Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211
[cascardo/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2  * @ubi: UBI device description object
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20  */
21
22 /*
23  * UBI wear-leveling sub-system.
24  *
25  * This sub-system is responsible for wear-leveling. It works in terms of
26  * physical eraseblocks and erase counters and knows nothing about logical
27  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28  * eraseblocks are of two types - used and free. Used physical eraseblocks are
29  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31  *
32  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33  * header. The rest of the physical eraseblock contains only %0xFF bytes.
34  *
35  * When physical eraseblocks are returned to the WL sub-system by means of the
36  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37  * done asynchronously in context of the per-UBI device background thread,
38  * which is also managed by the WL sub-system.
39  *
40  * The wear-leveling is ensured by means of moving the contents of used
41  * physical eraseblocks with low erase counter to free physical eraseblocks
42  * with high erase counter.
43  *
44  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
45  * bad.
46  *
47  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48  * in a physical eraseblock, it has to be moved. Technically this is the same
49  * as moving it for wear-leveling reasons.
50  *
51  * As it was said, for the UBI sub-system all physical eraseblocks are either
52  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54  * RB-trees, as well as (temporarily) in the @wl->pq queue.
55  *
56  * When the WL sub-system returns a physical eraseblock, the physical
57  * eraseblock is protected from being moved for some "time". For this reason,
58  * the physical eraseblock is not directly moved from the @wl->free tree to the
59  * @wl->used tree. There is a protection queue in between where this
60  * physical eraseblock is temporarily stored (@wl->pq).
61  *
62  * All this protection stuff is needed because:
63  *  o we don't want to move physical eraseblocks just after we have given them
64  *    to the user; instead, we first want to let users fill them up with data;
65  *
66  *  o there is a chance that the user will put the physical eraseblock very
67  *    soon, so it makes sense not to move it for some time, but wait.
68  *
69  * Physical eraseblocks stay protected only for limited time. But the "time" is
70  * measured in erase cycles in this case. This is implemented with help of the
71  * protection queue. Eraseblocks are put to the tail of this queue when they
72  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73  * head of the queue on each erase operation (for any eraseblock). So the
74  * length of the queue defines how may (global) erase cycles PEBs are protected.
75  *
76  * To put it differently, each physical eraseblock has 2 main states: free and
77  * used. The former state corresponds to the @wl->free tree. The latter state
78  * is split up on several sub-states:
79  * o the WL movement is allowed (@wl->used tree);
80  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81  *   erroneous - e.g., there was a read error;
82  * o the WL movement is temporarily prohibited (@wl->pq queue);
83  * o scrubbing is needed (@wl->scrub tree).
84  *
85  * Depending on the sub-state, wear-leveling entries of the used physical
86  * eraseblocks may be kept in one of those structures.
87  *
88  * Note, in this implementation, we keep a small in-RAM object for each physical
89  * eraseblock. This is surely not a scalable solution. But it appears to be good
90  * enough for moderately large flashes and it is simple. In future, one may
91  * re-work this sub-system and make it more scalable.
92  *
93  * At the moment this sub-system does not utilize the sequence number, which
94  * was introduced relatively recently. But it would be wise to do this because
95  * the sequence number of a logical eraseblock characterizes how old is it. For
96  * example, when we move a PEB with low erase counter, and we need to pick the
97  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98  * pick target PEB with an average EC if our PEB is not very "old". This is a
99  * room for future re-works of the WL sub-system.
100  */
101
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
106 #include "ubi.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 #ifdef CONFIG_MTD_UBI_FASTMAP
145 /**
146  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
147  * @wrk: the work description object
148  */
149 static void update_fastmap_work_fn(struct work_struct *wrk)
150 {
151         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
152         ubi_update_fastmap(ubi);
153 }
154
155 /**
156  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
157  *  @ubi: UBI device description object
158  *  @pnum: the to be checked PEB
159  */
160 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
161 {
162         int i;
163
164         if (!ubi->fm)
165                 return 0;
166
167         for (i = 0; i < ubi->fm->used_blocks; i++)
168                 if (ubi->fm->e[i]->pnum == pnum)
169                         return 1;
170
171         return 0;
172 }
173 #else
174 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
175 {
176         return 0;
177 }
178 #endif
179
180 /**
181  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
182  * @e: the wear-leveling entry to add
183  * @root: the root of the tree
184  *
185  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
186  * the @ubi->used and @ubi->free RB-trees.
187  */
188 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
189 {
190         struct rb_node **p, *parent = NULL;
191
192         p = &root->rb_node;
193         while (*p) {
194                 struct ubi_wl_entry *e1;
195
196                 parent = *p;
197                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
198
199                 if (e->ec < e1->ec)
200                         p = &(*p)->rb_left;
201                 else if (e->ec > e1->ec)
202                         p = &(*p)->rb_right;
203                 else {
204                         ubi_assert(e->pnum != e1->pnum);
205                         if (e->pnum < e1->pnum)
206                                 p = &(*p)->rb_left;
207                         else
208                                 p = &(*p)->rb_right;
209                 }
210         }
211
212         rb_link_node(&e->u.rb, parent, p);
213         rb_insert_color(&e->u.rb, root);
214 }
215
216 /**
217  * do_work - do one pending work.
218  * @ubi: UBI device description object
219  *
220  * This function returns zero in case of success and a negative error code in
221  * case of failure.
222  */
223 static int do_work(struct ubi_device *ubi)
224 {
225         int err;
226         struct ubi_work *wrk;
227
228         cond_resched();
229
230         /*
231          * @ubi->work_sem is used to synchronize with the workers. Workers take
232          * it in read mode, so many of them may be doing works at a time. But
233          * the queue flush code has to be sure the whole queue of works is
234          * done, and it takes the mutex in write mode.
235          */
236         down_read(&ubi->work_sem);
237         spin_lock(&ubi->wl_lock);
238         if (list_empty(&ubi->works)) {
239                 spin_unlock(&ubi->wl_lock);
240                 up_read(&ubi->work_sem);
241                 return 0;
242         }
243
244         wrk = list_entry(ubi->works.next, struct ubi_work, list);
245         list_del(&wrk->list);
246         ubi->works_count -= 1;
247         ubi_assert(ubi->works_count >= 0);
248         spin_unlock(&ubi->wl_lock);
249
250         /*
251          * Call the worker function. Do not touch the work structure
252          * after this call as it will have been freed or reused by that
253          * time by the worker function.
254          */
255         err = wrk->func(ubi, wrk, 0);
256         if (err)
257                 ubi_err("work failed with error code %d", err);
258         up_read(&ubi->work_sem);
259
260         return err;
261 }
262
263 /**
264  * produce_free_peb - produce a free physical eraseblock.
265  * @ubi: UBI device description object
266  *
267  * This function tries to make a free PEB by means of synchronous execution of
268  * pending works. This may be needed if, for example the background thread is
269  * disabled. Returns zero in case of success and a negative error code in case
270  * of failure.
271  */
272 static int produce_free_peb(struct ubi_device *ubi)
273 {
274         int err;
275
276         while (!ubi->free.rb_node) {
277                 spin_unlock(&ubi->wl_lock);
278
279                 dbg_wl("do one work synchronously");
280                 err = do_work(ubi);
281
282                 spin_lock(&ubi->wl_lock);
283                 if (err)
284                         return err;
285         }
286
287         return 0;
288 }
289
290 /**
291  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292  * @e: the wear-leveling entry to check
293  * @root: the root of the tree
294  *
295  * This function returns non-zero if @e is in the @root RB-tree and zero if it
296  * is not.
297  */
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300         struct rb_node *p;
301
302         p = root->rb_node;
303         while (p) {
304                 struct ubi_wl_entry *e1;
305
306                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308                 if (e->pnum == e1->pnum) {
309                         ubi_assert(e == e1);
310                         return 1;
311                 }
312
313                 if (e->ec < e1->ec)
314                         p = p->rb_left;
315                 else if (e->ec > e1->ec)
316                         p = p->rb_right;
317                 else {
318                         ubi_assert(e->pnum != e1->pnum);
319                         if (e->pnum < e1->pnum)
320                                 p = p->rb_left;
321                         else
322                                 p = p->rb_right;
323                 }
324         }
325
326         return 0;
327 }
328
329 /**
330  * prot_queue_add - add physical eraseblock to the protection queue.
