Merge tag 'for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[cascardo/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2  * @ubi: UBI device description object
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20  */
21
22 /*
23  * UBI wear-leveling sub-system.
24  *
25  * This sub-system is responsible for wear-leveling. It works in terms of
26  * physical eraseblocks and erase counters and knows nothing about logical
27  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28  * eraseblocks are of two types - used and free. Used physical eraseblocks are
29  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31  *
32  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33  * header. The rest of the physical eraseblock contains only %0xFF bytes.
34  *
35  * When physical eraseblocks are returned to the WL sub-system by means of the
36  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37  * done asynchronously in context of the per-UBI device background thread,
38  * which is also managed by the WL sub-system.
39  *
40  * The wear-leveling is ensured by means of moving the contents of used
41  * physical eraseblocks with low erase counter to free physical eraseblocks
42  * with high erase counter.
43  *
44  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
45  * bad.
46  *
47  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48  * in a physical eraseblock, it has to be moved. Technically this is the same
49  * as moving it for wear-leveling reasons.
50  *
51  * As it was said, for the UBI sub-system all physical eraseblocks are either
52  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54  * RB-trees, as well as (temporarily) in the @wl->pq queue.
55  *
56  * When the WL sub-system returns a physical eraseblock, the physical
57  * eraseblock is protected from being moved for some "time". For this reason,
58  * the physical eraseblock is not directly moved from the @wl->free tree to the
59  * @wl->used tree. There is a protection queue in between where this
60  * physical eraseblock is temporarily stored (@wl->pq).
61  *
62  * All this protection stuff is needed because:
63  *  o we don't want to move physical eraseblocks just after we have given them
64  *    to the user; instead, we first want to let users fill them up with data;
65  *
66  *  o there is a chance that the user will put the physical eraseblock very
67  *    soon, so it makes sense not to move it for some time, but wait.
68  *
69  * Physical eraseblocks stay protected only for limited time. But the "time" is
70  * measured in erase cycles in this case. This is implemented with help of the
71  * protection queue. Eraseblocks are put to the tail of this queue when they
72  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73  * head of the queue on each erase operation (for any eraseblock). So the
74  * length of the queue defines how may (global) erase cycles PEBs are protected.
75  *
76  * To put it differently, each physical eraseblock has 2 main states: free and
77  * used. The former state corresponds to the @wl->free tree. The latter state
78  * is split up on several sub-states:
79  * o the WL movement is allowed (@wl->used tree);
80  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81  *   erroneous - e.g., there was a read error;
82  * o the WL movement is temporarily prohibited (@wl->pq queue);
83  * o scrubbing is needed (@wl->scrub tree).
84  *
85  * Depending on the sub-state, wear-leveling entries of the used physical
86  * eraseblocks may be kept in one of those structures.
87  *
88  * Note, in this implementation, we keep a small in-RAM object for each physical
89  * eraseblock. This is surely not a scalable solution. But it appears to be good
90  * enough for moderately large flashes and it is simple. In future, one may
91  * re-work this sub-system and make it more scalable.
92  *
93  * At the moment this sub-system does not utilize the sequence number, which
94  * was introduced relatively recently. But it would be wise to do this because
95  * the sequence number of a logical eraseblock characterizes how old is it. For
96  * example, when we move a PEB with low erase counter, and we need to pick the
97  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98  * pick target PEB with an average EC if our PEB is not very "old". This is a
99  * room for future re-works of the WL sub-system.
100  */
101
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
106 #include "ubi.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 #ifdef CONFIG_MTD_UBI_FASTMAP
145 /**
146  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
147  * @wrk: the work description object
148  */
149 static void update_fastmap_work_fn(struct work_struct *wrk)
150 {
151         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
152         ubi_update_fastmap(ubi);
153 }
154
155 /**
156  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
157  *  @ubi: UBI device description object
158  *  @pnum: the to be checked PEB
159  */
160 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
161 {
162         int i;
163
164         if (!ubi->fm)
165                 return 0;
166
167         for (i = 0; i < ubi->fm->used_blocks; i++)
168                 if (ubi->fm->e[i]->pnum == pnum)
169                         return 1;
170
171         return 0;
172 }
173 #else
174 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
175 {
176         return 0;
177 }
178 #endif
179
180 /**
181  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
182  * @e: the wear-leveling entry to add
183  * @root: the root of the tree
184  *
185  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
186  * the @ubi->used and @ubi->free RB-trees.
187  */
188 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
189 {
190         struct rb_node **p, *parent = NULL;
191
192         p = &root->rb_node;
193         while (*p) {
194                 struct ubi_wl_entry *e1;
195
196                 parent = *p;
197                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
198
199                 if (e->ec < e1->ec)
200                         p = &(*p)->rb_left;
201                 else if (e->ec > e1->ec)
202                         p = &(*p)->rb_right;
203                 else {
204                         ubi_assert(e->pnum != e1->pnum);
205                         if (e->pnum < e1->pnum)
206                                 p = &(*p)->rb_left;
207                         else
208                                 p = &(*p)->rb_right;
209                 }
210         }
211
212         rb_link_node(&e->u.rb, parent, p);
213         rb_insert_color(&e->u.rb, root);
214 }
215
216 /**
217  * do_work - do one pending work.
218  * @ubi: UBI device description object
219  *
220  * This function returns zero in case of success and a negative error code in
221  * case of failure.
222  */
223 static int do_work(struct ubi_device *ubi)
224 {
225         int err;
226         struct ubi_work *wrk;
227
228         cond_resched();
229
230         /*
231          * @ubi->work_sem is used to synchronize with the workers. Workers take
232          * it in read mode, so many of them may be doing works at a time. But
233          * the queue flush code has to be sure the whole queue of works is
234          * done, and it takes the mutex in write mode.
235          */
236         down_read(&ubi->work_sem);
237         spin_lock(&ubi->wl_lock);
238         if (list_empty(&ubi->works)) {
239                 spin_unlock(&ubi->wl_lock);
240                 up_read(&ubi->work_sem);
241                 return 0;
242         }
243
244         wrk = list_entry(ubi->works.next, struct ubi_work, list);
245         list_del(&wrk->list);
246         ubi->works_count -= 1;
247         ubi_assert(ubi->works_count >= 0);
248         spin_unlock(&ubi->wl_lock);
249
250         /*
251          * Call the worker function. Do not touch the work structure
252          * after this call as it will have been freed or reused by that
253          * time by the worker function.
254          */
255         err = wrk->func(ubi, wrk, 0);
256         if (err)
257                 ubi_err("work failed with error code %d", err);
258         up_read(&ubi->work_sem);
259
260         return err;
261 }
262
263 /**
264  * produce_free_peb - produce a free physical eraseblock.
265  * @ubi: UBI device description object
266  *
267  * This function tries to make a free PEB by means of synchronous execution of
268  * pending works. This may be needed if, for example the background thread is
269  * disabled. Returns zero in case of success and a negative error code in case
270  * of failure.
271  */
272 static int produce_free_peb(struct ubi_device *ubi)
273 {
274         int err;
275
276         while (!ubi->free.rb_node) {
277                 spin_unlock(&ubi->wl_lock);
278
279                 dbg_wl("do one work synchronously");
280                 err = do_work(ubi);
281
282                 spin_lock(&ubi->wl_lock);
283                 if (err)
284                         return err;
285         }
286
287         return 0;
288 }
289
290 /**
291  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292  * @e: the wear-leveling entry to check
293  * @root: the root of the tree
294  *
295  * This function returns non-zero if @e is in the @root RB-tree and zero if it
296  * is not.
297  */
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300         struct rb_node *p;
301
302         p = root->rb_node;
303         while (p) {
304                 struct ubi_wl_entry *e1;
305
306                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308                 if (e->pnum == e1->pnum) {
309                         ubi_assert(e == e1);
310                         return 1;
311                 }
312
313                 if (e->ec < e1->ec)
314                         p = p->rb_left;
315                 else if (e->ec > e1->ec)
316                         p = p->rb_right;
317                 else {
318                         ubi_assert(e->pnum != e1->pnum);
319                         if (e->pnum < e1->pnum)
320                                 p = p->rb_left;
321                         else
322                                 p = p->rb_right;
323                 }
324         }
325
326         return 0;
327 }
328
329 /**
330  * prot_queue_add - add physical eraseblock to the protection queue.
