_CMD_RESET:
1043                 host->devtype_data->preset(mtd);
1044                 host->devtype_data->send_cmd(host, command, false);
1045                 break;
1046
1047         case NAND_CMD_STATUS:
1048                 host->buf_start = 0;
1049                 host->status_request = true;
1050
1051                 host->devtype_data->send_cmd(host, command, true);
1052                 mxc_do_addr_cycle(mtd, column, page_addr);
1053                 break;
1054
1055         case NAND_CMD_READ0:
1056         case NAND_CMD_READOOB:
1057                 if (command == NAND_CMD_READ0)
1058                         host->buf_start = column;
1059                 else
1060                         host->buf_start = column + mtd->writesize;
1061
1062                 command = NAND_CMD_READ0; /* only READ0 is valid */
1063
1064                 host->devtype_data->send_cmd(host, command, false);
1065                 mxc_do_addr_cycle(mtd, column, page_addr);
1066
1067                 if (mtd->writesize > 512)
1068                         host->devtype_data->send_cmd(host,
1069                                         NAND_CMD_READSTART, true);
1070
1071                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1072
1073                 memcpy_fromio(host->data_buf, host->main_area0, mtd->writesize);
1074                 copy_spare(mtd, true);
1075                 break;
1076
1077         case NAND_CMD_SEQIN:
1078                 if (column >= mtd->writesize)
1079                         /* call ourself to read a page */
1080                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1081
1082                 host->buf_start = column;
1083
1084                 host->devtype_data->send_cmd(host, command, false);
1085                 mxc_do_addr_cycle(mtd, column, page_addr);
1086                 break;
1087
1088         case NAND_CMD_PAGEPROG:
1089                 memcpy_toio(host->main_area0, host->data_buf, mtd->writesize);
1090                 copy_spare(mtd, false);
1091                 host->devtype_data->send_page(mtd, NFC_INPUT);
1092                 host->devtype_data->send_cmd(host, command, true);
1093                 mxc_do_addr_cycle(mtd, column, page_addr);
1094                 break;
1095
1096         case NAND_CMD_READID:
1097                 host->devtype_data->send_cmd(host, command, true);
1098                 mxc_do_addr_cycle(mtd, column, page_addr);
1099                 host->devtype_data->send_read_id(host);
1100                 host->buf_start = column;
1101                 break;
1102
1103         case NAND_CMD_ERASE1:
1104         case NAND_CMD_ERASE2:
1105                 host->devtype_data->send_cmd(host, command, false);
1106                 mxc_do_addr_cycle(mtd, column, page_addr);
1107
1108                 break;
1109         }
1110 }
1111
1112 /*
1113  * The generic flash bbt decriptors overlap with our ecc
1114  * hardware, so define some i.MX specific ones.
1115  */
1116 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1117 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1118
1119 static struct nand_bbt_descr bbt_main_descr = {
1120         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1121             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1122         .offs = 0,
1123         .len = 4,
1124         .veroffs = 4,
1125         .maxblocks = 4,
1126         .pattern = bbt_pattern,
1127 };
1128
1129 static struct nand_bbt_descr bbt_mirror_descr = {
1130         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1131             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1132         .offs = 0,
1133         .len = 4,
1134         .veroffs = 4,
1135         .maxblocks = 4,
1136         .pattern = mirror_pattern,
1137 };
1138
1139 /* v1 + irqpending_quirk: i.MX21 */
1140 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1141         .preset = preset_v1,
1142         .send_cmd = send_cmd_v1_v2,
1143         .send_addr = send_addr_v1_v2,
1144         .send_page = send_page_v1,
1145         .send_read_id = send_read_id_v1_v2,
1146         .get_dev_status = get_dev_status_v1_v2,
1147         .check_int = check_int_v1_v2,
1148         .irq_control = irq_control_v1_v2,
1149         .get_ecc_status = get_ecc_status_v1,
1150         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1151         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1152         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1153         .select_chip = mxc_nand_select_chip_v1_v3,
1154         .correct_data = mxc_nand_correct_data_v1,
1155         .irqpending_quirk = 1,
1156         .needs_ip = 0,
1157         .regs_offset = 0xe00,
1158         .spare0_offset = 0x800,
1159         .spare_len = 16,
1160         .eccbytes = 3,
1161         .eccsize = 1,
1162 };
1163
1164 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1165 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1166         .preset = preset_v1,
1167         .send_cmd = send_cmd_v1_v2,