331  * @ubi: UBI device description object
332  * @e: the physical eraseblock to add
333  *
334  * This function adds @e to the tail of the protection queue @ubi->pq, where
335  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337  * be locked.
338  */
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341         int pq_tail = ubi->pq_head - 1;
342
343         if (pq_tail < 0)
344                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349
350 /**
351  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352  * @ubi: UBI device description object
353  * @root: the RB-tree where to look for
354  * @diff: maximum possible difference from the smallest erase counter
355  *
356  * This function looks for a wear leveling entry with erase counter closest to
357  * min + @diff, where min is the smallest erase counter.
358  */
359 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
360                                           struct rb_root *root, int diff)
361 {
362         struct rb_node *p;
363         struct ubi_wl_entry *e, *prev_e = NULL;
364         int max;
365
366         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
367         max = e->ec + diff;
368
369         p = root->rb_node;
370         while (p) {
371                 struct ubi_wl_entry *e1;
372
373                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
374                 if (e1->ec >= max)
375                         p = p->rb_left;
376                 else {
377                         p = p->rb_right;
378                         prev_e = e;
379                         e = e1;
380                 }
381         }
382
383         /* If no fastmap has been written and this WL entry can be used
384          * as anchor PEB, hold it back and return the second best WL entry
385          * such that fastmap can use the anchor PEB later. */
386         if (prev_e && !ubi->fm_disabled &&
387             !ubi->fm && e->pnum < UBI_FM_MAX_START)
388                 return prev_e;
389
390         return e;
391 }
392
393 /**
394  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
395  * @ubi: UBI device description object
396  * @root: the RB-tree where to look for
397  *
398  * This function looks for a wear leveling entry with medium erase counter,
399  * but not greater or equivalent than the lowest erase counter plus
400  * %WL_FREE_MAX_DIFF/2.
401  */
402 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
403                                                struct rb_root *root)
404 {
405         struct ubi_wl_entry *e, *first, *last;
406
407         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
408         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
409
410         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
411                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
412
413 #ifdef CONFIG_MTD_UBI_FASTMAP
414                 /* If no fastmap has been written and this WL entry can be used
415                  * as anchor PEB, hold it back and return the second best
416                  * WL entry such that fastmap can use the anchor PEB later. */
417                 if (e && !ubi->fm_disabled && !ubi->fm &&
418                     e->pnum < UBI_FM_MAX_START)
419                         e = rb_entry(rb_next(root->rb_node),
420                                      struct ubi_wl_entry, u.rb);
421 #endif
422         } else
423                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
424
425         return e;
426 }
427
428 #ifdef CONFIG_MTD_UBI_FASTMAP
429 /**
430  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
431  * @root: the RB-tree where to look for
432  */
433 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
434 {
435         struct rb_node *p;
436         struct ubi_wl_entry *e, *victim = NULL;
437         int max_ec = UBI_MAX_ERASECOUNTER;
438
439         ubi_rb_for_each_entry(p, e, root, u.rb) {
440                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
441                         victim = e;
442                         max_ec = e->ec;
443                 }
444         }
445
446         return victim;
447 }
448
449 static int anchor_pebs_avalible(struct rb_root *root)
450 {
451         struct rb_node *p;
452         struct ubi_wl_entry *e;
453
454         ubi_rb_for_each_entry(p, e, root, u.rb)
455                 if (e->pnum < UBI_FM_MAX_START)
456                         return 1;
457
458         return 0;
459 }
460
461 /**
462  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
463  * @ubi: UBI device description object
464  * @anchor: This PEB will be used as anchor PEB by fastmap
465  *
466  * The function returns a physical erase block with a given maximal number
467  * and removes it from the wl subsystem.
468  * Must be called with wl_lock held!
469  */
470 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
471 {
472         struct ubi_wl_entry *e = NULL;
473
474         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
475                 goto out;
476
477         if (anchor)
478                 e = find_anchor_wl_entry(&ubi->free);
479         else
480                 e = find_mean_wl_entry(ubi, &ubi->free);
481
482         if (!e)
483                 goto out;
484
485         self_check_in_wl_tree(ubi, e, &ubi->free);
486
487         /* remove it from the free list,
488          * the wl subsystem does no longer know this erase block */
489         rb_erase(&e->u.rb, &ubi->free);
490         ubi->free_count--;
491 out:
492         return e;
493 }
494 #endif
495
496 /**
497  * __wl_get_peb - get a physical eraseblock.
498  * @ubi: UBI device description object
499  *
500  * This function returns a physical eraseblock in case of success and a
501  * negative error code in case of failure. Might sleep.
502  */
503 static int __wl_get_peb(struct ubi_device *ubi)
504 {
505         int err;
506         struct ubi_wl_entry *e;
507
508 retry:
509         if (!ubi->free.rb_node) {
510                 if (ubi->works_count == 0) {
511                         ubi_err("no free eraseblocks");
512                         ubi_assert(list_empty(&ubi->works));
513                         return -ENOSPC;
514                 }
515
516                 err = produce_free_peb(ubi);
517                 if (err < 0)
518                         return err;
519                 goto retry;
520         }
521
522         e = find_mean_wl_entry(ubi, &ubi->free);
523         if (!e) {
524                 ubi_err("no free eraseblocks");
525                 return -ENOSPC;
526         }
527
528         self_check_in_wl_tree(ubi, e, &ubi->free);
529
530         /*
531          * Move the physical eraseblock to the protection queue where it will
532          * be protected from being moved for some time.
533          */
534         rb_erase(&e->u.rb, &ubi->free);
535         ubi->free_count--;
536         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
537 #ifndef CONFIG_MTD_UBI_FASTMAP
538         /* We have to enqueue e only if fastmap is disabled,
539          * is fastmap enabled prot_queue_add() will be called by
540          * ubi_wl_get_peb() after removing e from the pool. */
541         prot_queue_add(ubi, e);
542 #endif
543         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
544                                     ubi->peb_size - ubi->vid_hdr_aloffset);
545         if (err) {
546                 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
547                 return err;
548         }
549
550         return e->pnum;
551 }
552
553 #ifdef CONFIG_MTD_UBI_FASTMAP
554 /**
555  * return_unused_pool_pebs - returns unused PEB to the free tree.
556  * @ubi: UBI device description object
557  * @pool: fastmap pool description object
558  */
559 static void return_unused_pool_pebs(struct ubi_device *ubi,
560                                     struct ubi_fm_pool *pool)
561 {
562         int i;
563         struct ubi_wl_entry *e;
564
565         for (i = pool->used; i < pool->size; i++) {
566                 e = ubi->lookuptbl[pool->pebs[i]];
567                 wl_tree_add(e, &ubi->free);
568                 ubi->free_count++;
569         }
570 }
571
572 /**
573  * refill_wl_pool - refills all the fastmap pool used by the
574  * WL sub-system.
575  * @ubi: UBI device description object
576  */
577 static void refill_wl_pool(struct ubi_device *ubi)
578 {
579         struct ubi_wl_entry *e;
580         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
581
582         return_unused_pool_pebs(ubi, pool);
583
584         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
585                 if (!ubi->free.rb_node ||
586                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
587                         break;
588
589                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
590                 self_check_in_wl_tree(ubi, e, &ubi->free);
591                 rb_erase(&e->u.rb, &ubi->free);
592                 ubi->free_count--;
593
594                 pool->pebs[pool->size] = e->pnum;
595         }
596         pool->used = 0;
597 }
598
599 /**
600  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
601  * @ubi: UBI device description object
602  */
603 static void refill_wl_user_pool(struct ubi_device *ubi)
604 {
605         struct ubi_fm_pool *pool = &ubi->fm_pool;
606
607         return_unused_pool_pebs(ubi, pool);
608
609         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
610                 if (!ubi->free.rb_node ||
611                    (ubi->free_count - ubi->beb_rsvd_pebs < 1))
612                         break;
613
614                 pool->pebs[pool->size] = __wl_get_peb(ubi);
615                 if (pool->pebs[pool->size] < 0)
616                         break;
617         }
618         pool->used = 0;
619 }
620
621 /**
622  * ubi_refill_pools - refills all fastmap PEB pools.
