63cad6c00bc775693a206a2f1a475fd589901ec2
[cascardo/linux.git] / drivers / net / dsa / mv88e6xxx / chip.c
1 /*
2  * Marvell 88e6xxx Ethernet switch single-chip support
3  *
4  * Copyright (c) 2008 Marvell Semiconductor
5  *
6  * Copyright (c) 2015 CMC Electronics, Inc.
7  *      Added support for VLAN Table Unit operations
8  *
9  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16
17 #include <linux/delay.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_bridge.h>
21 #include <linux/jiffies.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_mdio.h>
27 #include <linux/netdevice.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/phy.h>
30 #include <net/dsa.h>
31 #include <net/switchdev.h>
32 #include "mv88e6xxx.h"
33
34 static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35 {
36         if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
37                 dev_err(chip->dev, "Switch registers lock not held!\n");
38                 dump_stack();
39         }
40 }
41
42 /* The switch ADDR[4:1] configuration pins define the chip SMI device address
43  * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
44  *
45  * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
46  * is the only device connected to the SMI master. In this mode it responds to
47  * all 32 possible SMI addresses, and thus maps directly the internal devices.
48  *
49  * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
50  * multiple devices to share the SMI interface. In this mode it responds to only
51  * 2 registers, used to indirectly access the internal SMI devices.
52  */
53
54 static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55                               int addr, int reg, u16 *val)
56 {
57         if (!chip->smi_ops)
58                 return -EOPNOTSUPP;
59
60         return chip->smi_ops->read(chip, addr, reg, val);
61 }
62
63 static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64                                int addr, int reg, u16 val)
65 {
66         if (!chip->smi_ops)
67                 return -EOPNOTSUPP;
68
69         return chip->smi_ops->write(chip, addr, reg, val);
70 }
71
72 static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73                                           int addr, int reg, u16 *val)
74 {
75         int ret;
76
77         ret = mdiobus_read_nested(chip->bus, addr, reg);
78         if (ret < 0)
79                 return ret;
80
81         *val = ret & 0xffff;
82
83         return 0;
84 }
85
86 static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87                                            int addr, int reg, u16 val)
88 {
89         int ret;
90
91         ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92         if (ret < 0)
93                 return ret;
94
95         return 0;
96 }
97
98 static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
99         .read = mv88e6xxx_smi_single_chip_read,
100         .write = mv88e6xxx_smi_single_chip_write,
101 };
102
103 static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 {
105         int ret;
106         int i;
107
108         for (i = 0; i < 16; i++) {
109                 ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110                 if (ret < 0)
111                         return ret;
112
113                 if ((ret & SMI_CMD_BUSY) == 0)
114                         return 0;
115         }
116
117         return -ETIMEDOUT;
118 }
119
120 static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121                                          int addr, int reg, u16 *val)
122 {
123         int ret;
124
125         /* Wait for the bus to become free. */
126         ret = mv88e6xxx_smi_multi_chip_wait(chip);
127         if (ret < 0)
128                 return ret;
129
130         /* Transmit the read command. */
131         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132                                    SMI_CMD_OP_22_READ | (addr << 5) | reg);
133         if (ret < 0)
134                 return ret;
135
136         /* Wait for the read command to complete. */
137         ret = mv88e6xxx_smi_multi_chip_wait(chip);
138         if (ret < 0)
139                 return ret;
140
141         /* Read the data. */
142         ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143         if (ret < 0)
144                 return ret;
145
146         *val = ret & 0xffff;
147
148         return 0;
149 }
150
151 static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152                                           int addr, int reg, u16 val)
153 {
154         int ret;
155
156         /* Wait for the bus to become free. */
157         ret = mv88e6xxx_smi_multi_chip_wait(chip);
158         if (ret < 0)
159                 return ret;
160
161         /* Transmit the data to write. */
162         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163         if (ret < 0)
164                 return ret;
165
166         /* Transmit the write command. */
167         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168                                    SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169         if (ret < 0)
170                 return ret;
171
172         /* Wait for the write command to complete. */
173         ret = mv88e6xxx_smi_multi_chip_wait(chip);
174         if (ret < 0)
175                 return ret;
176
177         return 0;
178 }
179
180 static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
181         .read = mv88e6xxx_smi_multi_chip_read,
182         .write = mv88e6xxx_smi_multi_chip_write,
183 };
184
185 static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186                           int addr, int reg, u16 *val)
187 {
188         int err;
189
190         assert_reg_lock(chip);
191
192         err = mv88e6xxx_smi_read(chip, addr, reg, val);
193         if (err)
194                 return err;
195
196         dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197                 addr, reg, *val);
198
199         return 0;
200 }
201
202 static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203                            int addr, int reg, u16 val)
204 {
205         int err;
206
207         assert_reg_lock(chip);
208
209         err = mv88e6xxx_smi_write(chip, addr, reg, val);
210         if (err)
211                 return err;
212
213         dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214                 addr, reg, val);
215
216         return 0;
217 }
218
219 static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
220                               int reg, u16 *val)
221 {
222         int addr = phy; /* PHY devices addresses start at 0x0 */
223
224         if (!chip->phy_ops)
225                 return -EOPNOTSUPP;
226
227         return chip->phy_ops->read(chip, addr, reg, val);
228 }
229
230 static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
231                                int reg, u16 val)
232 {
233         int addr = phy; /* PHY devices addresses start at 0x0 */
234
235         if (!chip->phy_ops)
236                 return -EOPNOTSUPP;
237
238         return chip->phy_ops->write(chip, addr, reg, val);
239 }
240
241 static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
242 {
243         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
244                 return -EOPNOTSUPP;
245
246         return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
247 }
248
249 static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
250 {
251         int err;
252
253         /* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
254         err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
255         if (unlikely(err)) {
256                 dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
257                         phy, err);
258         }
259 }
260
261 static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
262                                    u8 page, int reg, u16 *val)
263 {
264         int err;
265
266         /* There is no paging for registers 22 */
267         if (reg == PHY_PAGE)
268                 return -EINVAL;
269
270         err = mv88e6xxx_phy_page_get(chip, phy, page);
271         if (!err) {
272                 err = mv88e6xxx_phy_read(chip, phy, reg, val);
273                 mv88e6xxx_phy_page_put(chip, phy);
274         }
275
276         return err;
277 }
278
279 static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
280                                     u8 page, int reg, u16 val)
281 {
282         int err;
283
284         /* There is no paging for registers 22 */
285         if (reg == PHY_PAGE)
286                 return -EINVAL;
287
288         err = mv88e6xxx_phy_page_get(chip, phy, page);
289         if (!err) {
290                 err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
291                 mv88e6xxx_phy_page_put(chip, phy);
292         }
293
294         return err;
295 }
296
297 static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
298 {
299         return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
300                                        reg, val);
301 }
302
303 static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
304 {
305         return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
306                                         reg, val);
307 }
308
309 static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
310                           u16 mask)
311 {
312         int i;
313
314         for (i = 0; i < 16; i++) {
315                 u16 val;
316                 int err;
317
318                 err = mv88e6xxx_read(chip, addr, reg, &val);
319                 if (err)
320                         return err;
321
322                 if (!(val & mask))
323                         return 0;
324
325                 usleep_range(1000, 2000);
326         }
327
328         dev_err(chip->dev, "Timeout while waiting for switch\n");
329         return -ETIMEDOUT;
330 }
331
332 /* Indirect write to single pointer-data register with an Update bit */
333 static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
334                             u16 update)
335 {
336         u16 val;
337         int err;
338
339         /* Wait until the previous operation is completed */
340         err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
341         if (err)
342                 return err;
343
344         /* Set the Update bit to trigger a write operation */
345         val = BIT(15) | update;
346
347         return mv88e6xxx_write(chip, addr, reg, val);
348 }
349
350 static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
351 {
352         u16 val;
353         int err;
354
355         err = mv88e6xxx_read(chip, addr, reg, &val);
356         if (err)
357                 return err;
358
359         return val;
360 }
361
362 static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
363                                 int reg, u16 val)
364 {
365         return mv88e6xxx_write(chip, addr, reg, val);
366 }
367
368 static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
369 {
370         int ret;
371         int i;
372
373         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
374         if (ret < 0)
375                 return ret;
376
377         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
378                                    ret & ~GLOBAL_CONTROL_PPU_ENABLE);
379         if (ret)
380                 return ret;
381
382         for (i = 0; i < 16; i++) {
383                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
384                 if (ret < 0)
385                         return ret;
386
387                 usleep_range(1000, 2000);
388                 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
389                     GLOBAL_STATUS_PPU_POLLING)
390                         return 0;
391         }
392
393         return -ETIMEDOUT;
394 }
395
396 static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
397 {
398         int ret, err, i;
399
400         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
401         if (ret < 0)
402                 return ret;
403
404         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
405                                    ret | GLOBAL_CONTROL_PPU_ENABLE);
406         if (err)
407                 return err;
408
409         for (i = 0; i < 16; i++) {
410                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
411                 if (ret < 0)
412                         return ret;
413
414                 usleep_range(1000, 2000);
415                 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
416                     GLOBAL_STATUS_PPU_POLLING)
417                         return 0;
418         }
419
420         return -ETIMEDOUT;
421 }
422
423 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
424 {
425         struct mv88e6xxx_chip *chip;
426
427         chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
428
429         mutex_lock(&chip->reg_lock);
430
431         if (mutex_trylock(&chip->ppu_mutex)) {
432                 if (mv88e6xxx_ppu_enable(chip) == 0)
433                         chip->ppu_disabled = 0;
434                 mutex_unlock(&chip->ppu_mutex);
435         }
436
437         mutex_unlock(&chip->reg_lock);
438 }
439
440 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
441 {
442         struct mv88e6xxx_chip *chip = (void *)_ps;
443
444         schedule_work(&chip->ppu_work);
445 }
446
447 static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
448 {
449         int ret;
450
451         mutex_lock(&chip->ppu_mutex);
452
453         /* If the PHY polling unit is enabled, disable it so that
454          * we can access the PHY registers.  If it was already
455          * disabled, cancel the timer that is going to re-enable
456          * it.
457          */
458         if (!chip->ppu_disabled) {
459                 ret = mv88e6xxx_ppu_disable(chip);
460                 if (ret < 0) {
461                         mutex_unlock(&chip->ppu_mutex);
462                         return ret;
463                 }
464                 chip->ppu_disabled = 1;
465         } else {
466                 del_timer(&chip->ppu_timer);
467                 ret = 0;
468         }
469
470         return ret;
471 }
472
473 static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
474 {
475         /* Schedule a timer to re-enable the PHY polling unit. */
476         mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
477         mutex_unlock(&chip->ppu_mutex);
478 }
479
480 static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
481 {
482         mutex_init(&chip->ppu_mutex);
483         INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
484         init_timer(&chip->ppu_timer);
485         chip->ppu_timer.data = (unsigned long)chip;
486         chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
487 }
488
489 static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
490                                   int reg, u16 *val)
491 {
492         int err;
493
494         err = mv88e6xxx_ppu_access_get(chip);
495         if (!err) {
496                 err = mv88e6xxx_read(chip, addr, reg, val);
497                 mv88e6xxx_ppu_access_put(chip);
498         }
499
500         return err;
501 }
502
503 static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
504                                    int reg, u16 val)
505 {
506         int err;
507
508         err = mv88e6xxx_ppu_access_get(chip);
509         if (!err) {
510                 err = mv88e6xxx_write(chip, addr, reg, val);
511                 mv88e6xxx_ppu_access_put(chip);
512         }
513
514         return err;
515 }
516
517 static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
518         .read = mv88e6xxx_phy_ppu_read,
519         .write = mv88e6xxx_phy_ppu_write,
520 };
521
522 static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
523 {
524         return chip->info->family == MV88E6XXX_FAMILY_6065;
525 }
526
527 static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
528 {
529         return chip->info->family == MV88E6XXX_FAMILY_6095;
530 }
531
532 static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
533 {
534         return chip->info->family == MV88E6XXX_FAMILY_6097;
535 }
536
537 static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
538 {
539         return chip->info->family == MV88E6XXX_FAMILY_6165;
540 }
541
542 static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
543 {
544         return chip->info->family == MV88E6XXX_FAMILY_6185;
545 }
546
547 static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
548 {
549         return chip->info->family == MV88E6XXX_FAMILY_6320;
550 }
551
552 static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
553 {
554         return chip->info->family == MV88E6XXX_FAMILY_6351;
555 }
556
557 static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
558 {
559         return chip->info->family == MV88E6XXX_FAMILY_6352;
560 }
561
562 static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
563 {
564         return chip->info->num_databases;
565 }
566
567 static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
568 {
569         /* Does the device have dedicated FID registers for ATU and VTU ops? */
570         if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
571             mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
572                 return true;
573
574         return false;
575 }
576
577 /* We expect the switch to perform auto negotiation if there is a real
578  * phy. However, in the case of a fixed link phy, we force the port
579  * settings from the fixed link settings.