331  * @ubi: UBI device description object
332  * @e: the physical eraseblock to add
333  *
334  * This function adds @e to the tail of the protection queue @ubi->pq, where
335  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337  * be locked.
338  */
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341         int pq_tail = ubi->pq_head - 1;
342
343         if (pq_tail < 0)
344                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349
350 /**
351  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352  * @ubi: UBI device description object
353  * @root: the RB-tree where to look for
354  * @diff: maximum possible difference from the smallest erase counter
355  *
356  * This function looks for a wear leveling entry with erase counter closest to
357  * min + @diff, where min is the smallest erase counter.
358  */
359 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
360                                           struct rb_root *root, int diff)
361 {
362         struct rb_node *p;
363         struct ubi_wl_entry *e, *prev_e = NULL;
364         int max;
365
366         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
367         max = e->ec + diff;
368
369         p = root->rb_node;
370         while (p) {
371                 struct ubi_wl_entry *e1;
372
373                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
374                 if (e1->ec >= max)
375                         p = p->rb_left;
376                 else {
377                         p = p->rb_right;
378                         prev_e = e;
379                         e = e1;
380                 }
381         }
382
383         /* If no fastmap has been written and this WL entry can be used
384          * as anchor PEB, hold it back and return the second best WL entry
385          * such that fastmap can use the anchor PEB later. */
386         if (prev_e && !ubi->fm_disabled &&
387             !ubi->fm && e->pnum < UBI_FM_MAX_START)
388                 return prev_e;
389
390         return e;
391 }
392
393 /**
394  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
395  * @ubi: UBI device description object
396  * @root: the RB-tree where to look for
397  *
398  * This function looks for a wear leveling entry with medium erase counter,
399  * but not greater or equivalent than the lowest erase counter plus
400  * %WL_FREE_MAX_DIFF/2.
401  */
402 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
403                                                struct rb_root *root)
404 {
405         struct ubi_wl_entry *e, *first, *last;
406
407         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
408         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
409
410         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
411                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
412
413 #ifdef CONFIG_MTD_UBI_FASTMAP
414                 /* If no fastmap has been written and this WL entry can be used
415                  * as anchor PEB, hold it back and return the second best
416                  * WL entry such that fastmap can use the anchor PEB later. */
417                 if (e && !ubi->fm_disabled && !ubi->fm &&
418                     e->pnum < UBI_FM_MAX_START)
419                         e = rb_entry(rb_next(root->rb_node),
420                                      struct ubi_wl_entry, u.rb);
421 #endif
422         } else
423                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
424
425         return e;
426 }
427
428 #ifdef CONFIG_MTD_UBI_FASTMAP
429 /**
430  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
431  * @root: the RB-tree where to look for
432  */
433 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
434 {
435         struct rb_node *p;
436         struct ubi_wl_entry *e, *victim = NULL;
437         int max_ec = UBI_MAX_ERASECOUNTER;
438
439         ubi_rb_for_each_entry(p, e, root, u.rb) {
440                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
441                         victim = e;
442                         max_ec = e->ec;
443                 }
444         }
445
446         return victim;
447 }
448
449 static int anchor_pebs_avalible(struct rb_root *root)
450 {
451         struct rb_node *p;
452         struct ubi_wl_entry *e;
453
454         ubi_rb_for_each_entry(p, e, root, u.rb)
455                 if (e->pnum < UBI_FM_MAX_START)
456                         return 1;
457
458         return 0;
459 }
460
461 /**
462  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
463  * @ubi: UBI device description object
464  * @anchor: This PEB will be used as anchor PEB by fastmap
465  *
466  * The function returns a physical erase block with a given maximal number
467  * and removes it from the wl subsystem.
468  * Must be called with wl_lock held!
469  */
470 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
471 {
472         struct ubi_wl_entry *e = NULL;
473
474         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
475                 goto out;
476
477         if (anchor)
478                 e = find_anchor_wl_entry(&ubi->free);
479         else
480                 e = find_mean_wl_entry(ubi, &ubi->free);
481
482         if (!e)
483                 goto out;
484
485         self_check_in_wl_tree(ubi, e, &ubi->free);
486
487         /* remove it from the free list,
488          * the wl subsystem does no longer know this erase block */
489         rb_erase(&e->u.rb, &ubi->free);
490         ubi->free_count--;
491 out:
492         return e;
493 }
494 #endif
495
496 /**
497  * __wl_get_peb - get a physical eraseblock.
498  * @ubi: UBI device description object
499  *
500  * This function returns a physical eraseblock in case of success and a
501  * negative error code in case of failure.
502  */
503 static int __wl_get_peb(struct ubi_device *ubi)
504 {
505         int err;
506         struct ubi_wl_entry *e;
507
508 retry:
509         if (!ubi->free.rb_node) {
510                 if (ubi->works_count == 0) {
511                         ubi_err("no free eraseblocks");
512                         ubi_assert(list_empty(&ubi->works));
513                         return -ENOSPC;
514                 }
515
516                 err = produce_free_peb(ubi);
517                 if (err < 0)
518                         return err;
519                 goto retry;
520         }
521
522         e = find_mean_wl_entry(ubi, &ubi->free);
523         if (!e) {
524                 ubi_err("no free eraseblocks");
525                 return -ENOSPC;
526         }
527
528         self_check_in_wl_tree(ubi, e, &ubi->free);
529
530         /*
531          * Move the physical eraseblock to the protection queue where it will
532          * be protected from being moved for some time.
533          */
534         rb_erase(&e->u.rb, &ubi->free);
535         ubi->free_count--;
536         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
537 #ifndef CONFIG_MTD_UBI_FASTMAP
538         /* We have to enqueue e only if fastmap is disabled,
539          * is fastmap enabled prot_queue_add() will be called by
540          * ubi_wl_get_peb() after removing e from the pool. */
541         prot_queue_add(ubi, e);
542 #endif
543         return e->pnum;
544 }
545
546 #ifdef CONFIG_MTD_UBI_FASTMAP
547 /**
548  * return_unused_pool_pebs - returns unused PEB to the free tree.
549  * @ubi: UBI device description object
550  * @pool: fastmap pool description object
551  */
552 static void return_unused_pool_pebs(struct ubi_device *ubi,
553                                     struct ubi_fm_pool *pool)
554 {
555         int i;
556         struct ubi_wl_entry *e;
557
558         for (i = pool->used; i < pool->size; i++) {
559                 e = ubi->lookuptbl[pool->pebs[i]];
560                 wl_tree_add(e, &ubi->free);
561                 ubi->free_count++;
562         }
563 }
564
565 /**
566  * refill_wl_pool - refills all the fastmap pool used by the
567  * WL sub-system.
568  * @ubi: UBI device description object
569  */
570 static void refill_wl_pool(struct ubi_device *ubi)
571 {
572         struct ubi_wl_entry *e;
573         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
574
575         return_unused_pool_pebs(ubi, pool);
576
577         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
578                 if (!ubi->free.rb_node ||
579                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
580                         break;
581
582                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
583                 self_check_in_wl_tree(ubi, e, &ubi->free);
584                 rb_erase(&e->u.rb, &ubi->free);
585                 ubi->free_count--;
586
587                 pool->pebs[pool->size] = e->pnum;
588         }
589         pool->used = 0;
590 }
591
592 /**
593  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
594  * @ubi: UBI device description object
595  */
596 static void refill_wl_user_pool(struct ubi_device *ubi)
597 {
598         struct ubi_fm_pool *pool = &ubi->fm_pool;
599
600         return_unused_pool_pebs(ubi, pool);
601
602         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
603                 if (!ubi->free.rb_node ||
604                    (ubi->free_count - ubi->beb_rsvd_pebs < 1))
605                         break;
606
607                 pool->pebs[pool->size] = __wl_get_peb(ubi);
608                 if (pool->pebs[pool->size] < 0)
609                         break;
610         }
611         pool->used = 0;
612 }
613
614 /**
615  * ubi_refill_pools - refills all fastmap PEB pools.