623  * @ubi: UBI device description object
624  */
625 void ubi_refill_pools(struct ubi_device *ubi)
626 {
627         spin_lock(&ubi->wl_lock);
628         refill_wl_pool(ubi);
629         refill_wl_user_pool(ubi);
630         spin_unlock(&ubi->wl_lock);
631 }
632
633 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
634  * the fastmap pool.
635  */
636 int ubi_wl_get_peb(struct ubi_device *ubi)
637 {
638         int ret;
639         struct ubi_fm_pool *pool = &ubi->fm_pool;
640         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
641
642         if (!pool->size || !wl_pool->size || pool->used == pool->size ||
643             wl_pool->used == wl_pool->size)
644                 ubi_update_fastmap(ubi);
645
646         /* we got not a single free PEB */
647         if (!pool->size)
648                 ret = -ENOSPC;
649         else {
650                 spin_lock(&ubi->wl_lock);
651                 ret = pool->pebs[pool->used++];
652                 prot_queue_add(ubi, ubi->lookuptbl[ret]);
653                 spin_unlock(&ubi->wl_lock);
654         }
655
656         return ret;
657 }
658
659 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
660  *
661  * @ubi: UBI device description object
662  */
663 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
664 {
665         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
666         int pnum;
667
668         if (pool->used == pool->size || !pool->size) {
669                 /* We cannot update the fastmap here because this
670                  * function is called in atomic context.
671                  * Let's fail here and refill/update it as soon as possible. */
672                 schedule_work(&ubi->fm_work);
673                 return NULL;
674         } else {
675                 pnum = pool->pebs[pool->used++];
676                 return ubi->lookuptbl[pnum];
677         }
678 }
679 #else
680 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
681 {
682         return find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
683 }
684
685 int ubi_wl_get_peb(struct ubi_device *ubi)
686 {
687         int peb;
688
689         spin_lock(&ubi->wl_lock);
690         peb = __wl_get_peb(ubi);
691         spin_unlock(&ubi->wl_lock);
692
693         return peb;
694 }
695 #endif
696
697 /**
698  * prot_queue_del - remove a physical eraseblock from the protection queue.
699  * @ubi: UBI device description object
700  * @pnum: the physical eraseblock to remove
701  *
702  * This function deletes PEB @pnum from the protection queue and returns zero
703  * in case of success and %-ENODEV if the PEB was not found.
704  */
705 static int prot_queue_del(struct ubi_device *ubi, int pnum)
706 {
707         struct ubi_wl_entry *e;
708
709         e = ubi->lookuptbl[pnum];
710         if (!e)
711                 return -ENODEV;
712
713         if (self_check_in_pq(ubi, e))
714                 return -ENODEV;
715
716         list_del(&e->u.list);
717         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
718         return 0;
719 }
720
721 /**
722  * sync_erase - synchronously erase a physical eraseblock.
723  * @ubi: UBI device description object
724  * @e: the the physical eraseblock to erase
725  * @torture: if the physical eraseblock has to be tortured
726  *
727  * This function returns zero in case of success and a negative error code in
728  * case of failure.
729  */
730 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
731                       int torture)
732 {
733         int err;
734         struct ubi_ec_hdr *ec_hdr;
735         unsigned long long ec = e->ec;
736
737         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
738
739         err = self_check_ec(ubi, e->pnum, e->ec);
740         if (err)
741                 return -EINVAL;
742
743         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
744         if (!ec_hdr)
745                 return -ENOMEM;
746
747         err = ubi_io_sync_erase(ubi, e->pnum, torture);
748         if (err < 0)
749                 goto out_free;
750
751         ec += err;
752         if (ec > UBI_MAX_ERASECOUNTER) {
753                 /*
754                  * Erase counter overflow. Upgrade UBI and use 64-bit
755                  * erase counters internally.
756                  */
757                 ubi_err("erase counter overflow at PEB %d, EC %llu",
758                         e->pnum, ec);
759                 err = -EINVAL;
760                 goto out_free;
761         }
762
763         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
764
765         ec_hdr->ec = cpu_to_be64(ec);
766
767         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
768         if (err)
769                 goto out_free;
770
771         e->ec = ec;
772         spin_lock(&ubi->wl_lock);
773         if (e->ec > ubi->max_ec)
774                 ubi->max_ec = e->ec;
775         spin_unlock(&ubi->wl_lock);
776
777 out_free:
778         kfree(ec_hdr);
779         return err;
780 }
781
782 /**
783  * serve_prot_queue - check if it is time to stop protecting PEBs.
784  * @ubi: UBI device description object
785  *
786  * This function is called after each erase operation and removes PEBs from the
787  * tail of the protection queue. These PEBs have been protected for long enough
788  * and should be moved to the used tree.
789  */
790 static void serve_prot_queue(struct ubi_device *ubi)
791 {
792         struct ubi_wl_entry *e, *tmp;
793         int count;
794
795         /*
796          * There may be several protected physical eraseblock to remove,
797          * process them all.
798          */
799 repeat:
800         count = 0;
801         spin_lock(&ubi->wl_lock);
802         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
803                 dbg_wl("PEB %d EC %d protection over, move to used tree",
804                         e->pnum, e->ec);
805
806                 list_del(&e->u.list);
807                 wl_tree_add(e, &ubi->used);
808                 if (count++ > 32) {
809                         /*
810                          * Let's be nice and avoid holding the spinlock for
811                          * too long.
812                          */
813                         spin_unlock(&ubi->wl_lock);
814                         cond_resched();
815                         goto repeat;
816                 }
817         }
818
819         ubi->pq_head += 1;
820         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
821                 ubi->pq_head = 0;
822         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
823         spin_unlock(&ubi->wl_lock);
824 }
825
826 /**
827  * __schedule_ubi_work - schedule a work.
828  * @ubi: UBI device description object
829  * @wrk: the work to schedule
830  *
831  * This function adds a work defined by @wrk to the tail of the pending works
832  * list. Can only be used of ubi->work_sem is already held in read mode!
833  */
834 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
835 {
836         spin_lock(&ubi->wl_lock);
837         list_add_tail(&wrk->list, &ubi->works);
838         ubi_assert(ubi->works_count >= 0);
839         ubi->works_count += 1;
840         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
841                 wake_up_process(ubi->bgt_thread);
842         spin_unlock(&ubi->wl_lock);
843 }
844
845 /**
846  * schedule_ubi_work - schedule a work.
847  * @ubi: UBI device description object
848  * @wrk: the work to schedule
849  *
850  * This function adds a work defined by @wrk to the tail of the pending works
851  * list.
852  */
853 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
854 {
855         down_read(&ubi->work_sem);
856         __schedule_ubi_work(ubi, wrk);
857         up_read(&ubi->work_sem);
858 }
859
860 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
861                         int cancel);
862
863 #ifdef CONFIG_MTD_UBI_FASTMAP
864 /**
865  * ubi_is_erase_work - checks whether a work is erase work.
866  * @wrk: The work object to be checked
867  */
868 int ubi_is_erase_work(struct ubi_work *wrk)
869 {
870         return wrk->func == erase_worker;
871 }
872 #endif
873
874 /**
875  * schedule_erase - schedule an erase work.
876  * @ubi: UBI device description object
877  * @e: the WL entry of the physical eraseblock to erase
878  * @vol_id: the volume ID that last used this PEB
879  * @lnum: the last used logical eraseblock number for the PEB
880  * @torture: if the physical eraseblock has to be tortured
881  *
882  * This function returns zero in case of success and a %-ENOMEM in case of
883  * failure.
