Merge tag 'shared-for-4.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/leon...
[cascardo/linux.git] / drivers / net / dsa / mv88e6xxx / chip.c
1 /*
2  * Marvell 88e6xxx Ethernet switch single-chip support
3  *
4  * Copyright (c) 2008 Marvell Semiconductor
5  *
6  * Copyright (c) 2015 CMC Electronics, Inc.
7  *      Added support for VLAN Table Unit operations
8  *
9  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16
17 #include <linux/delay.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_bridge.h>
21 #include <linux/jiffies.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_mdio.h>
27 #include <linux/netdevice.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/phy.h>
30 #include <net/dsa.h>
31 #include <net/switchdev.h>
32 #include "mv88e6xxx.h"
33
34 static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35 {
36         if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
37                 dev_err(chip->dev, "Switch registers lock not held!\n");
38                 dump_stack();
39         }
40 }
41
42 /* The switch ADDR[4:1] configuration pins define the chip SMI device address
43  * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
44  *
45  * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
46  * is the only device connected to the SMI master. In this mode it responds to
47  * all 32 possible SMI addresses, and thus maps directly the internal devices.
48  *
49  * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
50  * multiple devices to share the SMI interface. In this mode it responds to only
51  * 2 registers, used to indirectly access the internal SMI devices.
52  */
53
54 static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55                               int addr, int reg, u16 *val)
56 {
57         if (!chip->smi_ops)
58                 return -EOPNOTSUPP;
59
60         return chip->smi_ops->read(chip, addr, reg, val);
61 }
62
63 static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64                                int addr, int reg, u16 val)
65 {
66         if (!chip->smi_ops)
67                 return -EOPNOTSUPP;
68
69         return chip->smi_ops->write(chip, addr, reg, val);
70 }
71
72 static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73                                           int addr, int reg, u16 *val)
74 {
75         int ret;
76
77         ret = mdiobus_read_nested(chip->bus, addr, reg);
78         if (ret < 0)
79                 return ret;
80
81         *val = ret & 0xffff;
82
83         return 0;
84 }
85
86 static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87                                            int addr, int reg, u16 val)
88 {
89         int ret;
90
91         ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92         if (ret < 0)
93                 return ret;
94
95         return 0;
96 }
97
98 static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
99         .read = mv88e6xxx_smi_single_chip_read,
100         .write = mv88e6xxx_smi_single_chip_write,
101 };
102
103 static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 {
105         int ret;
106         int i;
107
108         for (i = 0; i < 16; i++) {
109                 ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110                 if (ret < 0)
111                         return ret;
112
113                 if ((ret & SMI_CMD_BUSY) == 0)
114                         return 0;
115         }
116
117         return -ETIMEDOUT;
118 }
119
120 static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121                                          int addr, int reg, u16 *val)
122 {
123         int ret;
124
125         /* Wait for the bus to become free. */
126         ret = mv88e6xxx_smi_multi_chip_wait(chip);
127         if (ret < 0)
128                 return ret;
129
130         /* Transmit the read command. */
131         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132                                    SMI_CMD_OP_22_READ | (addr << 5) | reg);
133         if (ret < 0)
134                 return ret;
135
136         /* Wait for the read command to complete. */
137         ret = mv88e6xxx_smi_multi_chip_wait(chip);
138         if (ret < 0)
139                 return ret;
140
141         /* Read the data. */
142         ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143         if (ret < 0)
144                 return ret;
145
146         *val = ret & 0xffff;
147
148         return 0;
149 }
150
151 static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152                                           int addr, int reg, u16 val)
153 {
154         int ret;
155
156         /* Wait for the bus to become free. */
157         ret = mv88e6xxx_smi_multi_chip_wait(chip);
158         if (ret < 0)
159                 return ret;
160
161         /* Transmit the data to write. */
162         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163         if (ret < 0)
164                 return ret;
165
166         /* Transmit the write command. */
167         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168                                    SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169         if (ret < 0)
170                 return ret;
171
172         /* Wait for the write command to complete. */
173         ret = mv88e6xxx_smi_multi_chip_wait(chip);
174         if (ret < 0)
175                 return ret;
176
177         return 0;
178 }
179
180 static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
181         .read = mv88e6xxx_smi_multi_chip_read,
182         .write = mv88e6xxx_smi_multi_chip_write,
183 };
184
185 static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186                           int addr, int reg, u16 *val)
187 {
188         int err;
189
190         assert_reg_lock(chip);
191
192         err = mv88e6xxx_smi_read(chip, addr, reg, val);
193         if (err)
194                 return err;
195
196         dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197                 addr, reg, *val);
198
199         return 0;
200 }
201
202 static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203                            int addr, int reg, u16 val)
204 {
205         int err;
206
207         assert_reg_lock(chip);
208
209         err = mv88e6xxx_smi_write(chip, addr, reg, val);
210         if (err)
211                 return err;
212
213         dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214                 addr, reg, val);
215
216         return 0;
217 }
218
219 static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
220                               int reg, u16 *val)
221 {
222         int addr = phy; /* PHY devices addresses start at 0x0 */
223
224         if (!chip->phy_ops)
225                 return -EOPNOTSUPP;
226
227         return chip->phy_ops->read(chip, addr, reg, val);
228 }
229
230 static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
231                                int reg, u16 val)
232 {
233         int addr = phy; /* PHY devices addresses start at 0x0 */
234
235         if (!chip->phy_ops)
236                 return -EOPNOTSUPP;
237
238         return chip->phy_ops->write(chip, addr, reg, val);
239 }
240
241 static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
242 {
243         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
244                 return -EOPNOTSUPP;
245
246         return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
247 }
248
249 static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
250 {
251         int err;
252
253         /* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
254         err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
255         if (unlikely(err)) {
256                 dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
257                         phy, err);
258         }
259 }
260
261 static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
262                                    u8 page, int reg, u16 *val)
263 {
264         int err;
265
266         /* There is no paging for registers 22 */
267         if (reg == PHY_PAGE)
268                 return -EINVAL;
269
270         err = mv88e6xxx_phy_page_get(chip, phy, page);
271         if (!err) {
272                 err = mv88e6xxx_phy_read(chip, phy, reg, val);
273                 mv88e6xxx_phy_page_put(chip, phy);
274         }
275
276         return err;
277 }
278
279 static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
280                                     u8 page, int reg, u16 val)
281 {
282         int err;
283
284         /* There is no paging for registers 22 */
285         if (reg == PHY_PAGE)
286                 return -EINVAL;
287
288         err = mv88e6xxx_phy_page_get(chip, phy, page);
289         if (!err) {
290                 err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
291                 mv88e6xxx_phy_page_put(chip, phy);
292         }
293
294         return err;
295 }
296
297 static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
298 {
299         return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
300                                        reg, val);
301 }
302
303 static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
304 {
305         return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
306                                         reg, val);
307 }
308
309 static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
310                           u16 mask)
311 {
312         int i;
313
314         for (i = 0; i < 16; i++) {
315                 u16 val;
316                 int err;
317
318                 err = mv88e6xxx_read(chip, addr, reg, &val);
319                 if (err)
320                         return err;
321
322                 if (!(val & mask))
323                         return 0;
324
325                 usleep_range(1000, 2000);
326         }
327
328         dev_err(chip->dev, "Timeout while waiting for switch\n");
329         return -ETIMEDOUT;
330 }
331
332 /* Indirect write to single pointer-data register with an Update bit */
333 static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
334                             u16 update)
335 {
336         u16 val;
337         int err;
338
339         /* Wait until the previous operation is completed */
340         err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
341         if (err)
342                 return err;
343
344         /* Set the Update bit to trigger a write operation */
345         val = BIT(15) | update;
346
347         return mv88e6xxx_write(chip, addr, reg, val);
348 }
349
350 static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
351 {
352         u16 val;
353         int err;
354
355         err = mv88e6xxx_read(chip, addr, reg, &val);
356         if (err)
357                 return err;
358
359         return val;
360 }
361
362 static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
363                                 int reg, u16 val)
364 {
365         return mv88e6xxx_write(chip, addr, reg, val);
366 }
367
368 static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
369 {
370         int ret;
371         int i;
372
373         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
374         if (ret < 0)
375                 return ret;
376
377         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
378                                    ret & ~GLOBAL_CONTROL_PPU_ENABLE);
379         if (ret)
380                 return ret;
381
382         for (i = 0; i < 16; i++) {
383                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
384                 if (ret < 0)
385                         return ret;
386
387                 usleep_range(1000, 2000);
388                 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
389                     GLOBAL_STATUS_PPU_POLLING)
390                         return 0;
391         }
392
393         return -ETIMEDOUT;
394 }
395
396 static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
397 {
398         int ret, err, i;
399
400         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
401         if (ret < 0)
402                 return ret;
403
404         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
405                                    ret | GLOBAL_CONTROL_PPU_ENABLE);
406         if (err)
407                 return err;
408
409         for (i = 0; i < 16; i++) {
410                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
411                 if (ret < 0)
412                         return ret;
413
414                 usleep_range(1000, 2000);
415                 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
416                     GLOBAL_STATUS_PPU_POLLING)
417                         return 0;
418         }
419
420         return -ETIMEDOUT;
421 }
422
423 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
424 {
425         struct mv88e6xxx_chip *chip;
426
427         chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
428
429         mutex_lock(&chip->reg_lock);
430
431         if (mutex_trylock(&chip->ppu_mutex)) {
432                 if (mv88e6xxx_ppu_enable(chip) == 0)
433                         chip->ppu_disabled = 0;
434                 mutex_unlock(&chip->ppu_mutex);
435         }
436
437         mutex_unlock(&chip->reg_lock);
438 }
439
440 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
441 {
442         struct mv88e6xxx_chip *chip = (void *)_ps;
443
444         schedule_work(&chip->ppu_work);
445 }
446
447 static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
448 {
449         int ret;
450
451         mutex_lock(&chip->ppu_mutex);
452
453         /* If the PHY polling unit is enabled, disable it so that
454          * we can access the PHY registers.  If it was already
455          * disabled, cancel the timer that is going to re-enable
456          * it.
457          */
458         if (!chip->ppu_disabled) {
459                 ret = mv88e6xxx_ppu_disable(chip);
460                 if (ret < 0) {
461                         mutex_unlock(&chip->ppu_mutex);
462                         return ret;
463                 }
464                 chip->ppu_disabled = 1;
465         } else {
466                 del_timer(&chip->ppu_timer);
467                 ret = 0;
468         }
469
470         return ret;
471 }
472
473 static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
474 {
475         /* Schedule a timer to re-enable the PHY polling unit. */
476         mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
477         mutex_unlock(&chip->ppu_mutex);
478 }
479
480 static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
481 {
482         mutex_init(&chip->ppu_mutex);
483         INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
484         init_timer(&chip->ppu_timer);
485         chip->ppu_timer.data = (unsigned long)chip;
486         chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
487 }
488
489 static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
490 {
491         del_timer_sync(&chip->ppu_timer);
492 }
493
494 static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
495                                   int reg, u16 *val)
496 {
497         int err;
498
499         err = mv88e6xxx_ppu_access_get(chip);
500         if (!err) {
501                 err = mv88e6xxx_read(chip, addr, reg, val);
502                 mv88e6xxx_ppu_access_put(chip);
503         }
504
505         return err;
506 }
507
508 static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
509                                    int reg, u16 val)
510 {
511         int err;
512
513         err = mv88e6xxx_ppu_access_get(chip);
514         if (!err) {
515                 err = mv88e6xxx_write(chip, addr, reg, val);
516                 mv88e6xxx_ppu_access_put(chip);
517         }
518
519         return err;
520 }
521
522 static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
523         .read = mv88e6xxx_phy_ppu_read,
524         .write = mv88e6xxx_phy_ppu_write,
525 };
526
527 static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
528 {
529         return chip->info->family == MV88E6XXX_FAMILY_6065;
530 }
531
532 static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
533 {
534         return chip->info->family == MV88E6XXX_FAMILY_6095;
535 }
536
537 static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
538 {
539         return chip->info->family == MV88E6XXX_FAMILY_6097;
540 }
541
542 static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
543 {
544         return chip->info->family == MV88E6XXX_FAMILY_6165;
545 }
546
547 static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
548 {
549         return chip->info->family == MV88E6XXX_FAMILY_6185;
550 }
551
552 static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
553 {
554         return chip->info->family == MV88E6XXX_FAMILY_6320;
555 }
556
557 static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
558 {
559         return chip->info->family == MV88E6XXX_FAMILY_6351;
560 }
561
562 static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
563 {
564         return chip->info->family == MV88E6XXX_FAMILY_6352;
565 }
566
567 static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
568 {
569         return chip->info->num_databases;
570 }
571
572 static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
573 {
574         /* Does the device have dedicated FID registers for ATU and VTU ops? */
575         if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
576             mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
577                 return true;
578
579         return false;
580 }
581
582 /* We expect the switch to perform auto negotiation if there is a real
583  * phy. However, in the case of a fixed link phy, we force the port
584  * settings from the fixed link settings.
