arm/arm64: unexport restart handlers
[cascardo/linux.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
30
31 #include <linux/platform_data/mtd-nand-omap2.h>
32
33 #define DRIVER_NAME     "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS    5000
35
36 #define NAND_Ecc_P1e            (1 << 0)
37 #define NAND_Ecc_P2e            (1 << 1)
38 #define NAND_Ecc_P4e            (1 << 2)
39 #define NAND_Ecc_P8e            (1 << 3)
40 #define NAND_Ecc_P16e           (1 << 4)
41 #define NAND_Ecc_P32e           (1 << 5)
42 #define NAND_Ecc_P64e           (1 << 6)
43 #define NAND_Ecc_P128e          (1 << 7)
44 #define NAND_Ecc_P256e          (1 << 8)
45 #define NAND_Ecc_P512e          (1 << 9)
46 #define NAND_Ecc_P1024e         (1 << 10)
47 #define NAND_Ecc_P2048e         (1 << 11)
48
49 #define NAND_Ecc_P1o            (1 << 16)
50 #define NAND_Ecc_P2o            (1 << 17)
51 #define NAND_Ecc_P4o            (1 << 18)
52 #define NAND_Ecc_P8o            (1 << 19)
53 #define NAND_Ecc_P16o           (1 << 20)
54 #define NAND_Ecc_P32o           (1 << 21)
55 #define NAND_Ecc_P64o           (1 << 22)
56 #define NAND_Ecc_P128o          (1 << 23)
57 #define NAND_Ecc_P256o          (1 << 24)
58 #define NAND_Ecc_P512o          (1 << 25)
59 #define NAND_Ecc_P1024o         (1 << 26)
60 #define NAND_Ecc_P2048o         (1 << 27)
61
62 #define TF(value)       (value ? 1 : 0)
63
64 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
65 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
66 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
67 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
68 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
69 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
70 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
71 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
72
73 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
74 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
75 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
76 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
77 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
78 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
79 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
80 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
81
82 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
83 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
84 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
85 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
86 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
87 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
88 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
89 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
90
91 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
92 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
93 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
94 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
95 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
96 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
97 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
98 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
99
100 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
101 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
102
103 #define PREFETCH_CONFIG1_CS_SHIFT       24
104 #define ECC_CONFIG_CS_SHIFT             1
105 #define CS_MASK                         0x7
106 #define ENABLE_PREFETCH                 (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT              2
108 #define ECCSIZE0_SHIFT                  12
109 #define ECCSIZE1_SHIFT                  22
110 #define ECC1RESULTSIZE                  0x1
111 #define ECCCLEAR                        0x100
112 #define ECC1                            0x1
113 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
114 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY               0x00000001
118
119 #define OMAP24XX_DMA_GPMC               4
120
121 #define SECTOR_BYTES            512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD            4
124
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
131
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
136
137 #define BADBLOCK_MARKER_LENGTH          2
138
139 #ifdef CONFIG_MTD_NAND_OMAP_BCH
140 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
141                                 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
142                                 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
143                                 0x07, 0x0e};
144 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
145         0xac, 0x6b, 0xff, 0x99, 0x7b};
146 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 #endif
148
149 /* oob info generated runtime depending on ecc algorithm and layout selected */
150 static struct nand_ecclayout omap_oobinfo;
151
152 struct omap_nand_info {
153         struct nand_hw_control          controller;
154         struct omap_nand_platform_data  *pdata;
155         struct mtd_info                 mtd;
156         struct nand_chip                nand;
157         struct platform_device          *pdev;
158
159         int                             gpmc_cs;
160         unsigned long                   phys_base;
161         enum omap_ecc                   ecc_opt;
162         struct completion               comp;
163         struct dma_chan                 *dma;
164         int                             gpmc_irq_fifo;
165         int                             gpmc_irq_count;
166         enum {
167                 OMAP_NAND_IO_READ = 0,  /* read */
168                 OMAP_NAND_IO_WRITE,     /* write */
169         } iomode;
170         u_char                          *buf;
171         int                                     buf_len;
172         struct gpmc_nand_regs           reg;
173         /* fields specific for BCHx_HW ECC scheme */
174         struct device                   *elm_dev;
175         struct device_node              *of_node;
176 };
177
178 /**
179  * omap_prefetch_enable - configures and starts prefetch transfer
180  * @cs: cs (chip select) number
181  * @fifo_th: fifo threshold to be used for read/ write
182  * @dma_mode: dma mode enable (1) or disable (0)
183  * @u32_count: number of bytes to be transferred
184  * @is_write: prefetch read(0) or write post(1) mode
185  */
186 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
187         unsigned int u32_count, int is_write, struct omap_nand_info *info)
188 {
189         u32 val;
190
191         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
192                 return -1;
193
194         if (readl(info->reg.gpmc_prefetch_control))
195                 return -EBUSY;
196
197         /* Set the amount of bytes to be prefetched */
198         writel(u32_count, info->reg.gpmc_prefetch_config2);
199
200         /* Set dma/mpu mode, the prefetch read / post write and
201          * enable the engine. Set which cs is has requested for.
202          */
203         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
204                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
205                 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
206         writel(val, info->reg.gpmc_prefetch_config1);
207
208         /*  Start the prefetch engine */
209         writel(0x1, info->reg.gpmc_prefetch_control);
210
211         return 0;
212 }
213
214 /**
215  * omap_prefetch_reset - disables and stops the prefetch engine
216  */
217 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
218 {
219         u32 config1;
220
221         /* check if the same module/cs is trying to reset */
222         config1 = readl(info->reg.gpmc_prefetch_config1);
223         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
224                 return -EINVAL;
225
226         /* Stop the PFPW engine */
227         writel(0x0, info->reg.gpmc_prefetch_control);
228
229         /* Reset/disable the PFPW engine */
230         writel(0x0, info->reg.gpmc_prefetch_config1);
231
232         return 0;
233 }
234
235 /**
236  * omap_hwcontrol - hardware specific access to control-lines
237  * @mtd: MTD device structure
238  * @cmd: command to device
239  * @ctrl:
240  * NAND_NCE: bit 0 -> don't care
241  * NAND_CLE: bit 1 -> Command Latch
242  * NAND_ALE: bit 2 -> Address Latch
243  *
244  * NOTE: boards may use different bits for these!!