884  */
885 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
886                           int vol_id, int lnum, int torture)
887 {
888         struct ubi_work *wl_wrk;
889
890         ubi_assert(e);
891         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
892
893         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
894                e->pnum, e->ec, torture);
895
896         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
897         if (!wl_wrk)
898                 return -ENOMEM;
899
900         wl_wrk->func = &erase_worker;
901         wl_wrk->e = e;
902         wl_wrk->vol_id = vol_id;
903         wl_wrk->lnum = lnum;
904         wl_wrk->torture = torture;
905
906         schedule_ubi_work(ubi, wl_wrk);
907         return 0;
908 }
909
910 /**
911  * do_sync_erase - run the erase worker synchronously.
912  * @ubi: UBI device description object
913  * @e: the WL entry of the physical eraseblock to erase
914  * @vol_id: the volume ID that last used this PEB
915  * @lnum: the last used logical eraseblock number for the PEB
916  * @torture: if the physical eraseblock has to be tortured
917  *
918  */
919 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
920                          int vol_id, int lnum, int torture)
921 {
922         struct ubi_work *wl_wrk;
923
924         dbg_wl("sync erase of PEB %i", e->pnum);
925
926         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
927         if (!wl_wrk)
928                 return -ENOMEM;
929
930         wl_wrk->e = e;
931         wl_wrk->vol_id = vol_id;
932         wl_wrk->lnum = lnum;
933         wl_wrk->torture = torture;
934
935         return erase_worker(ubi, wl_wrk, 0);
936 }
937
938 #ifdef CONFIG_MTD_UBI_FASTMAP
939 /**
940  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
941  * sub-system.
942  * see: ubi_wl_put_peb()
943  *
944  * @ubi: UBI device description object
945  * @fm_e: physical eraseblock to return
946  * @lnum: the last used logical eraseblock number for the PEB
947  * @torture: if this physical eraseblock has to be tortured
948  */
949 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
950                       int lnum, int torture)
951 {
952         struct ubi_wl_entry *e;
953         int vol_id, pnum = fm_e->pnum;
954
955         dbg_wl("PEB %d", pnum);
956
957         ubi_assert(pnum >= 0);
958         ubi_assert(pnum < ubi->peb_count);
959
960         spin_lock(&ubi->wl_lock);
961         e = ubi->lookuptbl[pnum];
962
963         /* This can happen if we recovered from a fastmap the very
964          * first time and writing now a new one. In this case the wl system
965          * has never seen any PEB used by the original fastmap.
966          */
967         if (!e) {
968                 e = fm_e;
969                 ubi_assert(e->ec >= 0);
970                 ubi->lookuptbl[pnum] = e;
971         } else {
972                 e->ec = fm_e->ec;
973                 kfree(fm_e);
974         }
975
976         spin_unlock(&ubi->wl_lock);
977
978         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
979         return schedule_erase(ubi, e, vol_id, lnum, torture);
980 }
981 #endif
982
983 /**
984  * wear_leveling_worker - wear-leveling worker function.
985  * @ubi: UBI device description object
986  * @wrk: the work object
987  * @cancel: non-zero if the worker has to free memory and exit
988  *
989  * This function copies a more worn out physical eraseblock to a less worn out
990  * one. Returns zero in case of success and a negative error code in case of
991  * failure.
992  */
993 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
994                                 int cancel)
995 {
996         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
997         int vol_id = -1, uninitialized_var(lnum);
998 #ifdef CONFIG_MTD_UBI_FASTMAP
999         int anchor = wrk->anchor;
1000 #endif
1001         struct ubi_wl_entry *e1, *e2;
1002         struct ubi_vid_hdr *vid_hdr;
1003
1004         kfree(wrk);
1005         if (cancel)
1006                 return 0;
1007
1008         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1009         if (!vid_hdr)
1010                 return -ENOMEM;
1011
1012         mutex_lock(&ubi->move_mutex);
1013         spin_lock(&ubi->wl_lock);
1014         ubi_assert(!ubi->move_from && !ubi->move_to);
1015         ubi_assert(!ubi->move_to_put);
1016
1017         if (!ubi->free.rb_node ||
1018             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1019                 /*
1020                  * No free physical eraseblocks? Well, they must be waiting in
1021                  * the queue to be erased. Cancel movement - it will be
1022                  * triggered again when a free physical eraseblock appears.
1023                  *
1024                  * No used physical eraseblocks? They must be temporarily
1025                  * protected from being moved. They will be moved to the
1026                  * @ubi->used tree later and the wear-leveling will be
1027                  * triggered again.
1028                  */
1029                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1030                        !ubi->free.rb_node, !ubi->used.rb_node);
1031                 goto out_cancel;
1032         }
1033
1034 #ifdef CONFIG_MTD_UBI_FASTMAP
1035         /* Check whether we need to produce an anchor PEB */
1036         if (!anchor)
1037                 anchor = !anchor_pebs_avalible(&ubi->free);
1038
1039         if (anchor) {
1040                 e1 = find_anchor_wl_entry(&ubi->used);
1041                 if (!e1)
1042                         goto out_cancel;
1043                 e2 = get_peb_for_wl(ubi);
1044                 if (!e2)
1045                         goto out_cancel;
1046
1047                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1048                 rb_erase(&e1->u.rb, &ubi->used);
1049                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1050         } else if (!ubi->scrub.rb_node) {
1051 #else
1052         if (!ubi->scrub.rb_node) {
1053 #endif
1054                 /*
1055                  * Now pick the least worn-out used physical eraseblock and a
1056                  * highly worn-out free physical eraseblock. If the erase
1057                  * counters differ much enough, start wear-leveling.
1058                  */
1059                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1060                 e2 = get_peb_for_wl(ubi);
1061                 if (!e2)
1062                         goto out_cancel;
1063
1064                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1065                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1066                                e1->ec, e2->ec);
1067                         goto out_cancel;
1068                 }
1069                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1070                 rb_erase(&e1->u.rb, &ubi->used);
1071                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1072                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1073         } else {
1074                 /* Perform scrubbing */
1075                 scrubbing = 1;
1076                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1077                 e2 = get_peb_for_wl(ubi);
1078                 if (!e2)
1079                         goto out_cancel;
1080
1081                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1082                 rb_erase(&e1->u.rb, &ubi->scrub);
1083                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1084         }
1085
1086         ubi->move_from = e1;
1087         ubi->move_to = e2;
1088         spin_unlock(&ubi->wl_lock);
1089
1090         /*
1091          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1092          * We so far do not know which logical eraseblock our physical
1093          * eraseblock (@e1) belongs to. We have to read the volume identifier
1094          * header first.
1095          *
1096          * Note, we are protected from this PEB being unmapped and erased. The
1097          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1098          * which is being moved was unmapped.
1099          */
1100
1101         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1102         if (err && err != UBI_IO_BITFLIPS) {
1103                 if (err == UBI_IO_FF) {
1104                         /*
1105                          * We are trying to move PEB without a VID header. UBI
1106                          * always write VID headers shortly after the PEB was
1107                          * given, so we have a situation when it has not yet
1108                          * had a chance to write it, because it was preempted.
1109                          * So add this PEB to the protection queue so far,
1110                          * because presumably more data will be written there
1111                          * (including the missing VID header), and then we'll
1112                          * move it.
1113                          */
1114                         dbg_wl("PEB %d has no VID header", e1->pnum);
1115                         protect = 1;
1116                         goto out_not_moved;
1117                 } else if (err == UBI_IO_FF_BITFLIPS) {
1118                         /*
1119                          * The same situation as %UBI_IO_FF, but bit-flips were
1120                          * detected. It is better to schedule this PEB for
1121                          * scrubbing.
1122                          */
1123                         dbg_wl("PEB %d has no VID header but has bit-flips",
1124                                e1->pnum);
1125                         scrubbing = 1;
1126                         goto out_not_moved;
1127                 }
1128
1129                 ubi_err("error %d while reading VID header from PEB %d",
1130                         err, e1->pnum);
1131                 goto out_error;
1132         }
1133
1134         vol_id = be32_to_cpu(vid_hdr->vol_id);
1135         lnum = be32_to_cpu(vid_hdr->lnum);
1136
1137         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1138         if (err) {
1139                 if (err == MOVE_CANCEL_RACE) {
1140                         /*
1141                          * The LEB has not been moved because the volume is
1142                          * being deleted or the PEB has been put meanwhile. We
1143                          * should prevent this PEB from being selected for
1144                          * wear-leveling movement again, so put it to the
1145                          * protection queue.