580  */
581 static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
582                                   struct phy_device *phydev)
583 {
584         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
585         u32 reg;
586         int ret;
587
588         if (!phy_is_pseudo_fixed_link(phydev))
589                 return;
590
591         mutex_lock(&chip->reg_lock);
592
593         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
594         if (ret < 0)
595                 goto out;
596
597         reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
598                       PORT_PCS_CTRL_FORCE_LINK |
599                       PORT_PCS_CTRL_DUPLEX_FULL |
600                       PORT_PCS_CTRL_FORCE_DUPLEX |
601                       PORT_PCS_CTRL_UNFORCED);
602
603         reg |= PORT_PCS_CTRL_FORCE_LINK;
604         if (phydev->link)
605                 reg |= PORT_PCS_CTRL_LINK_UP;
606
607         if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
608                 goto out;
609
610         switch (phydev->speed) {
611         case SPEED_1000:
612                 reg |= PORT_PCS_CTRL_1000;
613                 break;
614         case SPEED_100:
615                 reg |= PORT_PCS_CTRL_100;
616                 break;
617         case SPEED_10:
618                 reg |= PORT_PCS_CTRL_10;
619                 break;
620         default:
621                 pr_info("Unknown speed");
622                 goto out;
623         }
624
625         reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
626         if (phydev->duplex == DUPLEX_FULL)
627                 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
628
629         if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
630             (port >= chip->info->num_ports - 2)) {
631                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
632                         reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
633                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
634                         reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
635                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
636                         reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
637                                 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
638         }
639         _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
640
641 out:
642         mutex_unlock(&chip->reg_lock);
643 }
644
645 static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
646 {
647         int ret;
648         int i;
649
650         for (i = 0; i < 10; i++) {
651                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
652                 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
653                         return 0;
654         }
655
656         return -ETIMEDOUT;
657 }
658
659 static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
660 {
661         int ret;
662
663         if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
664                 port = (port + 1) << 5;
665
666         /* Snapshot the hardware statistics counters for this port. */
667         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
668                                    GLOBAL_STATS_OP_CAPTURE_PORT |
669                                    GLOBAL_STATS_OP_HIST_RX_TX | port);
670         if (ret < 0)
671                 return ret;
672
673         /* Wait for the snapshotting to complete. */
674         ret = _mv88e6xxx_stats_wait(chip);
675         if (ret < 0)
676                 return ret;
677
678         return 0;
679 }
680
681 static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
682                                   int stat, u32 *val)
683 {
684         u32 _val;
685         int ret;
686
687         *val = 0;
688
689         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
690                                    GLOBAL_STATS_OP_READ_CAPTURED |
691                                    GLOBAL_STATS_OP_HIST_RX_TX | stat);
692         if (ret < 0)
693                 return;
694
695         ret = _mv88e6xxx_stats_wait(chip);
696         if (ret < 0)
697                 return;
698
699         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
700         if (ret < 0)
701                 return;
702
703         _val = ret << 16;
704
705         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
706         if (ret < 0)
707                 return;
708
709         *val = _val | ret;
710 }
711
712 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
713         { "in_good_octets",     8, 0x00, BANK0, },
714         { "in_bad_octets",      4, 0x02, BANK0, },
715         { "in_unicast",         4, 0x04, BANK0, },
716         { "in_broadcasts",      4, 0x06, BANK0, },
717         { "in_multicasts",      4, 0x07, BANK0, },
718         { "in_pause",           4, 0x16, BANK0, },
719         { "in_undersize",       4, 0x18, BANK0, },
720         { "in_fragments",       4, 0x19, BANK0, },
721         { "in_oversize",        4, 0x1a, BANK0, },
722         { "in_jabber",          4, 0x1b, BANK0, },
723         { "in_rx_error",        4, 0x1c, BANK0, },
724         { "in_fcs_error",       4, 0x1d, BANK0, },
725         { "out_octets",         8, 0x0e, BANK0, },
726         { "out_unicast",        4, 0x10, BANK0, },
727         { "out_broadcasts",     4, 0x13, BANK0, },
728         { "out_multicasts",     4, 0x12, BANK0, },
729         { "out_pause",          4, 0x15, BANK0, },
730         { "excessive",          4, 0x11, BANK0, },
731         { "collisions",         4, 0x1e, BANK0, },
732         { "deferred",           4, 0x05, BANK0, },
733         { "single",             4, 0x14, BANK0, },
734         { "multiple",           4, 0x17, BANK0, },
735         { "out_fcs_error",      4, 0x03, BANK0, },
736         { "late",               4, 0x1f, BANK0, },
737         { "hist_64bytes",       4, 0x08, BANK0, },
738         { "hist_65_127bytes",   4, 0x09, BANK0, },
739         { "hist_128_255bytes",  4, 0x0a, BANK0, },
740         { "hist_256_511bytes",  4, 0x0b, BANK0, },
741         { "hist_512_1023bytes", 4, 0x0c, BANK0, },
742         { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
743         { "sw_in_discards",     4, 0x10, PORT, },
744         { "sw_in_filtered",     2, 0x12, PORT, },
745         { "sw_out_filtered",    2, 0x13, PORT, },
746         { "in_discards",        4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
747         { "in_filtered",        4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
748         { "in_accepted",        4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
749         { "in_bad_accepted",    4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
750         { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
751         { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
752         { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
753         { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
754         { "tcam_counter_0",     4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
755         { "tcam_counter_1",     4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
756         { "tcam_counter_2",     4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
757         { "tcam_counter_3",     4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
758         { "in_da_unknown",      4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
759         { "in_management",      4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
760         { "out_queue_0",        4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
761         { "out_queue_1",        4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
762         { "out_queue_2",        4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
763         { "out_queue_3",        4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
764         { "out_queue_4",        4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
765         { "out_queue_5",        4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
766         { "out_queue_6",        4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
767         { "out_queue_7",        4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
768         { "out_cut_through",    4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
769         { "out_octets_a",       4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
770         { "out_octets_b",       4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
771         { "out_management",     4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
772 };
773
774 static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
775                                struct mv88e6xxx_hw_stat *stat)
776 {
777         switch (stat->type) {
778         case BANK0:
779                 return true;
780         case BANK1:
781                 return mv88e6xxx_6320_family(chip);
782         case PORT:
783                 return mv88e6xxx_6095_family(chip) ||
784                         mv88e6xxx_6185_family(chip) ||
785                         mv88e6xxx_6097_family(chip) ||
786                         mv88e6xxx_6165_family(chip) ||
787                         mv88e6xxx_6351_family(chip) ||
788                         mv88e6xxx_6352_family(chip);
789         }
790         return false;
791 }
792
793 static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
794                                             struct mv88e6xxx_hw_stat *s,
795                                             int port)
796 {
797         u32 low;
798         u32 high = 0;
799         int ret;
800         u64 value;
801
802         switch (s->type) {
803         case PORT:
804                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
805                 if (ret < 0)
806                         return UINT64_MAX;
807
808                 low = ret;
809                 if (s->sizeof_stat == 4) {
810                         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
811                                                   s->reg + 1);
812                         if (ret < 0)
813                                 return UINT64_MAX;
814                         high = ret;
815                 }
816                 break;
817         case BANK0:
818         case BANK1:
819                 _mv88e6xxx_stats_read(chip, s->reg, &low);
820                 if (s->sizeof_stat == 8)
821                         _mv88e6xxx_stats_read(chip, s->reg + 1, &high);
822         }
823         value = (((u64)high) << 16) | low;
824         return value;
825 }
826
827 static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
828                                   uint8_t *data)
829 {
830         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
831         struct mv88e6xxx_hw_stat *stat;
832         int i, j;
833
834         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
835                 stat = &mv88e6xxx_hw_stats[i];
836                 if (mv88e6xxx_has_stat(chip, stat)) {
837                         memcpy(data + j * ETH_GSTRING_LEN, stat->string,
838                                ETH_GSTRING_LEN);
839                         j++;
840                 }
841         }
842 }
843
844 static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
845 {
846         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
847         struct mv88e6xxx_hw_stat *stat;
848         int i, j;
849
850         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
851                 stat = &mv88e6xxx_hw_stats[i];
852                 if (mv88e6xxx_has_stat(chip, stat))
853                         j++;
854         }
855         return j;
856 }
857
858 static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
859                                         uint64_t *data)
860 {
861         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
862         struct mv88e6xxx_hw_stat *stat;
863         int ret;
864         int i, j;
865
866         mutex_lock(&chip->reg_lock);
867
868         ret = _mv88e6xxx_stats_snapshot(chip, port);
869         if (ret < 0) {
870                 mutex_unlock(&chip->reg_lock);
871                 return;
872         }
873         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
874                 stat = &mv88e6xxx_hw_stats[i];
875                 if (mv88e6xxx_has_stat(chip, stat)) {
876                         data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
877                         j++;
878                 }
879         }
880
881         mutex_unlock(&chip->reg_lock);
882 }
883
884 static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
885 {
886         return 32 * sizeof(u16);
887 }
888
889 static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
890                                struct ethtool_regs *regs, void *_p)
891 {
892         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
893         u16 *p = _p;
894         int i;
895
896         regs->version = 0;
897
898         memset(p, 0xff, 32 * sizeof(u16));
899
900         mutex_lock(&chip->reg_lock);
901
902         for (i = 0; i < 32; i++) {
903                 int ret;
904
905                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
906                 if (ret >= 0)
907                         p[i] = ret;
908         }
909
910         mutex_unlock(&chip->reg_lock);
911 }
912
913 static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
914 {
915         return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
916                               GLOBAL_ATU_OP_BUSY);
917 }
918
919 static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
920                              struct ethtool_eee *e)
921 {
922         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
923         u16 reg;
924         int err;
925
926         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
927                 return -EOPNOTSUPP;
928
929         mutex_lock(&chip->reg_lock);
930
931         err = mv88e6xxx_phy_read(chip, port, 16, &reg);
932         if (err)
933                 goto out;
934
935         e->eee_enabled = !!(reg & 0x0200);
936         e->tx_lpi_enabled = !!(reg & 0x0100);
937
938         err = mv88e6xxx_read(chip, REG_PORT(port), PORT_STATUS, &reg);
939         if (err)
940                 goto out;
941
942         e->eee_active = !!(reg & PORT_STATUS_EEE);
943 out:
944         mutex_unlock(&chip->reg_lock);
945
946         return err;
947 }
948
949 static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
950                              struct phy_device *phydev, struct ethtool_eee *e)
951 {
952         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
953         u16 reg;
954         int err;
955
956         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
957                 return -EOPNOTSUPP;
958
959         mutex_lock(&chip->reg_lock);
960
961         err = mv88e6xxx_phy_read(chip, port, 16, &reg);
962         if (err)
963                 goto out;
964
965         reg &= ~0x0300;
966         if (e->eee_enabled)
967                 reg |= 0x0200;
968         if (e->tx_lpi_enabled)
969                 reg |= 0x0100;
970
971         err = mv88e6xxx_phy_write(chip, port, 16, reg);
972 out:
973         mutex_unlock(&chip->reg_lock);
974
975         return err;
976 }
977
978 static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
979 {
980         int ret;
981
982         if (mv88e6xxx_has_fid_reg(chip)) {
983                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
984                                            fid);
985                 if (ret < 0)
986                         return ret;
987         } else if (mv88e6xxx_num_databases(chip) == 256) {
988                 /* ATU DBNum[7:4] are located in ATU Control 15:12 */
989                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
990                 if (ret < 0)
991                         return ret;
992
993                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
994                                            (ret & 0xfff) |
995                                            ((fid << 8) & 0xf000));
996                 if (ret < 0)
997                         return ret;
998
999                 /* ATU DBNum[3:0] are located in ATU Operation 3:0 */
1000                 cmd |= fid & 0xf;
1001         }
1002
1003         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1004         if (ret < 0)
1005                 return ret;
1006
1007         return _mv88e6xxx_atu_wait(chip);
1008 }
1009
1010 static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1011                                      struct mv88e6xxx_atu_entry *entry)
1012 {
1013         u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
1014
1015         if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1016                 unsigned int mask, shift;
1017
1018                 if (entry->trunk) {
1019                         data |= GLOBAL_ATU_DATA_TRUNK;
1020                         mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
1021                         shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
1022                 } else {
1023                         mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
1024                         shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
1025                 }
1026
1027                 data |= (entry->portv_trunkid << shift) & mask;
1028         }
1029
1030         return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1031 }
1032
1033 static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1034                                      struct mv88e6xxx_atu_entry *entry,
1035                                      bool static_too)
1036 {
1037         int op;
1038         int err;
1039
1040         err = _mv88e6xxx_atu_wait(chip);
1041         if (err)
1042                 return err;
1043
1044         err = _mv88e6xxx_atu_data_write(chip, entry);
1045         if (err)
1046                 return err;
1047
1048         if (entry->fid) {
1049                 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1050                         GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1051         } else {
1052                 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1053                         GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1054         }
1055
1056         return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1057 }
1058
1059 static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1060                                 u16 fid, bool static_too)
1061 {
1062         struct mv88e6xxx_atu_entry entry = {
1063                 .fid = fid,
1064                 .state = 0, /* EntryState bits must be 0 */
1065         };
1066
1067         return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1068 }
1069
1070 static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1071                                int from_port, int to_port, bool static_too)
1072 {
1073         struct mv88e6xxx_atu_entry entry = {
1074                 .trunk = false,
1075                 .fid = fid,
1076         };
1077
1078         /* EntryState bits must be 0xF */
1079         entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1080
1081         /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1082         entry.portv_trunkid = (to_port & 0x0f) << 4;
1083         entry.portv_trunkid |= from_port & 0x0f;
1084
1085         return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1086 }
1087
1088 static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1089                                  int port, bool static_too)
1090 {
1091         /* Destination port 0xF means remove the entries */
1092         return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1093 }
1094
1095 static const char * const mv88e6xxx_port_state_names[] = {
1096         [PORT_CONTROL_STATE_DISABLED] = "Disabled",
1097         [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1098         [PORT_CONTROL_STATE_LEARNING] = "Learning",
1099         [PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1100 };
1101
1102 static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1103                                  u8 state)
1104 {
1105         struct dsa_switch *ds = chip->ds;
1106         int reg, ret = 0;
1107         u8 oldstate;
1108
1109         reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1110         if (reg < 0)
1111                 return reg;
1112
1113         oldstate = reg & PORT_CONTROL_STATE_MASK;
1114
1115         if (oldstate != state) {
1116                 /* Flush forwarding database if we're moving a port
1117                  * from Learning or Forwarding state to Disabled or
1118                  * Blocking or Listening state.