616  * @ubi: UBI device description object
617  */
618 void ubi_refill_pools(struct ubi_device *ubi)
619 {
620         spin_lock(&ubi->wl_lock);
621         refill_wl_pool(ubi);
622         refill_wl_user_pool(ubi);
623         spin_unlock(&ubi->wl_lock);
624 }
625
626 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
627  * the fastmap pool.
628  */
629 int ubi_wl_get_peb(struct ubi_device *ubi)
630 {
631         int ret;
632         struct ubi_fm_pool *pool = &ubi->fm_pool;
633         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
634
635         if (!pool->size || !wl_pool->size || pool->used == pool->size ||
636             wl_pool->used == wl_pool->size)
637                 ubi_update_fastmap(ubi);
638
639         /* we got not a single free PEB */
640         if (!pool->size)
641                 ret = -ENOSPC;
642         else {
643                 spin_lock(&ubi->wl_lock);
644                 ret = pool->pebs[pool->used++];
645                 prot_queue_add(ubi, ubi->lookuptbl[ret]);
646                 spin_unlock(&ubi->wl_lock);
647         }
648
649         return ret;
650 }
651
652 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
653  *
654  * @ubi: UBI device description object
655  */
656 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
657 {
658         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
659         int pnum;
660
661         if (pool->used == pool->size || !pool->size) {
662                 /* We cannot update the fastmap here because this
663                  * function is called in atomic context.
664                  * Let's fail here and refill/update it as soon as possible. */
665                 schedule_work(&ubi->fm_work);
666                 return NULL;
667         } else {
668                 pnum = pool->pebs[pool->used++];
669                 return ubi->lookuptbl[pnum];
670         }
671 }
672 #else
673 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
674 {
675         struct ubi_wl_entry *e;
676
677         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
678         self_check_in_wl_tree(ubi, e, &ubi->free);
679         rb_erase(&e->u.rb, &ubi->free);
680
681         return e;
682 }
683
684 int ubi_wl_get_peb(struct ubi_device *ubi)
685 {
686         int peb, err;
687
688         spin_lock(&ubi->wl_lock);
689         peb = __wl_get_peb(ubi);
690         spin_unlock(&ubi->wl_lock);
691
692         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
693                                     ubi->peb_size - ubi->vid_hdr_aloffset);
694         if (err) {
695                 ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
696                 return err;
697         }
698
699         return peb;
700 }
701 #endif
702
703 /**
704  * prot_queue_del - remove a physical eraseblock from the protection queue.
705  * @ubi: UBI device description object
706  * @pnum: the physical eraseblock to remove
707  *
708  * This function deletes PEB @pnum from the protection queue and returns zero
709  * in case of success and %-ENODEV if the PEB was not found.
710  */
711 static int prot_queue_del(struct ubi_device *ubi, int pnum)
712 {
713         struct ubi_wl_entry *e;
714
715         e = ubi->lookuptbl[pnum];
716         if (!e)
717                 return -ENODEV;
718
719         if (self_check_in_pq(ubi, e))
720                 return -ENODEV;
721
722         list_del(&e->u.list);
723         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
724         return 0;
725 }
726
727 /**
728  * sync_erase - synchronously erase a physical eraseblock.
729  * @ubi: UBI device description object
730  * @e: the the physical eraseblock to erase
731  * @torture: if the physical eraseblock has to be tortured
732  *
733  * This function returns zero in case of success and a negative error code in
734  * case of failure.
735  */
736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
737                       int torture)
738 {
739         int err;
740         struct ubi_ec_hdr *ec_hdr;
741         unsigned long long ec = e->ec;
742
743         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
744
745         err = self_check_ec(ubi, e->pnum, e->ec);
746         if (err)
747                 return -EINVAL;
748
749         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
750         if (!ec_hdr)
751                 return -ENOMEM;
752
753         err = ubi_io_sync_erase(ubi, e->pnum, torture);
754         if (err < 0)
755                 goto out_free;
756
757         ec += err;
758         if (ec > UBI_MAX_ERASECOUNTER) {
759                 /*
760                  * Erase counter overflow. Upgrade UBI and use 64-bit
761                  * erase counters internally.
762                  */
763                 ubi_err("erase counter overflow at PEB %d, EC %llu",
764                         e->pnum, ec);
765                 err = -EINVAL;
766                 goto out_free;
767         }
768
769         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
770
771         ec_hdr->ec = cpu_to_be64(ec);
772
773         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
774         if (err)
775                 goto out_free;
776
777         e->ec = ec;
778         spin_lock(&ubi->wl_lock);
779         if (e->ec > ubi->max_ec)
780                 ubi->max_ec = e->ec;
781         spin_unlock(&ubi->wl_lock);
782
783 out_free:
784         kfree(ec_hdr);
785         return err;
786 }
787
788 /**
789  * serve_prot_queue - check if it is time to stop protecting PEBs.
790  * @ubi: UBI device description object
791  *
792  * This function is called after each erase operation and removes PEBs from the
793  * tail of the protection queue. These PEBs have been protected for long enough
794  * and should be moved to the used tree.
795  */
796 static void serve_prot_queue(struct ubi_device *ubi)
797 {
798         struct ubi_wl_entry *e, *tmp;
799         int count;
800
801         /*
802          * There may be several protected physical eraseblock to remove,
803          * process them all.
804          */
805 repeat:
806         count = 0;
807         spin_lock(&ubi->wl_lock);
808         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
809                 dbg_wl("PEB %d EC %d protection over, move to used tree",
810                         e->pnum, e->ec);
811
812                 list_del(&e->u.list);
813                 wl_tree_add(e, &ubi->used);
814                 if (count++ > 32) {
815                         /*
816                          * Let's be nice and avoid holding the spinlock for
817                          * too long.
818                          */
819                         spin_unlock(&ubi->wl_lock);
820                         cond_resched();
821                         goto repeat;
822                 }
823         }
824
825         ubi->pq_head += 1;
826         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
827                 ubi->pq_head = 0;
828         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
829         spin_unlock(&ubi->wl_lock);
830 }
831
832 /**
833  * __schedule_ubi_work - schedule a work.
834  * @ubi: UBI device description object
835  * @wrk: the work to schedule
836  *
837  * This function adds a work defined by @wrk to the tail of the pending works
838  * list. Can only be used of ubi->work_sem is already held in read mode!
839  */
840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
841 {
842         spin_lock(&ubi->wl_lock);
843         list_add_tail(&wrk->list, &ubi->works);
844         ubi_assert(ubi->works_count >= 0);
845         ubi->works_count += 1;
846         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
847                 wake_up_process(ubi->bgt_thread);
848         spin_unlock(&ubi->wl_lock);
849 }
850
851 /**
852  * schedule_ubi_work - schedule a work.
853  * @ubi: UBI device description object
854  * @wrk: the work to schedule
855  *
856  * This function adds a work defined by @wrk to the tail of the pending works
857  * list.
858  */
859 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
860 {
861         down_read(&ubi->work_sem);
862         __schedule_ubi_work(ubi, wrk);
863         up_read(&ubi->work_sem);
864 }
865
866 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
867                         int cancel);
868
869 #ifdef CONFIG_MTD_UBI_FASTMAP
870 /**
871  * ubi_is_erase_work - checks whether a work is erase work.
872  * @wrk: The work object to be checked
873  */
874 int ubi_is_erase_work(struct ubi_work *wrk)
875 {
876         return wrk->func == erase_worker;
877 }
878 #endif
879
880 /**
881  * schedule_erase - schedule an erase work.
882  * @ubi: UBI device description object
883  * @e: the WL entry of the physical eraseblock to erase
884  * @vol_id: the volume ID that last used this PEB
885  * @lnum: the last used logical eraseblock number for the PEB
886  * @torture: if the physical eraseblock has to be tortured
887  *
888  * This function returns zero in case of success and a %-ENOMEM in case of
889  * failure.