245  */
246 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
247 {
248         struct omap_nand_info *info = container_of(mtd,
249                                         struct omap_nand_info, mtd);
250
251         if (cmd != NAND_CMD_NONE) {
252                 if (ctrl & NAND_CLE)
253                         writeb(cmd, info->reg.gpmc_nand_command);
254
255                 else if (ctrl & NAND_ALE)
256                         writeb(cmd, info->reg.gpmc_nand_address);
257
258                 else /* NAND_NCE */
259                         writeb(cmd, info->reg.gpmc_nand_data);
260         }
261 }
262
263 /**
264  * omap_read_buf8 - read data from NAND controller into buffer
265  * @mtd: MTD device structure
266  * @buf: buffer to store date
267  * @len: number of bytes to read
268  */
269 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
270 {
271         struct nand_chip *nand = mtd->priv;
272
273         ioread8_rep(nand->IO_ADDR_R, buf, len);
274 }
275
276 /**
277  * omap_write_buf8 - write buffer to NAND controller
278  * @mtd: MTD device structure
279  * @buf: data buffer
280  * @len: number of bytes to write
281  */
282 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
283 {
284         struct omap_nand_info *info = container_of(mtd,
285                                                 struct omap_nand_info, mtd);
286         u_char *p = (u_char *)buf;
287         u32     status = 0;
288
289         while (len--) {
290                 iowrite8(*p++, info->nand.IO_ADDR_W);
291                 /* wait until buffer is available for write */
292                 do {
293                         status = readl(info->reg.gpmc_status) &
294                                         STATUS_BUFF_EMPTY;
295                 } while (!status);
296         }
297 }
298
299 /**
300  * omap_read_buf16 - read data from NAND controller into buffer
301  * @mtd: MTD device structure
302  * @buf: buffer to store date
303  * @len: number of bytes to read
304  */
305 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
306 {
307         struct nand_chip *nand = mtd->priv;
308
309         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
310 }
311
312 /**
313  * omap_write_buf16 - write buffer to NAND controller
314  * @mtd: MTD device structure
315  * @buf: data buffer
316  * @len: number of bytes to write
317  */
318 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
319 {
320         struct omap_nand_info *info = container_of(mtd,
321                                                 struct omap_nand_info, mtd);
322         u16 *p = (u16 *) buf;
323         u32     status = 0;
324         /* FIXME try bursts of writesw() or DMA ... */
325         len >>= 1;
326
327         while (len--) {
328                 iowrite16(*p++, info->nand.IO_ADDR_W);
329                 /* wait until buffer is available for write */
330                 do {
331                         status = readl(info->reg.gpmc_status) &
332                                         STATUS_BUFF_EMPTY;
333                 } while (!status);
334         }
335 }
336
337 /**
338  * omap_read_buf_pref - read data from NAND controller into buffer
339  * @mtd: MTD device structure
340  * @buf: buffer to store date
341  * @len: number of bytes to read
342  */
343 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
344 {
345         struct omap_nand_info *info = container_of(mtd,
346                                                 struct omap_nand_info, mtd);
347         uint32_t r_count = 0;
348         int ret = 0;
349         u32 *p = (u32 *)buf;
350
351         /* take care of subpage reads */
352         if (len % 4) {
353                 if (info->nand.options & NAND_BUSWIDTH_16)
354                         omap_read_buf16(mtd, buf, len % 4);
355                 else
356                         omap_read_buf8(mtd, buf, len % 4);
357                 p = (u32 *) (buf + len % 4);
358                 len -= len % 4;
359         }
360
361         /* configure and start prefetch transfer */
362         ret = omap_prefetch_enable(info->gpmc_cs,
363                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
364         if (ret) {
365                 /* PFPW engine is busy, use cpu copy method */
366                 if (info->nand.options & NAND_BUSWIDTH_16)
367                         omap_read_buf16(mtd, (u_char *)p, len);
368                 else
369                         omap_read_buf8(mtd, (u_char *)p, len);
370         } else {
371                 do {
372                         r_count = readl(info->reg.gpmc_prefetch_status);
373                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
374                         r_count = r_count >> 2;
375                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
376                         p += r_count;
377                         len -= r_count << 2;
378                 } while (len);
379                 /* disable and stop the PFPW engine */
380                 omap_prefetch_reset(info->gpmc_cs, info);
381         }
382 }
383
384 /**
385  * omap_write_buf_pref - write buffer to NAND controller
386  * @mtd: MTD device structure
387  * @buf: data buffer
388  * @len: number of bytes to write
389  */
390 static void omap_write_buf_pref(struct mtd_info *mtd,
391                                         const u_char *buf, int len)
392 {
393         struct omap_nand_info *info = container_of(mtd,
394                                                 struct omap_nand_info, mtd);
395         uint32_t w_count = 0;
396         int i = 0, ret = 0;
397         u16 *p = (u16 *)buf;
398         unsigned long tim, limit;
399         u32 val;
400
401         /* take care of subpage writes */
402         if (len % 2 != 0) {
403                 writeb(*buf, info->nand.IO_ADDR_W);
404                 p = (u16 *)(buf + 1);
405                 len--;
406         }
407
408         /*  configure and start prefetch transfer */
409         ret = omap_prefetch_enable(info->gpmc_cs,
410                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
411         if (ret) {
412                 /* PFPW engine is busy, use cpu copy method */
413                 if (info->nand.options & NAND_BUSWIDTH_16)
414                         omap_write_buf16(mtd, (u_char *)p, len);
415                 else
416                         omap_write_buf8(mtd, (u_char *)p, len);
417         } else {
418                 while (len) {
419                         w_count = readl(info->reg.gpmc_prefetch_status);
420                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
421                         w_count = w_count >> 1;
422                         for (i = 0; (i < w_count) && len; i++, len -= 2)
423                                 iowrite16(*p++, info->nand.IO_ADDR_W);
424                 }
425                 /* wait for data to flushed-out before reset the prefetch */
426                 tim = 0;
427                 limit = (loops_per_jiffy *
428                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
429                 do {
430                         cpu_relax();
431                         val = readl(info->reg.gpmc_prefetch_status);
432                         val = PREFETCH_STATUS_COUNT(val);
433                 } while (val && (tim++ < limit));
434
435                 /* disable and stop the PFPW engine */
436                 omap_prefetch_reset(info->gpmc_cs, info);
437         }
438 }
439
440 /*
441  * omap_nand_dma_callback: callback on the completion of dma transfer
442  * @data: pointer to completion data structure
443  */
444 static void omap_nand_dma_callback(void *data)
445 {
446         complete((struct completion *) data);
447 }
448
449 /*
450  * omap_nand_dma_transfer: configure and start dma transfer
451  * @mtd: MTD device structure
452  * @addr: virtual address in RAM of source/destination
453  * @len: number of data bytes to be transferred
454  * @is_write: flag for read/write operation
455  */
456 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
457                                         unsigned int len, int is_write)
458 {
459         struct omap_nand_info *info = container_of(mtd,
460                                         struct omap_nand_info, mtd);
461         struct dma_async_tx_descriptor *tx;
462         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
463                                                         DMA_FROM_DEVICE;
464         struct scatterlist sg;
465         unsigned long tim, limit;
466         unsigned n;
467         int ret;
468         u32 val;
469
470         if (addr >= high_memory) {
471                 struct page *p1;
472
473                 if (((size_t)addr & PAGE_MASK) !=
474                         ((size_t)(addr + len - 1) & PAGE_MASK))
475                         goto out_copy;
476                 p1 = vmalloc_to_page(addr);
477                 if (!p1)
478                         goto out_copy;
479                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
480         }
481
482         sg_init_one(&sg, addr, len);
483         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
484         if (n == 0) {
485                 dev_err(&info->pdev->dev,
486                         "Couldn't DMA map a %d byte buffer\n", len);
487                 goto out_copy;
488         }
489
490         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
491                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
492                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
493         if (!tx)
494                 goto out_copy_unmap;
495
496         tx->callback = omap_nand_dma_callback;
497         tx->callback_param = &info->comp;
498         dmaengine_submit(tx);
499
500         /*  configure and start prefetch transfer */
501         ret = omap_prefetch_enable(info->gpmc_cs,
502                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
503         if (ret)
504                 /* PFPW engine is busy, use cpu copy method */
505                 goto out_copy_unmap;
506
507         init_completion(&info->comp);
508         dma_async_issue_pending(info->dma);
509
510         /* setup and start DMA using dma_addr */
511         wait_for_completion(&info->comp);
512         tim = 0;
513         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
514
515         do {
516                 cpu_relax();
517                 val = readl(info->reg.gpmc_prefetch_status);
518                 val = PREFETCH_STATUS_COUNT(val);
519         } while (val && (tim++ < limit));
520
521         /* disable and stop the PFPW engine */
522         omap_prefetch_reset(info->gpmc_cs, info);
523
524         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
525         return 0;
526
527 out_copy_unmap:
528         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
529 out_copy:
530         if (info->nand.options & NAND_BUSWIDTH_16)
531                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
532                         : omap_write_buf16(mtd, (u_char *) addr, len);
533         else
534                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
535                         : omap_write_buf8(mtd, (u_char *) addr, len);
536         return 0;
537 }
538
539 /**
540  * omap_read_buf_dma_pref - read data from NAND controller into buffer
541  * @mtd: MTD device structure
542  * @buf: buffer to store date
543  * @len: number of bytes to read
544  */
545 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
546 {
547         if (len <= mtd->oobsize)
548                 omap_read_buf_pref(mtd, buf, len);
549         else
550                 /* start transfer in DMA mode */
551                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
552 }
553
554 /**
555  * omap_write_buf_dma_pref - write buffer to NAND controller
556  * @mtd: MTD device structure
557  * @buf: data buffer
558  * @len: number of bytes to write
559  */
560 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