585  */
586 static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
587                                   struct phy_device *phydev)
588 {
589         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
590         u32 reg;
591         int ret;
592
593         if (!phy_is_pseudo_fixed_link(phydev))
594                 return;
595
596         mutex_lock(&chip->reg_lock);
597
598         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
599         if (ret < 0)
600                 goto out;
601
602         reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
603                       PORT_PCS_CTRL_FORCE_LINK |
604                       PORT_PCS_CTRL_DUPLEX_FULL |
605                       PORT_PCS_CTRL_FORCE_DUPLEX |
606                       PORT_PCS_CTRL_UNFORCED);
607
608         reg |= PORT_PCS_CTRL_FORCE_LINK;
609         if (phydev->link)
610                 reg |= PORT_PCS_CTRL_LINK_UP;
611
612         if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
613                 goto out;
614
615         switch (phydev->speed) {
616         case SPEED_1000:
617                 reg |= PORT_PCS_CTRL_1000;
618                 break;
619         case SPEED_100:
620                 reg |= PORT_PCS_CTRL_100;
621                 break;
622         case SPEED_10:
623                 reg |= PORT_PCS_CTRL_10;
624                 break;
625         default:
626                 pr_info("Unknown speed");
627                 goto out;
628         }
629
630         reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
631         if (phydev->duplex == DUPLEX_FULL)
632                 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
633
634         if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
635             (port >= chip->info->num_ports - 2)) {
636                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
637                         reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
638                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
639                         reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
640                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
641                         reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
642                                 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
643         }
644         _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
645
646 out:
647         mutex_unlock(&chip->reg_lock);
648 }
649
650 static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
651 {
652         int ret;
653         int i;
654
655         for (i = 0; i < 10; i++) {
656                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
657                 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
658                         return 0;
659         }
660
661         return -ETIMEDOUT;
662 }
663
664 static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
665 {
666         int ret;
667
668         if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
669                 port = (port + 1) << 5;
670
671         /* Snapshot the hardware statistics counters for this port. */
672         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
673                                    GLOBAL_STATS_OP_CAPTURE_PORT |
674                                    GLOBAL_STATS_OP_HIST_RX_TX | port);
675         if (ret < 0)
676                 return ret;
677
678         /* Wait for the snapshotting to complete. */
679         ret = _mv88e6xxx_stats_wait(chip);
680         if (ret < 0)
681                 return ret;
682
683         return 0;
684 }
685
686 static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
687                                   int stat, u32 *val)
688 {
689         u32 _val;
690         int ret;
691
692         *val = 0;
693
694         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
695                                    GLOBAL_STATS_OP_READ_CAPTURED |
696                                    GLOBAL_STATS_OP_HIST_RX_TX | stat);
697         if (ret < 0)
698                 return;
699
700         ret = _mv88e6xxx_stats_wait(chip);
701         if (ret < 0)
702                 return;
703
704         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
705         if (ret < 0)
706                 return;
707
708         _val = ret << 16;
709
710         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
711         if (ret < 0)
712                 return;
713
714         *val = _val | ret;
715 }
716
717 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
718         { "in_good_octets",     8, 0x00, BANK0, },
719         { "in_bad_octets",      4, 0x02, BANK0, },
720         { "in_unicast",         4, 0x04, BANK0, },
721         { "in_broadcasts",      4, 0x06, BANK0, },
722         { "in_multicasts",      4, 0x07, BANK0, },
723         { "in_pause",           4, 0x16, BANK0, },
724         { "in_undersize",       4, 0x18, BANK0, },
725         { "in_fragments",       4, 0x19, BANK0, },
726         { "in_oversize",        4, 0x1a, BANK0, },
727         { "in_jabber",          4, 0x1b, BANK0, },
728         { "in_rx_error",        4, 0x1c, BANK0, },
729         { "in_fcs_error",       4, 0x1d, BANK0, },
730         { "out_octets",         8, 0x0e, BANK0, },
731         { "out_unicast",        4, 0x10, BANK0, },
732         { "out_broadcasts",     4, 0x13, BANK0, },
733         { "out_multicasts",     4, 0x12, BANK0, },
734         { "out_pause",          4, 0x15, BANK0, },
735         { "excessive",          4, 0x11, BANK0, },
736         { "collisions",         4, 0x1e, BANK0, },
737         { "deferred",           4, 0x05, BANK0, },
738         { "single",             4, 0x14, BANK0, },
739         { "multiple",           4, 0x17, BANK0, },
740         { "out_fcs_error",      4, 0x03, BANK0, },
741         { "late",               4, 0x1f, BANK0, },
742         { "hist_64bytes",       4, 0x08, BANK0, },
743         { "hist_65_127bytes",   4, 0x09, BANK0, },
744         { "hist_128_255bytes",  4, 0x0a, BANK0, },
745         { "hist_256_511bytes",  4, 0x0b, BANK0, },
746         { "hist_512_1023bytes", 4, 0x0c, BANK0, },
747         { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
748         { "sw_in_discards",     4, 0x10, PORT, },
749         { "sw_in_filtered",     2, 0x12, PORT, },
750         { "sw_out_filtered",    2, 0x13, PORT, },
751         { "in_discards",        4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
752         { "in_filtered",        4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
753         { "in_accepted",        4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
754         { "in_bad_accepted",    4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
755         { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
756         { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
757         { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
758         { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
759         { "tcam_counter_0",     4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
760         { "tcam_counter_1",     4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
761         { "tcam_counter_2",     4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
762         { "tcam_counter_3",     4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
763         { "in_da_unknown",      4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
764         { "in_management",      4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
765         { "out_queue_0",        4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
766         { "out_queue_1",        4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
767         { "out_queue_2",        4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
768         { "out_queue_3",        4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
769         { "out_queue_4",        4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
770         { "out_queue_5",        4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
771         { "out_queue_6",        4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
772         { "out_queue_7",        4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
773         { "out_cut_through",    4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
774         { "out_octets_a",       4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
775         { "out_octets_b",       4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
776         { "out_management",     4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
777 };
778
779 static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
780                                struct mv88e6xxx_hw_stat *stat)
781 {
782         switch (stat->type) {
783         case BANK0:
784                 return true;
785         case BANK1:
786                 return mv88e6xxx_6320_family(chip);
787         case PORT:
788                 return mv88e6xxx_6095_family(chip) ||
789                         mv88e6xxx_6185_family(chip) ||
790                         mv88e6xxx_6097_family(chip) ||
791                         mv88e6xxx_6165_family(chip) ||
792                         mv88e6xxx_6351_family(chip) ||
793                         mv88e6xxx_6352_family(chip);
794         }
795         return false;
796 }
797
798 static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
799                                             struct mv88e6xxx_hw_stat *s,
800                                             int port)
801 {
802         u32 low;
803         u32 high = 0;
804         int ret;
805         u64 value;
806
807         switch (s->type) {
808         case PORT:
809                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
810                 if (ret < 0)
811                         return UINT64_MAX;
812
813                 low = ret;
814                 if (s->sizeof_stat == 4) {
815                         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
816                                                   s->reg + 1);
817                         if (ret < 0)
818                                 return UINT64_MAX;
819                         high = ret;
820                 }
821                 break;
822         case BANK0:
823         case BANK1:
824                 _mv88e6xxx_stats_read(chip, s->reg, &low);
825                 if (s->sizeof_stat == 8)
826                         _mv88e6xxx_stats_read(chip, s->reg + 1, &high);
827         }
828         value = (((u64)high) << 16) | low;
829         return value;
830 }
831
832 static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
833                                   uint8_t *data)
834 {
835         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
836         struct mv88e6xxx_hw_stat *stat;
837         int i, j;
838
839         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
840                 stat = &mv88e6xxx_hw_stats[i];
841                 if (mv88e6xxx_has_stat(chip, stat)) {
842                         memcpy(data + j * ETH_GSTRING_LEN, stat->string,
843                                ETH_GSTRING_LEN);
844                         j++;
845                 }
846         }
847 }
848
849 static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
850 {
851         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
852         struct mv88e6xxx_hw_stat *stat;
853         int i, j;
854
855         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
856                 stat = &mv88e6xxx_hw_stats[i];
857                 if (mv88e6xxx_has_stat(chip, stat))
858                         j++;
859         }
860         return j;
861 }
862
863 static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
864                                         uint64_t *data)
865 {
866         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
867         struct mv88e6xxx_hw_stat *stat;
868         int ret;
869         int i, j;
870
871         mutex_lock(&chip->reg_lock);
872
873         ret = _mv88e6xxx_stats_snapshot(chip, port);
874         if (ret < 0) {
875                 mutex_unlock(&chip->reg_lock);
876                 return;
877         }
878         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
879                 stat = &mv88e6xxx_hw_stats[i];
880                 if (mv88e6xxx_has_stat(chip, stat)) {
881                         data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
882                         j++;
883                 }
884         }
885
886         mutex_unlock(&chip->reg_lock);
887 }
888
889 static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
890 {
891         return 32 * sizeof(u16);
892 }
893
894 static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
895                                struct ethtool_regs *regs, void *_p)
896 {
897         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
898         u16 *p = _p;
899         int i;
900
901         regs->version = 0;
902
903         memset(p, 0xff, 32 * sizeof(u16));
904
905         mutex_lock(&chip->reg_lock);
906
907         for (i = 0; i < 32; i++) {
908                 int ret;
909
910                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
911                 if (ret >= 0)
912                         p[i] = ret;
913         }
914
915         mutex_unlock(&chip->reg_lock);
916 }
917
918 static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
919 {
920         return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
921                               GLOBAL_ATU_OP_BUSY);
922 }
923
924 static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
925                              struct ethtool_eee *e)
926 {
927         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
928         u16 reg;
929         int err;
930
931         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
932                 return -EOPNOTSUPP;
933
934         mutex_lock(&chip->reg_lock);
935
936         err = mv88e6xxx_phy_read(chip, port, 16, &reg);
937         if (err)
938                 goto out;
939
940         e->eee_enabled = !!(reg & 0x0200);
941         e->tx_lpi_enabled = !!(reg & 0x0100);
942
943         err = mv88e6xxx_read(chip, REG_PORT(port), PORT_STATUS, &reg);
944         if (err)
945                 goto out;
946
947         e->eee_active = !!(reg & PORT_STATUS_EEE);
948 out:
949         mutex_unlock(&chip->reg_lock);
950
951         return err;
952 }
953
954 static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
955                              struct phy_device *phydev, struct ethtool_eee *e)
956 {
957         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
958         u16 reg;
959         int err;
960
961         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
962                 return -EOPNOTSUPP;
963
964         mutex_lock(&chip->reg_lock);
965
966         err = mv88e6xxx_phy_read(chip, port, 16, &reg);
967         if (err)
968                 goto out;
969
970         reg &= ~0x0300;
971         if (e->eee_enabled)
972                 reg |= 0x0200;
973         if (e->tx_lpi_enabled)
974                 reg |= 0x0100;
975
976         err = mv88e6xxx_phy_write(chip, port, 16, reg);
977 out:
978         mutex_unlock(&chip->reg_lock);
979
980         return err;
981 }
982
983 static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
984 {
985         int ret;
986
987         if (mv88e6xxx_has_fid_reg(chip)) {
988                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
989                                            fid);
990                 if (ret < 0)
991                         return ret;
992         } else if (mv88e6xxx_num_databases(chip) == 256) {
993                 /* ATU DBNum[7:4] are located in ATU Control 15:12 */
994                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
995                 if (ret < 0)
996                         return ret;
997
998                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
999                                            (ret & 0xfff) |
1000                                            ((fid << 8) & 0xf000));
1001                 if (ret < 0)
1002                         return ret;
1003
1004                 /* ATU DBNum[3:0] are located in ATU Operation 3:0 */
1005                 cmd |= fid & 0xf;
1006         }
1007
1008         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1009         if (ret < 0)
1010                 return ret;
1011
1012         return _mv88e6xxx_atu_wait(chip);
1013 }
1014
1015 static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1016                                      struct mv88e6xxx_atu_entry *entry)
1017 {
1018         u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
1019
1020         if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1021                 unsigned int mask, shift;
1022
1023                 if (entry->trunk) {
1024                         data |= GLOBAL_ATU_DATA_TRUNK;
1025                         mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
1026                         shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
1027                 } else {
1028                         mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
1029                         shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
1030                 }
1031
1032                 data |= (entry->portv_trunkid << shift) & mask;
1033         }
1034
1035         return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1036 }
1037
1038 static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1039                                      struct mv88e6xxx_atu_entry *entry,
1040                                      bool static_too)
1041 {
1042         int op;
1043         int err;
1044
1045         err = _mv88e6xxx_atu_wait(chip);
1046         if (err)
1047                 return err;
1048
1049         err = _mv88e6xxx_atu_data_write(chip, entry);
1050         if (err)
1051                 return err;
1052
1053         if (entry->fid) {
1054                 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1055                         GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1056         } else {
1057                 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1058                         GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1059         }
1060
1061         return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1062 }
1063
1064 static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1065                                 u16 fid, bool static_too)
1066 {
1067         struct mv88e6xxx_atu_entry entry = {
1068                 .fid = fid,
1069                 .state = 0, /* EntryState bits must be 0 */
1070         };
1071
1072         return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1073 }
1074
1075 static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1076                                int from_port, int to_port, bool static_too)
1077 {
1078         struct mv88e6xxx_atu_entry entry = {
1079                 .trunk = false,
1080                 .fid = fid,
1081         };
1082
1083         /* EntryState bits must be 0xF */
1084         entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1085
1086         /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1087         entry.portv_trunkid = (to_port & 0x0f) << 4;
1088         entry.portv_trunkid |= from_port & 0x0f;
1089
1090         return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1091 }
1092
1093 static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1094                                  int port, bool static_too)
1095 {
1096         /* Destination port 0xF means remove the entries */
1097         return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1098 }
1099
1100 static const char * const mv88e6xxx_port_state_names[] = {
1101         [PORT_CONTROL_STATE_DISABLED] = "Disabled",
1102         [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1103         [PORT_CONTROL_STATE_LEARNING] = "Learning",
1104         [PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1105 };
1106
1107 static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1108                                  u8 state)
1109 {
1110         struct dsa_switch *ds = chip->ds;
1111         int reg, ret = 0;
1112         u8 oldstate;
1113
1114         reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1115         if (reg < 0)
1116                 return reg;
1117
1118         oldstate = reg & PORT_CONTROL_STATE_MASK;
1119
1120         if (oldstate != state) {
1121                 /* Flush forwarding database if we're moving a port
1122                  * from Learning or Forwarding state to Disabled or
1123                  * Blocking or Listening state.