1119                  */
1120                 if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1121                      oldstate == PORT_CONTROL_STATE_FORWARDING) &&
1122                     (state == PORT_CONTROL_STATE_DISABLED ||
1123                      state == PORT_CONTROL_STATE_BLOCKING)) {
1124                         ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1125                         if (ret)
1126                                 return ret;
1127                 }
1128
1129                 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1130                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1131                                            reg);
1132                 if (ret)
1133                         return ret;
1134
1135                 netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1136                            mv88e6xxx_port_state_names[state],
1137                            mv88e6xxx_port_state_names[oldstate]);
1138         }
1139
1140         return ret;
1141 }
1142
1143 static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1144 {
1145         struct net_device *bridge = chip->ports[port].bridge_dev;
1146         const u16 mask = (1 << chip->info->num_ports) - 1;
1147         struct dsa_switch *ds = chip->ds;
1148         u16 output_ports = 0;
1149         int reg;
1150         int i;
1151
1152         /* allow CPU port or DSA link(s) to send frames to every port */
1153         if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1154                 output_ports = mask;
1155         } else {
1156                 for (i = 0; i < chip->info->num_ports; ++i) {
1157                         /* allow sending frames to every group member */
1158                         if (bridge && chip->ports[i].bridge_dev == bridge)
1159                                 output_ports |= BIT(i);
1160
1161                         /* allow sending frames to CPU port and DSA link(s) */
1162                         if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1163                                 output_ports |= BIT(i);
1164                 }
1165         }
1166
1167         /* prevent frames from going back out of the port they came in on */
1168         output_ports &= ~BIT(port);
1169
1170         reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1171         if (reg < 0)
1172                 return reg;
1173
1174         reg &= ~mask;
1175         reg |= output_ports & mask;
1176
1177         return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1178 }
1179
1180 static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
1181                                          u8 state)
1182 {
1183         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1184         int stp_state;
1185         int err;
1186
1187         switch (state) {
1188         case BR_STATE_DISABLED:
1189                 stp_state = PORT_CONTROL_STATE_DISABLED;
1190                 break;
1191         case BR_STATE_BLOCKING:
1192         case BR_STATE_LISTENING:
1193                 stp_state = PORT_CONTROL_STATE_BLOCKING;
1194                 break;
1195         case BR_STATE_LEARNING:
1196                 stp_state = PORT_CONTROL_STATE_LEARNING;
1197                 break;
1198         case BR_STATE_FORWARDING:
1199         default:
1200                 stp_state = PORT_CONTROL_STATE_FORWARDING;
1201                 break;
1202         }
1203
1204         mutex_lock(&chip->reg_lock);
1205         err = _mv88e6xxx_port_state(chip, port, stp_state);
1206         mutex_unlock(&chip->reg_lock);
1207
1208         if (err)
1209                 netdev_err(ds->ports[port].netdev,
1210                            "failed to update state to %s\n",
1211                            mv88e6xxx_port_state_names[stp_state]);
1212 }
1213
1214 static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1215                                 u16 *new, u16 *old)
1216 {
1217         struct dsa_switch *ds = chip->ds;
1218         u16 pvid;
1219         int ret;
1220
1221         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1222         if (ret < 0)
1223                 return ret;
1224
1225         pvid = ret & PORT_DEFAULT_VLAN_MASK;
1226
1227         if (new) {
1228                 ret &= ~PORT_DEFAULT_VLAN_MASK;
1229                 ret |= *new & PORT_DEFAULT_VLAN_MASK;
1230
1231                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1232                                            PORT_DEFAULT_VLAN, ret);
1233                 if (ret < 0)
1234                         return ret;
1235
1236                 netdev_dbg(ds->ports[port].netdev,
1237                            "DefaultVID %d (was %d)\n", *new, pvid);
1238         }
1239
1240         if (old)
1241                 *old = pvid;
1242
1243         return 0;
1244 }
1245
1246 static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1247                                     int port, u16 *pvid)
1248 {
1249         return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1250 }
1251
1252 static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1253                                     int port, u16 pvid)
1254 {
1255         return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1256 }
1257
1258 static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1259 {
1260         return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1261                               GLOBAL_VTU_OP_BUSY);
1262 }
1263
1264 static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1265 {
1266         int ret;
1267
1268         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1269         if (ret < 0)
1270                 return ret;
1271
1272         return _mv88e6xxx_vtu_wait(chip);
1273 }
1274
1275 static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1276 {
1277         int ret;
1278
1279         ret = _mv88e6xxx_vtu_wait(chip);
1280         if (ret < 0)
1281                 return ret;
1282
1283         return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1284 }
1285
1286 static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1287                                         struct mv88e6xxx_vtu_stu_entry *entry,
1288                                         unsigned int nibble_offset)
1289 {
1290         u16 regs[3];
1291         int i;
1292         int ret;
1293
1294         for (i = 0; i < 3; ++i) {
1295                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1296                                           GLOBAL_VTU_DATA_0_3 + i);
1297                 if (ret < 0)
1298                         return ret;
1299
1300                 regs[i] = ret;
1301         }
1302
1303         for (i = 0; i < chip->info->num_ports; ++i) {
1304                 unsigned int shift = (i % 4) * 4 + nibble_offset;
1305                 u16 reg = regs[i / 4];
1306
1307                 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1308         }
1309
1310         return 0;
1311 }
1312
1313 static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1314                                    struct mv88e6xxx_vtu_stu_entry *entry)
1315 {
1316         return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1317 }
1318
1319 static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1320                                    struct mv88e6xxx_vtu_stu_entry *entry)
1321 {
1322         return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1323 }
1324
1325 static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1326                                          struct mv88e6xxx_vtu_stu_entry *entry,
1327                                          unsigned int nibble_offset)
1328 {
1329         u16 regs[3] = { 0 };
1330         int i;
1331         int ret;
1332
1333         for (i = 0; i < chip->info->num_ports; ++i) {
1334                 unsigned int shift = (i % 4) * 4 + nibble_offset;
1335                 u8 data = entry->data[i];
1336
1337                 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1338         }
1339
1340         for (i = 0; i < 3; ++i) {
1341                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1342                                            GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1343                 if (ret < 0)
1344                         return ret;
1345         }
1346
1347         return 0;
1348 }
1349
1350 static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1351                                     struct mv88e6xxx_vtu_stu_entry *entry)
1352 {
1353         return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1354 }
1355
1356 static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1357                                     struct mv88e6xxx_vtu_stu_entry *entry)
1358 {
1359         return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1360 }
1361
1362 static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1363 {
1364         return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1365                                     vid & GLOBAL_VTU_VID_MASK);
1366 }
1367
1368 static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1369                                   struct mv88e6xxx_vtu_stu_entry *entry)
1370 {
1371         struct mv88e6xxx_vtu_stu_entry next = { 0 };
1372         int ret;
1373
1374         ret = _mv88e6xxx_vtu_wait(chip);
1375         if (ret < 0)
1376                 return ret;
1377
1378         ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1379         if (ret < 0)
1380                 return ret;
1381
1382         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1383         if (ret < 0)
1384                 return ret;
1385
1386         next.vid = ret & GLOBAL_VTU_VID_MASK;
1387         next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1388
1389         if (next.valid) {
1390                 ret = mv88e6xxx_vtu_data_read(chip, &next);
1391                 if (ret < 0)
1392                         return ret;
1393
1394                 if (mv88e6xxx_has_fid_reg(chip)) {
1395                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1396                                                   GLOBAL_VTU_FID);
1397                         if (ret < 0)
1398                                 return ret;
1399
1400                         next.fid = ret & GLOBAL_VTU_FID_MASK;
1401                 } else if (mv88e6xxx_num_databases(chip) == 256) {
1402                         /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1403                          * VTU DBNum[3:0] are located in VTU Operation 3:0
1404                          */
1405                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1406                                                   GLOBAL_VTU_OP);
1407                         if (ret < 0)
1408                                 return ret;
1409
1410                         next.fid = (ret & 0xf00) >> 4;
1411                         next.fid |= ret & 0xf;
1412                 }
1413
1414                 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1415                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1416                                                   GLOBAL_VTU_SID);
1417                         if (ret < 0)
1418                                 return ret;
1419
1420                         next.sid = ret & GLOBAL_VTU_SID_MASK;
1421                 }
1422         }
1423
1424         *entry = next;
1425         return 0;
1426 }
1427
1428 static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1429                                     struct switchdev_obj_port_vlan *vlan,
1430                                     int (*cb)(struct switchdev_obj *obj))
1431 {
1432         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1433         struct mv88e6xxx_vtu_stu_entry next;
1434         u16 pvid;
1435         int err;
1436
1437         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1438                 return -EOPNOTSUPP;
1439
1440         mutex_lock(&chip->reg_lock);
1441
1442         err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1443         if (err)
1444                 goto unlock;
1445
1446         err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1447         if (err)
1448                 goto unlock;
1449
1450         do {
1451                 err = _mv88e6xxx_vtu_getnext(chip, &next);
1452                 if (err)
1453                         break;
1454
1455                 if (!next.valid)
1456                         break;
1457
1458                 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1459                         continue;
1460
1461                 /* reinit and dump this VLAN obj */
1462                 vlan->vid_begin = next.vid;
1463                 vlan->vid_end = next.vid;
1464                 vlan->flags = 0;
1465
1466                 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1467                         vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1468
1469                 if (next.vid == pvid)
1470                         vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1471
1472                 err = cb(&vlan->obj);
1473                 if (err)
1474                         break;
1475         } while (next.vid < GLOBAL_VTU_VID_MASK);
1476
1477 unlock:
1478         mutex_unlock(&chip->reg_lock);
1479
1480         return err;
1481 }
1482
1483 static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1484                                     struct mv88e6xxx_vtu_stu_entry *entry)
1485 {
1486         u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1487         u16 reg = 0;
1488         int ret;
1489
1490         ret = _mv88e6xxx_vtu_wait(chip);
1491         if (ret < 0)
1492                 return ret;
1493
1494         if (!entry->valid)
1495                 goto loadpurge;
1496
1497         /* Write port member tags */
1498         ret = mv88e6xxx_vtu_data_write(chip, entry);
1499         if (ret < 0)
1500                 return ret;
1501
1502         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1503                 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1504                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1505                                            reg);
1506                 if (ret < 0)
1507                         return ret;
1508         }
1509
1510         if (mv88e6xxx_has_fid_reg(chip)) {
1511                 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1512                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
1513                                            reg);
1514                 if (ret < 0)
1515                         return ret;
1516         } else if (mv88e6xxx_num_databases(chip) == 256) {
1517                 /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1518                  * VTU DBNum[3:0] are located in VTU Operation 3:0
1519                  */
1520                 op |= (entry->fid & 0xf0) << 8;
1521                 op |= entry->fid & 0xf;
1522         }
1523
1524         reg = GLOBAL_VTU_VID_VALID;
1525 loadpurge:
1526         reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1527         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1528         if (ret < 0)
1529                 return ret;
1530
1531         return _mv88e6xxx_vtu_cmd(chip, op);
1532 }
1533
1534 static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1535                                   struct mv88e6xxx_vtu_stu_entry *entry)
1536 {
1537         struct mv88e6xxx_vtu_stu_entry next = { 0 };
1538         int ret;
1539
1540         ret = _mv88e6xxx_vtu_wait(chip);
1541         if (ret < 0)
1542                 return ret;
1543
1544         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1545                                    sid & GLOBAL_VTU_SID_MASK);
1546         if (ret < 0)
1547                 return ret;
1548
1549         ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1550         if (ret < 0)
1551                 return ret;
1552
1553         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1554         if (ret < 0)
1555                 return ret;
1556
1557         next.sid = ret & GLOBAL_VTU_SID_MASK;
1558
1559         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1560         if (ret < 0)
1561                 return ret;
1562
1563         next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1564
1565         if (next.valid) {
1566                 ret = mv88e6xxx_stu_data_read(chip, &next);
1567                 if (ret < 0)
1568                         return ret;
1569         }
1570
1571         *entry = next;
1572         return 0;
1573 }
1574
1575 static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1576                                     struct mv88e6xxx_vtu_stu_entry *entry)
1577 {
1578         u16 reg = 0;
1579         int ret;
1580
1581         ret = _mv88e6xxx_vtu_wait(chip);
1582         if (ret < 0)
1583                 return ret;
1584
1585         if (!entry->valid)
1586                 goto loadpurge;
1587
1588         /* Write port states */
1589         ret = mv88e6xxx_stu_data_write(chip, entry);
1590         if (ret < 0)
1591                 return ret;
1592
1593         reg = GLOBAL_VTU_VID_VALID;
1594 loadpurge:
1595         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1596         if (ret < 0)
1597                 return ret;
1598
1599         reg = entry->sid & GLOBAL_VTU_SID_MASK;
1600         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1601         if (ret < 0)
1602                 return ret;
1603
1604         return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1605 }
1606
1607 static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1608                                u16 *new, u16 *old)
1609 {
1610         struct dsa_switch *ds = chip->ds;
1611         u16 upper_mask;
1612         u16 fid;
1613         int ret;
1614
1615         if (mv88e6xxx_num_databases(chip) == 4096)
1616                 upper_mask = 0xff;
1617         else if (mv88e6xxx_num_databases(chip) == 256)
1618                 upper_mask = 0xf;
1619         else
1620                 return -EOPNOTSUPP;
1621
1622         /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1623         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1624         if (ret < 0)
1625                 return ret;
1626
1627         fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1628
1629         if (new) {
1630                 ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1631                 ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1632
1633                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1634                                            ret);
1635                 if (ret < 0)
1636                         return ret;
1637         }
1638
1639         /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1640         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1641         if (ret < 0)
1642                 return ret;
1643
1644         fid |= (ret & upper_mask) << 4;
1645
1646         if (new) {
1647                 ret &= ~upper_mask;
1648                 ret |= (*new >> 4) & upper_mask;
1649
1650                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1651                                            ret);
1652                 if (ret < 0)
1653                         return ret;
1654
1655                 netdev_dbg(ds->ports[port].netdev,
1656                            "FID %d (was %d)\n", *new, fid);
1657         }
1658
1659         if (old)
1660                 *old = fid;
1661
1662         return 0;
1663 }
1664
1665 static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1666                                    int port, u16 *fid)
1667 {
1668         return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1669 }
1670
1671 static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1672                                    int port, u16 fid)
1673 {
1674         return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1675 }
1676
1677 static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1678 {
1679         DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1680         struct mv88e6xxx_vtu_stu_entry vlan;
1681         int i, err;
1682
1683         bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1684
1685         /* Set every FID bit used by the (un)bridged ports */
1686         for (i = 0; i < chip->info->num_ports; ++i) {
1687                 err = _mv88e6xxx_port_fid_get(chip, i, fid);
1688                 if (err)
1689                         return err;
1690
1691                 set_bit(*fid, fid_bitmap);
1692         }
1693
1694         /* Set every FID bit used by the VLAN entries */
1695         err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1696         if (err)
1697                 return err;
1698
1699         do {
1700                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1701                 if (err)
1702                         return err;
1703
1704                 if (!vlan.valid)
1705                         break;
1706
1707                 set_bit(vlan.fid, fid_bitmap);
1708         } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1709
1710         /* The reset value 0x000 is used to indicate that multiple address
1711          * databases are not needed. Return the next positive available.