561                                         const u_char *buf, int len)
562 {
563         if (len <= mtd->oobsize)
564                 omap_write_buf_pref(mtd, buf, len);
565         else
566                 /* start transfer in DMA mode */
567                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
568 }
569
570 /*
571  * omap_nand_irq - GPMC irq handler
572  * @this_irq: gpmc irq number
573  * @dev: omap_nand_info structure pointer is passed here
574  */
575 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
576 {
577         struct omap_nand_info *info = (struct omap_nand_info *) dev;
578         u32 bytes;
579
580         bytes = readl(info->reg.gpmc_prefetch_status);
581         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
582         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
583         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
584                 if (this_irq == info->gpmc_irq_count)
585                         goto done;
586
587                 if (info->buf_len && (info->buf_len < bytes))
588                         bytes = info->buf_len;
589                 else if (!info->buf_len)
590                         bytes = 0;
591                 iowrite32_rep(info->nand.IO_ADDR_W,
592                                                 (u32 *)info->buf, bytes >> 2);
593                 info->buf = info->buf + bytes;
594                 info->buf_len -= bytes;
595
596         } else {
597                 ioread32_rep(info->nand.IO_ADDR_R,
598                                                 (u32 *)info->buf, bytes >> 2);
599                 info->buf = info->buf + bytes;
600
601                 if (this_irq == info->gpmc_irq_count)
602                         goto done;
603         }
604
605         return IRQ_HANDLED;
606
607 done:
608         complete(&info->comp);
609
610         disable_irq_nosync(info->gpmc_irq_fifo);
611         disable_irq_nosync(info->gpmc_irq_count);
612
613         return IRQ_HANDLED;
614 }
615
616 /*
617  * omap_read_buf_irq_pref - read data from NAND controller into buffer
618  * @mtd: MTD device structure
619  * @buf: buffer to store date
620  * @len: number of bytes to read
621  */
622 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
623 {
624         struct omap_nand_info *info = container_of(mtd,
625                                                 struct omap_nand_info, mtd);
626         int ret = 0;
627
628         if (len <= mtd->oobsize) {
629                 omap_read_buf_pref(mtd, buf, len);
630                 return;
631         }
632
633         info->iomode = OMAP_NAND_IO_READ;
634         info->buf = buf;
635         init_completion(&info->comp);
636
637         /*  configure and start prefetch transfer */
638         ret = omap_prefetch_enable(info->gpmc_cs,
639                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
640         if (ret)
641                 /* PFPW engine is busy, use cpu copy method */
642                 goto out_copy;
643
644         info->buf_len = len;
645
646         enable_irq(info->gpmc_irq_count);
647         enable_irq(info->gpmc_irq_fifo);
648
649         /* waiting for read to complete */
650         wait_for_completion(&info->comp);
651
652         /* disable and stop the PFPW engine */
653         omap_prefetch_reset(info->gpmc_cs, info);
654         return;
655
656 out_copy:
657         if (info->nand.options & NAND_BUSWIDTH_16)
658                 omap_read_buf16(mtd, buf, len);
659         else
660                 omap_read_buf8(mtd, buf, len);
661 }
662
663 /*
664  * omap_write_buf_irq_pref - write buffer to NAND controller
665  * @mtd: MTD device structure
666  * @buf: data buffer
667  * @len: number of bytes to write
668  */
669 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
670                                         const u_char *buf, int len)
671 {
672         struct omap_nand_info *info = container_of(mtd,
673                                                 struct omap_nand_info, mtd);
674         int ret = 0;
675         unsigned long tim, limit;
676         u32 val;
677
678         if (len <= mtd->oobsize) {
679                 omap_write_buf_pref(mtd, buf, len);
680                 return;
681         }
682
683         info->iomode = OMAP_NAND_IO_WRITE;
684         info->buf = (u_char *) buf;
685         init_completion(&info->comp);
686
687         /* configure and start prefetch transfer : size=24 */
688         ret = omap_prefetch_enable(info->gpmc_cs,
689                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
690         if (ret)
691                 /* PFPW engine is busy, use cpu copy method */
692                 goto out_copy;
693
694         info->buf_len = len;
695
696         enable_irq(info->gpmc_irq_count);
697         enable_irq(info->gpmc_irq_fifo);
698
699         /* waiting for write to complete */
700         wait_for_completion(&info->comp);
701
702         /* wait for data to flushed-out before reset the prefetch */
703         tim = 0;
704         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
705         do {
706                 val = readl(info->reg.gpmc_prefetch_status);
707                 val = PREFETCH_STATUS_COUNT(val);
708                 cpu_relax();
709         } while (val && (tim++ < limit));
710
711         /* disable and stop the PFPW engine */
712         omap_prefetch_reset(info->gpmc_cs, info);
713         return;
714
715 out_copy:
716         if (info->nand.options & NAND_BUSWIDTH_16)
717                 omap_write_buf16(mtd, buf, len);
718         else
719                 omap_write_buf8(mtd, buf, len);
720 }
721
722 /**
723  * gen_true_ecc - This function will generate true ECC value
724  * @ecc_buf: buffer to store ecc code
725  *
726  * This generated true ECC value can be used when correcting
727  * data read from NAND flash memory core
728  */
729 static void gen_true_ecc(u8 *ecc_buf)
730 {
731         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
732                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
733
734         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
735                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
736         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
737                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
738         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
739                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
740 }
741
742 /**
743  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
744  * @ecc_data1:  ecc code from nand spare area
745  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
746  * @page_data:  page data
747  *
748  * This function compares two ECC's and indicates if there is an error.
749  * If the error can be corrected it will be corrected to the buffer.
750  * If there is no error, %0 is returned. If there is an error but it
751  * was corrected, %1 is returned. Otherwise, %-1 is returned.
752  */
753 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
754                             u8 *ecc_data2,      /* read from register */
755                             u8 *page_data)
756 {
757         uint    i;
758         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
759         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
760         u8      ecc_bit[24];
761         u8      ecc_sum = 0;
762         u8      find_bit = 0;
763         uint    find_byte = 0;
764         int     isEccFF;
765
766         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
767
768         gen_true_ecc(ecc_data1);
769         gen_true_ecc(ecc_data2);
770
771         for (i = 0; i <= 2; i++) {
772                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
773                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
774         }
775
776         for (i = 0; i < 8; i++) {
777                 tmp0_bit[i]     = *ecc_data1 % 2;
778                 *ecc_data1      = *ecc_data1 / 2;
779         }
780
781         for (i = 0; i < 8; i++) {
782                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
783                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
784         }
785
786         for (i = 0; i < 8; i++) {
787                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
788                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
789         }
790
791         for (i = 0; i < 8; i++) {
792                 comp0_bit[i]     = *ecc_data2 % 2;
793                 *ecc_data2       = *ecc_data2 / 2;
794         }
795
796         for (i = 0; i < 8; i++) {
797                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
798                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
799         }
800
801         for (i = 0; i < 8; i++) {
802                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
803                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
804         }
805
806         for (i = 0; i < 6; i++)
807                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
808
809         for (i = 0; i < 8; i++)
810                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
811
812         for (i = 0; i < 8; i++)
813                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
814
815         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
816         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
817
818         for (i = 0; i < 24; i++)
819                 ecc_sum += ecc_bit[i];
820
821         switch (ecc_sum) {
822         case 0:
823                 /* Not reached because this function is not called if
824                  *  ECC values are equal
825                  */
826                 return 0;
827
828         case 1:
829                 /* Uncorrectable error */
830                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
831                 return -1;
832
833         case 11:
834                 /* UN-Correctable error */
835                 pr_debug("ECC UNCORRECTED_ERROR B\n");
836                 return -1;
837
838         case 12:
839                 /* Correctable error */
840                 find_byte = (ecc_bit[23] << 8) +
841                             (ecc_bit[21] << 7) +
842                             (ecc_bit[19] << 6) +
843                             (ecc_bit[17] << 5) +
844                             (ecc_bit[15] << 4) +
845                             (ecc_bit[13] << 3) +
846                             (ecc_bit[11] << 2) +
847                             (ecc_bit[9]  << 1) +
848                             ecc_bit[7];
849
850                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
851
852                 pr_debug("Correcting single bit ECC error at offset: "
853                                 "%d, bit: %d\n", find_byte, find_bit);
854
855                 page_data[find_byte] ^= (1 << find_bit);
856
857                 return 1;
858         default:
859                 if (isEccFF) {
860                         if (ecc_data2[0] == 0 &&
861                             ecc_data2[1] == 0 &&
862                             ecc_data2[2] == 0)
863                                 return 0;
864                 }
865                 pr_debug("UNCORRECTED_ERROR default\n");
866                 return -1;
867         }
868 }
869
870 /**
871  * omap_correct_data - Compares the ECC read with HW generated ECC
872  * @mtd: MTD device structure
873  * @dat: page data
874  * @read_ecc: ecc read from nand flash
875  * @calc_ecc: ecc read from HW ECC registers
876  *
877  * Compares the ecc read from nand spare area with ECC registers values
878  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
879  * detection and correction. If there are no errors, %0 is returned. If
880  * there were errors and all of the errors were corrected, the number of
881  * corrected errors is returned. If uncorrectable errors exist, %-1 is
882  * returned.