1124                  */
1125                 if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1126                      oldstate == PORT_CONTROL_STATE_FORWARDING) &&
1127                     (state == PORT_CONTROL_STATE_DISABLED ||
1128                      state == PORT_CONTROL_STATE_BLOCKING)) {
1129                         ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1130                         if (ret)
1131                                 return ret;
1132                 }
1133
1134                 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1135                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1136                                            reg);
1137                 if (ret)
1138                         return ret;
1139
1140                 netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1141                            mv88e6xxx_port_state_names[state],
1142                            mv88e6xxx_port_state_names[oldstate]);
1143         }
1144
1145         return ret;
1146 }
1147
1148 static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1149 {
1150         struct net_device *bridge = chip->ports[port].bridge_dev;
1151         const u16 mask = (1 << chip->info->num_ports) - 1;
1152         struct dsa_switch *ds = chip->ds;
1153         u16 output_ports = 0;
1154         int reg;
1155         int i;
1156
1157         /* allow CPU port or DSA link(s) to send frames to every port */
1158         if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1159                 output_ports = mask;
1160         } else {
1161                 for (i = 0; i < chip->info->num_ports; ++i) {
1162                         /* allow sending frames to every group member */
1163                         if (bridge && chip->ports[i].bridge_dev == bridge)
1164                                 output_ports |= BIT(i);
1165
1166                         /* allow sending frames to CPU port and DSA link(s) */
1167                         if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1168                                 output_ports |= BIT(i);
1169                 }
1170         }
1171
1172         /* prevent frames from going back out of the port they came in on */
1173         output_ports &= ~BIT(port);
1174
1175         reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1176         if (reg < 0)
1177                 return reg;
1178
1179         reg &= ~mask;
1180         reg |= output_ports & mask;
1181
1182         return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1183 }
1184
1185 static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
1186                                          u8 state)
1187 {
1188         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1189         int stp_state;
1190         int err;
1191
1192         switch (state) {
1193         case BR_STATE_DISABLED:
1194                 stp_state = PORT_CONTROL_STATE_DISABLED;
1195                 break;
1196         case BR_STATE_BLOCKING:
1197         case BR_STATE_LISTENING:
1198                 stp_state = PORT_CONTROL_STATE_BLOCKING;
1199                 break;
1200         case BR_STATE_LEARNING:
1201                 stp_state = PORT_CONTROL_STATE_LEARNING;
1202                 break;
1203         case BR_STATE_FORWARDING:
1204         default:
1205                 stp_state = PORT_CONTROL_STATE_FORWARDING;
1206                 break;
1207         }
1208
1209         mutex_lock(&chip->reg_lock);
1210         err = _mv88e6xxx_port_state(chip, port, stp_state);
1211         mutex_unlock(&chip->reg_lock);
1212
1213         if (err)
1214                 netdev_err(ds->ports[port].netdev,
1215                            "failed to update state to %s\n",
1216                            mv88e6xxx_port_state_names[stp_state]);
1217 }
1218
1219 static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1220                                 u16 *new, u16 *old)
1221 {
1222         struct dsa_switch *ds = chip->ds;
1223         u16 pvid;
1224         int ret;
1225
1226         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1227         if (ret < 0)
1228                 return ret;
1229
1230         pvid = ret & PORT_DEFAULT_VLAN_MASK;
1231
1232         if (new) {
1233                 ret &= ~PORT_DEFAULT_VLAN_MASK;
1234                 ret |= *new & PORT_DEFAULT_VLAN_MASK;
1235
1236                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1237                                            PORT_DEFAULT_VLAN, ret);
1238                 if (ret < 0)
1239                         return ret;
1240
1241                 netdev_dbg(ds->ports[port].netdev,
1242                            "DefaultVID %d (was %d)\n", *new, pvid);
1243         }
1244
1245         if (old)
1246                 *old = pvid;
1247
1248         return 0;
1249 }
1250
1251 static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1252                                     int port, u16 *pvid)
1253 {
1254         return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1255 }
1256
1257 static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1258                                     int port, u16 pvid)
1259 {
1260         return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1261 }
1262
1263 static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1264 {
1265         return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1266                               GLOBAL_VTU_OP_BUSY);
1267 }
1268
1269 static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1270 {
1271         int ret;
1272
1273         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1274         if (ret < 0)
1275                 return ret;
1276
1277         return _mv88e6xxx_vtu_wait(chip);
1278 }
1279
1280 static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1281 {
1282         int ret;
1283
1284         ret = _mv88e6xxx_vtu_wait(chip);
1285         if (ret < 0)
1286                 return ret;
1287
1288         return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1289 }
1290
1291 static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1292                                         struct mv88e6xxx_vtu_stu_entry *entry,
1293                                         unsigned int nibble_offset)
1294 {
1295         u16 regs[3];
1296         int i;
1297         int ret;
1298
1299         for (i = 0; i < 3; ++i) {
1300                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1301                                           GLOBAL_VTU_DATA_0_3 + i);
1302                 if (ret < 0)
1303                         return ret;
1304
1305                 regs[i] = ret;
1306         }
1307
1308         for (i = 0; i < chip->info->num_ports; ++i) {
1309                 unsigned int shift = (i % 4) * 4 + nibble_offset;
1310                 u16 reg = regs[i / 4];
1311
1312                 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1313         }
1314
1315         return 0;
1316 }
1317
1318 static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1319                                    struct mv88e6xxx_vtu_stu_entry *entry)
1320 {
1321         return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1322 }
1323
1324 static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1325                                    struct mv88e6xxx_vtu_stu_entry *entry)
1326 {
1327         return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1328 }
1329
1330 static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1331                                          struct mv88e6xxx_vtu_stu_entry *entry,
1332                                          unsigned int nibble_offset)
1333 {
1334         u16 regs[3] = { 0 };
1335         int i;
1336         int ret;
1337
1338         for (i = 0; i < chip->info->num_ports; ++i) {
1339                 unsigned int shift = (i % 4) * 4 + nibble_offset;
1340                 u8 data = entry->data[i];
1341
1342                 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1343         }
1344
1345         for (i = 0; i < 3; ++i) {
1346                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1347                                            GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1348                 if (ret < 0)
1349                         return ret;
1350         }
1351
1352         return 0;
1353 }
1354
1355 static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1356                                     struct mv88e6xxx_vtu_stu_entry *entry)
1357 {
1358         return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1359 }
1360
1361 static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1362                                     struct mv88e6xxx_vtu_stu_entry *entry)
1363 {
1364         return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1365 }
1366
1367 static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1368 {
1369         return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1370                                     vid & GLOBAL_VTU_VID_MASK);
1371 }
1372
1373 static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1374                                   struct mv88e6xxx_vtu_stu_entry *entry)
1375 {
1376         struct mv88e6xxx_vtu_stu_entry next = { 0 };
1377         int ret;
1378
1379         ret = _mv88e6xxx_vtu_wait(chip);
1380         if (ret < 0)
1381                 return ret;
1382
1383         ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1384         if (ret < 0)
1385                 return ret;
1386
1387         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1388         if (ret < 0)
1389                 return ret;
1390
1391         next.vid = ret & GLOBAL_VTU_VID_MASK;
1392         next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1393
1394         if (next.valid) {
1395                 ret = mv88e6xxx_vtu_data_read(chip, &next);
1396                 if (ret < 0)
1397                         return ret;
1398
1399                 if (mv88e6xxx_has_fid_reg(chip)) {
1400                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1401                                                   GLOBAL_VTU_FID);
1402                         if (ret < 0)
1403                                 return ret;
1404
1405                         next.fid = ret & GLOBAL_VTU_FID_MASK;
1406                 } else if (mv88e6xxx_num_databases(chip) == 256) {
1407                         /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1408                          * VTU DBNum[3:0] are located in VTU Operation 3:0
1409                          */
1410                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1411                                                   GLOBAL_VTU_OP);
1412                         if (ret < 0)
1413                                 return ret;
1414
1415                         next.fid = (ret & 0xf00) >> 4;
1416                         next.fid |= ret & 0xf;
1417                 }
1418
1419                 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1420                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1421                                                   GLOBAL_VTU_SID);
1422                         if (ret < 0)
1423                                 return ret;
1424
1425                         next.sid = ret & GLOBAL_VTU_SID_MASK;
1426                 }
1427         }
1428
1429         *entry = next;
1430         return 0;
1431 }
1432
1433 static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1434                                     struct switchdev_obj_port_vlan *vlan,
1435                                     int (*cb)(struct switchdev_obj *obj))
1436 {
1437         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1438         struct mv88e6xxx_vtu_stu_entry next;
1439         u16 pvid;
1440         int err;
1441
1442         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1443                 return -EOPNOTSUPP;
1444
1445         mutex_lock(&chip->reg_lock);
1446
1447         err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1448         if (err)
1449                 goto unlock;
1450
1451         err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1452         if (err)
1453                 goto unlock;
1454
1455         do {
1456                 err = _mv88e6xxx_vtu_getnext(chip, &next);
1457                 if (err)
1458                         break;
1459
1460                 if (!next.valid)
1461                         break;
1462
1463                 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1464                         continue;
1465
1466                 /* reinit and dump this VLAN obj */
1467                 vlan->vid_begin = next.vid;
1468                 vlan->vid_end = next.vid;
1469                 vlan->flags = 0;
1470
1471                 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1472                         vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1473
1474                 if (next.vid == pvid)
1475                         vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1476
1477                 err = cb(&vlan->obj);
1478                 if (err)
1479                         break;
1480         } while (next.vid < GLOBAL_VTU_VID_MASK);
1481
1482 unlock:
1483         mutex_unlock(&chip->reg_lock);
1484
1485         return err;
1486 }
1487
1488 static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1489                                     struct mv88e6xxx_vtu_stu_entry *entry)
1490 {
1491         u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1492         u16 reg = 0;
1493         int ret;
1494
1495         ret = _mv88e6xxx_vtu_wait(chip);
1496         if (ret < 0)
1497                 return ret;
1498
1499         if (!entry->valid)
1500                 goto loadpurge;
1501
1502         /* Write port member tags */
1503         ret = mv88e6xxx_vtu_data_write(chip, entry);
1504         if (ret < 0)
1505                 return ret;
1506
1507         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1508                 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1509                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1510                                            reg);
1511                 if (ret < 0)
1512                         return ret;
1513         }
1514
1515         if (mv88e6xxx_has_fid_reg(chip)) {
1516                 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1517                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
1518                                            reg);
1519                 if (ret < 0)
1520                         return ret;
1521         } else if (mv88e6xxx_num_databases(chip) == 256) {
1522                 /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1523                  * VTU DBNum[3:0] are located in VTU Operation 3:0