1712          */
1713         *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1714         if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1715                 return -ENOSPC;
1716
1717         /* Clear the database */
1718         return _mv88e6xxx_atu_flush(chip, *fid, true);
1719 }
1720
1721 static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1722                               struct mv88e6xxx_vtu_stu_entry *entry)
1723 {
1724         struct dsa_switch *ds = chip->ds;
1725         struct mv88e6xxx_vtu_stu_entry vlan = {
1726                 .valid = true,
1727                 .vid = vid,
1728         };
1729         int i, err;
1730
1731         err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1732         if (err)
1733                 return err;
1734
1735         /* exclude all ports except the CPU and DSA ports */
1736         for (i = 0; i < chip->info->num_ports; ++i)
1737                 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1738                         ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1739                         : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1740
1741         if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
1742             mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1743                 struct mv88e6xxx_vtu_stu_entry vstp;
1744
1745                 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1746                  * implemented, only one STU entry is needed to cover all VTU
1747                  * entries. Thus, validate the SID 0.
1748                  */
1749                 vlan.sid = 0;
1750                 err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1751                 if (err)
1752                         return err;
1753
1754                 if (vstp.sid != vlan.sid || !vstp.valid) {
1755                         memset(&vstp, 0, sizeof(vstp));
1756                         vstp.valid = true;
1757                         vstp.sid = vlan.sid;
1758
1759                         err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1760                         if (err)
1761                                 return err;
1762                 }
1763         }
1764
1765         *entry = vlan;
1766         return 0;
1767 }
1768
1769 static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1770                               struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1771 {
1772         int err;
1773
1774         if (!vid)
1775                 return -EINVAL;
1776
1777         err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1778         if (err)
1779                 return err;
1780
1781         err = _mv88e6xxx_vtu_getnext(chip, entry);
1782         if (err)
1783                 return err;
1784
1785         if (entry->vid != vid || !entry->valid) {
1786                 if (!creat)
1787                         return -EOPNOTSUPP;
1788                 /* -ENOENT would've been more appropriate, but switchdev expects
1789                  * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1790                  */
1791
1792                 err = _mv88e6xxx_vtu_new(chip, vid, entry);
1793         }
1794
1795         return err;
1796 }
1797
1798 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1799                                         u16 vid_begin, u16 vid_end)
1800 {
1801         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1802         struct mv88e6xxx_vtu_stu_entry vlan;
1803         int i, err;
1804
1805         if (!vid_begin)
1806                 return -EOPNOTSUPP;
1807
1808         mutex_lock(&chip->reg_lock);
1809
1810         err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1811         if (err)
1812                 goto unlock;
1813
1814         do {
1815                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1816                 if (err)
1817                         goto unlock;
1818
1819                 if (!vlan.valid)
1820                         break;
1821
1822                 if (vlan.vid > vid_end)
1823                         break;
1824
1825                 for (i = 0; i < chip->info->num_ports; ++i) {
1826                         if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1827                                 continue;
1828
1829                         if (vlan.data[i] ==
1830                             GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1831                                 continue;
1832
1833                         if (chip->ports[i].bridge_dev ==
1834                             chip->ports[port].bridge_dev)
1835                                 break; /* same bridge, check next VLAN */
1836
1837                         netdev_warn(ds->ports[port].netdev,
1838                                     "hardware VLAN %d already used by %s\n",
1839                                     vlan.vid,
1840                                     netdev_name(chip->ports[i].bridge_dev));
1841                         err = -EOPNOTSUPP;
1842                         goto unlock;
1843                 }
1844         } while (vlan.vid < vid_end);
1845
1846 unlock:
1847         mutex_unlock(&chip->reg_lock);
1848
1849         return err;
1850 }
1851
1852 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1853         [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1854         [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1855         [PORT_CONTROL_2_8021Q_CHECK] = "Check",
1856         [PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1857 };
1858
1859 static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1860                                          bool vlan_filtering)
1861 {
1862         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1863         u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1864                 PORT_CONTROL_2_8021Q_DISABLED;
1865         int ret;
1866
1867         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1868                 return -EOPNOTSUPP;
1869
1870         mutex_lock(&chip->reg_lock);
1871
1872         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1873         if (ret < 0)
1874                 goto unlock;
1875
1876         old = ret & PORT_CONTROL_2_8021Q_MASK;
1877
1878         if (new != old) {
1879                 ret &= ~PORT_CONTROL_2_8021Q_MASK;
1880                 ret |= new & PORT_CONTROL_2_8021Q_MASK;
1881
1882                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1883                                            ret);
1884                 if (ret < 0)
1885                         goto unlock;
1886
1887                 netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1888                            mv88e6xxx_port_8021q_mode_names[new],
1889                            mv88e6xxx_port_8021q_mode_names[old]);
1890         }
1891
1892         ret = 0;
1893 unlock:
1894         mutex_unlock(&chip->reg_lock);
1895
1896         return ret;
1897 }
1898
1899 static int
1900 mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1901                             const struct switchdev_obj_port_vlan *vlan,
1902                             struct switchdev_trans *trans)
1903 {
1904         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1905         int err;
1906
1907         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1908                 return -EOPNOTSUPP;
1909
1910         /* If the requested port doesn't belong to the same bridge as the VLAN
1911          * members, do not support it (yet) and fallback to software VLAN.
1912          */
1913         err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1914                                            vlan->vid_end);
1915         if (err)
1916                 return err;
1917
1918         /* We don't need any dynamic resource from the kernel (yet),
1919          * so skip the prepare phase.
1920          */
1921         return 0;
1922 }
1923
1924 static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1925                                     u16 vid, bool untagged)
1926 {
1927         struct mv88e6xxx_vtu_stu_entry vlan;
1928         int err;
1929
1930         err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1931         if (err)
1932                 return err;
1933
1934         vlan.data[port] = untagged ?
1935                 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1936                 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1937
1938         return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1939 }
1940
1941 static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1942                                     const struct switchdev_obj_port_vlan *vlan,
1943                                     struct switchdev_trans *trans)
1944 {
1945         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1946         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1947         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1948         u16 vid;
1949
1950         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1951                 return;
1952
1953         mutex_lock(&chip->reg_lock);
1954
1955         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1956                 if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1957                         netdev_err(ds->ports[port].netdev,
1958                                    "failed to add VLAN %d%c\n",
1959                                    vid, untagged ? 'u' : 't');
1960
1961         if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1962                 netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1963                            vlan->vid_end);
1964
1965         mutex_unlock(&chip->reg_lock);
1966 }
1967
1968 static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1969                                     int port, u16 vid)
1970 {
1971         struct dsa_switch *ds = chip->ds;
1972         struct mv88e6xxx_vtu_stu_entry vlan;
1973         int i, err;
1974
1975         err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1976         if (err)
1977                 return err;
1978
1979         /* Tell switchdev if this VLAN is handled in software */
1980         if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1981                 return -EOPNOTSUPP;
1982
1983         vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1984
1985         /* keep the VLAN unless all ports are excluded */
1986         vlan.valid = false;
1987         for (i = 0; i < chip->info->num_ports; ++i) {
1988                 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1989                         continue;
1990
1991                 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1992                         vlan.valid = true;
1993                         break;
1994                 }
1995         }
1996
1997         err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1998         if (err)
1999                 return err;
2000
2001         return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2002 }
2003
2004 static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
2005                                    const struct switchdev_obj_port_vlan *vlan)
2006 {
2007         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2008         u16 pvid, vid;
2009         int err = 0;
2010
2011         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2012                 return -EOPNOTSUPP;
2013
2014         mutex_lock(&chip->reg_lock);
2015
2016         err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2017         if (err)
2018                 goto unlock;
2019
2020         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2021                 err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2022                 if (err)
2023                         goto unlock;
2024
2025                 if (vid == pvid) {
2026                         err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2027                         if (err)
2028                                 goto unlock;
2029                 }
2030         }
2031
2032 unlock:
2033         mutex_unlock(&chip->reg_lock);
2034
2035         return err;
2036 }
2037
2038 static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2039                                     const unsigned char *addr)
2040 {
2041         int i, ret;
2042
2043         for (i = 0; i < 3; i++) {
2044                 ret = _mv88e6xxx_reg_write(
2045                         chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2046                         (addr[i * 2] << 8) | addr[i * 2 + 1]);
2047                 if (ret < 0)
2048                         return ret;
2049         }
2050
2051         return 0;
2052 }
2053
2054 static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2055                                    unsigned char *addr)
2056 {
2057         int i, ret;
2058
2059         for (i = 0; i < 3; i++) {
2060                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2061                                           GLOBAL_ATU_MAC_01 + i);
2062                 if (ret < 0)
2063                         return ret;
2064                 addr[i * 2] = ret >> 8;
2065                 addr[i * 2 + 1] = ret & 0xff;
2066         }
2067
2068         return 0;
2069 }
2070
2071 static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2072                                struct mv88e6xxx_atu_entry *entry)
2073 {
2074         int ret;
2075
2076         ret = _mv88e6xxx_atu_wait(chip);
2077         if (ret < 0)
2078                 return ret;
2079
2080         ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2081         if (ret < 0)
2082                 return ret;
2083
2084         ret = _mv88e6xxx_atu_data_write(chip, entry);
2085         if (ret < 0)
2086                 return ret;
2087
2088         return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2089 }
2090
2091 static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2092                                     const unsigned char *addr, u16 vid,
2093                                     u8 state)
2094 {
2095         struct mv88e6xxx_atu_entry entry = { 0 };
2096         struct mv88e6xxx_vtu_stu_entry vlan;
2097         int err;
2098
2099         /* Null VLAN ID corresponds to the port private database */
2100         if (vid == 0)
2101                 err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2102         else
2103                 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2104         if (err)
2105                 return err;
2106
2107         entry.fid = vlan.fid;
2108         entry.state = state;
2109         ether_addr_copy(entry.mac, addr);
2110         if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2111                 entry.trunk = false;
2112                 entry.portv_trunkid = BIT(port);
2113         }
2114
2115         return _mv88e6xxx_atu_load(chip, &entry);
2116 }
2117
2118 static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2119                                       const struct switchdev_obj_port_fdb *fdb,
2120                                       struct switchdev_trans *trans)
2121 {
2122         /* We don't need any dynamic resource from the kernel (yet),
2123          * so skip the prepare phase.
2124          */
2125         return 0;
2126 }
2127
2128 static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2129                                    const struct switchdev_obj_port_fdb *fdb,
2130                                    struct switchdev_trans *trans)
2131 {
2132         int state = is_multicast_ether_addr(fdb->addr) ?