1168         .send_addr = send_addr_v1_v2,
1169         .send_page = send_page_v1,
1170         .send_read_id = send_read_id_v1_v2,
1171         .get_dev_status = get_dev_status_v1_v2,
1172         .check_int = check_int_v1_v2,
1173         .irq_control = irq_control_v1_v2,
1174         .get_ecc_status = get_ecc_status_v1,
1175         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1176         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1177         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1178         .select_chip = mxc_nand_select_chip_v1_v3,
1179         .correct_data = mxc_nand_correct_data_v1,
1180         .irqpending_quirk = 0,
1181         .needs_ip = 0,
1182         .regs_offset = 0xe00,
1183         .spare0_offset = 0x800,
1184         .axi_offset = 0,
1185         .spare_len = 16,
1186         .eccbytes = 3,
1187         .eccsize = 1,
1188 };
1189
1190 /* v21: i.MX25, i.MX35 */
1191 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1192         .preset = preset_v2,
1193         .send_cmd = send_cmd_v1_v2,
1194         .send_addr = send_addr_v1_v2,
1195         .send_page = send_page_v2,
1196         .send_read_id = send_read_id_v1_v2,
1197         .get_dev_status = get_dev_status_v1_v2,
1198         .check_int = check_int_v1_v2,
1199         .irq_control = irq_control_v1_v2,
1200         .get_ecc_status = get_ecc_status_v2,
1201         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1202         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1203         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1204         .select_chip = mxc_nand_select_chip_v2,
1205         .correct_data = mxc_nand_correct_data_v2_v3,
1206         .irqpending_quirk = 0,
1207         .needs_ip = 0,
1208         .regs_offset = 0x1e00,
1209         .spare0_offset = 0x1000,
1210         .axi_offset = 0,
1211         .spare_len = 64,
1212         .eccbytes = 9,
1213         .eccsize = 0,
1214 };
1215
1216 /* v3: i.MX51, i.MX53 */
1217 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1218         .preset = preset_v3,
1219         .send_cmd = send_cmd_v3,
1220         .send_addr = send_addr_v3,
1221         .send_page = send_page_v3,
1222         .send_read_id = send_read_id_v3,
1223         .get_dev_status = get_dev_status_v3,
1224         .check_int = check_int_v3,
1225         .irq_control = irq_control_v3,
1226         .get_ecc_status = get_ecc_status_v3,
1227         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1228         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1229         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1230         .select_chip = mxc_nand_select_chip_v1_v3,
1231         .correct_data = mxc_nand_correct_data_v2_v3,
1232         .irqpending_quirk = 0,
1233         .needs_ip = 1,
1234         .regs_offset = 0,
1235         .spare0_offset = 0x1000,
1236         .axi_offset = 0x1e00,
1237         .spare_len = 64,
1238         .eccbytes = 0,
1239         .eccsize = 0,
1240 };
1241
1242 #ifdef CONFIG_OF_MTD
1243 static const struct of_device_id mxcnd_dt_ids[] = {
1244         {
1245                 .compatible = "fsl,imx21-nand",
1246                 .data = &imx21_nand_devtype_data,
1247         }, {
1248                 .compatible = "fsl,imx27-nand",
1249                 .data = &imx27_nand_devtype_data,
1250         }, {
1251                 .compatible = "fsl,imx25-nand",
1252                 .data = &imx25_nand_devtype_data,
1253         }, {
1254                 .compatible = "fsl,imx51-nand",
1255                 .data = &imx51_nand_devtype_data,
1256         },
1257         { /* sentinel */ }
1258 };
1259
1260 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1261 {
1262         struct device_node *np = host->dev->of_node;
1263         struct mxc_nand_platform_data *pdata = &host->pdata;
1264         const struct of_device_id *of_id =
1265                 of_match_device(mxcnd_dt_ids, host->dev);
1266         int buswidth;
1267
1268         if (!np)
1269                 return 1;
1270
1271         if (of_get_nand_ecc_mode(np) >= 0)
1272                 pdata->hw_ecc = 1;
1273
1274         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1275
1276         buswidth = of_get_nand_bus_width(np);
1277         if (buswidth < 0)
1278                 return buswidth;
1279
1280         pdata->width = buswidth / 8;
1281
1282         host->devtype_data = of_id->data;
1283
1284         return 0;
1285 }
1286 #else
1287 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1288 {
1289         return 1;
1290 }
1291 #endif
1292
1293 static int __init mxcnd_probe_pdata(struct mxc_nand_host *host)
1294 {
1295         struct mxc_nand_platform_data *pdata = host->dev->platform_data;
1296
1297         if (!pdata)
1298                 return -ENODEV;
1299
1300         host->pdata = *pdata;
1301
1302         if (nfc_is_v1()) {
1303                 if (cpu_is_mx21())
1304                         host->devtype_data = &imx21_nand_devtype_data;