1524                  */
1525                 op |= (entry->fid & 0xf0) << 8;
1526                 op |= entry->fid & 0xf;
1527         }
1528
1529         reg = GLOBAL_VTU_VID_VALID;
1530 loadpurge:
1531         reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1532         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1533         if (ret < 0)
1534                 return ret;
1535
1536         return _mv88e6xxx_vtu_cmd(chip, op);
1537 }
1538
1539 static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1540                                   struct mv88e6xxx_vtu_stu_entry *entry)
1541 {
1542         struct mv88e6xxx_vtu_stu_entry next = { 0 };
1543         int ret;
1544
1545         ret = _mv88e6xxx_vtu_wait(chip);
1546         if (ret < 0)
1547                 return ret;
1548
1549         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1550                                    sid & GLOBAL_VTU_SID_MASK);
1551         if (ret < 0)
1552                 return ret;
1553
1554         ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1555         if (ret < 0)
1556                 return ret;
1557
1558         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1559         if (ret < 0)
1560                 return ret;
1561
1562         next.sid = ret & GLOBAL_VTU_SID_MASK;
1563
1564         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1565         if (ret < 0)
1566                 return ret;
1567
1568         next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1569
1570         if (next.valid) {
1571                 ret = mv88e6xxx_stu_data_read(chip, &next);
1572                 if (ret < 0)
1573                         return ret;
1574         }
1575
1576         *entry = next;
1577         return 0;
1578 }
1579
1580 static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1581                                     struct mv88e6xxx_vtu_stu_entry *entry)
1582 {
1583         u16 reg = 0;
1584         int ret;
1585
1586         ret = _mv88e6xxx_vtu_wait(chip);
1587         if (ret < 0)
1588                 return ret;
1589
1590         if (!entry->valid)
1591                 goto loadpurge;
1592
1593         /* Write port states */
1594         ret = mv88e6xxx_stu_data_write(chip, entry);
1595         if (ret < 0)
1596                 return ret;
1597
1598         reg = GLOBAL_VTU_VID_VALID;
1599 loadpurge:
1600         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1601         if (ret < 0)
1602                 return ret;
1603
1604         reg = entry->sid & GLOBAL_VTU_SID_MASK;
1605         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1606         if (ret < 0)
1607                 return ret;
1608
1609         return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1610 }
1611
1612 static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1613                                u16 *new, u16 *old)
1614 {
1615         struct dsa_switch *ds = chip->ds;
1616         u16 upper_mask;
1617         u16 fid;
1618         int ret;
1619
1620         if (mv88e6xxx_num_databases(chip) == 4096)
1621                 upper_mask = 0xff;
1622         else if (mv88e6xxx_num_databases(chip) == 256)
1623                 upper_mask = 0xf;
1624         else
1625                 return -EOPNOTSUPP;
1626
1627         /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1628         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1629         if (ret < 0)
1630                 return ret;
1631
1632         fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1633
1634         if (new) {
1635                 ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1636                 ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1637
1638                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1639                                            ret);
1640                 if (ret < 0)
1641                         return ret;
1642         }
1643
1644         /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1645         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1646         if (ret < 0)
1647                 return ret;
1648
1649         fid |= (ret & upper_mask) << 4;
1650
1651         if (new) {
1652                 ret &= ~upper_mask;
1653                 ret |= (*new >> 4) & upper_mask;
1654
1655                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1656                                            ret);
1657                 if (ret < 0)
1658                         return ret;
1659
1660                 netdev_dbg(ds->ports[port].netdev,
1661                            "FID %d (was %d)\n", *new, fid);
1662         }
1663
1664         if (old)
1665                 *old = fid;
1666
1667         return 0;
1668 }
1669
1670 static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1671                                    int port, u16 *fid)
1672 {
1673         return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1674 }
1675
1676 static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1677                                    int port, u16 fid)
1678 {
1679         return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1680 }
1681
1682 static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1683 {
1684         DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1685         struct mv88e6xxx_vtu_stu_entry vlan;
1686         int i, err;
1687
1688         bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1689
1690         /* Set every FID bit used by the (un)bridged ports */
1691         for (i = 0; i < chip->info->num_ports; ++i) {
1692                 err = _mv88e6xxx_port_fid_get(chip, i, fid);
1693                 if (err)
1694                         return err;
1695
1696                 set_bit(*fid, fid_bitmap);
1697         }
1698
1699         /* Set every FID bit used by the VLAN entries */
1700         err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1701         if (err)
1702                 return err;
1703
1704         do {
1705                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1706                 if (err)
1707                         return err;
1708
1709                 if (!vlan.valid)
1710                         break;
1711
1712                 set_bit(vlan.fid, fid_bitmap);
1713         } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1714
1715         /* The reset value 0x000 is used to indicate that multiple address
1716          * databases are not needed. Return the next positive available.
1717          */
1718         *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1719         if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1720                 return -ENOSPC;
1721
1722         /* Clear the database */
1723         return _mv88e6xxx_atu_flush(chip, *fid, true);
1724 }
1725
1726 static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1727                               struct mv88e6xxx_vtu_stu_entry *entry)
1728 {
1729         struct dsa_switch *ds = chip->ds;
1730         struct mv88e6xxx_vtu_stu_entry vlan = {
1731                 .valid = true,
1732                 .vid = vid,
1733         };
1734         int i, err;
1735
1736         err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1737         if (err)
1738                 return err;
1739
1740         /* exclude all ports except the CPU and DSA ports */
1741         for (i = 0; i < chip->info->num_ports; ++i)
1742                 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1743                         ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1744                         : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1745
1746         if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
1747             mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1748                 struct mv88e6xxx_vtu_stu_entry vstp;
1749
1750                 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1751                  * implemented, only one STU entry is needed to cover all VTU
1752                  * entries. Thus, validate the SID 0.
1753                  */
1754                 vlan.sid = 0;
1755                 err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1756                 if (err)
1757                         return err;
1758
1759                 if (vstp.sid != vlan.sid || !vstp.valid) {
1760                         memset(&vstp, 0, sizeof(vstp));
1761                         vstp.valid = true;
1762                         vstp.sid = vlan.sid;
1763
1764                         err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1765                         if (err)
1766                                 return err;
1767                 }
1768         }
1769
1770         *entry = vlan;
1771         return 0;
1772 }
1773
1774 static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1775                               struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1776 {
1777         int err;
1778
1779         if (!vid)
1780                 return -EINVAL;
1781
1782         err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1783         if (err)
1784                 return err;
1785
1786         err = _mv88e6xxx_vtu_getnext(chip, entry);
1787         if (err)
1788                 return err;
1789
1790         if (entry->vid != vid || !entry->valid) {
1791                 if (!creat)
1792                         return -EOPNOTSUPP;
1793                 /* -ENOENT would've been more appropriate, but switchdev expects
1794                  * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1795                  */
1796
1797                 err = _mv88e6xxx_vtu_new(chip, vid, entry);
1798         }
1799
1800         return err;
1801 }
1802
1803 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1804                                         u16 vid_begin, u16 vid_end)
1805 {
1806         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1807         struct mv88e6xxx_vtu_stu_entry vlan;
1808         int i, err;
1809
1810         if (!vid_begin)
1811                 return -EOPNOTSUPP;
1812
1813         mutex_lock(&chip->reg_lock);
1814
1815         err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1816         if (err)
1817                 goto unlock;
1818
1819         do {
1820                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1821                 if (err)
1822                         goto unlock;
1823
1824                 if (!vlan.valid)
1825                         break;
1826
1827                 if (vlan.vid > vid_end)
1828                         break;
1829
1830                 for (i = 0; i < chip->info->num_ports; ++i) {
1831                         if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1832                                 continue;
1833
1834                         if (vlan.data[i] ==
1835                             GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1836                                 continue;
1837
1838                         if (chip->ports[i].bridge_dev ==
1839                             chip->ports[port].bridge_dev)
1840                                 break; /* same bridge, check next VLAN */
1841
1842                         netdev_warn(ds->ports[port].netdev,
1843                                     "hardware VLAN %d already used by %s\n",
1844                                     vlan.vid,
1845                                     netdev_name(chip->ports[i].bridge_dev));
1846                         err = -EOPNOTSUPP;
1847                         goto unlock;
1848                 }
1849         } while (vlan.vid < vid_end);
1850
1851 unlock:
1852         mutex_unlock(&chip->reg_lock);
1853
1854         return err;
1855 }
1856
1857 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1858         [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1859         [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1860         [PORT_CONTROL_2_8021Q_CHECK] = "Check",
1861         [PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1862 };
1863
1864 static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1865                                          bool vlan_filtering)
1866 {
1867         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1868         u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1869                 PORT_CONTROL_2_8021Q_DISABLED;
1870         int ret;
1871
1872         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1873                 return -EOPNOTSUPP;
1874
1875         mutex_lock(&chip->reg_lock);
1876
1877         ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1878         if (ret < 0)
1879                 goto unlock;
1880
1881         old = ret & PORT_CONTROL_2_8021Q_MASK;
1882
1883         if (new != old) {
1884                 ret &= ~PORT_CONTROL_2_8021Q_MASK;
1885                 ret |= new & PORT_CONTROL_2_8021Q_MASK;
1886
1887                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1888                                            ret);
1889                 if (ret < 0)
1890                         goto unlock;
1891
1892                 netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1893                            mv88e6xxx_port_8021q_mode_names[new],
1894                            mv88e6xxx_port_8021q_mode_names[old]);
1895         }
1896
1897         ret = 0;
1898 unlock:
1899         mutex_unlock(&chip->reg_lock);
1900
1901         return ret;
1902 }
1903
1904 static int
1905 mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1906                             const struct switchdev_obj_port_vlan *vlan,
1907                             struct switchdev_trans *trans)
1908 {
1909         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1910         int err;
1911
1912         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1913                 return -EOPNOTSUPP;
1914
1915         /* If the requested port doesn't belong to the same bridge as the VLAN
1916          * members, do not support it (yet) and fallback to software VLAN.
1917          */
1918         err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1919                                            vlan->vid_end);
1920         if (err)
1921                 return err;
1922
1923         /* We don't need any dynamic resource from the kernel (yet),
1924          * so skip the prepare phase.
1925          */
1926         return 0;
1927 }
1928
1929 static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1930                                     u16 vid, bool untagged)
1931 {
1932         struct mv88e6xxx_vtu_stu_entry vlan;
1933         int err;
1934
1935         err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1936         if (err)
1937                 return err;
1938
1939         vlan.data[port] = untagged ?