1146                          */
1147                         protect = 1;
1148                         goto out_not_moved;
1149                 }
1150                 if (err == MOVE_RETRY) {
1151                         scrubbing = 1;
1152                         goto out_not_moved;
1153                 }
1154                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1155                     err == MOVE_TARGET_RD_ERR) {
1156                         /*
1157                          * Target PEB had bit-flips or write error - torture it.
1158                          */
1159                         torture = 1;
1160                         goto out_not_moved;
1161                 }
1162
1163                 if (err == MOVE_SOURCE_RD_ERR) {
1164                         /*
1165                          * An error happened while reading the source PEB. Do
1166                          * not switch to R/O mode in this case, and give the
1167                          * upper layers a possibility to recover from this,
1168                          * e.g. by unmapping corresponding LEB. Instead, just
1169                          * put this PEB to the @ubi->erroneous list to prevent
1170                          * UBI from trying to move it over and over again.
1171                          */
1172                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1173                                 ubi_err("too many erroneous eraseblocks (%d)",
1174                                         ubi->erroneous_peb_count);
1175                                 goto out_error;
1176                         }
1177                         erroneous = 1;
1178                         goto out_not_moved;
1179                 }
1180
1181                 if (err < 0)
1182                         goto out_error;
1183
1184                 ubi_assert(0);
1185         }
1186
1187         /* The PEB has been successfully moved */
1188         if (scrubbing)
1189                 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1190                         e1->pnum, vol_id, lnum, e2->pnum);
1191         ubi_free_vid_hdr(ubi, vid_hdr);
1192
1193         spin_lock(&ubi->wl_lock);
1194         if (!ubi->move_to_put) {
1195                 wl_tree_add(e2, &ubi->used);
1196                 e2 = NULL;
1197         }
1198         ubi->move_from = ubi->move_to = NULL;
1199         ubi->move_to_put = ubi->wl_scheduled = 0;
1200         spin_unlock(&ubi->wl_lock);
1201
1202         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1203         if (err) {
1204                 kmem_cache_free(ubi_wl_entry_slab, e1);
1205                 if (e2)
1206                         kmem_cache_free(ubi_wl_entry_slab, e2);
1207                 goto out_ro;
1208         }
1209
1210         if (e2) {
1211                 /*
1212                  * Well, the target PEB was put meanwhile, schedule it for
1213                  * erasure.
1214                  */
1215                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1216                        e2->pnum, vol_id, lnum);
1217                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1218                 if (err) {
1219                         kmem_cache_free(ubi_wl_entry_slab, e2);
1220                         goto out_ro;
1221                 }
1222         }
1223
1224         dbg_wl("done");
1225         mutex_unlock(&ubi->move_mutex);
1226         return 0;
1227
1228         /*
1229          * For some reasons the LEB was not moved, might be an error, might be
1230          * something else. @e1 was not changed, so return it back. @e2 might
1231          * have been changed, schedule it for erasure.
1232          */
1233 out_not_moved:
1234         if (vol_id != -1)
1235                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1236                        e1->pnum, vol_id, lnum, e2->pnum, err);
1237         else
1238                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1239                        e1->pnum, e2->pnum, err);
1240         spin_lock(&ubi->wl_lock);
1241         if (protect)
1242                 prot_queue_add(ubi, e1);
1243         else if (erroneous) {
1244                 wl_tree_add(e1, &ubi->erroneous);
1245                 ubi->erroneous_peb_count += 1;
1246         } else if (scrubbing)
1247                 wl_tree_add(e1, &ubi->scrub);
1248         else
1249                 wl_tree_add(e1, &ubi->used);
1250         ubi_assert(!ubi->move_to_put);
1251         ubi->move_from = ubi->move_to = NULL;
1252         ubi->wl_scheduled = 0;
1253         spin_unlock(&ubi->wl_lock);
1254
1255         ubi_free_vid_hdr(ubi, vid_hdr);
1256         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1257         if (err) {
1258                 kmem_cache_free(ubi_wl_entry_slab, e2);
1259                 goto out_ro;
1260         }
1261         mutex_unlock(&ubi->move_mutex);
1262         return 0;
1263
1264 out_error:
1265         if (vol_id != -1)
1266                 ubi_err("error %d while moving PEB %d to PEB %d",
1267                         err, e1->pnum, e2->pnum);
1268         else
1269                 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1270                         err, e1->pnum, vol_id, lnum, e2->pnum);
1271         spin_lock(&ubi->wl_lock);
1272         ubi->move_from = ubi->move_to = NULL;
1273         ubi->move_to_put = ubi->wl_scheduled = 0;
1274         spin_unlock(&ubi->wl_lock);
1275
1276         ubi_free_vid_hdr(ubi, vid_hdr);
1277         kmem_cache_free(ubi_wl_entry_slab, e1);
1278         kmem_cache_free(ubi_wl_entry_slab, e2);
1279
1280 out_ro:
1281         ubi_ro_mode(ubi);
1282         mutex_unlock(&ubi->move_mutex);
1283         ubi_assert(err != 0);
1284         return err < 0 ? err : -EIO;
1285
1286 out_cancel:
1287         ubi->wl_scheduled = 0;
1288         spin_unlock(&ubi->wl_lock);
1289         mutex_unlock(&ubi->move_mutex);
1290         ubi_free_vid_hdr(ubi, vid_hdr);
1291         return 0;
1292 }
1293
1294 /**
1295  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1296  * @ubi: UBI device description object
1297  * @nested: set to non-zero if this function is called from UBI worker
1298  *
1299  * This function checks if it is time to start wear-leveling and schedules it
1300  * if yes. This function returns zero in case of success and a negative error
1301  * code in case of failure.
1302  */
1303 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1304 {
1305         int err = 0;
1306         struct ubi_wl_entry *e1;
1307         struct ubi_wl_entry *e2;
1308         struct ubi_work *wrk;
1309
1310         spin_lock(&ubi->wl_lock);
1311         if (ubi->wl_scheduled)
1312                 /* Wear-leveling is already in the work queue */
1313                 goto out_unlock;
1314
1315         /*
1316          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1317          * the WL worker has to be scheduled anyway.
1318          */
1319         if (!ubi->scrub.rb_node) {
1320                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1321                         /* No physical eraseblocks - no deal */
1322                         goto out_unlock;
1323
1324                 /*
1325                  * We schedule wear-leveling only if the difference between the
1326                  * lowest erase counter of used physical eraseblocks and a high
1327                  * erase counter of free physical eraseblocks is greater than
1328                  * %UBI_WL_THRESHOLD.
1329                  */
1330                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1331                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1332
1333                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1334                         goto out_unlock;
1335                 dbg_wl("schedule wear-leveling");
1336         } else
1337                 dbg_wl("schedule scrubbing");
1338
1339         ubi->wl_scheduled = 1;
1340         spin_unlock(&ubi->wl_lock);
1341
1342         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1343         if (!wrk) {
1344                 err = -ENOMEM;
1345                 goto out_cancel;
1346         }
1347
1348         wrk->anchor = 0;
1349         wrk->func = &wear_leveling_worker;
1350         if (nested)
1351                 __schedule_ubi_work(ubi, wrk);
1352         else
1353                 schedule_ubi_work(ubi, wrk);
1354         return err;
1355
1356 out_cancel:
1357         spin_lock(&ubi->wl_lock);
1358         ubi->wl_scheduled = 0;
1359 out_unlock:
1360         spin_unlock(&ubi->wl_lock);
1361         return err;
1362 }
1363
1364 #ifdef CONFIG_MTD_UBI_FASTMAP
1365 /**
1366  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1367  * @ubi: UBI device description object
1368  */
1369 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1370 {
1371         struct ubi_work *wrk;
1372
1373         spin_lock(&ubi->wl_lock);
1374         if (ubi->wl_scheduled) {
1375                 spin_unlock(&ubi->wl_lock);
1376                 return 0;
1377         }
1378         ubi->wl_scheduled = 1;
1379         spin_unlock(&ubi->wl_lock);
1380
1381         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1382         if (!wrk) {
1383                 spin_lock(&ubi->wl_lock);
1384                 ubi->wl_scheduled = 0;
1385                 spin_unlock(&ubi->wl_lock);
1386                 return -ENOMEM;
1387         }
1388
1389         wrk->anchor = 1;
1390         wrk->func = &wear_leveling_worker;
1391         schedule_ubi_work(ubi, wrk);
1392         return 0;
1393 }
1394 #endif
1395
1396 /**
1397  * erase_worker - physical eraseblock erase worker function.