1305                 else
1306                         host->devtype_data = &imx27_nand_devtype_data;
1307         } else if (nfc_is_v21()) {
1308                 host->devtype_data = &imx25_nand_devtype_data;
1309         } else if (nfc_is_v3_2()) {
1310                 host->devtype_data = &imx51_nand_devtype_data;
1311         } else
1312                 BUG();
1313
1314         return 0;
1315 }
1316
1317 static int __init mxcnd_probe(struct platform_device *pdev)
1318 {
1319         struct nand_chip *this;
1320         struct mtd_info *mtd;
1321         struct mxc_nand_host *host;
1322         struct resource *res;
1323         int err = 0;
1324
1325         /* Allocate memory for MTD device structure and private data */
1326         host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
1327                         NAND_MAX_OOBSIZE, GFP_KERNEL);
1328         if (!host)
1329                 return -ENOMEM;
1330
1331         host->data_buf = (uint8_t *)(host + 1);
1332
1333         host->dev = &pdev->dev;
1334         /* structures must be linked */
1335         this = &host->nand;
1336         mtd = &host->mtd;
1337         mtd->priv = this;
1338         mtd->owner = THIS_MODULE;
1339         mtd->dev.parent = &pdev->dev;
1340         mtd->name = DRIVER_NAME;
1341
1342         /* 50 us command delay time */
1343         this->chip_delay = 5;
1344
1345         this->priv = host;
1346         this->dev_ready = mxc_nand_dev_ready;
1347         this->cmdfunc = mxc_nand_command;
1348         this->read_byte = mxc_nand_read_byte;
1349         this->read_word = mxc_nand_read_word;
1350         this->write_buf = mxc_nand_write_buf;
1351         this->read_buf = mxc_nand_read_buf;
1352         this->verify_buf = mxc_nand_verify_buf;
1353
1354         host->clk = clk_get(&pdev->dev, "nfc");
1355         if (IS_ERR(host->clk)) {
1356                 err = PTR_ERR(host->clk);
1357                 goto eclk;
1358         }
1359
1360         clk_prepare_enable(host->clk);
1361         host->clk_act = 1;
1362
1363         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1364         if (!res) {
1365                 err = -ENODEV;
1366                 goto eres;
1367         }
1368
1369         host->base = ioremap(res->start, resource_size(res));
1370         if (!host->base) {
1371                 err = -ENOMEM;
1372                 goto eres;
1373         }
1374
1375         host->main_area0 = host->base;
1376
1377         err = mxcnd_probe_dt(host);
1378         if (err > 0)
1379                 err = mxcnd_probe_pdata(host);
1380         if (err < 0)
1381                 goto eirq;
1382
1383         if (host->devtype_data->regs_offset)
1384                 host->regs = host->base + host->devtype_data->regs_offset;
1385         host->spare0 = host->base + host->devtype_data->spare0_offset;
1386         if (host->devtype_data->axi_offset)
1387                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1388
1389         this->ecc.bytes = host->devtype_data->eccbytes;
1390         host->eccsize = host->devtype_data->eccsize;
1391
1392         this->select_chip = host->devtype_data->select_chip;
1393         this->ecc.size = 512;
1394         this->ecc.layout = host->devtype_data->ecclayout_512;
1395
1396         if (host->devtype_data->needs_ip) {
1397                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1398                 if (!res) {
1399                         err = -ENODEV;
1400                         goto eirq;
1401                 }
1402                 host->regs_ip = ioremap(res->start, resource_size(res));
1403                 if (!host->regs_ip) {
1404                         err = -ENOMEM;
1405                         goto eirq;
1406                 }
1407         }
1408
1409         if (host->pdata.hw_ecc) {
1410                 this->ecc.calculate = mxc_nand_calculate_ecc;
1411                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1412                 this->ecc.correct = host->devtype_data->correct_data;
1413                 this->ecc.mode = NAND_ECC_HW;
1414         } else {
1415                 this->ecc.mode = NAND_ECC_SOFT;
1416         }
1417
1418         /* NAND bus width determines access functions used by upper layer */
1419         if (host->pdata.width == 2)
1420                 this->options |= NAND_BUSWIDTH_16;
1421
1422         if (host->pdata.flash_bbt) {
1423                 this->bbt_td = &bbt_main_descr;
1424                 this->bbt_md = &bbt_mirror_descr;
1425                 /* update flash based bbt */
1426                 this->bbt_options |= NAND_BBT_USE_FLASH;
1427         }
1428
1429         init_completion(&host->op_completion);
1430
1431         host->irq = platform_get_irq(pdev, 0);
1432
1433         /*
1434          * Use host->devtype_data->irq_control() here instead of irq_control()
1435          * because we must not disable_irq_nosync without having requested the
1436          * irq.