1940                 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1941                 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1942
1943         return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1944 }
1945
1946 static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1947                                     const struct switchdev_obj_port_vlan *vlan,
1948                                     struct switchdev_trans *trans)
1949 {
1950         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1951         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1952         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1953         u16 vid;
1954
1955         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1956                 return;
1957
1958         mutex_lock(&chip->reg_lock);
1959
1960         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1961                 if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1962                         netdev_err(ds->ports[port].netdev,
1963                                    "failed to add VLAN %d%c\n",
1964                                    vid, untagged ? 'u' : 't');
1965
1966         if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1967                 netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1968                            vlan->vid_end);
1969
1970         mutex_unlock(&chip->reg_lock);
1971 }
1972
1973 static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1974                                     int port, u16 vid)
1975 {
1976         struct dsa_switch *ds = chip->ds;
1977         struct mv88e6xxx_vtu_stu_entry vlan;
1978         int i, err;
1979
1980         err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1981         if (err)
1982                 return err;
1983
1984         /* Tell switchdev if this VLAN is handled in software */
1985         if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1986                 return -EOPNOTSUPP;
1987
1988         vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1989
1990         /* keep the VLAN unless all ports are excluded */
1991         vlan.valid = false;
1992         for (i = 0; i < chip->info->num_ports; ++i) {
1993                 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1994                         continue;
1995
1996                 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1997                         vlan.valid = true;
1998                         break;
1999                 }
2000         }
2001
2002         err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2003         if (err)
2004                 return err;
2005
2006         return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2007 }
2008
2009 static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
2010                                    const struct switchdev_obj_port_vlan *vlan)
2011 {
2012         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2013         u16 pvid, vid;
2014         int err = 0;
2015
2016         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2017                 return -EOPNOTSUPP;
2018
2019         mutex_lock(&chip->reg_lock);
2020
2021         err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2022         if (err)
2023                 goto unlock;
2024
2025         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2026                 err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2027                 if (err)
2028                         goto unlock;
2029
2030                 if (vid == pvid) {
2031                         err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2032                         if (err)
2033                                 goto unlock;
2034                 }
2035         }
2036
2037 unlock:
2038         mutex_unlock(&chip->reg_lock);
2039
2040         return err;
2041 }
2042
2043 static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2044                                     const unsigned char *addr)
2045 {
2046         int i, ret;
2047
2048         for (i = 0; i < 3; i++) {
2049                 ret = _mv88e6xxx_reg_write(
2050                         chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2051                         (addr[i * 2] << 8) | addr[i * 2 + 1]);
2052                 if (ret < 0)
2053                         return ret;
2054         }
2055
2056         return 0;
2057 }
2058
2059 static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2060                                    unsigned char *addr)
2061 {
2062         int i, ret;
2063
2064         for (i = 0; i < 3; i++) {
2065                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2066                                           GLOBAL_ATU_MAC_01 + i);
2067                 if (ret < 0)
2068                         return ret;
2069                 addr[i * 2] = ret >> 8;
2070                 addr[i * 2 + 1] = ret & 0xff;
2071         }
2072
2073         return 0;
2074 }
2075
2076 static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2077                                struct mv88e6xxx_atu_entry *entry)
2078 {
2079         int ret;
2080
2081         ret = _mv88e6xxx_atu_wait(chip);
2082         if (ret < 0)
2083                 return ret;
2084
2085         ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2086         if (ret < 0)
2087                 return ret;
2088
2089         ret = _mv88e6xxx_atu_data_write(chip, entry);
2090         if (ret < 0)
2091                 return ret;
2092
2093         return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2094 }
2095
2096 static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2097                                     const unsigned char *addr, u16 vid,
2098                                     u8 state)
2099 {
2100         struct mv88e6xxx_atu_entry entry = { 0 };
2101         struct mv88e6xxx_vtu_stu_entry vlan;
2102         int err;
2103
2104         /* Null VLAN ID corresponds to the port private database */
2105         if (vid == 0)
2106                 err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2107         else
2108                 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2109         if (err)
2110                 return err;
2111
2112         entry.fid = vlan.fid;
2113         entry.state = state;
2114         ether_addr_copy(entry.mac, addr);
2115         if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2116                 entry.trunk = false;
2117                 entry.portv_trunkid = BIT(port);
2118         }
2119
2120         return _mv88e6xxx_atu_load(chip, &entry);
2121 }
2122
2123 static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2124                                       const struct switchdev_obj_port_fdb *fdb,
2125                                       struct switchdev_trans *trans)
2126 {
2127         /* We don't need any dynamic resource from the kernel (yet),
2128          * so skip the prepare phase.
2129          */
2130         return 0;
2131 }
2132
2133 static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2134                                    const struct switchdev_obj_port_fdb *fdb,
2135                                    struct switchdev_trans *trans)
2136 {
2137         int state = is_multicast_ether_addr(fdb->addr) ?
2138                 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2139                 GLOBAL_ATU_DATA_STATE_UC_STATIC;
2140         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2141
2142         mutex_lock(&chip->reg_lock);
2143         if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2144                 netdev_err(ds->ports[port].netdev,
2145                            "failed to load MAC address\n");
2146         mutex_unlock(&chip->reg_lock);
2147 }
2148
2149 static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2150                                   const struct switchdev_obj_port_fdb *fdb)
2151 {
2152         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2153         int ret;
2154
2155         mutex_lock(&chip->reg_lock);
2156         ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2157                                        GLOBAL_ATU_DATA_STATE_UNUSED);
2158         mutex_unlock(&chip->reg_lock);
2159
2160         return ret;
2161 }
2162
2163 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2164                                   struct mv88e6xxx_atu_entry *entry)
2165 {
2166         struct mv88e6xxx_atu_entry next = { 0 };
2167         int ret;
2168
2169         next.fid = fid;
2170
2171         ret = _mv88e6xxx_atu_wait(chip);
2172         if (ret < 0)
2173                 return ret;
2174
2175         ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2176         if (ret < 0)
2177                 return ret;
2178
2179         ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2180         if (ret < 0)
2181                 return ret;
2182
2183         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2184         if (ret < 0)
2185                 return ret;
2186
2187         next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2188         if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2189                 unsigned int mask, shift;
2190
2191                 if (ret & GLOBAL_ATU_DATA_TRUNK) {
2192                         next.trunk = true;
2193                         mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2194                         shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2195                 } else {
2196                         next.trunk = false;
2197                         mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2198                         shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2199                 }
2200
2201                 next.portv_trunkid = (ret & mask) >> shift;
2202         }
2203
2204         *entry = next;
2205         return 0;
2206 }
2207
2208 static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2209                                         u16 fid, u16 vid, int port,
2210                                         struct switchdev_obj_port_fdb *fdb,
2211                                         int (*cb)(struct switchdev_obj *obj))
2212 {
2213         struct mv88e6xxx_atu_entry addr = {
2214                 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2215         };
2216         int err;
2217
2218         err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2219         if (err)
2220                 return err;
2221
2222         do {
2223                 err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2224                 if (err)
2225                         break;
2226
2227                 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2228                         break;
2229
2230                 if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
2231                         bool is_static = addr.state ==
2232                                 (is_multicast_ether_addr(addr.mac) ?
2233                                  GLOBAL_ATU_DATA_STATE_MC_STATIC :
2234                                  GLOBAL_ATU_DATA_STATE_UC_STATIC);
2235
2236                         fdb->vid = vid;
2237                         ether_addr_copy(fdb->addr, addr.mac);
2238                         fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
2239
2240                         err = cb(&fdb->obj);
2241                         if (err)
2242                                 break;
2243                 }
2244         } while (!is_broadcast_ether_addr(addr.mac));
2245
2246         return err;
2247 }
2248
2249 static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2250                                    struct switchdev_obj_port_fdb *fdb,
2251                                    int (*cb)(struct switchdev_obj *obj))
2252 {
2253         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2254         struct mv88e6xxx_vtu_stu_entry vlan = {
2255                 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
2256         };
2257         u16 fid;
2258         int err;
2259
2260         mutex_lock(&chip->reg_lock);
2261
2262         /* Dump port's default Filtering Information Database (VLAN ID 0) */
2263         err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2264         if (err)
2265                 goto unlock;
2266
2267         err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2268         if (err)
2269                 goto unlock;
2270
2271         /* Dump VLANs' Filtering Information Databases */
2272         err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2273         if (err)
2274                 goto unlock;
2275
2276         do {
2277                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2278                 if (err)
2279                         break;
2280
2281                 if (!vlan.valid)
2282                         break;
2283
2284                 err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
2285                                                    port, fdb, cb);
2286                 if (err)
2287                         break;
2288         } while (vlan.vid < GLOBAL_VTU_VID_MASK);
2289
2290 unlock:
2291         mutex_unlock(&chip->reg_lock);
2292
2293         return err;
2294 }
2295
2296 static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2297                                       struct net_device *bridge)
2298 {
2299         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2300         int i, err = 0;
2301
2302         mutex_lock(&chip->reg_lock);
2303
2304         /* Assign the bridge and remap each port's VLANTable */
2305         chip->ports[port].bridge_dev = bridge;
2306
2307         for (i = 0; i < chip->info->num_ports; ++i) {
2308                 if (chip->ports[i].bridge_dev == bridge) {
2309                         err = _mv88e6xxx_port_based_vlan_map(chip, i);
2310                         if (err)
2311                                 break;
2312                 }
2313         }
2314
2315         mutex_unlock(&chip->reg_lock);
2316
2317         return err;
2318 }
2319
2320 static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2321 {
2322         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2323         struct net_device *bridge = chip->ports[port].bridge_dev;
2324         int i;
2325
2326         mutex_lock(&chip->reg_lock);
2327
2328         /* Unassign the bridge and remap each port's VLANTable */
2329         chip->ports[port].bridge_dev = NULL;
2330
2331         for (i = 0; i < chip->info->num_ports; ++i)
2332                 if (i == port || chip->ports[i].bridge_dev == bridge)
2333                         if (_mv88e6xxx_port_based_vlan_map(chip, i))
2334                                 netdev_warn(ds->ports[i].netdev,
2335                                             "failed to remap\n");
2336
2337         mutex_unlock(&chip->reg_lock);
2338 }
2339
2340 static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2341 {
2342         bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2343         u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2344         struct gpio_desc *gpiod = chip->reset;
2345         unsigned long timeout;
2346         int ret;
2347         int i;
2348
2349         /* Set all ports to the disabled state. */
2350         for (i = 0; i < chip->info->num_ports; i++) {
2351                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2352                 if (ret < 0)
2353                         return ret;
2354
2355                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2356                                            ret & 0xfffc);
2357                 if (ret)
2358                         return ret;
2359         }
2360
2361         /* Wait for transmit queues to drain. */
2362         usleep_range(2000, 4000);
2363
2364         /* If there is a gpio connected to the reset pin, toggle it */
2365         if (gpiod) {
2366                 gpiod_set_value_cansleep(gpiod, 1);
2367                 usleep_range(10000, 20000);
2368                 gpiod_set_value_cansleep(gpiod, 0);
2369                 usleep_range(10000, 20000);
2370         }
2371
2372         /* Reset the switch. Keep the PPU active if requested. The PPU
2373          * needs to be active to support indirect phy register access
2374          * through global registers 0x18 and 0x19.