2133                 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2134                 GLOBAL_ATU_DATA_STATE_UC_STATIC;
2135         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2136
2137         mutex_lock(&chip->reg_lock);
2138         if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2139                 netdev_err(ds->ports[port].netdev,
2140                            "failed to load MAC address\n");
2141         mutex_unlock(&chip->reg_lock);
2142 }
2143
2144 static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2145                                   const struct switchdev_obj_port_fdb *fdb)
2146 {
2147         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2148         int ret;
2149
2150         mutex_lock(&chip->reg_lock);
2151         ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2152                                        GLOBAL_ATU_DATA_STATE_UNUSED);
2153         mutex_unlock(&chip->reg_lock);
2154
2155         return ret;
2156 }
2157
2158 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2159                                   struct mv88e6xxx_atu_entry *entry)
2160 {
2161         struct mv88e6xxx_atu_entry next = { 0 };
2162         int ret;
2163
2164         next.fid = fid;
2165
2166         ret = _mv88e6xxx_atu_wait(chip);
2167         if (ret < 0)
2168                 return ret;
2169
2170         ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2171         if (ret < 0)
2172                 return ret;
2173
2174         ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2175         if (ret < 0)
2176                 return ret;
2177
2178         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2179         if (ret < 0)
2180                 return ret;
2181
2182         next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2183         if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2184                 unsigned int mask, shift;
2185
2186                 if (ret & GLOBAL_ATU_DATA_TRUNK) {
2187                         next.trunk = true;
2188                         mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2189                         shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2190                 } else {
2191                         next.trunk = false;
2192                         mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2193                         shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2194                 }
2195
2196                 next.portv_trunkid = (ret & mask) >> shift;
2197         }
2198
2199         *entry = next;
2200         return 0;
2201 }
2202
2203 static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2204                                         u16 fid, u16 vid, int port,
2205                                         struct switchdev_obj_port_fdb *fdb,
2206                                         int (*cb)(struct switchdev_obj *obj))
2207 {
2208         struct mv88e6xxx_atu_entry addr = {
2209                 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2210         };
2211         int err;
2212
2213         err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2214         if (err)
2215                 return err;
2216
2217         do {
2218                 err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2219                 if (err)
2220                         break;
2221
2222                 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2223                         break;
2224
2225                 if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
2226                         bool is_static = addr.state ==
2227                                 (is_multicast_ether_addr(addr.mac) ?
2228                                  GLOBAL_ATU_DATA_STATE_MC_STATIC :
2229                                  GLOBAL_ATU_DATA_STATE_UC_STATIC);
2230
2231                         fdb->vid = vid;
2232                         ether_addr_copy(fdb->addr, addr.mac);
2233                         fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
2234
2235                         err = cb(&fdb->obj);
2236                         if (err)
2237                                 break;
2238                 }
2239         } while (!is_broadcast_ether_addr(addr.mac));
2240
2241         return err;
2242 }
2243
2244 static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2245                                    struct switchdev_obj_port_fdb *fdb,
2246                                    int (*cb)(struct switchdev_obj *obj))
2247 {
2248         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2249         struct mv88e6xxx_vtu_stu_entry vlan = {
2250                 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
2251         };
2252         u16 fid;
2253         int err;
2254
2255         mutex_lock(&chip->reg_lock);
2256
2257         /* Dump port's default Filtering Information Database (VLAN ID 0) */
2258         err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2259         if (err)
2260                 goto unlock;
2261
2262         err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2263         if (err)
2264                 goto unlock;
2265
2266         /* Dump VLANs' Filtering Information Databases */
2267         err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2268         if (err)
2269                 goto unlock;
2270
2271         do {
2272                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2273                 if (err)
2274                         break;
2275
2276                 if (!vlan.valid)
2277                         break;
2278
2279                 err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
2280                                                    port, fdb, cb);
2281                 if (err)
2282                         break;
2283         } while (vlan.vid < GLOBAL_VTU_VID_MASK);
2284
2285 unlock:
2286         mutex_unlock(&chip->reg_lock);
2287
2288         return err;
2289 }
2290
2291 static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2292                                       struct net_device *bridge)
2293 {
2294         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2295         int i, err = 0;
2296
2297         mutex_lock(&chip->reg_lock);
2298
2299         /* Assign the bridge and remap each port's VLANTable */
2300         chip->ports[port].bridge_dev = bridge;
2301
2302         for (i = 0; i < chip->info->num_ports; ++i) {
2303                 if (chip->ports[i].bridge_dev == bridge) {
2304                         err = _mv88e6xxx_port_based_vlan_map(chip, i);
2305                         if (err)
2306                                 break;
2307                 }
2308         }
2309
2310         mutex_unlock(&chip->reg_lock);
2311
2312         return err;
2313 }
2314
2315 static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2316 {
2317         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2318         struct net_device *bridge = chip->ports[port].bridge_dev;
2319         int i;
2320
2321         mutex_lock(&chip->reg_lock);
2322
2323         /* Unassign the bridge and remap each port's VLANTable */
2324         chip->ports[port].bridge_dev = NULL;
2325
2326         for (i = 0; i < chip->info->num_ports; ++i)
2327                 if (i == port || chip->ports[i].bridge_dev == bridge)
2328                         if (_mv88e6xxx_port_based_vlan_map(chip, i))
2329                                 netdev_warn(ds->ports[i].netdev,
2330                                             "failed to remap\n");
2331
2332         mutex_unlock(&chip->reg_lock);
2333 }
2334
2335 static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2336 {
2337         bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2338         u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2339         struct gpio_desc *gpiod = chip->reset;
2340         unsigned long timeout;
2341         int ret;
2342         int i;
2343
2344         /* Set all ports to the disabled state. */
2345         for (i = 0; i < chip->info->num_ports; i++) {
2346                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2347                 if (ret < 0)
2348                         return ret;
2349
2350                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2351                                            ret & 0xfffc);
2352                 if (ret)
2353                         return ret;
2354         }
2355
2356         /* Wait for transmit queues to drain. */
2357         usleep_range(2000, 4000);
2358
2359         /* If there is a gpio connected to the reset pin, toggle it */
2360         if (gpiod) {
2361                 gpiod_set_value_cansleep(gpiod, 1);
2362                 usleep_range(10000, 20000);
2363                 gpiod_set_value_cansleep(gpiod, 0);
2364                 usleep_range(10000, 20000);
2365         }
2366
2367         /* Reset the switch. Keep the PPU active if requested. The PPU
2368          * needs to be active to support indirect phy register access
2369          * through global registers 0x18 and 0x19.
2370          */
2371         if (ppu_active)
2372                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2373         else
2374                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2375         if (ret)
2376                 return ret;
2377
2378         /* Wait up to one second for reset to complete. */
2379         timeout = jiffies + 1 * HZ;
2380         while (time_before(jiffies, timeout)) {
2381                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2382                 if (ret < 0)
2383                         return ret;
2384
2385                 if ((ret & is_reset) == is_reset)
2386                         break;
2387                 usleep_range(1000, 2000);
2388         }
2389         if (time_after(jiffies, timeout))
2390                 ret = -ETIMEDOUT;
2391         else
2392                 ret = 0;
2393
2394         return ret;
2395 }
2396
2397 static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2398 {
2399         u16 val;
2400         int err;
2401
2402         /* Clear Power Down bit */
2403         err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
2404         if (err)
2405                 return err;
2406
2407         if (val & BMCR_PDOWN) {
2408                 val &= ~BMCR_PDOWN;
2409                 err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2410         }
2411
2412         return err;
2413 }
2414
2415 static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
2416                                int reg, u16 *val)
2417 {
2418         int addr = chip->info->port_base_addr + port;
2419
2420         if (port >= chip->info->num_ports)
2421                 return -EINVAL;
2422
2423         return mv88e6xxx_read(chip, addr, reg, val);
2424 }
2425
2426 static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2427 {
2428         struct dsa_switch *ds = chip->ds;
2429         int ret;
2430         u16 reg;
2431
2432         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2433             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2434             mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2435             mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2436                 /* MAC Forcing register: don't force link, speed,
2437                  * duplex or flow control state to any particular
2438                  * values on physical ports, but force the CPU port
2439                  * and all DSA ports to their maximum bandwidth and
2440                  * full duplex.
2441                  */
2442                 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2443                 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2444                         reg &= ~PORT_PCS_CTRL_UNFORCED;
2445                         reg |= PORT_PCS_CTRL_FORCE_LINK |
2446                                 PORT_PCS_CTRL_LINK_UP |
2447                                 PORT_PCS_CTRL_DUPLEX_FULL |
2448                                 PORT_PCS_CTRL_FORCE_DUPLEX;
2449                         if (mv88e6xxx_6065_family(chip))
2450                                 reg |= PORT_PCS_CTRL_100;
2451                         else
2452                                 reg |= PORT_PCS_CTRL_1000;
2453                 } else {
2454                         reg |= PORT_PCS_CTRL_UNFORCED;
2455                 }
2456
2457                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2458                                            PORT_PCS_CTRL, reg);
2459                 if (ret)
2460                         return ret;
2461         }
2462
2463         /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2464          * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2465          * tunneling, determine priority by looking at 802.1p and IP
2466          * priority fields (IP prio has precedence), and set STP state
2467          * to Forwarding.
2468          *
2469          * If this is the CPU link, use DSA or EDSA tagging depending
2470          * on which tagging mode was configured.
2471          *
2472          * If this is a link to another switch, use DSA tagging mode.
2473          *
2474          * If this is the upstream port for this switch, enable
2475          * forwarding of unknown unicasts and multicasts.
2476          */
2477         reg = 0;
2478         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2479             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2480             mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
2481             mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2482                 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2483                 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2484                 PORT_CONTROL_STATE_FORWARDING;
2485         if (dsa_is_cpu_port(ds, port)) {
2486                 if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2487                         reg |= PORT_CONTROL_DSA_TAG;
2488                 if (mv88e6xxx_6352_family(chip) ||
2489                     mv88e6xxx_6351_family(chip) ||
2490                     mv88e6xxx_6165_family(chip) ||
2491                     mv88e6xxx_6097_family(chip) ||
2492                     mv88e6xxx_6320_family(chip)) {
2493                         reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2494                                 PORT_CONTROL_FORWARD_UNKNOWN |
2495                                 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2496                 }
2497
2498                 if (mv88e6xxx_6352_family(chip) ||
2499                     mv88e6xxx_6351_family(chip) ||
2500                     mv88e6xxx_6165_family(chip) ||
2501                     mv88e6xxx_6097_family(chip) ||
2502                     mv88e6xxx_6095_family(chip) ||
2503                     mv88e6xxx_6065_family(chip) ||
2504                     mv88e6xxx_6185_family(chip) ||
2505                     mv88e6xxx_6320_family(chip)) {
2506                         reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2507                 }
2508         }
2509         if (dsa_is_dsa_port(ds, port)) {
2510                 if (mv88e6xxx_6095_family(chip) ||
2511                     mv88e6xxx_6185_family(chip))
2512                         reg |= PORT_CONTROL_DSA_TAG;
2513                 if (mv88e6xxx_6352_family(chip) ||
2514                     mv88e6xxx_6351_family(chip) ||
2515                     mv88e6xxx_6165_family(chip) ||
2516                     mv88e6xxx_6097_family(chip) ||
2517                     mv88e6xxx_6320_family(chip)) {
2518                         reg |= PORT_CONTROL_FRAME_MODE_DSA;
2519                 }
2520
2521                 if (port == dsa_upstream_port(ds))
2522                         reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2523                                 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2524         }
2525         if (reg) {
2526                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2527                                            PORT_CONTROL, reg);
2528                 if (ret)
2529                         return ret;
2530         }
2531
2532         /* If this port is connected to a SerDes, make sure the SerDes is not
2533          * powered down.
2534          */
2535         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2536                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2537                 if (ret < 0)
2538                         return ret;
2539                 ret &= PORT_STATUS_CMODE_MASK;
2540                 if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
2541                     (ret == PORT_STATUS_CMODE_1000BASE_X) ||
2542                     (ret == PORT_STATUS_CMODE_SGMII)) {
2543                         ret = mv88e6xxx_serdes_power_on(chip);
2544                         if (ret < 0)
2545                                 return ret;
2546                 }
2547         }
2548
2549         /* Port Control 2: don't force a good FCS, set the maximum frame size to
2550          * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2551          * untagged frames on this port, do a destination address lookup on all
2552          * received packets as usual, disable ARP mirroring and don't send a
2553          * copy of all transmitted/received frames on this port to the CPU.
2554          */
2555         reg = 0;
2556         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2557             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2558             mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
2559             mv88e6xxx_6185_family(chip))
2560                 reg = PORT_CONTROL_2_MAP_DA;
2561
2562         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2563             mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2564                 reg |= PORT_CONTROL_2_JUMBO_10240;
2565
2566         if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2567                 /* Set the upstream port this port should use */
2568                 reg |= dsa_upstream_port(ds);
2569                 /* enable forwarding of unknown multicast addresses to
2570                  * the upstream port
2571                  */
2572                 if (port == dsa_upstream_port(ds))
2573                         reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2574         }
2575
2576         reg |= PORT_CONTROL_2_8021Q_DISABLED;
2577
2578         if (reg) {
2579                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2580                                            PORT_CONTROL_2, reg);
2581                 if (ret)
2582                         return ret;
2583         }
2584
2585         /* Port Association Vector: when learning source addresses
2586          * of packets, add the address to the address database using
2587          * a port bitmap that has only the bit for this port set and
2588          * the other bits clear.