890  */
891 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
892                           int vol_id, int lnum, int torture)
893 {
894         struct ubi_work *wl_wrk;
895
896         ubi_assert(e);
897         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
898
899         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
900                e->pnum, e->ec, torture);
901
902         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
903         if (!wl_wrk)
904                 return -ENOMEM;
905
906         wl_wrk->func = &erase_worker;
907         wl_wrk->e = e;
908         wl_wrk->vol_id = vol_id;
909         wl_wrk->lnum = lnum;
910         wl_wrk->torture = torture;
911
912         schedule_ubi_work(ubi, wl_wrk);
913         return 0;
914 }
915
916 /**
917  * do_sync_erase - run the erase worker synchronously.
918  * @ubi: UBI device description object
919  * @e: the WL entry of the physical eraseblock to erase
920  * @vol_id: the volume ID that last used this PEB
921  * @lnum: the last used logical eraseblock number for the PEB
922  * @torture: if the physical eraseblock has to be tortured
923  *
924  */
925 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
926                          int vol_id, int lnum, int torture)
927 {
928         struct ubi_work *wl_wrk;
929
930         dbg_wl("sync erase of PEB %i", e->pnum);
931
932         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
933         if (!wl_wrk)
934                 return -ENOMEM;
935
936         wl_wrk->e = e;
937         wl_wrk->vol_id = vol_id;
938         wl_wrk->lnum = lnum;
939         wl_wrk->torture = torture;
940
941         return erase_worker(ubi, wl_wrk, 0);
942 }
943
944 #ifdef CONFIG_MTD_UBI_FASTMAP
945 /**
946  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
947  * sub-system.
948  * see: ubi_wl_put_peb()
949  *
950  * @ubi: UBI device description object
951  * @fm_e: physical eraseblock to return
952  * @lnum: the last used logical eraseblock number for the PEB
953  * @torture: if this physical eraseblock has to be tortured
954  */
955 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
956                       int lnum, int torture)
957 {
958         struct ubi_wl_entry *e;
959         int vol_id, pnum = fm_e->pnum;
960
961         dbg_wl("PEB %d", pnum);
962
963         ubi_assert(pnum >= 0);
964         ubi_assert(pnum < ubi->peb_count);
965
966         spin_lock(&ubi->wl_lock);
967         e = ubi->lookuptbl[pnum];
968
969         /* This can happen if we recovered from a fastmap the very
970          * first time and writing now a new one. In this case the wl system
971          * has never seen any PEB used by the original fastmap.
972          */
973         if (!e) {
974                 e = fm_e;
975                 ubi_assert(e->ec >= 0);
976                 ubi->lookuptbl[pnum] = e;
977         } else {
978                 e->ec = fm_e->ec;
979                 kfree(fm_e);
980         }
981
982         spin_unlock(&ubi->wl_lock);
983
984         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
985         return schedule_erase(ubi, e, vol_id, lnum, torture);
986 }
987 #endif
988
989 /**
990  * wear_leveling_worker - wear-leveling worker function.
991  * @ubi: UBI device description object
992  * @wrk: the work object
993  * @cancel: non-zero if the worker has to free memory and exit
994  *
995  * This function copies a more worn out physical eraseblock to a less worn out
996  * one. Returns zero in case of success and a negative error code in case of
997  * failure.
998  */
999 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1000                                 int cancel)
1001 {
1002         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1003         int vol_id = -1, uninitialized_var(lnum);
1004 #ifdef CONFIG_MTD_UBI_FASTMAP
1005         int anchor = wrk->anchor;
1006 #endif
1007         struct ubi_wl_entry *e1, *e2;
1008         struct ubi_vid_hdr *vid_hdr;
1009
1010         kfree(wrk);
1011         if (cancel)
1012                 return 0;
1013
1014         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1015         if (!vid_hdr)
1016                 return -ENOMEM;
1017
1018         mutex_lock(&ubi->move_mutex);
1019         spin_lock(&ubi->wl_lock);
1020         ubi_assert(!ubi->move_from && !ubi->move_to);
1021         ubi_assert(!ubi->move_to_put);
1022
1023         if (!ubi->free.rb_node ||
1024             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1025                 /*
1026                  * No free physical eraseblocks? Well, they must be waiting in
1027                  * the queue to be erased. Cancel movement - it will be
1028                  * triggered again when a free physical eraseblock appears.
1029                  *
1030                  * No used physical eraseblocks? They must be temporarily
1031                  * protected from being moved. They will be moved to the
1032                  * @ubi->used tree later and the wear-leveling will be
1033                  * triggered again.
1034                  */
1035                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1036                        !ubi->free.rb_node, !ubi->used.rb_node);
1037                 goto out_cancel;
1038         }
1039
1040 #ifdef CONFIG_MTD_UBI_FASTMAP
1041         /* Check whether we need to produce an anchor PEB */
1042         if (!anchor)
1043                 anchor = !anchor_pebs_avalible(&ubi->free);
1044
1045         if (anchor) {
1046                 e1 = find_anchor_wl_entry(&ubi->used);
1047                 if (!e1)
1048                         goto out_cancel;
1049                 e2 = get_peb_for_wl(ubi);
1050                 if (!e2)
1051                         goto out_cancel;
1052
1053                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1054                 rb_erase(&e1->u.rb, &ubi->used);
1055                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1056         } else if (!ubi->scrub.rb_node) {
1057 #else
1058         if (!ubi->scrub.rb_node) {
1059 #endif
1060                 /*
1061                  * Now pick the least worn-out used physical eraseblock and a
1062                  * highly worn-out free physical eraseblock. If the erase
1063                  * counters differ much enough, start wear-leveling.
1064                  */
1065                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1066                 e2 = get_peb_for_wl(ubi);
1067                 if (!e2)
1068                         goto out_cancel;
1069
1070                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1071                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1072                                e1->ec, e2->ec);
1073                         goto out_cancel;
1074                 }
1075                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1076                 rb_erase(&e1->u.rb, &ubi->used);
1077                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1078                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1079         } else {
1080                 /* Perform scrubbing */
1081                 scrubbing = 1;
1082                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1083                 e2 = get_peb_for_wl(ubi);
1084                 if (!e2)
1085                         goto out_cancel;
1086
1087                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1088                 rb_erase(&e1->u.rb, &ubi->scrub);
1089                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1090         }
1091
1092         ubi->move_from = e1;
1093         ubi->move_to = e2;
1094         spin_unlock(&ubi->wl_lock);
1095
1096         /*
1097          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1098          * We so far do not know which logical eraseblock our physical
1099          * eraseblock (@e1) belongs to. We have to read the volume identifier
1100          * header first.
1101          *
1102          * Note, we are protected from this PEB being unmapped and erased. The
1103          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1104          * which is being moved was unmapped.
1105          */
1106
1107         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1108         if (err && err != UBI_IO_BITFLIPS) {
1109                 if (err == UBI_IO_FF) {
1110                         /*
1111                          * We are trying to move PEB without a VID header. UBI
1112                          * always write VID headers shortly after the PEB was
1113                          * given, so we have a situation when it has not yet
1114                          * had a chance to write it, because it was preempted.
1115                          * So add this PEB to the protection queue so far,
1116                          * because presumably more data will be written there
1117                          * (including the missing VID header), and then we'll
1118                          * move it.
1119                          */
1120                         dbg_wl("PEB %d has no VID header", e1->pnum);
1121                         protect = 1;
1122                         goto out_not_moved;
1123                 } else if (err == UBI_IO_FF_BITFLIPS) {
1124                         /*
1125                          * The same situation as %UBI_IO_FF, but bit-flips were
1126                          * detected. It is better to schedule this PEB for
1127                          * scrubbing.