2375          */
2376         if (ppu_active)
2377                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2378         else
2379                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2380         if (ret)
2381                 return ret;
2382
2383         /* Wait up to one second for reset to complete. */
2384         timeout = jiffies + 1 * HZ;
2385         while (time_before(jiffies, timeout)) {
2386                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2387                 if (ret < 0)
2388                         return ret;
2389
2390                 if ((ret & is_reset) == is_reset)
2391                         break;
2392                 usleep_range(1000, 2000);
2393         }
2394         if (time_after(jiffies, timeout))
2395                 ret = -ETIMEDOUT;
2396         else
2397                 ret = 0;
2398
2399         return ret;
2400 }
2401
2402 static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2403 {
2404         u16 val;
2405         int err;
2406
2407         /* Clear Power Down bit */
2408         err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
2409         if (err)
2410                 return err;
2411
2412         if (val & BMCR_PDOWN) {
2413                 val &= ~BMCR_PDOWN;
2414                 err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2415         }
2416
2417         return err;
2418 }
2419
2420 static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
2421                                int reg, u16 *val)
2422 {
2423         int addr = chip->info->port_base_addr + port;
2424
2425         if (port >= chip->info->num_ports)
2426                 return -EINVAL;
2427
2428         return mv88e6xxx_read(chip, addr, reg, val);
2429 }
2430
2431 static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2432 {
2433         struct dsa_switch *ds = chip->ds;
2434         int ret;
2435         u16 reg;
2436
2437         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2438             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2439             mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2440             mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2441                 /* MAC Forcing register: don't force link, speed,
2442                  * duplex or flow control state to any particular
2443                  * values on physical ports, but force the CPU port
2444                  * and all DSA ports to their maximum bandwidth and
2445                  * full duplex.
2446                  */
2447                 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2448                 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2449                         reg &= ~PORT_PCS_CTRL_UNFORCED;
2450                         reg |= PORT_PCS_CTRL_FORCE_LINK |
2451                                 PORT_PCS_CTRL_LINK_UP |
2452                                 PORT_PCS_CTRL_DUPLEX_FULL |
2453                                 PORT_PCS_CTRL_FORCE_DUPLEX;
2454                         if (mv88e6xxx_6065_family(chip))
2455                                 reg |= PORT_PCS_CTRL_100;
2456                         else
2457                                 reg |= PORT_PCS_CTRL_1000;
2458                 } else {
2459                         reg |= PORT_PCS_CTRL_UNFORCED;
2460                 }
2461
2462                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2463                                            PORT_PCS_CTRL, reg);
2464                 if (ret)
2465                         return ret;
2466         }
2467
2468         /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2469          * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2470          * tunneling, determine priority by looking at 802.1p and IP
2471          * priority fields (IP prio has precedence), and set STP state
2472          * to Forwarding.
2473          *
2474          * If this is the CPU link, use DSA or EDSA tagging depending
2475          * on which tagging mode was configured.
2476          *
2477          * If this is a link to another switch, use DSA tagging mode.
2478          *
2479          * If this is the upstream port for this switch, enable
2480          * forwarding of unknown unicasts and multicasts.
2481          */
2482         reg = 0;
2483         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2484             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2485             mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
2486             mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2487                 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2488                 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2489                 PORT_CONTROL_STATE_FORWARDING;
2490         if (dsa_is_cpu_port(ds, port)) {
2491                 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2492                         reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2493                                 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2494                 else
2495                         reg |= PORT_CONTROL_DSA_TAG;
2496                 reg |= PORT_CONTROL_EGRESS_ADD_TAG |
2497                         PORT_CONTROL_FORWARD_UNKNOWN;
2498         }
2499         if (dsa_is_dsa_port(ds, port)) {
2500                 if (mv88e6xxx_6095_family(chip) ||
2501                     mv88e6xxx_6185_family(chip))
2502                         reg |= PORT_CONTROL_DSA_TAG;
2503                 if (mv88e6xxx_6352_family(chip) ||
2504                     mv88e6xxx_6351_family(chip) ||
2505                     mv88e6xxx_6165_family(chip) ||
2506                     mv88e6xxx_6097_family(chip) ||
2507                     mv88e6xxx_6320_family(chip)) {
2508                         reg |= PORT_CONTROL_FRAME_MODE_DSA;
2509                 }
2510
2511                 if (port == dsa_upstream_port(ds))
2512                         reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2513                                 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2514         }
2515         if (reg) {
2516                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2517                                            PORT_CONTROL, reg);
2518                 if (ret)
2519                         return ret;
2520         }
2521
2522         /* If this port is connected to a SerDes, make sure the SerDes is not
2523          * powered down.
2524          */
2525         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2526                 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2527                 if (ret < 0)
2528                         return ret;
2529                 ret &= PORT_STATUS_CMODE_MASK;
2530                 if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
2531                     (ret == PORT_STATUS_CMODE_1000BASE_X) ||
2532                     (ret == PORT_STATUS_CMODE_SGMII)) {
2533                         ret = mv88e6xxx_serdes_power_on(chip);
2534                         if (ret < 0)
2535                                 return ret;
2536                 }
2537         }
2538
2539         /* Port Control 2: don't force a good FCS, set the maximum frame size to
2540          * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2541          * untagged frames on this port, do a destination address lookup on all
2542          * received packets as usual, disable ARP mirroring and don't send a
2543          * copy of all transmitted/received frames on this port to the CPU.
2544          */
2545         reg = 0;
2546         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2547             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2548             mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
2549             mv88e6xxx_6185_family(chip))
2550                 reg = PORT_CONTROL_2_MAP_DA;
2551
2552         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2553             mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2554                 reg |= PORT_CONTROL_2_JUMBO_10240;
2555
2556         if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2557                 /* Set the upstream port this port should use */
2558                 reg |= dsa_upstream_port(ds);
2559                 /* enable forwarding of unknown multicast addresses to
2560                  * the upstream port
2561                  */
2562                 if (port == dsa_upstream_port(ds))
2563                         reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2564         }
2565
2566         reg |= PORT_CONTROL_2_8021Q_DISABLED;
2567
2568         if (reg) {
2569                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2570                                            PORT_CONTROL_2, reg);
2571                 if (ret)
2572                         return ret;
2573         }
2574
2575         /* Port Association Vector: when learning source addresses
2576          * of packets, add the address to the address database using
2577          * a port bitmap that has only the bit for this port set and
2578          * the other bits clear.
2579          */
2580         reg = 1 << port;
2581         /* Disable learning for CPU port */
2582         if (dsa_is_cpu_port(ds, port))
2583                 reg = 0;
2584
2585         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
2586                                    reg);
2587         if (ret)
2588                 return ret;
2589
2590         /* Egress rate control 2: disable egress rate control. */
2591         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2592                                    0x0000);
2593         if (ret)
2594                 return ret;
2595
2596         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2597             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2598             mv88e6xxx_6320_family(chip)) {
2599                 /* Do not limit the period of time that this port can
2600                  * be paused for by the remote end or the period of
2601                  * time that this port can pause the remote end.
2602                  */
2603                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2604                                            PORT_PAUSE_CTRL, 0x0000);
2605                 if (ret)
2606                         return ret;
2607
2608                 /* Port ATU control: disable limiting the number of
2609                  * address database entries that this port is allowed
2610                  * to use.
2611                  */
2612                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2613                                            PORT_ATU_CONTROL, 0x0000);
2614                 /* Priority Override: disable DA, SA and VTU priority
2615                  * override.
2616                  */
2617                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2618                                            PORT_PRI_OVERRIDE, 0x0000);
2619                 if (ret)
2620                         return ret;
2621
2622                 /* Port Ethertype: use the Ethertype DSA Ethertype
2623                  * value.
2624                  */
2625                 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2626                         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2627                                                    PORT_ETH_TYPE, ETH_P_EDSA);
2628                         if (ret)
2629                                 return ret;
2630                 }
2631
2632                 /* Tag Remap: use an identity 802.1p prio -> switch
2633                  * prio mapping.
2634                  */
2635                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2636                                            PORT_TAG_REGMAP_0123, 0x3210);
2637                 if (ret)
2638                         return ret;
2639
2640                 /* Tag Remap 2: use an identity 802.1p prio -> switch
2641                  * prio mapping.
2642                  */
2643                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2644                                            PORT_TAG_REGMAP_4567, 0x7654);
2645                 if (ret)
2646                         return ret;
2647         }
2648
2649         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2650             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2651             mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2652             mv88e6xxx_6320_family(chip)) {
2653                 /* Rate Control: disable ingress rate limiting. */
2654                 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2655                                            PORT_RATE_CONTROL, 0x0001);
2656                 if (ret)
2657                         return ret;
2658         }
2659
2660         /* Port Control 1: disable trunking, disable sending
2661          * learning messages to this port.
2662          */
2663         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
2664                                    0x0000);
2665         if (ret)
2666                 return ret;
2667
2668         /* Port based VLAN map: give each port the same default address
2669          * database, and allow bidirectional communication between the
2670          * CPU and DSA port(s), and the other ports.
2671          */
2672         ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2673         if (ret)
2674                 return ret;
2675
2676         ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2677         if (ret)
2678                 return ret;
2679
2680         /* Default VLAN ID and priority: don't set a default VLAN
2681          * ID, and set the default packet priority to zero.
2682          */
2683         ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2684                                    0x0000);
2685         if (ret)
2686                 return ret;
2687
2688         return 0;
2689 }
2690
2691 static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2692 {
2693         int err;
2694
2695         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
2696                               (addr[0] << 8) | addr[1]);
2697         if (err)
2698                 return err;
2699
2700         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
2701                               (addr[2] << 8) | addr[3]);
2702         if (err)
2703                 return err;
2704
2705         return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
2706                                (addr[4] << 8) | addr[5]);
2707 }
2708
2709 static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
2710                                      unsigned int msecs)
2711 {
2712         const unsigned int coeff = chip->info->age_time_coeff;
2713         const unsigned int min = 0x01 * coeff;
2714         const unsigned int max = 0xff * coeff;
2715         u8 age_time;
2716         u16 val;
2717         int err;
2718
2719         if (msecs < min || msecs > max)
2720                 return -ERANGE;
2721
2722         /* Round to nearest multiple of coeff */
2723         age_time = (msecs + coeff / 2) / coeff;
2724
2725         err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
2726         if (err)
2727                 return err;
2728
2729         /* AgeTime is 11:4 bits */
2730         val &= ~0xff0;
2731         val |= age_time << 4;
2732
2733         return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
2734 }
2735
2736 static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
2737                                      unsigned int ageing_time)
2738 {
2739         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2740         int err;
2741
2742         mutex_lock(&chip->reg_lock);
2743         err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
2744         mutex_unlock(&chip->reg_lock);
2745
2746         return err;
2747 }
2748
2749 static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2750 {
2751         struct dsa_switch *ds = chip->ds;
2752         u32 upstream_port = dsa_upstream_port(ds);
2753         u16 reg;
2754         int err;
2755
2756         /* Enable the PHY Polling Unit if present, don't discard any packets,
2757          * and mask all interrupt sources.
2758          */
2759         reg = 0;
2760         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
2761             mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2762                 reg |= GLOBAL_CONTROL_PPU_ENABLE;
2763
2764         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2765         if (err)
2766                 return err;
2767
2768         /* Configure the upstream port, and configure it as the port to which
2769          * ingress and egress and ARP monitor frames are to be sent.
2770          */
2771         reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
2772                 upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
2773                 upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2774         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
2775                                    reg);
2776         if (err)
2777                 return err;
2778
2779         /* Disable remote management, and set the switch's DSA device number. */
2780         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2781                                    GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
2782                                    (ds->index & 0x1f));
2783         if (err)
2784                 return err;
2785
2786         /* Clear all the VTU and STU entries */
2787         err = _mv88e6xxx_vtu_stu_flush(chip);
2788         if (err < 0)
2789                 return err;
2790
2791         /* Set the default address aging time to 5 minutes, and
2792          * enable address learn messages to be sent to all message
2793          * ports.