1398  * @ubi: UBI device description object
1399  * @wl_wrk: the work object
1400  * @cancel: non-zero if the worker has to free memory and exit
1401  *
1402  * This function erases a physical eraseblock and perform torture testing if
1403  * needed. It also takes care about marking the physical eraseblock bad if
1404  * needed. Returns zero in case of success and a negative error code in case of
1405  * failure.
1406  */
1407 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1408                         int cancel)
1409 {
1410         struct ubi_wl_entry *e = wl_wrk->e;
1411         int pnum = e->pnum;
1412         int vol_id = wl_wrk->vol_id;
1413         int lnum = wl_wrk->lnum;
1414         int err, available_consumed = 0;
1415
1416         if (cancel) {
1417                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1418                 kfree(wl_wrk);
1419                 kmem_cache_free(ubi_wl_entry_slab, e);
1420                 return 0;
1421         }
1422
1423         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1424                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1425
1426         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1427
1428         err = sync_erase(ubi, e, wl_wrk->torture);
1429         if (!err) {
1430                 /* Fine, we've erased it successfully */
1431                 kfree(wl_wrk);
1432
1433                 spin_lock(&ubi->wl_lock);
1434                 wl_tree_add(e, &ubi->free);
1435                 ubi->free_count++;
1436                 spin_unlock(&ubi->wl_lock);
1437
1438                 /*
1439                  * One more erase operation has happened, take care about
1440                  * protected physical eraseblocks.
1441                  */
1442                 serve_prot_queue(ubi);
1443
1444                 /* And take care about wear-leveling */
1445                 err = ensure_wear_leveling(ubi, 1);
1446                 return err;
1447         }
1448
1449         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1450         kfree(wl_wrk);
1451
1452         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1453             err == -EBUSY) {
1454                 int err1;
1455
1456                 /* Re-schedule the LEB for erasure */
1457                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1458                 if (err1) {
1459                         err = err1;
1460                         goto out_ro;
1461                 }
1462                 return err;
1463         }
1464
1465         kmem_cache_free(ubi_wl_entry_slab, e);
1466         if (err != -EIO)
1467                 /*
1468                  * If this is not %-EIO, we have no idea what to do. Scheduling
1469                  * this physical eraseblock for erasure again would cause
1470                  * errors again and again. Well, lets switch to R/O mode.
1471                  */
1472                 goto out_ro;
1473
1474         /* It is %-EIO, the PEB went bad */
1475
1476         if (!ubi->bad_allowed) {
1477                 ubi_err("bad physical eraseblock %d detected", pnum);
1478                 goto out_ro;
1479         }
1480
1481         spin_lock(&ubi->volumes_lock);
1482         if (ubi->beb_rsvd_pebs == 0) {
1483                 if (ubi->avail_pebs == 0) {
1484                         spin_unlock(&ubi->volumes_lock);
1485                         ubi_err("no reserved/available physical eraseblocks");
1486                         goto out_ro;
1487                 }
1488                 ubi->avail_pebs -= 1;
1489                 available_consumed = 1;
1490         }
1491         spin_unlock(&ubi->volumes_lock);
1492
1493         ubi_msg("mark PEB %d as bad", pnum);
1494         err = ubi_io_mark_bad(ubi, pnum);
1495         if (err)
1496                 goto out_ro;
1497
1498         spin_lock(&ubi->volumes_lock);
1499         if (ubi->beb_rsvd_pebs > 0) {
1500                 if (available_consumed) {
1501                         /*
1502                          * The amount of reserved PEBs increased since we last
1503                          * checked.
1504                          */
1505                         ubi->avail_pebs += 1;
1506                         available_consumed = 0;
1507                 }
1508                 ubi->beb_rsvd_pebs -= 1;
1509         }
1510         ubi->bad_peb_count += 1;
1511         ubi->good_peb_count -= 1;
1512         ubi_calculate_reserved(ubi);
1513         if (available_consumed)
1514                 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1515         else if (ubi->beb_rsvd_pebs)
1516                 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1517         else
1518                 ubi_warn("last PEB from the reserve was used");
1519         spin_unlock(&ubi->volumes_lock);
1520
1521         return err;
1522
1523 out_ro:
1524         if (available_consumed) {
1525                 spin_lock(&ubi->volumes_lock);
1526                 ubi->avail_pebs += 1;
1527                 spin_unlock(&ubi->volumes_lock);
1528         }
1529         ubi_ro_mode(ubi);
1530         return err;
1531 }
1532
1533 /**
1534  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1535  * @ubi: UBI device description object
1536  * @vol_id: the volume ID that last used this PEB
1537  * @lnum: the last used logical eraseblock number for the PEB
1538  * @pnum: physical eraseblock to return
1539  * @torture: if this physical eraseblock has to be tortured
1540  *
1541  * This function is called to return physical eraseblock @pnum to the pool of
1542  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1543  * occurred to this @pnum and it has to be tested. This function returns zero
1544  * in case of success, and a negative error code in case of failure.
1545  */
1546 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1547                    int pnum, int torture)
1548 {
1549         int err;
1550         struct ubi_wl_entry *e;
1551
1552         dbg_wl("PEB %d", pnum);
1553         ubi_assert(pnum >= 0);
1554         ubi_assert(pnum < ubi->peb_count);
1555
1556 retry:
1557         spin_lock(&ubi->wl_lock);
1558         e = ubi->lookuptbl[pnum];
1559         if (e == ubi->move_from) {
1560                 /*
1561                  * User is putting the physical eraseblock which was selected to
1562                  * be moved. It will be scheduled for erasure in the
1563                  * wear-leveling worker.
1564                  */
1565                 dbg_wl("PEB %d is being moved, wait", pnum);
1566                 spin_unlock(&ubi->wl_lock);
1567
1568                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1569                 mutex_lock(&ubi->move_mutex);
1570                 mutex_unlock(&ubi->move_mutex);
1571                 goto retry;
1572         } else if (e == ubi->move_to) {
1573                 /*
1574                  * User is putting the physical eraseblock which was selected
1575                  * as the target the data is moved to. It may happen if the EBA
1576                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1577                  * but the WL sub-system has not put the PEB to the "used" tree
1578                  * yet, but it is about to do this. So we just set a flag which
1579                  * will tell the WL worker that the PEB is not needed anymore
1580                  * and should be scheduled for erasure.