1128                          */
1129                         dbg_wl("PEB %d has no VID header but has bit-flips",
1130                                e1->pnum);
1131                         scrubbing = 1;
1132                         goto out_not_moved;
1133                 }
1134
1135                 ubi_err("error %d while reading VID header from PEB %d",
1136                         err, e1->pnum);
1137                 goto out_error;
1138         }
1139
1140         vol_id = be32_to_cpu(vid_hdr->vol_id);
1141         lnum = be32_to_cpu(vid_hdr->lnum);
1142
1143         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1144         if (err) {
1145                 if (err == MOVE_CANCEL_RACE) {
1146                         /*
1147                          * The LEB has not been moved because the volume is
1148                          * being deleted or the PEB has been put meanwhile. We
1149                          * should prevent this PEB from being selected for
1150                          * wear-leveling movement again, so put it to the
1151                          * protection queue.
1152                          */
1153                         protect = 1;
1154                         goto out_not_moved;
1155                 }
1156                 if (err == MOVE_RETRY) {
1157                         scrubbing = 1;
1158                         goto out_not_moved;
1159                 }
1160                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1161                     err == MOVE_TARGET_RD_ERR) {
1162                         /*
1163                          * Target PEB had bit-flips or write error - torture it.
1164                          */
1165                         torture = 1;
1166                         goto out_not_moved;
1167                 }
1168
1169                 if (err == MOVE_SOURCE_RD_ERR) {
1170                         /*
1171                          * An error happened while reading the source PEB. Do
1172                          * not switch to R/O mode in this case, and give the
1173                          * upper layers a possibility to recover from this,
1174                          * e.g. by unmapping corresponding LEB. Instead, just
1175                          * put this PEB to the @ubi->erroneous list to prevent
1176                          * UBI from trying to move it over and over again.
1177                          */
1178                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1179                                 ubi_err("too many erroneous eraseblocks (%d)",
1180                                         ubi->erroneous_peb_count);
1181                                 goto out_error;
1182                         }
1183                         erroneous = 1;
1184                         goto out_not_moved;
1185                 }
1186
1187                 if (err < 0)
1188                         goto out_error;
1189
1190                 ubi_assert(0);
1191         }
1192
1193         /* The PEB has been successfully moved */
1194         if (scrubbing)
1195                 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1196                         e1->pnum, vol_id, lnum, e2->pnum);
1197         ubi_free_vid_hdr(ubi, vid_hdr);
1198
1199         spin_lock(&ubi->wl_lock);
1200         if (!ubi->move_to_put) {
1201                 wl_tree_add(e2, &ubi->used);
1202                 e2 = NULL;
1203         }
1204         ubi->move_from = ubi->move_to = NULL;
1205         ubi->move_to_put = ubi->wl_scheduled = 0;
1206         spin_unlock(&ubi->wl_lock);
1207
1208         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1209         if (err) {
1210                 kmem_cache_free(ubi_wl_entry_slab, e1);
1211                 if (e2)
1212                         kmem_cache_free(ubi_wl_entry_slab, e2);
1213                 goto out_ro;
1214         }
1215
1216         if (e2) {
1217                 /*
1218                  * Well, the target PEB was put meanwhile, schedule it for
1219                  * erasure.
1220                  */
1221                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1222                        e2->pnum, vol_id, lnum);
1223                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1224                 if (err) {
1225                         kmem_cache_free(ubi_wl_entry_slab, e2);
1226                         goto out_ro;
1227                 }
1228         }
1229
1230         dbg_wl("done");
1231         mutex_unlock(&ubi->move_mutex);
1232         return 0;
1233
1234         /*
1235          * For some reasons the LEB was not moved, might be an error, might be
1236          * something else. @e1 was not changed, so return it back. @e2 might
1237          * have been changed, schedule it for erasure.
1238          */
1239 out_not_moved:
1240         if (vol_id != -1)
1241                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1242                        e1->pnum, vol_id, lnum, e2->pnum, err);
1243         else
1244                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1245                        e1->pnum, e2->pnum, err);
1246         spin_lock(&ubi->wl_lock);
1247         if (protect)
1248                 prot_queue_add(ubi, e1);
1249         else if (erroneous) {
1250                 wl_tree_add(e1, &ubi->erroneous);
1251                 ubi->erroneous_peb_count += 1;
1252         } else if (scrubbing)
1253                 wl_tree_add(e1, &ubi->scrub);
1254         else
1255                 wl_tree_add(e1, &ubi->used);
1256         ubi_assert(!ubi->move_to_put);
1257         ubi->move_from = ubi->move_to = NULL;
1258         ubi->wl_scheduled = 0;
1259         spin_unlock(&ubi->wl_lock);
1260
1261         ubi_free_vid_hdr(ubi, vid_hdr);
1262         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1263         if (err) {
1264                 kmem_cache_free(ubi_wl_entry_slab, e2);
1265                 goto out_ro;
1266         }
1267         mutex_unlock(&ubi->move_mutex);
1268         return 0;
1269
1270 out_error:
1271         if (vol_id != -1)
1272                 ubi_err("error %d while moving PEB %d to PEB %d",
1273                         err, e1->pnum, e2->pnum);
1274         else
1275                 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1276                         err, e1->pnum, vol_id, lnum, e2->pnum);
1277         spin_lock(&ubi->wl_lock);
1278         ubi->move_from = ubi->move_to = NULL;
1279         ubi->move_to_put = ubi->wl_scheduled = 0;
1280         spin_unlock(&ubi->wl_lock);
1281
1282         ubi_free_vid_hdr(ubi, vid_hdr);
1283         kmem_cache_free(ubi_wl_entry_slab, e1);
1284         kmem_cache_free(ubi_wl_entry_slab, e2);
1285
1286 out_ro:
1287         ubi_ro_mode(ubi);
1288         mutex_unlock(&ubi->move_mutex);
1289         ubi_assert(err != 0);
1290         return err < 0 ? err : -EIO;
1291
1292 out_cancel:
1293         ubi->wl_scheduled = 0;
1294         spin_unlock(&ubi->wl_lock);
1295         mutex_unlock(&ubi->move_mutex);
1296         ubi_free_vid_hdr(ubi, vid_hdr);
1297         return 0;
1298 }
1299
1300 /**
1301  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1302  * @ubi: UBI device description object
1303  * @nested: set to non-zero if this function is called from UBI worker
1304  *
1305  * This function checks if it is time to start wear-leveling and schedules it
1306  * if yes. This function returns zero in case of success and a negative error
1307  * code in case of failure.
1308  */
1309 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1310 {
1311         int err = 0;
1312         struct ubi_wl_entry *e1;
1313         struct ubi_wl_entry *e2;
1314         struct ubi_work *wrk;
1315
1316         spin_lock(&ubi->wl_lock);
1317         if (ubi->wl_scheduled)
1318                 /* Wear-leveling is already in the work queue */
1319                 goto out_unlock;
1320
1321         /*
1322          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1323          * the WL worker has to be scheduled anyway.
1324          */
1325         if (!ubi->scrub.rb_node) {
1326                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1327                         /* No physical eraseblocks - no deal */
1328                         goto out_unlock;
1329
1330                 /*
1331                  * We schedule wear-leveling only if the difference between the
1332                  * lowest erase counter of used physical eraseblocks and a high
1333                  * erase counter of free physical eraseblocks is greater than
1334                  * %UBI_WL_THRESHOLD.
1335                  */
1336                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1337                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1338
1339                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1340                         goto out_unlock;
1341                 dbg_wl("schedule wear-leveling");
1342         } else
1343                 dbg_wl("schedule scrubbing");
1344
1345         ubi->wl_scheduled = 1;
1346         spin_unlock(&ubi->wl_lock);
1347
1348         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1349         if (!wrk) {
1350                 err = -ENOMEM;
1351                 goto out_cancel;
1352         }
1353
1354         wrk->anchor = 0;
1355         wrk->func = &wear_leveling_worker;
1356         if (nested)
1357                 __schedule_ubi_work(ubi, wrk);
1358         else
1359                 schedule_ubi_work(ubi, wrk);
1360         return err;
1361
1362 out_cancel:
1363         spin_lock(&ubi->wl_lock);
1364         ubi->wl_scheduled = 0;
1365 out_unlock:
1366         spin_unlock(&ubi->wl_lock);
1367         return err;
1368 }
1369
1370 #ifdef CONFIG_MTD_UBI_FASTMAP
1371 /**
1372  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1373  * @ubi: UBI device description object
1374  */
1375 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1376 {
1377         struct ubi_work *wrk;
1378
1379         spin_lock(&ubi->wl_lock);
1380         if (ubi->wl_scheduled) {
1381                 spin_unlock(&ubi->wl_lock);
1382                 return 0;
1383         }
1384         ubi->wl_scheduled = 1;
1385         spin_unlock(&ubi->wl_lock);
1386
1387         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1388         if (!wrk) {
1389                 spin_lock(&ubi->wl_lock);
1390                 ubi->wl_scheduled = 0;
1391                 spin_unlock(&ubi->wl_lock);
1392                 return -ENOMEM;
1393         }
1394
1395         wrk->anchor = 1;
1396         wrk->func = &wear_leveling_worker;
1397         schedule_ubi_work(ubi, wrk);
1398         return 0;
1399 }
1400 #endif
1401
1402 /**
1403  * erase_worker - physical eraseblock erase worker function.