883  */
884 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
885                                 u_char *read_ecc, u_char *calc_ecc)
886 {
887         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
888                                                         mtd);
889         int blockCnt = 0, i = 0, ret = 0;
890         int stat = 0;
891
892         /* Ex NAND_ECC_HW12_2048 */
893         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
894                         (info->nand.ecc.size  == 2048))
895                 blockCnt = 4;
896         else
897                 blockCnt = 1;
898
899         for (i = 0; i < blockCnt; i++) {
900                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
901                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
902                         if (ret < 0)
903                                 return ret;
904                         /* keep track of the number of corrected errors */
905                         stat += ret;
906                 }
907                 read_ecc += 3;
908                 calc_ecc += 3;
909                 dat      += 512;
910         }
911         return stat;
912 }
913
914 /**
915  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
916  * @mtd: MTD device structure
917  * @dat: The pointer to data on which ecc is computed
918  * @ecc_code: The ecc_code buffer
919  *
920  * Using noninverted ECC can be considered ugly since writing a blank
921  * page ie. padding will clear the ECC bytes. This is no problem as long
922  * nobody is trying to write data on the seemingly unused page. Reading
923  * an erased page will produce an ECC mismatch between generated and read
924  * ECC bytes that has to be dealt with separately.
925  */
926 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
927                                 u_char *ecc_code)
928 {
929         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
930                                                         mtd);
931         u32 val;
932
933         val = readl(info->reg.gpmc_ecc_config);
934         if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
935                 return -EINVAL;
936
937         /* read ecc result */
938         val = readl(info->reg.gpmc_ecc1_result);
939         *ecc_code++ = val;          /* P128e, ..., P1e */
940         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
941         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
942         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
943
944         return 0;
945 }
946
947 /**
948  * omap_enable_hwecc - This function enables the hardware ecc functionality
949  * @mtd: MTD device structure
950  * @mode: Read/Write mode
951  */
952 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
953 {
954         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
955                                                         mtd);
956         struct nand_chip *chip = mtd->priv;
957         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
958         u32 val;
959
960         /* clear ecc and enable bits */
961         val = ECCCLEAR | ECC1;
962         writel(val, info->reg.gpmc_ecc_control);
963
964         /* program ecc and result sizes */
965         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
966                          ECC1RESULTSIZE);
967         writel(val, info->reg.gpmc_ecc_size_config);
968
969         switch (mode) {
970         case NAND_ECC_READ:
971         case NAND_ECC_WRITE:
972                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
973                 break;
974         case NAND_ECC_READSYN:
975                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
976                 break;
977         default:
978                 dev_info(&info->pdev->dev,
979                         "error: unrecognized Mode[%d]!\n", mode);
980                 break;
981         }
982
983         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
984         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
985         writel(val, info->reg.gpmc_ecc_config);
986 }
987
988 /**
989  * omap_wait - wait until the command is done
990  * @mtd: MTD device structure
991  * @chip: NAND Chip structure
992  *
993  * Wait function is called during Program and erase operations and
994  * the way it is called from MTD layer, we should wait till the NAND
995  * chip is ready after the programming/erase operation has completed.
996  *
997  * Erase can take up to 400ms and program up to 20ms according to
998  * general NAND and SmartMedia specs
999  */
1000 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1001 {
1002         struct nand_chip *this = mtd->priv;
1003         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1004                                                         mtd);
1005         unsigned long timeo = jiffies;
1006         int status, state = this->state;
1007
1008         if (state == FL_ERASING)
1009                 timeo += msecs_to_jiffies(400);
1010         else
1011                 timeo += msecs_to_jiffies(20);
1012
1013         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1014         while (time_before(jiffies, timeo)) {
1015                 status = readb(info->reg.gpmc_nand_data);
1016                 if (status & NAND_STATUS_READY)
1017                         break;
1018                 cond_resched();
1019         }
1020
1021         status = readb(info->reg.gpmc_nand_data);
1022         return status;
1023 }
1024
1025 /**
1026  * omap_dev_ready - calls the platform specific dev_ready function
1027  * @mtd: MTD device structure
1028  */
1029 static int omap_dev_ready(struct mtd_info *mtd)
1030 {
1031         unsigned int val = 0;
1032         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1033                                                         mtd);
1034
1035         val = readl(info->reg.gpmc_status);
1036
1037         if ((val & 0x100) == 0x100) {
1038                 return 1;
1039         } else {
1040                 return 0;
1041         }
1042 }
1043
1044 /**
1045  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1046  * @mtd: MTD device structure
1047  * @mode: Read/Write mode
1048  *
1049  * When using BCH, sector size is hardcoded to 512 bytes.
1050  * Using wrapping mode 6 both for reading and writing if ELM module not uses
1051  * for error correction.
1052  * On writing,
1053  * eccsize0 = 0  (no additional protected byte in spare area)
1054  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1055  */
1056 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1057 {
1058         unsigned int bch_type;
1059         unsigned int dev_width, nsectors;
1060         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1061                                                    mtd);
1062         enum omap_ecc ecc_opt = info->ecc_opt;
1063         struct nand_chip *chip = mtd->priv;
1064         u32 val, wr_mode;
1065         unsigned int ecc_size1, ecc_size0;
1066
1067         /* GPMC configurations for calculating ECC */
1068         switch (ecc_opt) {
1069         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1070                 bch_type = 0;
1071                 nsectors = 1;
1072                 if (mode == NAND_ECC_READ) {
1073                         wr_mode   = BCH_WRAPMODE_6;
1074                         ecc_size0 = BCH_ECC_SIZE0;
1075                         ecc_size1 = BCH_ECC_SIZE1;
1076                 } else {
1077                         wr_mode   = BCH_WRAPMODE_6;
1078                         ecc_size0 = BCH_ECC_SIZE0;
1079                         ecc_size1 = BCH_ECC_SIZE1;
1080                 }
1081                 break;
1082         case OMAP_ECC_BCH4_CODE_HW:
1083                 bch_type = 0;
1084                 nsectors = chip->ecc.steps;
1085                 if (mode == NAND_ECC_READ) {
1086                         wr_mode   = BCH_WRAPMODE_1;
1087                         ecc_size0 = BCH4R_ECC_SIZE0;
1088                         ecc_size1 = BCH4R_ECC_SIZE1;
1089                 } else {
1090                         wr_mode   = BCH_WRAPMODE_6;
1091                         ecc_size0 = BCH_ECC_SIZE0;
1092                         ecc_size1 = BCH_ECC_SIZE1;
1093                 }
1094                 break;
1095         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1096                 bch_type = 1;
1097                 nsectors = 1;
1098                 if (mode == NAND_ECC_READ) {
1099                         wr_mode   = BCH_WRAPMODE_6;
1100                         ecc_size0 = BCH_ECC_SIZE0;
1101                         ecc_size1 = BCH_ECC_SIZE1;
1102                 } else {
1103                         wr_mode   = BCH_WRAPMODE_6;
1104                         ecc_size0 = BCH_ECC_SIZE0;
1105                         ecc_size1 = BCH_ECC_SIZE1;
1106                 }
1107                 break;
1108         case OMAP_ECC_BCH8_CODE_HW:
1109                 bch_type = 1;
1110                 nsectors = chip->ecc.steps;
1111                 if (mode == NAND_ECC_READ) {
1112                         wr_mode   = BCH_WRAPMODE_1;
1113                         ecc_size0 = BCH8R_ECC_SIZE0;
1114                         ecc_size1 = BCH8R_ECC_SIZE1;
1115                 } else {
1116                         wr_mode   = BCH_WRAPMODE_6;
1117                         ecc_size0 = BCH_ECC_SIZE0;
1118                         ecc_size1 = BCH_ECC_SIZE1;
1119                 }
1120                 break;
1121         case OMAP_ECC_BCH16_CODE_HW:
1122                 bch_type = 0x2;
1123                 nsectors = chip->ecc.steps;
1124                 if (mode == NAND_ECC_READ) {
1125                         wr_mode   = 0x01;
1126                         ecc_size0 = 52; /* ECC bits in nibbles per sector */
1127                         ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1128                 } else {
1129                         wr_mode   = 0x01;
1130                         ecc_size0 = 0;  /* extra bits in nibbles per sector */
1131                         ecc_size1 = 52; /* OOB bits in nibbles per sector */
1132                 }
1133                 break;
1134         default:
1135                 return;
1136         }
1137
1138         writel(ECC1, info->reg.gpmc_ecc_control);
1139
1140         /* Configure ecc size for BCH */
1141         val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1142         writel(val, info->reg.gpmc_ecc_size_config);
1143
1144         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1145
1146         /* BCH configuration */
1147         val = ((1                        << 16) | /* enable BCH */
1148                (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1149                (wr_mode                  <<  8) | /* wrap mode */
1150                (dev_width                <<  7) | /* bus width */
1151                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1152                (info->gpmc_cs            <<  1) | /* ECC CS */
1153                (0x1));                            /* enable ECC */
1154
1155         writel(val, info->reg.gpmc_ecc_config);
1156
1157         /* Clear ecc and enable bits */
1158         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1159 }
1160
1161 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1162 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1163                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