2589          */
2590         reg = 1 << port;
2591         /* Disable learning for CPU port */
2592         if (dsa_is_cpu_port(ds, port))
2593                 reg = 0;
2594
2595         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
2596                                    reg);
2597         if (ret)
2598                 return ret;
2599
2600         /* Egress rate control 2: disable egress rate control. */
2601         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2602                                    0x0000);
2603         if (ret)
2604                 return ret;
2605
2606         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2607             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2608             mv88e6xxx_6320_family(chip)) {
2609                 /* Do not limit the period of time that this port can
2610                  * be paused for by the remote end or the period of
2611                  * time that this port can pause the remote end.
2612                  */
2613                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2614                                            PORT_PAUSE_CTRL, 0x0000);
2615                 if (ret)
2616                         return ret;
2617
2618                 /* Port ATU control: disable limiting the number of
2619                  * address database entries that this port is allowed
2620                  * to use.
2621                  */
2622                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2623                                            PORT_ATU_CONTROL, 0x0000);
2624                 /* Priority Override: disable DA, SA and VTU priority
2625                  * override.
2626                  */
2627                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2628                                            PORT_PRI_OVERRIDE, 0x0000);
2629                 if (ret)
2630                         return ret;
2631
2632                 /* Port Ethertype: use the Ethertype DSA Ethertype
2633                  * value.
2634                  */
2635                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2636                                            PORT_ETH_TYPE, ETH_P_EDSA);
2637                 if (ret)
2638                         return ret;
2639                 /* Tag Remap: use an identity 802.1p prio -> switch
2640                  * prio mapping.
2641                  */
2642                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2643                                            PORT_TAG_REGMAP_0123, 0x3210);
2644                 if (ret)
2645                         return ret;
2646
2647                 /* Tag Remap 2: use an identity 802.1p prio -> switch
2648                  * prio mapping.
2649                  */
2650                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2651                                            PORT_TAG_REGMAP_4567, 0x7654);
2652                 if (ret)
2653                         return ret;
2654         }
2655
2656         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2657             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2658             mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2659             mv88e6xxx_6320_family(chip)) {
2660                 /* Rate Control: disable ingress rate limiting. */
2661                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2662                                            PORT_RATE_CONTROL, 0x0001);
2663                 if (ret)
2664                         return ret;
2665         }
2666
2667         /* Port Control 1: disable trunking, disable sending
2668          * learning messages to this port.
2669          */
2670         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
2671                                    0x0000);
2672         if (ret)
2673                 return ret;
2674
2675         /* Port based VLAN map: give each port the same default address
2676          * database, and allow bidirectional communication between the
2677          * CPU and DSA port(s), and the other ports.
2678          */
2679         ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2680         if (ret)
2681                 return ret;
2682
2683         ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2684         if (ret)
2685                 return ret;
2686
2687         /* Default VLAN ID and priority: don't set a default VLAN
2688          * ID, and set the default packet priority to zero.
2689          */
2690         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2691                                    0x0000);
2692         if (ret)
2693                 return ret;
2694
2695         return 0;
2696 }
2697
2698 static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2699 {
2700         int err;
2701
2702         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
2703                               (addr[0] << 8) | addr[1]);
2704         if (err)
2705                 return err;
2706
2707         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
2708                               (addr[2] << 8) | addr[3]);
2709         if (err)
2710                 return err;
2711
2712         return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
2713                                (addr[4] << 8) | addr[5]);
2714 }
2715
2716 static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
2717                                      unsigned int msecs)
2718 {
2719         const unsigned int coeff = chip->info->age_time_coeff;
2720         const unsigned int min = 0x01 * coeff;
2721         const unsigned int max = 0xff * coeff;
2722         u8 age_time;
2723         u16 val;
2724         int err;
2725
2726         if (msecs < min || msecs > max)
2727                 return -ERANGE;
2728
2729         /* Round to nearest multiple of coeff */
2730         age_time = (msecs + coeff / 2) / coeff;
2731
2732         err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
2733         if (err)
2734                 return err;
2735
2736         /* AgeTime is 11:4 bits */
2737         val &= ~0xff0;
2738         val |= age_time << 4;
2739
2740         return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
2741 }
2742
2743 static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
2744                                      unsigned int ageing_time)
2745 {
2746         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2747         int err;
2748
2749         mutex_lock(&chip->reg_lock);
2750         err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
2751         mutex_unlock(&chip->reg_lock);
2752
2753         return err;
2754 }
2755
2756 static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2757 {
2758         struct dsa_switch *ds = chip->ds;
2759         u32 upstream_port = dsa_upstream_port(ds);
2760         u16 reg;
2761         int err;
2762
2763         /* Enable the PHY Polling Unit if present, don't discard any packets,
2764          * and mask all interrupt sources.
2765          */
2766         reg = 0;
2767         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
2768             mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2769                 reg |= GLOBAL_CONTROL_PPU_ENABLE;
2770
2771         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2772         if (err)
2773                 return err;
2774
2775         /* Configure the upstream port, and configure it as the port to which
2776          * ingress and egress and ARP monitor frames are to be sent.
2777          */
2778         reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
2779                 upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
2780                 upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2781         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
2782                                    reg);
2783         if (err)
2784                 return err;
2785
2786         /* Disable remote management, and set the switch's DSA device number. */
2787         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2788                                    GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
2789                                    (ds->index & 0x1f));
2790         if (err)
2791                 return err;
2792
2793         /* Clear all the VTU and STU entries */
2794         err = _mv88e6xxx_vtu_stu_flush(chip);
2795         if (err < 0)
2796                 return err;
2797
2798         /* Set the default address aging time to 5 minutes, and
2799          * enable address learn messages to be sent to all message
2800          * ports.
2801          */
2802         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
2803                               GLOBAL_ATU_CONTROL_LEARN2ALL);
2804         if (err)
2805                 return err;
2806
2807         err = mv88e6xxx_g1_set_age_time(chip, 300000);
2808         if (err)
2809                 return err;
2810
2811         /* Clear all ATU entries */
2812         err = _mv88e6xxx_atu_flush(chip, 0, true);
2813         if (err)
2814                 return err;
2815
2816         /* Configure the IP ToS mapping registers. */
2817         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2818         if (err)
2819                 return err;
2820         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2821         if (err)
2822                 return err;
2823         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2824         if (err)
2825                 return err;
2826         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2827         if (err)
2828                 return err;
2829         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2830         if (err)
2831                 return err;
2832         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2833         if (err)
2834                 return err;
2835         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2836         if (err)
2837                 return err;
2838         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2839         if (err)
2840                 return err;
2841
2842         /* Configure the IEEE 802.1p priority mapping register. */
2843         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2844         if (err)
2845                 return err;
2846
2847         /* Clear the statistics counters for all ports */
2848         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
2849                                    GLOBAL_STATS_OP_FLUSH_ALL);
2850         if (err)
2851                 return err;
2852
2853         /* Wait for the flush to complete. */
2854         err = _mv88e6xxx_stats_wait(chip);
2855         if (err)
2856                 return err;
2857
2858         return 0;
2859 }
2860
2861 static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
2862                                              int target, int port)
2863 {
2864         u16 val = (target << 8) | (port & 0xf);
2865
2866         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
2867 }
2868
2869 static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
2870 {
2871         int target, port;
2872         int err;
2873
2874         /* Initialize the routing port to the 32 possible target devices */
2875         for (target = 0; target < 32; ++target) {
2876                 port = 0xf;
2877
2878                 if (target < DSA_MAX_SWITCHES) {
2879                         port = chip->ds->rtable[target];
2880                         if (port == DSA_RTABLE_NONE)
2881                                 port = 0xf;
2882                 }
2883
2884                 err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
2885                 if (err)
2886                         break;
2887         }
2888
2889         return err;
2890 }
2891
2892 static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
2893                                          bool hask, u16 mask)
2894 {
2895         const u16 port_mask = BIT(chip->info->num_ports) - 1;
2896         u16 val = (num << 12) | (mask & port_mask);
2897
2898         if (hask)
2899                 val |= GLOBAL2_TRUNK_MASK_HASK;
2900
2901         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
2902 }
2903
2904 static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
2905                                             u16 map)
2906 {
2907         const u16 port_mask = BIT(chip->info->num_ports) - 1;
2908         u16 val = (id << 11) | (map & port_mask);
2909
2910         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
2911 }
2912
2913 static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
2914 {
2915         const u16 port_mask = BIT(chip->info->num_ports) - 1;
2916         int i, err;
2917
2918         /* Clear all eight possible Trunk Mask vectors */
2919         for (i = 0; i < 8; ++i) {
2920                 err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
2921                 if (err)
2922                         return err;
2923         }
2924
2925         /* Clear all sixteen possible Trunk ID routing vectors */
2926         for (i = 0; i < 16; ++i) {
2927                 err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
2928                 if (err)
2929                         return err;
2930         }
2931
2932         return 0;
2933 }
2934
2935 static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
2936 {
2937         int port, err;
2938
2939         /* Init all Ingress Rate Limit resources of all ports */
2940         for (port = 0; port < chip->info->num_ports; ++port) {
2941                 /* XXX newer chips (like 88E6390) have different 2-bit ops */
2942                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2943                                       GLOBAL2_IRL_CMD_OP_INIT_ALL |
2944                                       (port << 8));
2945                 if (err)
2946                         break;
2947
2948                 /* Wait for the operation to complete */
2949                 err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2950                                      GLOBAL2_IRL_CMD_BUSY);
2951                 if (err)
2952                         break;
2953         }
2954
2955         return err;
2956 }
2957
2958 /* Indirect write to the Switch MAC/WoL/WoF register */
2959 static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
2960                                          unsigned int pointer, u8 data)
2961 {
2962         u16 val = (pointer << 8) | data;
2963
2964         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
2965 }
2966
2967 static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2968 {
2969         int i, err;
2970
2971         for (i = 0; i < 6; i++) {
2972                 err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
2973                 if (err)
2974                         break;
2975         }
2976
2977         return err;
2978 }
2979
2980 static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
2981                                   u8 data)
2982 {
2983         u16 val = (pointer << 8) | (data & 0x7);
2984
2985         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
2986 }
2987
2988 static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
2989 {
2990         int i, err;
2991
2992         /* Clear all sixteen possible Priority Override entries */
2993         for (i = 0; i < 16; i++) {
2994                 err = mv88e6xxx_g2_pot_write(chip, i, 0);
2995                 if (err)
2996                         break;
2997         }
2998
2999         return err;
3000 }
3001
3002 static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
3003 {
3004         return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
3005                               GLOBAL2_EEPROM_CMD_BUSY |
3006                               GLOBAL2_EEPROM_CMD_RUNNING);
3007 }
3008
3009 static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3010 {
3011         int err;
3012
3013         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
3014         if (err)
3015                 return err;
3016
3017         return mv88e6xxx_g2_eeprom_wait(chip);
3018 }
3019
3020 static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
3021                                       u8 addr, u16 *data)
3022 {
3023         u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
3024         int err;
3025
3026         err = mv88e6xxx_g2_eeprom_wait(chip);
3027         if (err)
3028                 return err;
3029
3030         err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3031         if (err)
3032                 return err;
3033
3034         return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3035 }
3036
3037 static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
3038                                        u8 addr, u16 data)
3039 {
3040         u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
3041         int err;
3042
3043         err = mv88e6xxx_g2_eeprom_wait(chip);
3044         if (err)
3045                 return err;
3046
3047         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3048         if (err)
3049                 return err;
3050
3051         return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3052 }
3053
3054 static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
3055 {
3056         return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
3057                               GLOBAL2_SMI_PHY_CMD_BUSY);
3058 }
3059
3060 static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3061 {
3062         int err;
3063
3064         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
3065         if (err)
3066                 return err;
3067
3068         return mv88e6xxx_g2_smi_phy_wait(chip);
3069 }
3070
3071 static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
3072                                      int reg, u16 *val)
3073 {
3074         u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
3075         int err;
3076
3077         err = mv88e6xxx_g2_smi_phy_wait(chip);
3078         if (err)
3079                 return err;
3080
3081         err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
3082         if (err)
3083                 return err;
3084
3085         return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
3086 }
3087
3088 static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
3089                                       int reg, u16 val)
3090 {
3091         u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
3092         int err;
3093
3094         err = mv88e6xxx_g2_smi_phy_wait(chip);
3095         if (err)
3096                 return err;
3097
3098         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
3099         if (err)
3100                 return err;
3101
3102         return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
3103 }
3104
3105 static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
3106         .read = mv88e6xxx_g2_smi_phy_read,
3107         .write = mv88e6xxx_g2_smi_phy_write,
3108 };
3109
3110 static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
3111 {
3112         u16 reg;
3113         int err;
3114
3115         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
3116                 /* Consider the frames with reserved multicast destination
3117                  * addresses matching 01:80:c2:00:00:2x as MGMT.
3118                  */
3119                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
3120                                       0xffff);
3121                 if (err)
3122                         return err;
3123         }
3124
3125         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
3126                 /* Consider the frames with reserved multicast destination
3127                  * addresses matching 01:80:c2:00:00:0x as MGMT.
3128                  */
3129                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
3130                                       0xffff);
3131                 if (err)
3132                         return err;
3133         }
3134
3135         /* Ignore removed tag data on doubly tagged packets, disable
3136          * flow control messages, force flow control priority to the
3137          * highest, and send all special multicast frames to the CPU
3138          * port at the highest priority.