1437          */
1438         host->devtype_data->irq_control(host, 0);
1439
1440         err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1441         if (err)
1442                 goto eirq;
1443
1444         /*
1445          * Now that we "own" the interrupt make sure the interrupt mask bit is
1446          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1447          * on this machine.
1448          */
1449         if (host->devtype_data->irqpending_quirk) {
1450                 disable_irq_nosync(host->irq);
1451                 host->devtype_data->irq_control(host, 1);
1452         }
1453
1454         /* first scan to find the device and get the page size */
1455         if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1456                 err = -ENXIO;
1457                 goto escan;
1458         }
1459
1460         /* Call preset again, with correct writesize this time */
1461         host->devtype_data->preset(mtd);
1462
1463         if (mtd->writesize == 2048)
1464                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1465         else if (mtd->writesize == 4096)
1466                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1467
1468         if (this->ecc.mode == NAND_ECC_HW) {
1469                 if (nfc_is_v1())
1470                         this->ecc.strength = 1;
1471                 else
1472                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1473         }
1474
1475         /* second phase scan */
1476         if (nand_scan_tail(mtd)) {
1477                 err = -ENXIO;
1478                 goto escan;
1479         }
1480
1481         /* Register the partitions */
1482         mtd_device_parse_register(mtd, part_probes,
1483                         &(struct mtd_part_parser_data){
1484                                 .of_node = pdev->dev.of_node,
1485                         },
1486                         host->pdata.parts,
1487                         host->pdata.nr_parts);
1488
1489         platform_set_drvdata(pdev, host);
1490
1491         return 0;
1492
1493 escan:
1494         free_irq(host->irq, host);
1495 eirq:
1496         if (host->regs_ip)
1497                 iounmap(host->regs_ip);
1498         iounmap(host->base);
1499 eres:
1500         clk_put(host->clk);
1501 eclk:
1502         kfree(host);
1503
1504         return err;
1505 }
1506
1507 static int __devexit mxcnd_remove(struct platform_device *pdev)
1508 {
1509         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1510
1511         clk_put(host->clk);
1512
1513         platform_set_drvdata(pdev, NULL);
1514
1515         nand_release(&host->mtd);
1516         free_irq(host->irq, host);
1517         if (host->regs_ip)
1518                 iounmap(host->regs_ip);
1519         iounmap(host->base);
1520         kfree(host);
1521
1522         return 0;
1523 }
1524
1525 static struct platform_driver mxcnd_driver = {
1526         .driver = {
1527                    .name = DRIVER_NAME,
1528                    .owner = THIS_MODULE,
1529                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1530         },
1531         .remove = __devexit_p(mxcnd_remove),
1532 };
1533
1534 static int __init mxc_nd_init(void)
1535 {
1536         return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1537 }
1538
1539 static void __exit mxc_nd_cleanup(void)
1540 {
1541         /* Unregister the device structure */
1542         platform_driver_unregister(&mxcnd_driver);
1543 }
1544
1545 module_init(mxc_nd_init);
1546 module_exit(mxc_nd_cleanup);
1547
1548 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1549 MODULE_DESCRIPTION("MXC NAND MTD driver");
1550 MODULE_LICENSE("GPL");