1164
1165 /**
1166  * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1167  * @mtd:        MTD device structure
1168  * @dat:        The pointer to data on which ecc is computed
1169  * @ecc_code:   The ecc_code buffer
1170  *
1171  * Support calculating of BCH4/8 ecc vectors for the page
1172  */
1173 static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1174                                         const u_char *dat, u_char *ecc_calc)
1175 {
1176         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1177                                                    mtd);
1178         int eccbytes    = info->nand.ecc.bytes;
1179         struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1180         u8 *ecc_code;
1181         unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1182         u32 val;
1183         int i, j;
1184
1185         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1186         for (i = 0; i < nsectors; i++) {
1187                 ecc_code = ecc_calc;
1188                 switch (info->ecc_opt) {
1189                 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1190                 case OMAP_ECC_BCH8_CODE_HW:
1191                         bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1192                         bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1193                         bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1194                         bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1195                         *ecc_code++ = (bch_val4 & 0xFF);
1196                         *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1197                         *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1198                         *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1199                         *ecc_code++ = (bch_val3 & 0xFF);
1200                         *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1201                         *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1202                         *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1203                         *ecc_code++ = (bch_val2 & 0xFF);
1204                         *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1205                         *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1206                         *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1207                         *ecc_code++ = (bch_val1 & 0xFF);
1208                         break;
1209                 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1210                 case OMAP_ECC_BCH4_CODE_HW:
1211                         bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1212                         bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1213                         *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1214                         *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1215                         *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1216                                 ((bch_val1 >> 28) & 0xF);
1217                         *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1218                         *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1219                         *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1220                         *ecc_code++ = ((bch_val1 & 0xF) << 4);
1221                         break;
1222                 case OMAP_ECC_BCH16_CODE_HW:
1223                         val = readl(gpmc_regs->gpmc_bch_result6[i]);
1224                         ecc_code[0]  = ((val >>  8) & 0xFF);
1225                         ecc_code[1]  = ((val >>  0) & 0xFF);
1226                         val = readl(gpmc_regs->gpmc_bch_result5[i]);
1227                         ecc_code[2]  = ((val >> 24) & 0xFF);
1228                         ecc_code[3]  = ((val >> 16) & 0xFF);
1229                         ecc_code[4]  = ((val >>  8) & 0xFF);
1230                         ecc_code[5]  = ((val >>  0) & 0xFF);
1231                         val = readl(gpmc_regs->gpmc_bch_result4[i]);
1232                         ecc_code[6]  = ((val >> 24) & 0xFF);
1233                         ecc_code[7]  = ((val >> 16) & 0xFF);
1234                         ecc_code[8]  = ((val >>  8) & 0xFF);
1235                         ecc_code[9]  = ((val >>  0) & 0xFF);
1236                         val = readl(gpmc_regs->gpmc_bch_result3[i]);
1237                         ecc_code[10] = ((val >> 24) & 0xFF);
1238                         ecc_code[11] = ((val >> 16) & 0xFF);
1239                         ecc_code[12] = ((val >>  8) & 0xFF);
1240                         ecc_code[13] = ((val >>  0) & 0xFF);
1241                         val = readl(gpmc_regs->gpmc_bch_result2[i]);
1242                         ecc_code[14] = ((val >> 24) & 0xFF);
1243                         ecc_code[15] = ((val >> 16) & 0xFF);
1244                         ecc_code[16] = ((val >>  8) & 0xFF);
1245                         ecc_code[17] = ((val >>  0) & 0xFF);
1246                         val = readl(gpmc_regs->gpmc_bch_result1[i]);
1247                         ecc_code[18] = ((val >> 24) & 0xFF);
1248                         ecc_code[19] = ((val >> 16) & 0xFF);
1249                         ecc_code[20] = ((val >>  8) & 0xFF);
1250                         ecc_code[21] = ((val >>  0) & 0xFF);
1251                         val = readl(gpmc_regs->gpmc_bch_result0[i]);
1252                         ecc_code[22] = ((val >> 24) & 0xFF);
1253                         ecc_code[23] = ((val >> 16) & 0xFF);
1254                         ecc_code[24] = ((val >>  8) & 0xFF);
1255                         ecc_code[25] = ((val >>  0) & 0xFF);
1256                         break;
1257                 default:
1258                         return -EINVAL;
1259                 }
1260
1261                 /* ECC scheme specific syndrome customizations */
1262                 switch (info->ecc_opt) {
1263                 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1264                         /* Add constant polynomial to remainder, so that
1265                          * ECC of blank pages results in 0x0 on reading back */
1266                         for (j = 0; j < eccbytes; j++)
1267                                 ecc_calc[j] ^= bch4_polynomial[j];
1268                         break;
1269                 case OMAP_ECC_BCH4_CODE_HW:
1270                         /* Set  8th ECC byte as 0x0 for ROM compatibility */
1271                         ecc_calc[eccbytes - 1] = 0x0;
1272                         break;
1273                 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1274                         /* Add constant polynomial to remainder, so that
1275                          * ECC of blank pages results in 0x0 on reading back */
1276                         for (j = 0; j < eccbytes; j++)
1277                                 ecc_calc[j] ^= bch8_polynomial[j];
1278                         break;
1279                 case OMAP_ECC_BCH8_CODE_HW:
1280                         /* Set 14th ECC byte as 0x0 for ROM compatibility */
1281                         ecc_calc[eccbytes - 1] = 0x0;
1282                         break;
1283                 case OMAP_ECC_BCH16_CODE_HW:
1284                         break;
1285                 default:
1286                         return -EINVAL;
1287                 }
1288
1289         ecc_calc += eccbytes;
1290         }
1291
1292         return 0;
1293 }
1294
1295 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1296 /**
1297  * erased_sector_bitflips - count bit flips
1298  * @data:       data sector buffer
1299  * @oob:        oob buffer
1300  * @info:       omap_nand_info
1301  *
1302  * Check the bit flips in erased page falls below correctable level.
1303  * If falls below, report the page as erased with correctable bit
1304  * flip, else report as uncorrectable page.
1305  */
1306 static int erased_sector_bitflips(u_char *data, u_char *oob,
1307                 struct omap_nand_info *info)
1308 {
1309         int flip_bits = 0, i;
1310
1311         for (i = 0; i < info->nand.ecc.size; i++) {
1312                 flip_bits += hweight8(~data[i]);
1313                 if (flip_bits > info->nand.ecc.strength)
1314                         return 0;
1315         }
1316
1317         for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1318                 flip_bits += hweight8(~oob[i]);
1319                 if (flip_bits > info->nand.ecc.strength)
1320                         return 0;
1321         }
1322
1323         /*
1324          * Bit flips falls in correctable level.
1325          * Fill data area with 0xFF
1326          */
1327         if (flip_bits) {
1328                 memset(data, 0xFF, info->nand.ecc.size);
1329                 memset(oob, 0xFF, info->nand.ecc.bytes);
1330         }
1331
1332         return flip_bits;
1333 }
1334
1335 /**
1336  * omap_elm_correct_data - corrects page data area in case error reported
1337  * @mtd:        MTD device structure
1338  * @data:       page data
1339  * @read_ecc:   ecc read from nand flash
1340  * @calc_ecc:   ecc read from HW ECC registers
1341  *
1342  * Calculated ecc vector reported as zero in case of non-error pages.
1343  * In case of non-zero ecc vector, first filter out erased-pages, and
1344  * then process data via ELM to detect bit-flips.
1345  */
1346 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1347                                 u_char *read_ecc, u_char *calc_ecc)
1348 {
1349         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1350                         mtd);
1351         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1352         int eccsteps = info->nand.ecc.steps;
1353         int i , j, stat = 0;
1354         int eccflag, actual_eccbytes;
1355         struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1356         u_char *ecc_vec = calc_ecc;
1357         u_char *spare_ecc = read_ecc;
1358         u_char *erased_ecc_vec;
1359         u_char *buf;
1360         int bitflip_count;
1361         bool is_error_reported = false;
1362         u32 bit_pos, byte_pos, error_max, pos;
1363         int err;
1364
1365         switch (info->ecc_opt) {
1366         case OMAP_ECC_BCH4_CODE_HW:
1367                 /* omit  7th ECC byte reserved for ROM code compatibility */
1368                 actual_eccbytes = ecc->bytes - 1;
1369                 erased_ecc_vec = bch4_vector;
1370                 break;
1371         case OMAP_ECC_BCH8_CODE_HW:
1372                 /* omit 14th ECC byte reserved for ROM code compatibility */
1373                 actual_eccbytes = ecc->bytes - 1;
1374                 erased_ecc_vec = bch8_vector;
1375                 break;
1376         case OMAP_ECC_BCH16_CODE_HW:
1377                 actual_eccbytes = ecc->bytes;
1378                 erased_ecc_vec = bch16_vector;
1379                 break;
1380         default:
1381                 pr_err("invalid driver configuration\n");
1382                 return -EINVAL;
1383         }
1384
1385         /* Initialize elm error vector to zero */
1386         memset(err_vec, 0, sizeof(err_vec));
1387
1388         for (i = 0; i < eccsteps ; i++) {
1389                 eccflag = 0;    /* initialize eccflag */
1390
1391                 /*
1392                  * Check any error reported,
1393                  * In case of error, non zero ecc reported.