3139          */
3140         reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
3141         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
3142             mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
3143                 reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
3144         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3145         if (err)
3146                 return err;
3147
3148         /* Program the DSA routing table. */
3149         err = mv88e6xxx_g2_set_device_mapping(chip);
3150         if (err)
3151                 return err;
3152
3153         /* Clear all trunk masks and mapping. */
3154         err = mv88e6xxx_g2_clear_trunk(chip);
3155         if (err)
3156                 return err;
3157
3158         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
3159                 /* Disable ingress rate limiting by resetting all per port
3160                  * ingress rate limit resources to their initial state.
3161                  */
3162                 err = mv88e6xxx_g2_clear_irl(chip);
3163                         if (err)
3164                                 return err;
3165         }
3166
3167         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
3168                 /* Initialize Cross-chip Port VLAN Table to reset defaults */
3169                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
3170                                       GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3171                 if (err)
3172                         return err;
3173         }
3174
3175         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3176                 /* Clear the priority override table. */
3177                 err = mv88e6xxx_g2_clear_pot(chip);
3178                 if (err)
3179                         return err;
3180         }
3181
3182         return 0;
3183 }
3184
3185 static int mv88e6xxx_setup(struct dsa_switch *ds)
3186 {
3187         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3188         int err;
3189         int i;
3190
3191         chip->ds = ds;
3192         ds->slave_mii_bus = chip->mdio_bus;
3193
3194         mutex_lock(&chip->reg_lock);
3195
3196         err = mv88e6xxx_switch_reset(chip);
3197         if (err)
3198                 goto unlock;
3199
3200         /* Setup Switch Port Registers */
3201         for (i = 0; i < chip->info->num_ports; i++) {
3202                 err = mv88e6xxx_setup_port(chip, i);
3203                 if (err)
3204                         goto unlock;
3205         }
3206
3207         /* Setup Switch Global 1 Registers */
3208         err = mv88e6xxx_g1_setup(chip);
3209         if (err)
3210                 goto unlock;
3211
3212         /* Setup Switch Global 2 Registers */
3213         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
3214                 err = mv88e6xxx_g2_setup(chip);
3215                 if (err)
3216                         goto unlock;
3217         }
3218
3219 unlock:
3220         mutex_unlock(&chip->reg_lock);
3221
3222         return err;
3223 }
3224
3225 static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
3226 {
3227         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3228         int err;
3229
3230         mutex_lock(&chip->reg_lock);
3231
3232         /* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
3233         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
3234                 err = mv88e6xxx_g2_set_switch_mac(chip, addr);
3235         else
3236                 err = mv88e6xxx_g1_set_switch_mac(chip, addr);
3237
3238         mutex_unlock(&chip->reg_lock);
3239
3240         return err;
3241 }
3242
3243 static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3244 {
3245         struct mv88e6xxx_chip *chip = bus->priv;
3246         u16 val;
3247         int err;
3248
3249         if (phy >= chip->info->num_ports)
3250                 return 0xffff;
3251
3252         mutex_lock(&chip->reg_lock);
3253         err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3254         mutex_unlock(&chip->reg_lock);
3255
3256         return err ? err : val;
3257 }
3258
3259 static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3260 {
3261         struct mv88e6xxx_chip *chip = bus->priv;
3262         int err;
3263
3264         if (phy >= chip->info->num_ports)
3265                 return 0xffff;
3266
3267         mutex_lock(&chip->reg_lock);
3268         err = mv88e6xxx_phy_write(chip, phy, reg, val);
3269         mutex_unlock(&chip->reg_lock);
3270
3271         return err;
3272 }
3273
3274 static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3275                                    struct device_node *np)
3276 {
3277         static int index;
3278         struct mii_bus *bus;
3279         int err;
3280
3281         if (np)
3282                 chip->mdio_np = of_get_child_by_name(np, "mdio");
3283
3284         bus = devm_mdiobus_alloc(chip->dev);
3285         if (!bus)
3286                 return -ENOMEM;
3287
3288         bus->priv = (void *)chip;
3289         if (np) {
3290                 bus->name = np->full_name;
3291                 snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
3292         } else {
3293                 bus->name = "mv88e6xxx SMI";
3294                 snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
3295         }
3296
3297         bus->read = mv88e6xxx_mdio_read;
3298         bus->write = mv88e6xxx_mdio_write;
3299         bus->parent = chip->dev;
3300
3301         if (chip->mdio_np)
3302                 err = of_mdiobus_register(bus, chip->mdio_np);
3303         else
3304                 err = mdiobus_register(bus);
3305         if (err) {
3306                 dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3307                 goto out;
3308         }
3309         chip->mdio_bus = bus;
3310
3311         return 0;
3312
3313 out:
3314         if (chip->mdio_np)
3315                 of_node_put(chip->mdio_np);
3316
3317         return err;
3318 }
3319
3320 static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3321
3322 {
3323         struct mii_bus *bus = chip->mdio_bus;
3324
3325         mdiobus_unregister(bus);
3326
3327         if (chip->mdio_np)
3328                 of_node_put(chip->mdio_np);
3329 }
3330
3331 #ifdef CONFIG_NET_DSA_HWMON
3332
3333 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
3334 {
3335         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3336         u16 val;
3337         int ret;
3338
3339         *temp = 0;
3340
3341         mutex_lock(&chip->reg_lock);
3342
3343         ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3344         if (ret < 0)
3345                 goto error;
3346
3347         /* Enable temperature sensor */
3348         ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3349         if (ret < 0)
3350                 goto error;
3351
3352         ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3353         if (ret < 0)
3354                 goto error;
3355
3356         /* Wait for temperature to stabilize */
3357         usleep_range(10000, 12000);
3358
3359         ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3360         if (ret < 0)
3361                 goto error;
3362
3363         /* Disable temperature sensor */
3364         ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3365         if (ret < 0)
3366                 goto error;
3367
3368         *temp = ((val & 0x1f) - 5) * 5;
3369
3370 error:
3371         mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3372         mutex_unlock(&chip->reg_lock);
3373         return ret;
3374 }
3375
3376 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
3377 {
3378         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3379         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3380         u16 val;
3381         int ret;
3382
3383         *temp = 0;
3384
3385         mutex_lock(&chip->reg_lock);
3386         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
3387         mutex_unlock(&chip->reg_lock);
3388         if (ret < 0)
3389                 return ret;
3390
3391         *temp = (val & 0xff) - 25;
3392
3393         return 0;
3394 }
3395
3396 static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3397 {
3398         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3399
3400         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3401                 return -EOPNOTSUPP;
3402
3403         if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3404                 return mv88e63xx_get_temp(ds, temp);
3405
3406         return mv88e61xx_get_temp(ds, temp);
3407 }
3408
3409 static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3410 {
3411         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3412         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3413         u16 val;
3414         int ret;
3415
3416         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3417                 return -EOPNOTSUPP;
3418
3419         *temp = 0;
3420
3421         mutex_lock(&chip->reg_lock);
3422         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3423         mutex_unlock(&chip->reg_lock);
3424         if (ret < 0)
3425                 return ret;
3426
3427         *temp = (((val >> 8) & 0x1f) * 5) - 25;
3428
3429         return 0;
3430 }
3431
3432 static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3433 {
3434         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3435         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3436         u16 val;
3437         int err;
3438
3439         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3440                 return -EOPNOTSUPP;
3441
3442         mutex_lock(&chip->reg_lock);
3443         err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3444         if (err)
3445                 goto unlock;
3446         temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3447         err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
3448                                        (val & 0xe0ff) | (temp << 8));
3449 unlock:
3450         mutex_unlock(&chip->reg_lock);
3451
3452         return err;
3453 }
3454
3455 static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3456 {
3457         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3458         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3459         u16 val;
3460         int ret;
3461
3462         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3463                 return -EOPNOTSUPP;
3464
3465         *alarm = false;
3466
3467         mutex_lock(&chip->reg_lock);
3468         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3469         mutex_unlock(&chip->reg_lock);
3470         if (ret < 0)
3471                 return ret;
3472
3473         *alarm = !!(val & 0x40);
3474
3475         return 0;
3476 }
3477 #endif /* CONFIG_NET_DSA_HWMON */
3478
3479 static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
3480 {
3481         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3482
3483         return chip->eeprom_len;
3484 }
3485
3486 static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
3487                                   struct ethtool_eeprom *eeprom, u8 *data)
3488 {
3489         unsigned int offset = eeprom->offset;
3490         unsigned int len = eeprom->len;
3491         u16 val;
3492         int err;
3493
3494         eeprom->len = 0;
3495
3496         if (offset & 1) {
3497                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3498                 if (err)
3499                         return err;
3500
3501                 *data++ = (val >> 8) & 0xff;
3502
3503                 offset++;
3504                 len--;
3505                 eeprom->len++;
3506         }
3507
3508         while (len >= 2) {
3509                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3510                 if (err)
3511                         return err;
3512
3513                 *data++ = val & 0xff;
3514                 *data++ = (val >> 8) & 0xff;
3515
3516                 offset += 2;
3517                 len -= 2;
3518                 eeprom->len += 2;
3519         }
3520
3521         if (len) {
3522                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3523                 if (err)
3524                         return err;
3525
3526                 *data++ = val & 0xff;
3527
3528                 offset++;
3529                 len--;
3530                 eeprom->len++;
3531         }
3532
3533         return 0;
3534 }
3535
3536 static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
3537                                 struct ethtool_eeprom *eeprom, u8 *data)
3538 {
3539         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3540         int err;
3541
3542         mutex_lock(&chip->reg_lock);
3543
3544         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3545                 err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
3546         else
3547                 err = -EOPNOTSUPP;
3548
3549         mutex_unlock(&chip->reg_lock);
3550
3551         if (err)
3552                 return err;
3553
3554         eeprom->magic = 0xc3ec4951;
3555
3556         return 0;
3557 }
3558
3559 static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
3560                                   struct ethtool_eeprom *eeprom, u8 *data)
3561 {
3562         unsigned int offset = eeprom->offset;
3563         unsigned int len = eeprom->len;
3564         u16 val;
3565         int err;
3566
3567         /* Ensure the RO WriteEn bit is set */
3568         err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
3569         if (err)
3570                 return err;
3571
3572         if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
3573                 return -EROFS;
3574
3575         eeprom->len = 0;
3576
3577         if (offset & 1) {
3578                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3579                 if (err)
3580                         return err;
3581
3582                 val = (*data++ << 8) | (val & 0xff);
3583
3584                 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3585                 if (err)
3586                         return err;
3587
3588                 offset++;
3589                 len--;
3590                 eeprom->len++;
3591         }
3592
3593         while (len >= 2) {
3594                 val = *data++;
3595                 val |= *data++ << 8;
3596
3597                 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3598                 if (err)
3599                         return err;
3600
3601                 offset += 2;
3602                 len -= 2;
3603                 eeprom->len += 2;
3604         }
3605
3606         if (len) {
3607                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3608                 if (err)
3609                         return err;
3610
3611                 val = (val & 0xff00) | *data++;
3612
3613                 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3614                 if (err)
3615                         return err;
3616
3617                 offset++;
3618                 len--;
3619                 eeprom->len++;
3620         }
3621
3622         return 0;
3623 }
3624
3625 static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
3626                                 struct ethtool_eeprom *eeprom, u8 *data)
3627 {
3628         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3629         int err;
3630
3631         if (eeprom->magic != 0xc3ec4951)
3632                 return -EINVAL;
3633
3634         mutex_lock(&chip->reg_lock);
3635
3636         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3637                 err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
3638         else
3639                 err = -EOPNOTSUPP;
3640
3641         mutex_unlock(&chip->reg_lock);
3642
3643         return err;
3644 }
3645
3646 static const struct mv88e6xxx_info mv88e6xxx_table[] = {
3647         [MV88E6085] = {
3648                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
3649                 .family = MV88E6XXX_FAMILY_6097,
3650                 .name = "Marvell 88E6085",
3651                 .num_databases = 4096,
3652                 .num_ports = 10,
3653                 .port_base_addr = 0x10,
3654                 .age_time_coeff = 15000,
3655                 .flags = MV88E6XXX_FLAGS_FAMILY_6097,
3656         },
3657
3658         [MV88E6095] = {
3659                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
3660                 .family = MV88E6XXX_FAMILY_6095,
3661                 .name = "Marvell 88E6095/88E6095F",
3662                 .num_databases = 256,
3663                 .num_ports = 11,
3664                 .port_base_addr = 0x10,
3665                 .age_time_coeff = 15000,
3666                 .flags = MV88E6XXX_FLAGS_FAMILY_6095,
3667         },
3668
3669         [MV88E6123] = {
3670                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
3671                 .family = MV88E6XXX_FAMILY_6165,
3672                 .name = "Marvell 88E6123",