1404  * @ubi: UBI device description object
1405  * @wl_wrk: the work object
1406  * @cancel: non-zero if the worker has to free memory and exit
1407  *
1408  * This function erases a physical eraseblock and perform torture testing if
1409  * needed. It also takes care about marking the physical eraseblock bad if
1410  * needed. Returns zero in case of success and a negative error code in case of
1411  * failure.
1412  */
1413 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1414                         int cancel)
1415 {
1416         struct ubi_wl_entry *e = wl_wrk->e;
1417         int pnum = e->pnum;
1418         int vol_id = wl_wrk->vol_id;
1419         int lnum = wl_wrk->lnum;
1420         int err, available_consumed = 0;
1421
1422         if (cancel) {
1423                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1424                 kfree(wl_wrk);
1425                 kmem_cache_free(ubi_wl_entry_slab, e);
1426                 return 0;
1427         }
1428
1429         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1430                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1431
1432         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1433
1434         err = sync_erase(ubi, e, wl_wrk->torture);
1435         if (!err) {
1436                 /* Fine, we've erased it successfully */
1437                 kfree(wl_wrk);
1438
1439                 spin_lock(&ubi->wl_lock);
1440                 wl_tree_add(e, &ubi->free);
1441                 ubi->free_count++;
1442                 spin_unlock(&ubi->wl_lock);
1443
1444                 /*
1445                  * One more erase operation has happened, take care about
1446                  * protected physical eraseblocks.
1447                  */
1448                 serve_prot_queue(ubi);
1449
1450                 /* And take care about wear-leveling */
1451                 err = ensure_wear_leveling(ubi, 1);
1452                 return err;
1453         }
1454
1455         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1456         kfree(wl_wrk);
1457
1458         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1459             err == -EBUSY) {
1460                 int err1;
1461
1462                 /* Re-schedule the LEB for erasure */
1463                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1464                 if (err1) {
1465                         err = err1;
1466                         goto out_ro;
1467                 }
1468                 return err;
1469         }
1470
1471         kmem_cache_free(ubi_wl_entry_slab, e);
1472         if (err != -EIO)
1473                 /*
1474                  * If this is not %-EIO, we have no idea what to do. Scheduling
1475                  * this physical eraseblock for erasure again would cause
1476                  * errors again and again. Well, lets switch to R/O mode.
1477                  */
1478                 goto out_ro;
1479
1480         /* It is %-EIO, the PEB went bad */
1481
1482         if (!ubi->bad_allowed) {
1483                 ubi_err("bad physical eraseblock %d detected", pnum);
1484                 goto out_ro;
1485         }
1486
1487         spin_lock(&ubi->volumes_lock);
1488         if (ubi->beb_rsvd_pebs == 0) {
1489                 if (ubi->avail_pebs == 0) {
1490                         spin_unlock(&ubi->volumes_lock);
1491                         ubi_err("no reserved/available physical eraseblocks");
1492                         goto out_ro;
1493                 }
1494                 ubi->avail_pebs -= 1;
1495                 available_consumed = 1;
1496         }
1497         spin_unlock(&ubi->volumes_lock);
1498
1499         ubi_msg("mark PEB %d as bad", pnum);
1500         err = ubi_io_mark_bad(ubi, pnum);
1501         if (err)
1502                 goto out_ro;
1503
1504         spin_lock(&ubi->volumes_lock);
1505         if (ubi->beb_rsvd_pebs > 0) {
1506                 if (available_consumed) {
1507                         /*
1508                          * The amount of reserved PEBs increased since we last
1509                          * checked.
1510                          */
1511                         ubi->avail_pebs += 1;
1512                         available_consumed = 0;
1513                 }
1514                 ubi->beb_rsvd_pebs -= 1;
1515         }
1516         ubi->bad_peb_count += 1;
1517         ubi->good_peb_count -= 1;
1518         ubi_calculate_reserved(ubi);
1519         if (available_consumed)
1520                 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1521         else if (ubi->beb_rsvd_pebs)
1522                 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1523         else
1524                 ubi_warn("last PEB from the reserve was used");
1525         spin_unlock(&ubi->volumes_lock);
1526
1527         return err;
1528
1529 out_ro:
1530         if (available_consumed) {
1531                 spin_lock(&ubi->volumes_lock);
1532                 ubi->avail_pebs += 1;
1533                 spin_unlock(&ubi->volumes_lock);
1534         }
1535         ubi_ro_mode(ubi);
1536         return err;
1537 }
1538
1539 /**
1540  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1541  * @ubi: UBI device description object
1542  * @vol_id: the volume ID that last used this PEB
1543  * @lnum: the last used logical eraseblock number for the PEB
1544  * @pnum: physical eraseblock to return
1545  * @torture: if this physical eraseblock has to be tortured
1546  *
1547  * This function is called to return physical eraseblock @pnum to the pool of
1548  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1549  * occurred to this @pnum and it has to be tested. This function returns zero
1550  * in case of success, and a negative error code in case of failure.
1551  */
1552 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1553                    int pnum, int torture)
1554 {
1555         int err;
1556         struct ubi_wl_entry *e;
1557
1558         dbg_wl("PEB %d", pnum);
1559         ubi_assert(pnum >= 0);
1560         ubi_assert(pnum < ubi->peb_count);
1561
1562 retry:
1563         spin_lock(&ubi->wl_lock);
1564         e = ubi->lookuptbl[pnum];
1565         if (e == ubi->move_from) {
1566                 /*
1567                  * User is putting the physical eraseblock which was selected to
1568                  * be moved. It will be scheduled for erasure in the
1569                  * wear-leveling worker.
1570                  */
1571                 dbg_wl("PEB %d is being moved, wait", pnum);
1572                 spin_unlock(&ubi->wl_lock);
1573
1574                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1575                 mutex_lock(&ubi->move_mutex);
1576                 mutex_unlock(&ubi->move_mutex);
1577                 goto retry;
1578         } else if (e == ubi->move_to) {
1579                 /*
1580                  * User is putting the physical eraseblock which was selected
1581                  * as the target the data is moved to. It may happen if the EBA
1582                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1583                  * but the WL sub-system has not put the PEB to the "used" tree
1584                  * yet, but it is about to do this. So we just set a flag which
1585                  * will tell the WL worker that the PEB is not needed anymore
1586                  * and should be scheduled for erasure.