1394                  */
1395                 for (j = 0; j < actual_eccbytes; j++) {
1396                         if (calc_ecc[j] != 0) {
1397                                 eccflag = 1; /* non zero ecc, error present */
1398                                 break;
1399                         }
1400                 }
1401
1402                 if (eccflag == 1) {
1403                         if (memcmp(calc_ecc, erased_ecc_vec,
1404                                                 actual_eccbytes) == 0) {
1405                                 /*
1406                                  * calc_ecc[] matches pattern for ECC(all 0xff)
1407                                  * so this is definitely an erased-page
1408                                  */
1409                         } else {
1410                                 buf = &data[info->nand.ecc.size * i];
1411                                 /*
1412                                  * count number of 0-bits in read_buf.
1413                                  * This check can be removed once a similar
1414                                  * check is introduced in generic NAND driver
1415                                  */
1416                                 bitflip_count = erased_sector_bitflips(
1417                                                 buf, read_ecc, info);
1418                                 if (bitflip_count) {
1419                                         /*
1420                                          * number of 0-bits within ECC limits
1421                                          * So this may be an erased-page
1422                                          */
1423                                         stat += bitflip_count;
1424                                 } else {
1425                                         /*
1426                                          * Too many 0-bits. It may be a
1427                                          * - programmed-page, OR
1428                                          * - erased-page with many bit-flips
1429                                          * So this page requires check by ELM
1430                                          */
1431                                         err_vec[i].error_reported = true;
1432                                         is_error_reported = true;
1433                                 }
1434                         }
1435                 }
1436
1437                 /* Update the ecc vector */
1438                 calc_ecc += ecc->bytes;
1439                 read_ecc += ecc->bytes;
1440         }
1441
1442         /* Check if any error reported */
1443         if (!is_error_reported)
1444                 return stat;
1445
1446         /* Decode BCH error using ELM module */
1447         elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1448
1449         err = 0;
1450         for (i = 0; i < eccsteps; i++) {
1451                 if (err_vec[i].error_uncorrectable) {
1452                         pr_err("nand: uncorrectable bit-flips found\n");
1453                         err = -EBADMSG;
1454                 } else if (err_vec[i].error_reported) {
1455                         for (j = 0; j < err_vec[i].error_count; j++) {
1456                                 switch (info->ecc_opt) {
1457                                 case OMAP_ECC_BCH4_CODE_HW:
1458                                         /* Add 4 bits to take care of padding */
1459                                         pos = err_vec[i].error_loc[j] +
1460                                                 BCH4_BIT_PAD;
1461                                         break;
1462                                 case OMAP_ECC_BCH8_CODE_HW:
1463                                 case OMAP_ECC_BCH16_CODE_HW:
1464                                         pos = err_vec[i].error_loc[j];
1465                                         break;
1466                                 default:
1467                                         return -EINVAL;
1468                                 }
1469                                 error_max = (ecc->size + actual_eccbytes) * 8;
1470                                 /* Calculate bit position of error */
1471                                 bit_pos = pos % 8;
1472
1473                                 /* Calculate byte position of error */
1474                                 byte_pos = (error_max - pos - 1) / 8;
1475
1476                                 if (pos < error_max) {
1477                                         if (byte_pos < 512) {
1478                                                 pr_debug("bitflip@dat[%d]=%x\n",
1479                                                      byte_pos, data[byte_pos]);
1480                                                 data[byte_pos] ^= 1 << bit_pos;
1481                                         } else {
1482                                                 pr_debug("bitflip@oob[%d]=%x\n",
1483                                                         (byte_pos - 512),
1484                                                      spare_ecc[byte_pos - 512]);
1485                                                 spare_ecc[byte_pos - 512] ^=
1486                                                         1 << bit_pos;
1487                                         }
1488                                 } else {
1489                                         pr_err("invalid bit-flip @ %d:%d\n",
1490                                                          byte_pos, bit_pos);
1491                                         err = -EBADMSG;
1492                                 }
1493                         }
1494                 }
1495
1496                 /* Update number of correctable errors */
1497                 stat += err_vec[i].error_count;
1498
1499                 /* Update page data with sector size */
1500                 data += ecc->size;
1501                 spare_ecc += ecc->bytes;
1502         }
1503
1504         return (err) ? err : stat;
1505 }
1506
1507 /**
1508  * omap_write_page_bch - BCH ecc based write page function for entire page
1509  * @mtd:                mtd info structure
1510  * @chip:               nand chip info structure
1511  * @buf:                data buffer
1512  * @oob_required:       must write chip->oob_poi to OOB
1513  *
1514  * Custom write page method evolved to support multi sector writing in one shot
1515  */
1516 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1517                                   const uint8_t *buf, int oob_required)
1518 {
1519         int i;
1520         uint8_t *ecc_calc = chip->buffers->ecccalc;
1521         uint32_t *eccpos = chip->ecc.layout->eccpos;
1522
1523         /* Enable GPMC ecc engine */
1524         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1525
1526         /* Write data */
1527         chip->write_buf(mtd, buf, mtd->writesize);
1528
1529         /* Update ecc vector from GPMC result registers */
1530         chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1531
1532         for (i = 0; i < chip->ecc.total; i++)
1533                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1534
1535         /* Write ecc vector to OOB area */
1536         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1537         return 0;
1538 }
1539
1540 /**
1541  * omap_read_page_bch - BCH ecc based page read function for entire page
1542  * @mtd:                mtd info structure
1543  * @chip:               nand chip info structure
1544  * @buf:                buffer to store read data
1545  * @oob_required:       caller requires OOB data read to chip->oob_poi
1546  * @page:               page number to read
1547  *
1548  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1549  * used for error correction.
1550  * Custom method evolved to support ELM error correction & multi sector
1551  * reading. On reading page data area is read along with OOB data with
1552  * ecc engine enabled. ecc vector updated after read of OOB data.
1553  * For non error pages ecc vector reported as zero.