3673                 .num_databases = 4096,
3674                 .num_ports = 3,
3675                 .port_base_addr = 0x10,
3676                 .age_time_coeff = 15000,
3677                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3678         },
3679
3680         [MV88E6131] = {
3681                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
3682                 .family = MV88E6XXX_FAMILY_6185,
3683                 .name = "Marvell 88E6131",
3684                 .num_databases = 256,
3685                 .num_ports = 8,
3686                 .port_base_addr = 0x10,
3687                 .age_time_coeff = 15000,
3688                 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3689         },
3690
3691         [MV88E6161] = {
3692                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
3693                 .family = MV88E6XXX_FAMILY_6165,
3694                 .name = "Marvell 88E6161",
3695                 .num_databases = 4096,
3696                 .num_ports = 6,
3697                 .port_base_addr = 0x10,
3698                 .age_time_coeff = 15000,
3699                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3700         },
3701
3702         [MV88E6165] = {
3703                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
3704                 .family = MV88E6XXX_FAMILY_6165,
3705                 .name = "Marvell 88E6165",
3706                 .num_databases = 4096,
3707                 .num_ports = 6,
3708                 .port_base_addr = 0x10,
3709                 .age_time_coeff = 15000,
3710                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3711         },
3712
3713         [MV88E6171] = {
3714                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
3715                 .family = MV88E6XXX_FAMILY_6351,
3716                 .name = "Marvell 88E6171",
3717                 .num_databases = 4096,
3718                 .num_ports = 7,
3719                 .port_base_addr = 0x10,
3720                 .age_time_coeff = 15000,
3721                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3722         },
3723
3724         [MV88E6172] = {
3725                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
3726                 .family = MV88E6XXX_FAMILY_6352,
3727                 .name = "Marvell 88E6172",
3728                 .num_databases = 4096,
3729                 .num_ports = 7,
3730                 .port_base_addr = 0x10,
3731                 .age_time_coeff = 15000,
3732                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3733         },
3734
3735         [MV88E6175] = {
3736                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
3737                 .family = MV88E6XXX_FAMILY_6351,
3738                 .name = "Marvell 88E6175",
3739                 .num_databases = 4096,
3740                 .num_ports = 7,
3741                 .port_base_addr = 0x10,
3742                 .age_time_coeff = 15000,
3743                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3744         },
3745
3746         [MV88E6176] = {
3747                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
3748                 .family = MV88E6XXX_FAMILY_6352,
3749                 .name = "Marvell 88E6176",
3750                 .num_databases = 4096,
3751                 .num_ports = 7,
3752                 .port_base_addr = 0x10,
3753                 .age_time_coeff = 15000,
3754                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3755         },
3756
3757         [MV88E6185] = {
3758                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
3759                 .family = MV88E6XXX_FAMILY_6185,
3760                 .name = "Marvell 88E6185",
3761                 .num_databases = 256,
3762                 .num_ports = 10,
3763                 .port_base_addr = 0x10,
3764                 .age_time_coeff = 15000,
3765                 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3766         },
3767
3768         [MV88E6240] = {
3769                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
3770                 .family = MV88E6XXX_FAMILY_6352,
3771                 .name = "Marvell 88E6240",
3772                 .num_databases = 4096,
3773                 .num_ports = 7,
3774                 .port_base_addr = 0x10,
3775                 .age_time_coeff = 15000,
3776                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3777         },
3778
3779         [MV88E6320] = {
3780                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
3781                 .family = MV88E6XXX_FAMILY_6320,
3782                 .name = "Marvell 88E6320",
3783                 .num_databases = 4096,
3784                 .num_ports = 7,
3785                 .port_base_addr = 0x10,
3786                 .age_time_coeff = 15000,
3787                 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3788         },
3789
3790         [MV88E6321] = {
3791                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
3792                 .family = MV88E6XXX_FAMILY_6320,
3793                 .name = "Marvell 88E6321",
3794                 .num_databases = 4096,
3795                 .num_ports = 7,
3796                 .port_base_addr = 0x10,
3797                 .age_time_coeff = 15000,
3798                 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3799         },
3800
3801         [MV88E6350] = {
3802                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
3803                 .family = MV88E6XXX_FAMILY_6351,
3804                 .name = "Marvell 88E6350",
3805                 .num_databases = 4096,
3806                 .num_ports = 7,
3807                 .port_base_addr = 0x10,
3808                 .age_time_coeff = 15000,
3809                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3810         },
3811
3812         [MV88E6351] = {
3813                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
3814                 .family = MV88E6XXX_FAMILY_6351,
3815                 .name = "Marvell 88E6351",
3816                 .num_databases = 4096,
3817                 .num_ports = 7,
3818                 .port_base_addr = 0x10,
3819                 .age_time_coeff = 15000,
3820                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3821         },
3822
3823         [MV88E6352] = {
3824                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
3825                 .family = MV88E6XXX_FAMILY_6352,
3826                 .name = "Marvell 88E6352",
3827                 .num_databases = 4096,
3828                 .num_ports = 7,
3829                 .port_base_addr = 0x10,
3830                 .age_time_coeff = 15000,
3831                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3832         },
3833 };
3834
3835 static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3836 {
3837         int i;
3838
3839         for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
3840                 if (mv88e6xxx_table[i].prod_num == prod_num)
3841                         return &mv88e6xxx_table[i];
3842
3843         return NULL;
3844 }
3845
3846 static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3847 {
3848         const struct mv88e6xxx_info *info;
3849         unsigned int prod_num, rev;
3850         u16 id;
3851         int err;
3852
3853         mutex_lock(&chip->reg_lock);
3854         err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
3855         mutex_unlock(&chip->reg_lock);
3856         if (err)
3857                 return err;
3858
3859         prod_num = (id & 0xfff0) >> 4;
3860         rev = id & 0x000f;
3861
3862         info = mv88e6xxx_lookup_info(prod_num);
3863         if (!info)
3864                 return -ENODEV;
3865
3866         /* Update the compatible info with the probed one */
3867         chip->info = info;
3868
3869         dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
3870                  chip->info->prod_num, chip->info->name, rev);
3871
3872         return 0;
3873 }
3874
3875 static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3876 {
3877         struct mv88e6xxx_chip *chip;
3878
3879         chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
3880         if (!chip)
3881                 return NULL;
3882
3883         chip->dev = dev;
3884
3885         mutex_init(&chip->reg_lock);
3886
3887         return chip;
3888 }
3889
3890 static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
3891         .read = mv88e6xxx_read,
3892         .write = mv88e6xxx_write,
3893 };
3894
3895 static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
3896 {
3897         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
3898                 chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
3899         } else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
3900                 chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
3901                 mv88e6xxx_ppu_state_init(chip);
3902         } else {
3903                 chip->phy_ops = &mv88e6xxx_phy_ops;
3904         }
3905 }
3906
3907 static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3908                               struct mii_bus *bus, int sw_addr)
3909 {
3910         /* ADDR[0] pin is unavailable externally and considered zero */
3911         if (sw_addr & 0x1)
3912                 return -EINVAL;
3913
3914         if (sw_addr == 0)
3915                 chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3916         else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3917                 chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3918         else
3919                 return -EINVAL;
3920
3921         chip->bus = bus;
3922         chip->sw_addr = sw_addr;
3923
3924         return 0;
3925 }
3926
3927 static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
3928 {
3929         return DSA_TAG_PROTO_EDSA;
3930 }
3931
3932 static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
3933                                        struct device *host_dev, int sw_addr,
3934                                        void **priv)
3935 {
3936         struct mv88e6xxx_chip *chip;
3937         struct mii_bus *bus;
3938         int err;
3939
3940         bus = dsa_host_dev_to_mii_bus(host_dev);
3941         if (!bus)
3942                 return NULL;
3943
3944         chip = mv88e6xxx_alloc_chip(dsa_dev);
3945         if (!chip)
3946                 return NULL;
3947
3948         /* Legacy SMI probing will only support chips similar to 88E6085 */
3949         chip->info = &mv88e6xxx_table[MV88E6085];
3950
3951         err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3952         if (err)
3953                 goto free;
3954
3955         err = mv88e6xxx_detect(chip);
3956         if (err)
3957                 goto free;
3958
3959         mv88e6xxx_phy_init(chip);
3960
3961         err = mv88e6xxx_mdio_register(chip, NULL);
3962         if (err)
3963                 goto free;
3964
3965         *priv = chip;
3966
3967         return chip->info->name;
3968 free:
3969         devm_kfree(dsa_dev, chip);
3970
3971         return NULL;
3972 }
3973
3974 static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3975         .probe                  = mv88e6xxx_drv_probe,
3976         .get_tag_protocol       = mv88e6xxx_get_tag_protocol,
3977         .setup                  = mv88e6xxx_setup,
3978         .set_addr               = mv88e6xxx_set_addr,
3979         .adjust_link            = mv88e6xxx_adjust_link,
3980         .get_strings            = mv88e6xxx_get_strings,
3981         .get_ethtool_stats      = mv88e6xxx_get_ethtool_stats,
3982         .get_sset_count         = mv88e6xxx_get_sset_count,
3983         .set_eee                = mv88e6xxx_set_eee,
3984         .get_eee                = mv88e6xxx_get_eee,
3985 #ifdef CONFIG_NET_DSA_HWMON
3986         .get_temp               = mv88e6xxx_get_temp,
3987         .get_temp_limit         = mv88e6xxx_get_temp_limit,
3988         .set_temp_limit         = mv88e6xxx_set_temp_limit,
3989         .get_temp_alarm         = mv88e6xxx_get_temp_alarm,
3990 #endif
3991         .get_eeprom_len         = mv88e6xxx_get_eeprom_len,
3992         .get_eeprom             = mv88e6xxx_get_eeprom,
3993         .set_eeprom             = mv88e6xxx_set_eeprom,
3994         .get_regs_len           = mv88e6xxx_get_regs_len,
3995         .get_regs               = mv88e6xxx_get_regs,
3996         .set_ageing_time        = mv88e6xxx_set_ageing_time,
3997         .port_bridge_join       = mv88e6xxx_port_bridge_join,
3998         .port_bridge_leave      = mv88e6xxx_port_bridge_leave,
3999         .port_stp_state_set     = mv88e6xxx_port_stp_state_set,
4000         .port_vlan_filtering    = mv88e6xxx_port_vlan_filtering,
4001         .port_vlan_prepare      = mv88e6xxx_port_vlan_prepare,
4002         .port_vlan_add          = mv88e6xxx_port_vlan_add,
4003         .port_vlan_del          = mv88e6xxx_port_vlan_del,
4004         .port_vlan_dump         = mv88e6xxx_port_vlan_dump,
4005         .port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
4006         .port_fdb_add           = mv88e6xxx_port_fdb_add,
4007         .port_fdb_del           = mv88e6xxx_port_fdb_del,
4008         .port_fdb_dump          = mv88e6xxx_port_fdb_dump,
4009 };
4010
4011 static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4012                                      struct device_node *np)
4013 {
4014         struct device *dev = chip->dev;
4015         struct dsa_switch *ds;
4016
4017         ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
4018         if (!ds)
4019                 return -ENOMEM;
4020
4021         ds->dev = dev;
4022         ds->priv = chip;
4023         ds->drv = &mv88e6xxx_switch_driver;
4024
4025         dev_set_drvdata(dev, ds);
4026
4027         return dsa_register_switch(ds, np);
4028 }
4029
4030 static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4031 {
4032         dsa_unregister_switch(chip->ds);
4033 }
4034
4035 static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4036 {
4037         struct device *dev = &mdiodev->dev;
4038         struct device_node *np = dev->of_node;
4039         const struct mv88e6xxx_info *compat_info;
4040         struct mv88e6xxx_chip *chip;
4041         u32 eeprom_len;
4042         int err;
4043
4044         compat_info = of_device_get_match_data(dev);
4045         if (!compat_info)
4046                 return -EINVAL;
4047
4048         chip = mv88e6xxx_alloc_chip(dev);
4049         if (!chip)
4050                 return -ENOMEM;
4051
4052         chip->info = compat_info;
4053
4054         err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4055         if (err)
4056                 return err;
4057
4058         err = mv88e6xxx_detect(chip);
4059         if (err)
4060                 return err;
4061
4062         mv88e6xxx_phy_init(chip);
4063
4064         chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
4065         if (IS_ERR(chip->reset))
4066                 return PTR_ERR(chip->reset);
4067
4068         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4069             !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4070                 chip->eeprom_len = eeprom_len;
4071
4072         err = mv88e6xxx_mdio_register(chip, np);
4073         if (err)
4074                 return err;
4075
4076         err = mv88e6xxx_register_switch(chip, np);
4077         if (err) {
4078                 mv88e6xxx_mdio_unregister(chip);
4079                 return err;
4080         }
4081
4082         return 0;
4083 }
4084
4085 static void mv88e6xxx_remove(struct mdio_device *mdiodev)
4086 {
4087         struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4088         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4089
4090         mv88e6xxx_unregister_switch(chip);
4091         mv88e6xxx_mdio_unregister(chip);
4092 }
4093
4094 static const struct of_device_id mv88e6xxx_of_match[] = {
4095         {
4096                 .compatible = "marvell,mv88e6085",
4097                 .data = &mv88e6xxx_table[MV88E6085],
4098         },
4099         { /* sentinel */ },
4100 };
4101
4102 MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
4103
4104 static struct mdio_driver mv88e6xxx_driver = {
4105         .probe  = mv88e6xxx_probe,
4106         .remove = mv88e6xxx_remove,
4107         .mdiodrv.driver = {
4108                 .name = "mv88e6085",
4109                 .of_match_table = mv88e6xxx_of_match,
4110         },
4111 };
4112
4113 static int __init mv88e6xxx_init(void)
4114 {
4115         register_switch_driver(&mv88e6xxx_switch_driver);
4116         return mdio_driver_register(&mv88e6xxx_driver);
4117 }
4118 module_init(mv88e6xxx_init);
4119
4120 static void __exit mv88e6xxx_cleanup(void)
4121 {
4122         mdio_driver_unregister(&mv88e6xxx_driver);
4123         unregister_switch_driver(&mv88e6xxx_switch_driver);
4124 }
4125 module_exit(mv88e6xxx_cleanup);
4126
4127 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
4128 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
4129 MODULE_LICENSE("GPL");