1581                  */
1582                 dbg_wl("PEB %d is the target of data moving", pnum);
1583                 ubi_assert(!ubi->move_to_put);
1584                 ubi->move_to_put = 1;
1585                 spin_unlock(&ubi->wl_lock);
1586                 return 0;
1587         } else {
1588                 if (in_wl_tree(e, &ubi->used)) {
1589                         self_check_in_wl_tree(ubi, e, &ubi->used);
1590                         rb_erase(&e->u.rb, &ubi->used);
1591                 } else if (in_wl_tree(e, &ubi->scrub)) {
1592                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1593                         rb_erase(&e->u.rb, &ubi->scrub);
1594                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1595                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1596                         rb_erase(&e->u.rb, &ubi->erroneous);
1597                         ubi->erroneous_peb_count -= 1;
1598                         ubi_assert(ubi->erroneous_peb_count >= 0);
1599                         /* Erroneous PEBs should be tortured */
1600                         torture = 1;
1601                 } else {
1602                         err = prot_queue_del(ubi, e->pnum);
1603                         if (err) {
1604                                 ubi_err("PEB %d not found", pnum);
1605                                 ubi_ro_mode(ubi);
1606                                 spin_unlock(&ubi->wl_lock);
1607                                 return err;
1608                         }
1609                 }
1610         }
1611         spin_unlock(&ubi->wl_lock);
1612
1613         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1614         if (err) {
1615                 spin_lock(&ubi->wl_lock);
1616                 wl_tree_add(e, &ubi->used);
1617                 spin_unlock(&ubi->wl_lock);
1618         }
1619
1620         return err;
1621 }
1622
1623 /**
1624  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1625  * @ubi: UBI device description object
1626  * @pnum: the physical eraseblock to schedule
1627  *
1628  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1629  * needs scrubbing. This function schedules a physical eraseblock for
1630  * scrubbing which is done in background. This function returns zero in case of
1631  * success and a negative error code in case of failure.
1632  */
1633 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1634 {
1635         struct ubi_wl_entry *e;
1636
1637         ubi_msg("schedule PEB %d for scrubbing", pnum);
1638
1639 retry:
1640         spin_lock(&ubi->wl_lock);
1641         e = ubi->lookuptbl[pnum];
1642         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1643                                    in_wl_tree(e, &ubi->erroneous)) {
1644                 spin_unlock(&ubi->wl_lock);
1645                 return 0;
1646         }
1647
1648         if (e == ubi->move_to) {
1649                 /*
1650                  * This physical eraseblock was used to move data to. The data
1651                  * was moved but the PEB was not yet inserted to the proper
1652                  * tree. We should just wait a little and let the WL worker
1653                  * proceed.
1654                  */
1655                 spin_unlock(&ubi->wl_lock);
1656                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1657                 yield();
1658                 goto retry;
1659         }
1660
1661         if (in_wl_tree(e, &ubi->used)) {
1662                 self_check_in_wl_tree(ubi, e, &ubi->used);
1663                 rb_erase(&e->u.rb, &ubi->used);
1664         } else {
1665                 int err;
1666
1667                 err = prot_queue_del(ubi, e->pnum);
1668                 if (err) {
1669                         ubi_err("PEB %d not found", pnum);
1670                         ubi_ro_mode(ubi);
1671                         spin_unlock(&ubi->wl_lock);
1672                         return err;
1673                 }
1674         }
1675
1676         wl_tree_add(e, &ubi->scrub);
1677         spin_unlock(&ubi->wl_lock);
1678
1679         /*
1680          * Technically scrubbing is the same as wear-leveling, so it is done
1681          * by the WL worker.
1682          */
1683         return ensure_wear_leveling(ubi, 0);
1684 }
1685
1686 /**
1687  * ubi_wl_flush - flush all pending works.
1688  * @ubi: UBI device description object
1689  * @vol_id: the volume id to flush for
1690  * @lnum: the logical eraseblock number to flush for
1691  *
1692  * This function executes all pending works for a particular volume id /
1693  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1694  * acts as a wildcard for all of the corresponding volume numbers or logical
1695  * eraseblock numbers. It returns zero in case of success and a negative error
1696  * code in case of failure.
1697  */
1698 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1699 {
1700         int err = 0;
1701         int found = 1;
1702
1703         /*
1704          * Erase while the pending works queue is not empty, but not more than
1705          * the number of currently pending works.
1706          */
1707         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1708                vol_id, lnum, ubi->works_count);
1709
1710         while (found) {
1711                 struct ubi_work *wrk;
1712                 found = 0;
1713
1714                 down_read(&ubi->work_sem);
1715                 spin_lock(&ubi->wl_lock);
1716                 list_for_each_entry(wrk, &ubi->works, list) {
1717                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1718                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1719                                 list_del(&wrk->list);
1720                                 ubi->works_count -= 1;
1721                                 ubi_assert(ubi->works_count >= 0);
1722                                 spin_unlock(&ubi->wl_lock);
1723
1724                                 err = wrk->func(ubi, wrk, 0);
1725                                 if (err) {
1726                                         up_read(&ubi->work_sem);
1727                                         return err;
1728                                 }
1729
1730                                 spin_lock(&ubi->wl_lock);
1731                                 found = 1;
1732                                 break;
1733                         }
1734                 }
1735                 spin_unlock(&ubi->wl_lock);
1736                 up_read(&ubi->work_sem);
1737         }
1738
1739         /*
1740          * Make sure all the works which have been done in parallel are
1741          * finished.
1742          */
1743         down_write(&ubi->work_sem);
1744         up_write(&ubi->work_sem);
1745
1746         return err;
1747 }
1748
1749 /**
1750  * tree_destroy - destroy an RB-tree.
1751  * @root: the root of the tree to destroy
1752  */
1753 static void tree_destroy(struct rb_root *root)
1754 {
1755         struct rb_node *rb;
1756         struct ubi_wl_entry *e;
1757
1758         rb = root->rb_node;
1759         while (rb) {
1760                 if (rb->rb_left)
1761                         rb = rb->rb_left;
1762                 else if (rb->rb_right)
1763                         rb = rb->rb_right;
1764                 else {
1765                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1766
1767                         rb = rb_parent(rb);
1768                         if (rb) {
1769                                 if (rb->rb_left == &e->u.rb)
1770                                         rb->rb_left = NULL;
1771                                 else
1772                                         rb->rb_right = NULL;
1773                         }
1774
1775                         kmem_cache_free(ubi_wl_entry_slab, e);
1776                 }
1777         }
1778 }
1779
1780 /**
1781  * ubi_thread - UBI background thread.
1782  * @u: the UBI device description object pointer
1783  */
1784 int ubi_thread(void *u)
1785 {
1786         int failures = 0;
1787         struct ubi_device *ubi = u;
1788
1789         ubi_msg("background thread \"%s\" started, PID %d",
1790                 ubi->bgt_name, task_pid_nr(current));
1791
1792         set_freezable();
1793         for (;;) {
1794                 int err;
1795
1796                 if (kthread_should_stop())
1797                         break;
1798
1799                 if (try_to_freeze())
1800                         continue;
1801
1802                 spin_lock(&ubi->wl_lock);
1803                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1804                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1805                         set_current_state(TASK_INTERRUPTIBLE);
1806                         spin_unlock(&ubi->wl_lock);
1807                         schedule();
1808                         continue;
1809                 }
1810                 spin_unlock(&ubi->wl_lock);
1811
1812                 err = do_work(ubi);
1813                 if (err) {
1814                         ubi_err("%s: work failed with error code %d",
1815                                 ubi->bgt_name, err);
1816                         if (failures++ > WL_MAX_FAILURES) {
1817                                 /*
1818                                  * Too many failures, disable the thread and
1819                                  * switch to read-only mode.
1820                                  */
1821                                 ubi_msg("%s: %d consecutive failures",
1822                                         ubi->bgt_name, WL_MAX_FAILURES);
1823                                 ubi_ro_mode(ubi);
1824                                 ubi->thread_enabled = 0;
1825                                 continue;
1826                         }
1827                 } else
1828                         failures = 0;
1829
1830                 cond_resched();
1831         }
1832
1833         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1834         return 0;
1835 }
1836
1837 /**
1838  * cancel_pending - cancel all pending works.
1839  * @ubi: UBI device description object
1840  */
1841 static void cancel_pending(struct ubi_device *ubi)
1842 {
1843         while (!list_empty(&ubi->works)) {
1844                 struct ubi_work *wrk;
1845
1846                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1847                 list_del(&wrk->list);
1848                 wrk->func(ubi, wrk, 1);
1849                 ubi->works_count -= 1;
1850                 ubi_assert(ubi->works_count >= 0);
1851         }
1852 }
1853
1854 /**
1855  * ubi_wl_init - initialize the WL sub-system using attaching information.