1554  */
1555 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1556                                 uint8_t *buf, int oob_required, int page)
1557 {
1558         uint8_t *ecc_calc = chip->buffers->ecccalc;
1559         uint8_t *ecc_code = chip->buffers->ecccode;
1560         uint32_t *eccpos = chip->ecc.layout->eccpos;
1561         uint8_t *oob = &chip->oob_poi[eccpos[0]];
1562         uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1563         int stat;
1564         unsigned int max_bitflips = 0;
1565
1566         /* Enable GPMC ecc engine */
1567         chip->ecc.hwctl(mtd, NAND_ECC_READ);
1568
1569         /* Read data */
1570         chip->read_buf(mtd, buf, mtd->writesize);
1571
1572         /* Read oob bytes */
1573         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1574         chip->read_buf(mtd, oob, chip->ecc.total);
1575
1576         /* Calculate ecc bytes */
1577         chip->ecc.calculate(mtd, buf, ecc_calc);
1578
1579         memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1580
1581         stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1582
1583         if (stat < 0) {
1584                 mtd->ecc_stats.failed++;
1585         } else {
1586                 mtd->ecc_stats.corrected += stat;
1587                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1588         }
1589
1590         return max_bitflips;
1591 }
1592
1593 /**
1594  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1595  * @omap_nand_info: NAND device structure containing platform data
1596  * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1597  */
1598 static int is_elm_present(struct omap_nand_info *info,
1599                         struct device_node *elm_node, enum bch_ecc bch_type)
1600 {
1601         struct platform_device *pdev;
1602         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1603         int err;
1604         /* check whether elm-id is passed via DT */
1605         if (!elm_node) {
1606                 pr_err("nand: error: ELM DT node not found\n");
1607                 return -ENODEV;
1608         }
1609         pdev = of_find_device_by_node(elm_node);
1610         /* check whether ELM device is registered */
1611         if (!pdev) {
1612                 pr_err("nand: error: ELM device not found\n");
1613                 return -ENODEV;
1614         }
1615         /* ELM module available, now configure it */
1616         info->elm_dev = &pdev->dev;
1617         err = elm_config(info->elm_dev, bch_type,
1618                 (info->mtd.writesize / ecc->size), ecc->size, ecc->bytes);
1619
1620         return err;
1621 }
1622 #endif /* CONFIG_MTD_NAND_ECC_BCH */
1623
1624 static int omap_nand_probe(struct platform_device *pdev)
1625 {
1626         struct omap_nand_info           *info;
1627         struct omap_nand_platform_data  *pdata;
1628         struct mtd_info                 *mtd;
1629         struct nand_chip                *nand_chip;
1630         struct nand_ecclayout           *ecclayout;
1631         int                             err;
1632         int                             i;
1633         dma_cap_mask_t                  mask;
1634         unsigned                        sig;
1635         unsigned                        oob_index;
1636         struct resource                 *res;
1637         struct mtd_part_parser_data     ppdata = {};
1638
1639         pdata = dev_get_platdata(&pdev->dev);
1640         if (pdata == NULL) {
1641                 dev_err(&pdev->dev, "platform data missing\n");
1642                 return -ENODEV;
1643         }
1644
1645         info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1646                                 GFP_KERNEL);
1647         if (!info)
1648                 return -ENOMEM;
1649
1650         platform_set_drvdata(pdev, info);
1651
1652         spin_lock_init(&info->controller.lock);
1653         init_waitqueue_head(&info->controller.wq);
1654
1655         info->pdev              = pdev;
1656         info->gpmc_cs           = pdata->cs;
1657         info->reg               = pdata->reg;
1658         info->of_node           = pdata->of_node;
1659         info->ecc_opt           = pdata->ecc_opt;
1660         mtd                     = &info->mtd;
1661         mtd->priv               = &info->nand;
1662         mtd->name               = dev_name(&pdev->dev);
1663         mtd->owner              = THIS_MODULE;
1664         nand_chip               = &info->nand;
1665         nand_chip->ecc.priv     = NULL;
1666         nand_chip->options      |= NAND_SKIP_BBTSCAN;
1667
1668         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1669         nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1670         if (IS_ERR(nand_chip->IO_ADDR_R))
1671                 return PTR_ERR(nand_chip->IO_ADDR_R);
1672
1673         info->phys_base = res->start;
1674
1675         nand_chip->controller = &info->controller;
1676
1677         nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1678         nand_chip->cmd_ctrl  = omap_hwcontrol;
1679
1680         /*
1681          * If RDY/BSY line is connected to OMAP then use the omap ready
1682          * function and the generic nand_wait function which reads the status
1683          * register after monitoring the RDY/BSY line. Otherwise use a standard
1684          * chip delay which is slightly more than tR (AC Timing) of the NAND
1685          * device and read status register until you get a failure or success
1686          */
1687         if (pdata->dev_ready) {
1688                 nand_chip->dev_ready = omap_dev_ready;
1689                 nand_chip->chip_delay = 0;
1690         } else {
1691                 nand_chip->waitfunc = omap_wait;
1692                 nand_chip->chip_delay = 50;
1693         }
1694
1695         /* scan NAND device connected to chip controller */
1696         nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1697         if (nand_scan_ident(mtd, 1, NULL)) {
1698                 pr_err("nand device scan failed, may be bus-width mismatch\n");
1699                 err = -ENXIO;
1700                 goto return_error;
1701         }
1702
1703         /* check for small page devices */
1704         if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
1705                 pr_err("small page devices are not supported\n");
1706                 err = -EINVAL;
1707                 goto return_error;
1708         }
1709
1710         /* re-populate low-level callbacks based on xfer modes */
1711         switch (pdata->xfer_type) {
1712         case NAND_OMAP_PREFETCH_POLLED:
1713                 nand_chip->read_buf   = omap_read_buf_pref;
1714                 nand_chip->write_buf  = omap_write_buf_pref;
1715                 break;
1716
1717         case NAND_OMAP_POLLED:
1718                 /* Use nand_base defaults for {read,write}_buf */
1719                 break;
1720
1721         case NAND_OMAP_PREFETCH_DMA:
1722                 dma_cap_zero(mask);
1723                 dma_cap_set(DMA_SLAVE, mask);
1724                 sig = OMAP24XX_DMA_GPMC;
1725                 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1726                 if (!info->dma) {
1727                         dev_err(&pdev->dev, "DMA engine request failed\n");
1728                         err = -ENXIO;
1729                         goto return_error;
1730                 } else {
1731                         struct dma_slave_config cfg;
1732
1733                         memset(&cfg, 0, sizeof(cfg));
1734                         cfg.src_addr = info->phys_base;
1735                         cfg.dst_addr = info->phys_base;
1736                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1737                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1738                         cfg.src_maxburst = 16;
1739                         cfg.dst_maxburst = 16;
1740                         err = dmaengine_slave_config(info->dma, &cfg);
1741                         if (err) {
1742                                 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1743                                         err);
1744                                 goto return_error;
1745                         }
1746                         nand_chip->read_buf   = omap_read_buf_dma_pref;
1747                         nand_chip->write_buf  = omap_write_buf_dma_pref;
1748                 }
1749                 break;
1750
1751         case NAND_OMAP_PREFETCH_IRQ:
1752                 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1753                 if (info->gpmc_irq_fifo <= 0) {
1754                         dev_err(&pdev->dev, "error getting fifo irq\n");
1755                         err = -ENODEV;
1756                         goto return_error;
1757                 }
1758                 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1759                                         omap_nand_irq, IRQF_SHARED,
1760                                         "gpmc-nand-fifo", info);
1761                 if (err) {
1762                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1763                                                 info->gpmc_irq_fifo, err);
1764                         info->gpmc_irq_fifo = 0;
1765                         goto return_error;
1766                 }
1767
1768                 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1769                 if (info->gpmc_irq_count <= 0) {
1770                         dev_err(&pdev->dev, "error getting count irq\n");
1771                         err = -ENODEV;
1772                         goto return_error;
1773                 }
1774                 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1775                                         omap_nand_irq, IRQF_SHARED,
1776                                         "gpmc-nand-count", info);
1777                 if (err) {
1778                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1779                                                 info->gpmc_irq_count, err);
1780                         info->gpmc_irq_count = 0;
1781                         goto return_error;
1782                 }
1783
1784                 nand_chip->read_buf  = omap_read_buf_irq_pref;
1785                 nand_chip->write_buf = omap_write_buf_irq_pref;
1786
1787                 break;
1788
1789         default:
1790                 dev_err(&pdev->dev,
1791                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1792                 err = -EINVAL;
1793                 goto return_error;
1794         }
1795
1796         /* populate MTD interface based on ECC scheme */
1797         nand_chip->ecc.layout   = &omap_oobinfo;
1798         ecclayout               = &omap_oobinfo;
1799         switch (info->ecc_opt) {
1800         case OMAP_ECC_HAM1_CODE_HW:
1801                 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1802                 nand_chip->ecc.mode             = NAND_ECC_HW;
1803                 nand_chip->ecc.bytes            = 3;
1804                 nand_chip->ecc.size             = 512;
1805                 nand_chip->ecc.strength         = 1;
1806                 nand_chip->ecc.calculate        = omap_calculate_ecc;
1807                 nand_chip->ecc.hwctl            = omap_enable_hwecc;
1808                 nand_chip->ecc.correct          = omap_correct_data;
1809                 /* define ECC layout */
1810                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1811                                                         (mtd->writesize /
1812                                                         nand_chip->ecc.size);
1813                 if (nand_chip->options & NAND_BUSWIDTH_16)
1814                         oob_index               = BADBLOCK_MARKER_LENGTH;
1815                 else
1816                         oob_index               = 1;
1817                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1818                         ecclayout->eccpos[i]    = oob_index;
1819                 /* no reserved-marker in ecclayout for this ecc-scheme */
1820                 ecclayout->oobfree->offset      =
1821                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1822                 break;
1823
1824         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1825 #ifdef CONFIG_MTD_NAND_ECC_BCH
1826                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1827                 nand_chip->ecc.mode             = NAND_ECC_HW;
1828                 nand_chip->ecc.size             = 512;
1829                 nand_chip->ecc.bytes            = 7;
1830                 nand_chip->ecc.strength         = 4;
1831                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1832                 nand_chip->ecc.correct          = nand_bch_correct_data;