1587                  */
1588                 dbg_wl("PEB %d is the target of data moving", pnum);
1589                 ubi_assert(!ubi->move_to_put);
1590                 ubi->move_to_put = 1;
1591                 spin_unlock(&ubi->wl_lock);
1592                 return 0;
1593         } else {
1594                 if (in_wl_tree(e, &ubi->used)) {
1595                         self_check_in_wl_tree(ubi, e, &ubi->used);
1596                         rb_erase(&e->u.rb, &ubi->used);
1597                 } else if (in_wl_tree(e, &ubi->scrub)) {
1598                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1599                         rb_erase(&e->u.rb, &ubi->scrub);
1600                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1601                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1602                         rb_erase(&e->u.rb, &ubi->erroneous);
1603                         ubi->erroneous_peb_count -= 1;
1604                         ubi_assert(ubi->erroneous_peb_count >= 0);
1605                         /* Erroneous PEBs should be tortured */
1606                         torture = 1;
1607                 } else {
1608                         err = prot_queue_del(ubi, e->pnum);
1609                         if (err) {
1610                                 ubi_err("PEB %d not found", pnum);
1611                                 ubi_ro_mode(ubi);
1612                                 spin_unlock(&ubi->wl_lock);
1613                                 return err;
1614                         }
1615                 }
1616         }
1617         spin_unlock(&ubi->wl_lock);
1618
1619         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1620         if (err) {
1621                 spin_lock(&ubi->wl_lock);
1622                 wl_tree_add(e, &ubi->used);
1623                 spin_unlock(&ubi->wl_lock);
1624         }
1625
1626         return err;
1627 }
1628
1629 /**
1630  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1631  * @ubi: UBI device description object
1632  * @pnum: the physical eraseblock to schedule
1633  *
1634  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1635  * needs scrubbing. This function schedules a physical eraseblock for
1636  * scrubbing which is done in background. This function returns zero in case of
1637  * success and a negative error code in case of failure.
1638  */
1639 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1640 {
1641         struct ubi_wl_entry *e;
1642
1643         ubi_msg("schedule PEB %d for scrubbing", pnum);
1644
1645 retry:
1646         spin_lock(&ubi->wl_lock);
1647         e = ubi->lookuptbl[pnum];
1648         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1649                                    in_wl_tree(e, &ubi->erroneous)) {
1650                 spin_unlock(&ubi->wl_lock);
1651                 return 0;
1652         }
1653
1654         if (e == ubi->move_to) {
1655                 /*
1656                  * This physical eraseblock was used to move data to. The data
1657                  * was moved but the PEB was not yet inserted to the proper
1658                  * tree. We should just wait a little and let the WL worker
1659                  * proceed.
1660                  */
1661                 spin_unlock(&ubi->wl_lock);
1662                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1663                 yield();
1664                 goto retry;
1665         }
1666
1667         if (in_wl_tree(e, &ubi->used)) {
1668                 self_check_in_wl_tree(ubi, e, &ubi->used);
1669                 rb_erase(&e->u.rb, &ubi->used);
1670         } else {
1671                 int err;
1672
1673                 err = prot_queue_del(ubi, e->pnum);
1674                 if (err) {
1675                         ubi_err("PEB %d not found", pnum);
1676                         ubi_ro_mode(ubi);
1677                         spin_unlock(&ubi->wl_lock);
1678                         return err;
1679                 }
1680         }
1681
1682         wl_tree_add(e, &ubi->scrub);
1683         spin_unlock(&ubi->wl_lock);
1684
1685         /*
1686          * Technically scrubbing is the same as wear-leveling, so it is done
1687          * by the WL worker.
1688          */
1689         return ensure_wear_leveling(ubi, 0);
1690 }
1691
1692 /**
1693  * ubi_wl_flush - flush all pending works.
1694  * @ubi: UBI device description object
1695  * @vol_id: the volume id to flush for
1696  * @lnum: the logical eraseblock number to flush for
1697  *
1698  * This function executes all pending works for a particular volume id /
1699  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1700  * acts as a wildcard for all of the corresponding volume numbers or logical
1701  * eraseblock numbers. It returns zero in case of success and a negative error
1702  * code in case of failure.
1703  */
1704 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1705 {
1706         int err = 0;
1707         int found = 1;
1708
1709         /*
1710          * Erase while the pending works queue is not empty, but not more than
1711          * the number of currently pending works.
1712          */
1713         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1714                vol_id, lnum, ubi->works_count);
1715
1716         while (found) {
1717                 struct ubi_work *wrk;
1718                 found = 0;
1719
1720                 down_read(&ubi->work_sem);
1721                 spin_lock(&ubi->wl_lock);
1722                 list_for_each_entry(wrk, &ubi->works, list) {
1723                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1724                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1725                                 list_del(&wrk->list);
1726                                 ubi->works_count -= 1;
1727                                 ubi_assert(ubi->works_count >= 0);
1728                                 spin_unlock(&ubi->wl_lock);
1729
1730                                 err = wrk->func(ubi, wrk, 0);
1731                                 if (err) {
1732                                         up_read(&ubi->work_sem);
1733                                         return err;
1734                                 }
1735
1736                                 spin_lock(&ubi->wl_lock);
1737                                 found = 1;
1738                                 break;
1739                         }
1740                 }
1741                 spin_unlock(&ubi->wl_lock);
1742                 up_read(&ubi->work_sem);
1743         }
1744
1745         /*
1746          * Make sure all the works which have been done in parallel are
1747          * finished.
1748          */
1749         down_write(&ubi->work_sem);
1750         up_write(&ubi->work_sem);
1751
1752         return err;
1753 }
1754
1755 /**
1756  * tree_destroy - destroy an RB-tree.
1757  * @root: the root of the tree to destroy
1758  */
1759 static void tree_destroy(struct rb_root *root)
1760 {
1761         struct rb_node *rb;
1762         struct ubi_wl_entry *e;
1763
1764         rb = root->rb_node;
1765         while (rb) {
1766                 if (rb->rb_left)
1767                         rb = rb->rb_left;
1768                 else if (rb->rb_right)
1769                         rb = rb->rb_right;
1770                 else {
1771                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1772
1773                         rb = rb_parent(rb);
1774                         if (rb) {
1775                                 if (rb->rb_left == &e->u.rb)
1776                                         rb->rb_left = NULL;
1777                                 else
1778                                         rb->rb_right = NULL;
1779                         }
1780
1781                         kmem_cache_free(ubi_wl_entry_slab, e);
1782                 }
1783         }
1784 }
1785
1786 /**
1787  * ubi_thread - UBI background thread.
1788  * @u: the UBI device description object pointer
1789  */
1790 int ubi_thread(void *u)
1791 {
1792         int failures = 0;
1793         struct ubi_device *ubi = u;
1794
1795         ubi_msg("background thread \"%s\" started, PID %d",
1796                 ubi->bgt_name, task_pid_nr(current));
1797
1798         set_freezable();
1799         for (;;) {
1800                 int err;
1801
1802                 if (kthread_should_stop())
1803                         break;
1804
1805                 if (try_to_freeze())
1806                         continue;
1807
1808                 spin_lock(&ubi->wl_lock);
1809                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1810                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1811                         set_current_state(TASK_INTERRUPTIBLE);
1812                         spin_unlock(&ubi->wl_lock);
1813                         schedule();
1814                         continue;
1815                 }
1816                 spin_unlock(&ubi->wl_lock);
1817
1818                 err = do_work(ubi);
1819                 if (err) {
1820                         ubi_err("%s: work failed with error code %d",
1821                                 ubi->bgt_name, err);
1822                         if (failures++ > WL_MAX_FAILURES) {
1823                                 /*
1824                                  * Too many failures, disable the thread and
1825                                  * switch to read-only mode.
1826                                  */
1827                                 ubi_msg("%s: %d consecutive failures",
1828                                         ubi->bgt_name, WL_MAX_FAILURES);
1829                                 ubi_ro_mode(ubi);
1830                                 ubi->thread_enabled = 0;
1831                                 continue;
1832                         }
1833                 } else
1834                         failures = 0;
1835
1836                 cond_resched();
1837         }
1838
1839         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1840         return 0;
1841 }
1842
1843 /**
1844  * cancel_pending - cancel all pending works.
1845  * @ubi: UBI device description object
1846  */
1847 static void cancel_pending(struct ubi_device *ubi)
1848 {
1849         while (!list_empty(&ubi->works)) {
1850                 struct ubi_work *wrk;
1851
1852                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1853                 list_del(&wrk->list);
1854                 wrk->func(ubi, wrk, 1);
1855                 ubi->works_count -= 1;
1856                 ubi_assert(ubi->works_count >= 0);
1857         }
1858 }
1859
1860 /**
1861  * ubi_wl_init - initialize the WL sub-system using attaching information.