1856  * @ubi: UBI device description object
1857  * @ai: attaching information
1858  *
1859  * This function returns zero in case of success, and a negative error code in
1860  * case of failure.
1861  */
1862 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1863 {
1864         int err, i, reserved_pebs, found_pebs = 0;
1865         struct rb_node *rb1, *rb2;
1866         struct ubi_ainf_volume *av;
1867         struct ubi_ainf_peb *aeb, *tmp;
1868         struct ubi_wl_entry *e;
1869
1870         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1871         spin_lock_init(&ubi->wl_lock);
1872         mutex_init(&ubi->move_mutex);
1873         init_rwsem(&ubi->work_sem);
1874         ubi->max_ec = ai->max_ec;
1875         INIT_LIST_HEAD(&ubi->works);
1876 #ifdef CONFIG_MTD_UBI_FASTMAP
1877         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1878 #endif
1879
1880         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1881
1882         err = -ENOMEM;
1883         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1884         if (!ubi->lookuptbl)
1885                 return err;
1886
1887         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1888                 INIT_LIST_HEAD(&ubi->pq[i]);
1889         ubi->pq_head = 0;
1890
1891         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1892                 cond_resched();
1893
1894                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1895                 if (!e)
1896                         goto out_free;
1897
1898                 e->pnum = aeb->pnum;
1899                 e->ec = aeb->ec;
1900                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1901                 ubi->lookuptbl[e->pnum] = e;
1902                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1903                         kmem_cache_free(ubi_wl_entry_slab, e);
1904                         goto out_free;
1905                 }
1906
1907                 found_pebs++;
1908         }
1909
1910         ubi->free_count = 0;
1911         list_for_each_entry(aeb, &ai->free, u.list) {
1912                 cond_resched();
1913
1914                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1915                 if (!e)
1916                         goto out_free;
1917
1918                 e->pnum = aeb->pnum;
1919                 e->ec = aeb->ec;
1920                 ubi_assert(e->ec >= 0);
1921                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1922
1923                 wl_tree_add(e, &ubi->free);
1924                 ubi->free_count++;
1925
1926                 ubi->lookuptbl[e->pnum] = e;
1927
1928                 found_pebs++;
1929         }
1930
1931         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1932                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1933                         cond_resched();
1934
1935                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1936                         if (!e)
1937                                 goto out_free;
1938
1939                         e->pnum = aeb->pnum;
1940                         e->ec = aeb->ec;
1941                         ubi->lookuptbl[e->pnum] = e;
1942
1943                         if (!aeb->scrub) {
1944                                 dbg_wl("add PEB %d EC %d to the used tree",
1945                                        e->pnum, e->ec);
1946                                 wl_tree_add(e, &ubi->used);
1947                         } else {
1948                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1949                                        e->pnum, e->ec);
1950                                 wl_tree_add(e, &ubi->scrub);
1951                         }
1952
1953                         found_pebs++;
1954                 }
1955         }
1956
1957         dbg_wl("found %i PEBs", found_pebs);
1958
1959         if (ubi->fm)
1960                 ubi_assert(ubi->good_peb_count == \
1961                            found_pebs + ubi->fm->used_blocks);
1962         else
1963                 ubi_assert(ubi->good_peb_count == found_pebs);
1964
1965         reserved_pebs = WL_RESERVED_PEBS;
1966 #ifdef CONFIG_MTD_UBI_FASTMAP
1967         /* Reserve enough LEBs to store two fastmaps. */
1968         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1969 #endif
1970
1971         if (ubi->avail_pebs < reserved_pebs) {
1972                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1973                         ubi->avail_pebs, reserved_pebs);
1974                 if (ubi->corr_peb_count)
1975                         ubi_err("%d PEBs are corrupted and not used",
1976                                 ubi->corr_peb_count);
1977                 goto out_free;
1978         }
1979         ubi->avail_pebs -= reserved_pebs;
1980         ubi->rsvd_pebs += reserved_pebs;
1981
1982         /* Schedule wear-leveling if needed */
1983         err = ensure_wear_leveling(ubi, 0);
1984         if (err)
1985                 goto out_free;
1986
1987         return 0;
1988
1989 out_free:
1990         cancel_pending(ubi);
1991         tree_destroy(&ubi->used);
1992         tree_destroy(&ubi->free);
1993         tree_destroy(&ubi->scrub);
1994         kfree(ubi->lookuptbl);
1995         return err;
1996 }
1997
1998 /**
1999  * protection_queue_destroy - destroy the protection queue.
2000  * @ubi: UBI device description object
2001  */
2002 static void protection_queue_destroy(struct ubi_device *ubi)
2003 {
2004         int i;
2005         struct ubi_wl_entry *e, *tmp;
2006
2007         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2008                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2009                         list_del(&e->u.list);
2010                         kmem_cache_free(ubi_wl_entry_slab, e);
2011                 }
2012         }
2013 }
2014
2015 /**
2016  * ubi_wl_close - close the wear-leveling sub-system.
2017  * @ubi: UBI device description object
2018  */
2019 void ubi_wl_close(struct ubi_device *ubi)
2020 {
2021         dbg_wl("close the WL sub-system");
2022         cancel_pending(ubi);
2023         protection_queue_destroy(ubi);
2024         tree_destroy(&ubi->used);
2025         tree_destroy(&ubi->erroneous);
2026         tree_destroy(&ubi->free);
2027         tree_destroy(&ubi->scrub);
2028         kfree(ubi->lookuptbl);
2029 }
2030
2031 /**
2032  * self_check_ec - make sure that the erase counter of a PEB is correct.
2033  * @ubi: UBI device description object
2034  * @pnum: the physical eraseblock number to check
2035  * @ec: the erase counter to check
2036  *
2037  * This function returns zero if the erase counter of physical eraseblock @pnum
2038  * is equivalent to @ec, and a negative error code if not or if an error
2039  * occurred.
2040  */
2041 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2042 {
2043         int err;
2044         long long read_ec;
2045         struct ubi_ec_hdr *ec_hdr;
2046
2047         if (!ubi->dbg->chk_gen)
2048                 return 0;
2049
2050         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2051         if (!ec_hdr)
2052                 return -ENOMEM;
2053
2054         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2055         if (err && err != UBI_IO_BITFLIPS) {
2056                 /* The header does not have to exist */
2057                 err = 0;
2058                 goto out_free;
2059         }
2060
2061         read_ec = be64_to_cpu(ec_hdr->ec);
2062         if (ec != read_ec && read_ec - ec > 1) {
2063                 ubi_err("self-check failed for PEB %d", pnum);
2064                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2065                 dump_stack();
2066                 err = 1;
2067         } else
2068                 err = 0;
2069
2070 out_free:
2071         kfree(ec_hdr);
2072         return err;
2073 }
2074
2075 /**
2076  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2077  * @ubi: UBI device description object
2078  * @e: the wear-leveling entry to check
2079  * @root: the root of the tree
2080  *
2081  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2082  * is not.
2083  */
2084 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2085                                  struct ubi_wl_entry *e, struct rb_root *root)
2086 {
2087         if (!ubi->dbg->chk_gen)
2088                 return 0;
2089
2090         if (in_wl_tree(e, root))
2091                 return 0;
2092
2093         ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2094                 e->pnum, e->ec, root);
2095         dump_stack();
2096         return -EINVAL;
2097 }
2098
2099 /**
2100  * self_check_in_pq - check if wear-leveling entry is in the protection
2101  *                        queue.
2102  * @ubi: UBI device description object
2103  * @e: the wear-leveling entry to check
2104  *
2105  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2106  */
2107 static int self_check_in_pq(const struct ubi_device *ubi,
2108                             struct ubi_wl_entry *e)
2109 {
2110         struct ubi_wl_entry *p;
2111         int i;
2112
2113         if (!ubi->dbg->chk_gen)
2114                 return 0;
2115
2116         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2117                 list_for_each_entry(p, &ubi->pq[i], u.list)
2118                         if (p == e)
2119                                 return 0;
2120
2121         ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2122                 e->pnum, e->ec);
2123         dump_stack();
2124         return -EINVAL;
2125 }