1833                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1834                 /* define ECC layout */
1835                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1836                                                         (mtd->writesize /
1837                                                         nand_chip->ecc.size);
1838                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1839                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1840                         ecclayout->eccpos[i] = oob_index;
1841                         if (((i + 1) % nand_chip->ecc.bytes) == 0)
1842                                 oob_index++;
1843                 }
1844                 /* include reserved-marker in ecclayout->oobfree calculation */
1845                 ecclayout->oobfree->offset      = 1 +
1846                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1847                 /* software bch library is used for locating errors */
1848                 nand_chip->ecc.priv             = nand_bch_init(mtd,
1849                                                         nand_chip->ecc.size,
1850                                                         nand_chip->ecc.bytes,
1851                                                         &nand_chip->ecc.layout);
1852                 if (!nand_chip->ecc.priv) {
1853                         pr_err("nand: error: unable to use s/w BCH library\n");
1854                         err = -EINVAL;
1855                 }
1856                 break;
1857 #else
1858                 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1859                 err = -EINVAL;
1860                 goto return_error;
1861 #endif
1862
1863         case OMAP_ECC_BCH4_CODE_HW:
1864 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1865                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1866                 nand_chip->ecc.mode             = NAND_ECC_HW;
1867                 nand_chip->ecc.size             = 512;
1868                 /* 14th bit is kept reserved for ROM-code compatibility */
1869                 nand_chip->ecc.bytes            = 7 + 1;
1870                 nand_chip->ecc.strength         = 4;
1871                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1872                 nand_chip->ecc.correct          = omap_elm_correct_data;
1873                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1874                 nand_chip->ecc.read_page        = omap_read_page_bch;
1875                 nand_chip->ecc.write_page       = omap_write_page_bch;
1876                 /* define ECC layout */
1877                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1878                                                         (mtd->writesize /
1879                                                         nand_chip->ecc.size);
1880                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1881                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1882                         ecclayout->eccpos[i]    = oob_index;
1883                 /* reserved marker already included in ecclayout->eccbytes */
1884                 ecclayout->oobfree->offset      =
1885                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1886                 /* This ECC scheme requires ELM H/W block */
1887                 if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
1888                         pr_err("nand: error: could not initialize ELM\n");
1889                         err = -ENODEV;
1890                         goto return_error;
1891                 }
1892                 break;
1893 #else
1894                 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1895                 err = -EINVAL;
1896                 goto return_error;
1897 #endif
1898
1899         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1900 #ifdef CONFIG_MTD_NAND_ECC_BCH
1901                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1902                 nand_chip->ecc.mode             = NAND_ECC_HW;
1903                 nand_chip->ecc.size             = 512;
1904                 nand_chip->ecc.bytes            = 13;
1905                 nand_chip->ecc.strength         = 8;
1906                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1907                 nand_chip->ecc.correct          = nand_bch_correct_data;
1908                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1909                 /* define ECC layout */
1910                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1911                                                         (mtd->writesize /
1912                                                         nand_chip->ecc.size);
1913                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1914                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1915                         ecclayout->eccpos[i] = oob_index;
1916                         if (((i + 1) % nand_chip->ecc.bytes) == 0)
1917                                 oob_index++;
1918                 }
1919                 /* include reserved-marker in ecclayout->oobfree calculation */
1920                 ecclayout->oobfree->offset      = 1 +
1921                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1922                 /* software bch library is used for locating errors */
1923                 nand_chip->ecc.priv             = nand_bch_init(mtd,
1924                                                         nand_chip->ecc.size,
1925                                                         nand_chip->ecc.bytes,
1926                                                         &nand_chip->ecc.layout);
1927                 if (!nand_chip->ecc.priv) {
1928                         pr_err("nand: error: unable to use s/w BCH library\n");
1929                         err = -EINVAL;
1930                         goto return_error;
1931                 }
1932                 break;
1933 #else
1934                 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1935                 err = -EINVAL;
1936                 goto return_error;
1937 #endif
1938
1939         case OMAP_ECC_BCH8_CODE_HW:
1940 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1941                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1942                 nand_chip->ecc.mode             = NAND_ECC_HW;
1943                 nand_chip->ecc.size             = 512;
1944                 /* 14th bit is kept reserved for ROM-code compatibility */
1945                 nand_chip->ecc.bytes            = 13 + 1;
1946                 nand_chip->ecc.strength         = 8;
1947                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1948                 nand_chip->ecc.correct          = omap_elm_correct_data;
1949                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1950                 nand_chip->ecc.read_page        = omap_read_page_bch;
1951                 nand_chip->ecc.write_page       = omap_write_page_bch;
1952                 /* This ECC scheme requires ELM H/W block */
1953                 err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
1954                 if (err < 0) {
1955                         pr_err("nand: error: could not initialize ELM\n");
1956                         goto return_error;
1957                 }
1958                 /* define ECC layout */
1959                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1960                                                         (mtd->writesize /
1961                                                         nand_chip->ecc.size);
1962                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1963                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1964                         ecclayout->eccpos[i]    = oob_index;
1965                 /* reserved marker already included in ecclayout->eccbytes */
1966                 ecclayout->oobfree->offset      =
1967                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1968                 break;
1969 #else
1970                 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1971                 err = -EINVAL;
1972                 goto return_error;
1973 #endif
1974
1975         case OMAP_ECC_BCH16_CODE_HW:
1976 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1977                 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1978                 nand_chip->ecc.mode             = NAND_ECC_HW;
1979                 nand_chip->ecc.size             = 512;
1980                 nand_chip->ecc.bytes            = 26;
1981                 nand_chip->ecc.strength         = 16;
1982                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1983                 nand_chip->ecc.correct          = omap_elm_correct_data;
1984                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1985                 nand_chip->ecc.read_page        = omap_read_page_bch;
1986                 nand_chip->ecc.write_page       = omap_write_page_bch;
1987                 /* This ECC scheme requires ELM H/W block */
1988                 err = is_elm_present(info, pdata->elm_of_node, BCH16_ECC);
1989                 if (err < 0) {
1990                         pr_err("ELM is required for this ECC scheme\n");
1991                         goto return_error;
1992                 }
1993                 /* define ECC layout */
1994                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1995                                                         (mtd->writesize /
1996                                                         nand_chip->ecc.size);
1997                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1998                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1999                         ecclayout->eccpos[i]    = oob_index;
2000                 /* reserved marker already included in ecclayout->eccbytes */
2001                 ecclayout->oobfree->offset      =
2002                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
2003                 break;
2004 #else
2005                 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
2006                 err = -EINVAL;
2007                 goto return_error;
2008 #endif
2009         default:
2010                 pr_err("nand: error: invalid or unsupported ECC scheme\n");
2011                 err = -EINVAL;
2012                 goto return_error;
2013         }
2014
2015         /* all OOB bytes from oobfree->offset till end off OOB are free */
2016         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2017         /* check if NAND device's OOB is enough to store ECC signatures */
2018         if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2019                 pr_err("not enough OOB bytes required = %d, available=%d\n",
2020                                            ecclayout->eccbytes, mtd->oobsize);
2021                 err = -EINVAL;
2022                 goto return_error;
2023         }
2024
2025         /* second phase scan */
2026         if (nand_scan_tail(mtd)) {
2027                 err = -ENXIO;
2028                 goto return_error;
2029         }
2030
2031         ppdata.of_node = pdata->of_node;
2032         mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2033                                   pdata->nr_parts);
2034
2035         platform_set_drvdata(pdev, mtd);
2036
2037         return 0;
2038
2039 return_error:
2040         if (info->dma)
2041                 dma_release_channel(info->dma);
2042         if (nand_chip->ecc.priv) {
2043                 nand_bch_free(nand_chip->ecc.priv);
2044                 nand_chip->ecc.priv = NULL;
2045         }
2046         return err;
2047 }
2048
2049 static int omap_nand_remove(struct platform_device *pdev)
2050 {
2051         struct mtd_info *mtd = platform_get_drvdata(pdev);
2052         struct nand_chip *nand_chip = mtd->priv;
2053         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2054                                                         mtd);
2055         if (nand_chip->ecc.priv) {
2056                 nand_bch_free(nand_chip->ecc.priv);
2057                 nand_chip->ecc.priv = NULL;
2058         }
2059         if (info->dma)
2060                 dma_release_channel(info->dma);
2061         nand_release(mtd);
2062         return 0;
2063 }
2064
2065 static struct platform_driver omap_nand_driver = {
2066         .probe          = omap_nand_probe,
2067         .remove         = omap_nand_remove,
2068         .driver         = {
2069                 .name   = DRIVER_NAME,
2070                 .owner  = THIS_MODULE,
2071         },
2072 };
2073
2074 module_platform_driver(omap_nand_driver);
2075
2076 MODULE_ALIAS("platform:" DRIVER_NAME);
2077 MODULE_LICENSE("GPL");
2078 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");