1862  * @ubi: UBI device description object
1863  * @ai: attaching information
1864  *
1865  * This function returns zero in case of success, and a negative error code in
1866  * case of failure.
1867  */
1868 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1869 {
1870         int err, i, reserved_pebs, found_pebs = 0;
1871         struct rb_node *rb1, *rb2;
1872         struct ubi_ainf_volume *av;
1873         struct ubi_ainf_peb *aeb, *tmp;
1874         struct ubi_wl_entry *e;
1875
1876         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1877         spin_lock_init(&ubi->wl_lock);
1878         mutex_init(&ubi->move_mutex);
1879         init_rwsem(&ubi->work_sem);
1880         ubi->max_ec = ai->max_ec;
1881         INIT_LIST_HEAD(&ubi->works);
1882 #ifdef CONFIG_MTD_UBI_FASTMAP
1883         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1884 #endif
1885
1886         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1887
1888         err = -ENOMEM;
1889         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1890         if (!ubi->lookuptbl)
1891                 return err;
1892
1893         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1894                 INIT_LIST_HEAD(&ubi->pq[i]);
1895         ubi->pq_head = 0;
1896
1897         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1898                 cond_resched();
1899
1900                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1901                 if (!e)
1902                         goto out_free;
1903
1904                 e->pnum = aeb->pnum;
1905                 e->ec = aeb->ec;
1906                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1907                 ubi->lookuptbl[e->pnum] = e;
1908                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1909                         kmem_cache_free(ubi_wl_entry_slab, e);
1910                         goto out_free;
1911                 }
1912
1913                 found_pebs++;
1914         }
1915
1916         ubi->free_count = 0;
1917         list_for_each_entry(aeb, &ai->free, u.list) {
1918                 cond_resched();
1919
1920                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1921                 if (!e)
1922                         goto out_free;
1923
1924                 e->pnum = aeb->pnum;
1925                 e->ec = aeb->ec;
1926                 ubi_assert(e->ec >= 0);
1927                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1928
1929                 wl_tree_add(e, &ubi->free);
1930                 ubi->free_count++;
1931
1932                 ubi->lookuptbl[e->pnum] = e;
1933
1934                 found_pebs++;
1935         }
1936
1937         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1938                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1939                         cond_resched();
1940
1941                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1942                         if (!e)
1943                                 goto out_free;
1944
1945                         e->pnum = aeb->pnum;
1946                         e->ec = aeb->ec;
1947                         ubi->lookuptbl[e->pnum] = e;
1948
1949                         if (!aeb->scrub) {
1950                                 dbg_wl("add PEB %d EC %d to the used tree",
1951                                        e->pnum, e->ec);
1952                                 wl_tree_add(e, &ubi->used);
1953                         } else {
1954                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1955                                        e->pnum, e->ec);
1956                                 wl_tree_add(e, &ubi->scrub);
1957                         }
1958
1959                         found_pebs++;
1960                 }
1961         }
1962
1963         dbg_wl("found %i PEBs", found_pebs);
1964
1965         if (ubi->fm)
1966                 ubi_assert(ubi->good_peb_count == \
1967                            found_pebs + ubi->fm->used_blocks);
1968         else
1969                 ubi_assert(ubi->good_peb_count == found_pebs);
1970
1971         reserved_pebs = WL_RESERVED_PEBS;
1972 #ifdef CONFIG_MTD_UBI_FASTMAP
1973         /* Reserve enough LEBs to store two fastmaps. */
1974         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1975 #endif
1976
1977         if (ubi->avail_pebs < reserved_pebs) {
1978                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1979                         ubi->avail_pebs, reserved_pebs);
1980                 if (ubi->corr_peb_count)
1981                         ubi_err("%d PEBs are corrupted and not used",
1982                                 ubi->corr_peb_count);
1983                 goto out_free;
1984         }
1985         ubi->avail_pebs -= reserved_pebs;
1986         ubi->rsvd_pebs += reserved_pebs;
1987
1988         /* Schedule wear-leveling if needed */
1989         err = ensure_wear_leveling(ubi, 0);
1990         if (err)
1991                 goto out_free;
1992
1993         return 0;
1994
1995 out_free:
1996         cancel_pending(ubi);
1997         tree_destroy(&ubi->used);
1998         tree_destroy(&ubi->free);
1999         tree_destroy(&ubi->scrub);
2000         kfree(ubi->lookuptbl);
2001         return err;
2002 }
2003
2004 /**
2005  * protection_queue_destroy - destroy the protection queue.
2006  * @ubi: UBI device description object
2007  */
2008 static void protection_queue_destroy(struct ubi_device *ubi)
2009 {
2010         int i;
2011         struct ubi_wl_entry *e, *tmp;
2012
2013         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2014                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2015                         list_del(&e->u.list);
2016                         kmem_cache_free(ubi_wl_entry_slab, e);
2017                 }
2018         }
2019 }
2020
2021 /**
2022  * ubi_wl_close - close the wear-leveling sub-system.
2023  * @ubi: UBI device description object
2024  */
2025 void ubi_wl_close(struct ubi_device *ubi)
2026 {
2027         dbg_wl("close the WL sub-system");
2028         cancel_pending(ubi);
2029         protection_queue_destroy(ubi);
2030         tree_destroy(&ubi->used);
2031         tree_destroy(&ubi->erroneous);
2032         tree_destroy(&ubi->free);
2033         tree_destroy(&ubi->scrub);
2034         kfree(ubi->lookuptbl);
2035 }
2036
2037 /**
2038  * self_check_ec - make sure that the erase counter of a PEB is correct.
2039  * @ubi: UBI device description object
2040  * @pnum: the physical eraseblock number to check
2041  * @ec: the erase counter to check
2042  *
2043  * This function returns zero if the erase counter of physical eraseblock @pnum
2044  * is equivalent to @ec, and a negative error code if not or if an error
2045  * occurred.
2046  */
2047 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2048 {
2049         int err;
2050         long long read_ec;
2051         struct ubi_ec_hdr *ec_hdr;
2052
2053         if (!ubi->dbg->chk_gen)
2054                 return 0;
2055
2056         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2057         if (!ec_hdr)
2058                 return -ENOMEM;
2059
2060         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2061         if (err && err != UBI_IO_BITFLIPS) {
2062                 /* The header does not have to exist */
2063                 err = 0;
2064                 goto out_free;
2065         }
2066
2067         read_ec = be64_to_cpu(ec_hdr->ec);
2068         if (ec != read_ec && read_ec - ec > 1) {
2069                 ubi_err("self-check failed for PEB %d", pnum);
2070                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2071                 dump_stack();
2072                 err = 1;
2073         } else
2074                 err = 0;
2075
2076 out_free:
2077         kfree(ec_hdr);
2078         return err;
2079 }
2080
2081 /**
2082  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2083  * @ubi: UBI device description object
2084  * @e: the wear-leveling entry to check
2085  * @root: the root of the tree
2086  *
2087  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2088  * is not.
2089  */
2090 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2091                                  struct ubi_wl_entry *e, struct rb_root *root)
2092 {
2093         if (!ubi->dbg->chk_gen)
2094                 return 0;
2095
2096         if (in_wl_tree(e, root))
2097                 return 0;
2098
2099         ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2100                 e->pnum, e->ec, root);
2101         dump_stack();
2102         return -EINVAL;
2103 }
2104
2105 /**
2106  * self_check_in_pq - check if wear-leveling entry is in the protection
2107  *                        queue.
2108  * @ubi: UBI device description object
2109  * @e: the wear-leveling entry to check
2110  *
2111  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2112  */
2113 static int self_check_in_pq(const struct ubi_device *ubi,
2114                             struct ubi_wl_entry *e)
2115 {
2116         struct ubi_wl_entry *p;
2117         int i;
2118
2119         if (!ubi->dbg->chk_gen)
2120                 return 0;
2121
2122         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2123                 list_for_each_entry(p, &ubi->pq[i], u.list)
2124                         if (p == e)
2125                                 return 0;
2126
2127         ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2128                 e->pnum, e->ec);
2129         dump_stack();
2130         return -EINVAL;
2131 }