2794          */
2795         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
2796                               GLOBAL_ATU_CONTROL_LEARN2ALL);
2797         if (err)
2798                 return err;
2799
2800         err = mv88e6xxx_g1_set_age_time(chip, 300000);
2801         if (err)
2802                 return err;
2803
2804         /* Clear all ATU entries */
2805         err = _mv88e6xxx_atu_flush(chip, 0, true);
2806         if (err)
2807                 return err;
2808
2809         /* Configure the IP ToS mapping registers. */
2810         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2811         if (err)
2812                 return err;
2813         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2814         if (err)
2815                 return err;
2816         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2817         if (err)
2818                 return err;
2819         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2820         if (err)
2821                 return err;
2822         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2823         if (err)
2824                 return err;
2825         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2826         if (err)
2827                 return err;
2828         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2829         if (err)
2830                 return err;
2831         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2832         if (err)
2833                 return err;
2834
2835         /* Configure the IEEE 802.1p priority mapping register. */
2836         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2837         if (err)
2838                 return err;
2839
2840         /* Clear the statistics counters for all ports */
2841         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
2842                                    GLOBAL_STATS_OP_FLUSH_ALL);
2843         if (err)
2844                 return err;
2845
2846         /* Wait for the flush to complete. */
2847         err = _mv88e6xxx_stats_wait(chip);
2848         if (err)
2849                 return err;
2850
2851         return 0;
2852 }
2853
2854 static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
2855                                              int target, int port)
2856 {
2857         u16 val = (target << 8) | (port & 0xf);
2858
2859         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
2860 }
2861
2862 static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
2863 {
2864         int target, port;
2865         int err;
2866
2867         /* Initialize the routing port to the 32 possible target devices */
2868         for (target = 0; target < 32; ++target) {
2869                 port = 0xf;
2870
2871                 if (target < DSA_MAX_SWITCHES) {
2872                         port = chip->ds->rtable[target];
2873                         if (port == DSA_RTABLE_NONE)
2874                                 port = 0xf;
2875                 }
2876
2877                 err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
2878                 if (err)
2879                         break;
2880         }
2881
2882         return err;
2883 }
2884
2885 static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
2886                                          bool hask, u16 mask)
2887 {
2888         const u16 port_mask = BIT(chip->info->num_ports) - 1;
2889         u16 val = (num << 12) | (mask & port_mask);
2890
2891         if (hask)
2892                 val |= GLOBAL2_TRUNK_MASK_HASK;
2893
2894         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
2895 }
2896
2897 static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
2898                                             u16 map)
2899 {
2900         const u16 port_mask = BIT(chip->info->num_ports) - 1;
2901         u16 val = (id << 11) | (map & port_mask);
2902
2903         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
2904 }
2905
2906 static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
2907 {
2908         const u16 port_mask = BIT(chip->info->num_ports) - 1;
2909         int i, err;
2910
2911         /* Clear all eight possible Trunk Mask vectors */
2912         for (i = 0; i < 8; ++i) {
2913                 err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
2914                 if (err)
2915                         return err;
2916         }
2917
2918         /* Clear all sixteen possible Trunk ID routing vectors */
2919         for (i = 0; i < 16; ++i) {
2920                 err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
2921                 if (err)
2922                         return err;
2923         }
2924
2925         return 0;
2926 }
2927
2928 static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
2929 {
2930         int port, err;
2931
2932         /* Init all Ingress Rate Limit resources of all ports */
2933         for (port = 0; port < chip->info->num_ports; ++port) {
2934                 /* XXX newer chips (like 88E6390) have different 2-bit ops */
2935                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2936                                       GLOBAL2_IRL_CMD_OP_INIT_ALL |
2937                                       (port << 8));
2938                 if (err)
2939                         break;
2940
2941                 /* Wait for the operation to complete */
2942                 err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2943                                      GLOBAL2_IRL_CMD_BUSY);
2944                 if (err)
2945                         break;
2946         }
2947
2948         return err;
2949 }
2950
2951 /* Indirect write to the Switch MAC/WoL/WoF register */
2952 static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
2953                                          unsigned int pointer, u8 data)
2954 {
2955         u16 val = (pointer << 8) | data;
2956
2957         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
2958 }
2959
2960 static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2961 {
2962         int i, err;
2963
2964         for (i = 0; i < 6; i++) {
2965                 err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
2966                 if (err)
2967                         break;
2968         }
2969
2970         return err;
2971 }
2972
2973 static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
2974                                   u8 data)
2975 {
2976         u16 val = (pointer << 8) | (data & 0x7);
2977
2978         return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
2979 }
2980
2981 static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
2982 {
2983         int i, err;
2984
2985         /* Clear all sixteen possible Priority Override entries */
2986         for (i = 0; i < 16; i++) {
2987                 err = mv88e6xxx_g2_pot_write(chip, i, 0);
2988                 if (err)
2989                         break;
2990         }
2991
2992         return err;
2993 }
2994
2995 static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
2996 {
2997         return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
2998                               GLOBAL2_EEPROM_CMD_BUSY |
2999                               GLOBAL2_EEPROM_CMD_RUNNING);
3000 }
3001
3002 static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3003 {
3004         int err;
3005
3006         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
3007         if (err)
3008                 return err;
3009
3010         return mv88e6xxx_g2_eeprom_wait(chip);
3011 }
3012
3013 static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
3014                                       u8 addr, u16 *data)
3015 {
3016         u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
3017         int err;
3018
3019         err = mv88e6xxx_g2_eeprom_wait(chip);
3020         if (err)
3021                 return err;
3022
3023         err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3024         if (err)
3025                 return err;
3026
3027         return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3028 }
3029
3030 static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
3031                                        u8 addr, u16 data)
3032 {
3033         u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
3034         int err;
3035
3036         err = mv88e6xxx_g2_eeprom_wait(chip);
3037         if (err)
3038                 return err;
3039
3040         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3041         if (err)
3042                 return err;
3043
3044         return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3045 }
3046
3047 static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
3048 {
3049         return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
3050                               GLOBAL2_SMI_PHY_CMD_BUSY);
3051 }
3052
3053 static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3054 {
3055         int err;
3056
3057         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
3058         if (err)
3059                 return err;
3060
3061         return mv88e6xxx_g2_smi_phy_wait(chip);
3062 }
3063
3064 static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
3065                                      int reg, u16 *val)
3066 {
3067         u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
3068         int err;
3069
3070         err = mv88e6xxx_g2_smi_phy_wait(chip);
3071         if (err)
3072                 return err;
3073
3074         err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
3075         if (err)
3076                 return err;
3077
3078         return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
3079 }
3080
3081 static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
3082                                       int reg, u16 val)
3083 {
3084         u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
3085         int err;
3086
3087         err = mv88e6xxx_g2_smi_phy_wait(chip);
3088         if (err)
3089                 return err;
3090
3091         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
3092         if (err)
3093                 return err;
3094
3095         return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
3096 }
3097
3098 static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
3099         .read = mv88e6xxx_g2_smi_phy_read,
3100         .write = mv88e6xxx_g2_smi_phy_write,
3101 };
3102
3103 static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
3104 {
3105         u16 reg;
3106         int err;
3107
3108         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
3109                 /* Consider the frames with reserved multicast destination
3110                  * addresses matching 01:80:c2:00:00:2x as MGMT.
3111                  */
3112                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
3113                                       0xffff);
3114                 if (err)
3115                         return err;
3116         }
3117
3118         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
3119                 /* Consider the frames with reserved multicast destination
3120                  * addresses matching 01:80:c2:00:00:0x as MGMT.
3121                  */
3122                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
3123                                       0xffff);
3124                 if (err)
3125                         return err;
3126         }
3127
3128         /* Ignore removed tag data on doubly tagged packets, disable
3129          * flow control messages, force flow control priority to the
3130          * highest, and send all special multicast frames to the CPU
3131          * port at the highest priority.
3132          */
3133         reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
3134         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
3135             mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
3136                 reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
3137         err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3138         if (err)
3139                 return err;
3140
3141         /* Program the DSA routing table. */
3142         err = mv88e6xxx_g2_set_device_mapping(chip);
3143         if (err)
3144                 return err;
3145
3146         /* Clear all trunk masks and mapping. */
3147         err = mv88e6xxx_g2_clear_trunk(chip);
3148         if (err)
3149                 return err;
3150
3151         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
3152                 /* Disable ingress rate limiting by resetting all per port
3153                  * ingress rate limit resources to their initial state.
3154                  */
3155                 err = mv88e6xxx_g2_clear_irl(chip);
3156                         if (err)
3157                                 return err;
3158         }
3159
3160         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
3161                 /* Initialize Cross-chip Port VLAN Table to reset defaults */
3162                 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
3163                                       GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3164                 if (err)
3165                         return err;
3166         }
3167
3168         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3169                 /* Clear the priority override table. */
3170                 err = mv88e6xxx_g2_clear_pot(chip);
3171                 if (err)
3172                         return err;
3173         }
3174
3175         return 0;
3176 }
3177
3178 static int mv88e6xxx_setup(struct dsa_switch *ds)
3179 {
3180         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3181         int err;
3182         int i;
3183
3184         chip->ds = ds;
3185         ds->slave_mii_bus = chip->mdio_bus;
3186
3187         mutex_lock(&chip->reg_lock);
3188
3189         err = mv88e6xxx_switch_reset(chip);
3190         if (err)
3191                 goto unlock;
3192
3193         /* Setup Switch Port Registers */
3194         for (i = 0; i < chip->info->num_ports; i++) {
3195                 err = mv88e6xxx_setup_port(chip, i);
3196                 if (err)
3197                         goto unlock;
3198         }
3199
3200         /* Setup Switch Global 1 Registers */
3201         err = mv88e6xxx_g1_setup(chip);
3202         if (err)
3203                 goto unlock;
3204
3205         /* Setup Switch Global 2 Registers */
3206         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
3207                 err = mv88e6xxx_g2_setup(chip);
3208                 if (err)
3209                         goto unlock;
3210         }
3211
3212 unlock:
3213         mutex_unlock(&chip->reg_lock);
3214
3215         return err;
3216 }
3217
3218 static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
3219 {
3220         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3221         int err;
3222
3223         mutex_lock(&chip->reg_lock);
3224
3225         /* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
3226         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
3227                 err = mv88e6xxx_g2_set_switch_mac(chip, addr);
3228         else
3229                 err = mv88e6xxx_g1_set_switch_mac(chip, addr);
3230
3231         mutex_unlock(&chip->reg_lock);
3232
3233         return err;
3234 }
3235
3236 static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3237 {
3238         struct mv88e6xxx_chip *chip = bus->priv;
3239         u16 val;
3240         int err;
3241
3242         if (phy >= chip->info->num_ports)
3243                 return 0xffff;
3244
3245         mutex_lock(&chip->reg_lock);
3246         err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3247         mutex_unlock(&chip->reg_lock);
3248
3249         return err ? err : val;
3250 }
3251
3252 static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3253 {
3254         struct mv88e6xxx_chip *chip = bus->priv;
3255         int err;
3256
3257         if (phy >= chip->info->num_ports)
3258                 return 0xffff;
3259
3260         mutex_lock(&chip->reg_lock);
3261         err = mv88e6xxx_phy_write(chip, phy, reg, val);
3262         mutex_unlock(&chip->reg_lock);
3263
3264         return err;
3265 }
3266
3267 static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3268                                    struct device_node *np)
3269 {
3270         static int index;
3271         struct mii_bus *bus;
3272         int err;
3273
3274         if (np)
3275                 chip->mdio_np = of_get_child_by_name(np, "mdio");
3276
3277         bus = devm_mdiobus_alloc(chip->dev);
3278         if (!bus)
3279                 return -ENOMEM;
3280
3281         bus->priv = (void *)chip;
3282         if (np) {
3283                 bus->name = np->full_name;
3284                 snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
3285         } else {
3286                 bus->name = "mv88e6xxx SMI";
3287                 snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
3288         }
3289
3290         bus->read = mv88e6xxx_mdio_read;
3291         bus->write = mv88e6xxx_mdio_write;
3292         bus->parent = chip->dev;
3293
3294         if (chip->mdio_np)
3295                 err = of_mdiobus_register(bus, chip->mdio_np);
3296         else
3297                 err = mdiobus_register(bus);
3298         if (err) {
3299                 dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3300                 goto out;
3301         }
3302         chip->mdio_bus = bus;
3303
3304         return 0;
3305
3306 out:
3307         if (chip->mdio_np)
3308                 of_node_put(chip->mdio_np);
3309
3310         return err;
3311 }
3312
3313 static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3314
3315 {
3316         struct mii_bus *bus = chip->mdio_bus;
3317
3318         mdiobus_unregister(bus);
3319
3320         if (chip->mdio_np)
3321                 of_node_put(chip->mdio_np);
3322 }
3323
3324 #ifdef CONFIG_NET_DSA_HWMON
3325
3326 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
3327 {
3328         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3329         u16 val;
3330         int ret;
3331
3332         *temp = 0;
3333
3334         mutex_lock(&chip->reg_lock);
3335
3336         ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3337         if (ret < 0)
3338                 goto error;
3339
3340         /* Enable temperature sensor */
3341         ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3342         if (ret < 0)
3343                 goto error;
3344
3345         ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3346         if (ret < 0)
3347                 goto error;
3348
3349         /* Wait for temperature to stabilize */
3350         usleep_range(10000, 12000);
3351
3352         ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3353         if (ret < 0)
3354                 goto error;
3355
3356         /* Disable temperature sensor */
3357         ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3358         if (ret < 0)
3359                 goto error;
3360
3361         *temp = ((val & 0x1f) - 5) * 5;
3362
3363 error:
3364         mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3365         mutex_unlock(&chip->reg_lock);
3366         return ret;
3367 }
3368
3369 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
3370 {
3371         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3372         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3373         u16 val;
3374         int ret;
3375
3376         *temp = 0;
3377
3378         mutex_lock(&chip->reg_lock);
3379         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
3380         mutex_unlock(&chip->reg_lock);
3381         if (ret < 0)
3382                 return ret;
3383
3384         *temp = (val & 0xff) - 25;
3385
3386         return 0;
3387 }
3388
3389 static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3390 {
3391         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3392
3393         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3394                 return -EOPNOTSUPP;
3395
3396         if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3397                 return mv88e63xx_get_temp(ds, temp);
3398
3399         return mv88e61xx_get_temp(ds, temp);
3400 }
3401
3402 static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3403 {
3404         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3405         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3406         u16 val;
3407         int ret;
3408
3409         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3410                 return -EOPNOTSUPP;
3411
3412         *temp = 0;
3413
3414         mutex_lock(&chip->reg_lock);
3415         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3416         mutex_unlock(&chip->reg_lock);
3417         if (ret < 0)
3418                 return ret;
3419
3420         *temp = (((val >> 8) & 0x1f) * 5) - 25;
3421
3422         return 0;
3423 }
3424
3425 static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3426 {
3427         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3428         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3429         u16 val;
3430         int err;
3431
3432         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3433                 return -EOPNOTSUPP;
3434
3435         mutex_lock(&chip->reg_lock);
3436         err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3437         if (err)
3438                 goto unlock;
3439         temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3440         err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
3441                                        (val & 0xe0ff) | (temp << 8));
3442 unlock:
3443         mutex_unlock(&chip->reg_lock);
3444
3445         return err;
3446 }
3447
3448 static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3449 {
3450         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3451         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3452         u16 val;
3453         int ret;
3454
3455         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3456                 return -EOPNOTSUPP;
3457
3458         *alarm = false;
3459
3460         mutex_lock(&chip->reg_lock);
3461         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3462         mutex_unlock(&chip->reg_lock);
3463         if (ret < 0)
3464                 return ret;
3465
3466         *alarm = !!(val & 0x40);
3467
3468         return 0;
3469 }
3470 #endif /* CONFIG_NET_DSA_HWMON */
3471
3472 static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
3473 {
3474         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3475
3476         return chip->eeprom_len;
3477 }
3478
3479 static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
3480                                   struct ethtool_eeprom *eeprom, u8 *data)
3481 {
3482         unsigned int offset = eeprom->offset;
3483         unsigned int len = eeprom->len;
3484         u16 val;
3485         int err;
3486
3487         eeprom->len = 0;
3488
3489         if (offset & 1) {
3490                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3491                 if (err)
3492                         return err;
3493
3494                 *data++ = (val >> 8) & 0xff;
3495
3496                 offset++;
3497                 len--;
3498                 eeprom->len++;
3499         }
3500
3501         while (len >= 2) {
3502                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3503                 if (err)
3504                         return err;
3505
3506                 *data++ = val & 0xff;
3507                 *data++ = (val >> 8) & 0xff;
3508
3509                 offset += 2;
3510                 len -= 2;
3511                 eeprom->len += 2;
3512         }
3513
3514         if (len) {
3515                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3516                 if (err)
3517                         return err;
3518
3519                 *data++ = val & 0xff;
3520
3521                 offset++;
3522                 len--;
3523                 eeprom->len++;
3524         }
3525
3526         return 0;
3527 }
3528
3529 static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
3530                                 struct ethtool_eeprom *eeprom, u8 *data)
3531 {
3532         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3533         int err;
3534
3535         mutex_lock(&chip->reg_lock);
3536
3537         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3538                 err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
3539         else
3540                 err = -EOPNOTSUPP;
3541
3542         mutex_unlock(&chip->reg_lock);
3543
3544         if (err)
3545                 return err;
3546
3547         eeprom->magic = 0xc3ec4951;
3548
3549         return 0;
3550 }
3551
3552 static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
3553                                   struct ethtool_eeprom *eeprom, u8 *data)
3554 {
3555         unsigned int offset = eeprom->offset;
3556         unsigned int len = eeprom->len;
3557         u16 val;
3558         int err;
3559
3560         /* Ensure the RO WriteEn bit is set */
3561         err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
3562         if (err)
3563                 return err;
3564
3565         if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
3566                 return -EROFS;
3567
3568         eeprom->len = 0;
3569
3570         if (offset & 1) {
3571                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3572                 if (err)
3573                         return err;
3574
3575                 val = (*data++ << 8) | (val & 0xff);
3576
3577                 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3578                 if (err)
3579                         return err;
3580
3581                 offset++;
3582                 len--;
3583                 eeprom->len++;
3584         }
3585
3586         while (len >= 2) {
3587                 val = *data++;
3588                 val |= *data++ << 8;
3589
3590                 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3591                 if (err)
3592                         return err;
3593
3594                 offset += 2;
3595                 len -= 2;
3596                 eeprom->len += 2;
3597         }
3598
3599         if (len) {
3600                 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3601                 if (err)
3602                         return err;
3603
3604                 val = (val & 0xff00) | *data++;
3605
3606                 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3607                 if (err)
3608                         return err;
3609
3610                 offset++;
3611                 len--;
3612                 eeprom->len++;
3613         }
3614
3615         return 0;
3616 }
3617
3618 static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
3619                                 struct ethtool_eeprom *eeprom, u8 *data)
3620 {
3621         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3622         int err;
3623
3624         if (eeprom->magic != 0xc3ec4951)
3625                 return -EINVAL;
3626
3627         mutex_lock(&chip->reg_lock);
3628
3629         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3630                 err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
3631         else
3632                 err = -EOPNOTSUPP;
3633
3634         mutex_unlock(&chip->reg_lock);
3635
3636         return err;
3637 }
3638
3639 static const struct mv88e6xxx_info mv88e6xxx_table[] = {
3640         [MV88E6085] = {
3641                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
3642                 .family = MV88E6XXX_FAMILY_6097,
3643                 .name = "Marvell 88E6085",
3644                 .num_databases = 4096,
3645                 .num_ports = 10,
3646                 .port_base_addr = 0x10,
3647                 .age_time_coeff = 15000,
3648                 .flags = MV88E6XXX_FLAGS_FAMILY_6097,
3649         },
3650
3651         [MV88E6095] = {
3652                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
3653                 .family = MV88E6XXX_FAMILY_6095,
3654                 .name = "Marvell 88E6095/88E6095F",
3655                 .num_databases = 256,
3656                 .num_ports = 11,
3657                 .port_base_addr = 0x10,
3658                 .age_time_coeff = 15000,
3659                 .flags = MV88E6XXX_FLAGS_FAMILY_6095,
3660         },
3661
3662         [MV88E6123] = {
3663                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
3664                 .family = MV88E6XXX_FAMILY_6165,
3665                 .name = "Marvell 88E6123",
3666                 .num_databases = 4096,
3667                 .num_ports = 3,
3668                 .port_base_addr = 0x10,
3669                 .age_time_coeff = 15000,
3670                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3671         },
3672
3673         [MV88E6131] = {
3674                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
3675                 .family = MV88E6XXX_FAMILY_6185,
3676                 .name = "Marvell 88E6131",
3677                 .num_databases = 256,
3678                 .num_ports = 8,
3679                 .port_base_addr = 0x10,
3680                 .age_time_coeff = 15000,
3681                 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3682         },
3683
3684         [MV88E6161] = {
3685                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
3686                 .family = MV88E6XXX_FAMILY_6165,
3687                 .name = "Marvell 88E6161",
3688                 .num_databases = 4096,
3689                 .num_ports = 6,
3690                 .port_base_addr = 0x10,
3691                 .age_time_coeff = 15000,
3692                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3693         },
3694
3695         [MV88E6165] = {
3696                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
3697                 .family = MV88E6XXX_FAMILY_6165,
3698                 .name = "Marvell 88E6165",
3699                 .num_databases = 4096,
3700                 .num_ports = 6,
3701                 .port_base_addr = 0x10,
3702                 .age_time_coeff = 15000,
3703                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3704         },
3705
3706         [MV88E6171] = {
3707                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
3708                 .family = MV88E6XXX_FAMILY_6351,
3709                 .name = "Marvell 88E6171",
3710                 .num_databases = 4096,
3711                 .num_ports = 7,
3712                 .port_base_addr = 0x10,
3713                 .age_time_coeff = 15000,
3714                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3715         },
3716
3717         [MV88E6172] = {
3718                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
3719                 .family = MV88E6XXX_FAMILY_6352,
3720                 .name = "Marvell 88E6172",
3721                 .num_databases = 4096,
3722                 .num_ports = 7,
3723                 .port_base_addr = 0x10,
3724                 .age_time_coeff = 15000,
3725                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3726         },
3727
3728         [MV88E6175] = {
3729                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
3730                 .family = MV88E6XXX_FAMILY_6351,
3731                 .name = "Marvell 88E6175",
3732                 .num_databases = 4096,
3733                 .num_ports = 7,
3734                 .port_base_addr = 0x10,
3735                 .age_time_coeff = 15000,
3736                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3737         },
3738
3739         [MV88E6176] = {
3740                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
3741                 .family = MV88E6XXX_FAMILY_6352,
3742                 .name = "Marvell 88E6176",
3743                 .num_databases = 4096,
3744                 .num_ports = 7,
3745                 .port_base_addr = 0x10,
3746                 .age_time_coeff = 15000,
3747                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3748         },
3749
3750         [MV88E6185] = {
3751                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
3752                 .family = MV88E6XXX_FAMILY_6185,
3753                 .name = "Marvell 88E6185",
3754                 .num_databases = 256,
3755                 .num_ports = 10,
3756                 .port_base_addr = 0x10,
3757                 .age_time_coeff = 15000,
3758                 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3759         },
3760
3761         [MV88E6240] = {
3762                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
3763                 .family = MV88E6XXX_FAMILY_6352,
3764                 .name = "Marvell 88E6240",
3765                 .num_databases = 4096,
3766                 .num_ports = 7,
3767                 .port_base_addr = 0x10,
3768                 .age_time_coeff = 15000,
3769                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3770         },
3771
3772         [MV88E6320] = {
3773                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
3774                 .family = MV88E6XXX_FAMILY_6320,
3775                 .name = "Marvell 88E6320",
3776                 .num_databases = 4096,
3777                 .num_ports = 7,
3778                 .port_base_addr = 0x10,
3779                 .age_time_coeff = 15000,
3780                 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3781         },
3782
3783         [MV88E6321] = {
3784                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
3785                 .family = MV88E6XXX_FAMILY_6320,
3786                 .name = "Marvell 88E6321",
3787                 .num_databases = 4096,
3788                 .num_ports = 7,
3789                 .port_base_addr = 0x10,
3790                 .age_time_coeff = 15000,
3791                 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3792         },
3793
3794         [MV88E6350] = {
3795                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
3796                 .family = MV88E6XXX_FAMILY_6351,
3797                 .name = "Marvell 88E6350",
3798                 .num_databases = 4096,
3799                 .num_ports = 7,
3800                 .port_base_addr = 0x10,
3801                 .age_time_coeff = 15000,
3802                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3803         },
3804
3805         [MV88E6351] = {
3806                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
3807                 .family = MV88E6XXX_FAMILY_6351,
3808                 .name = "Marvell 88E6351",
3809                 .num_databases = 4096,
3810                 .num_ports = 7,
3811                 .port_base_addr = 0x10,
3812                 .age_time_coeff = 15000,
3813                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3814         },
3815
3816         [MV88E6352] = {
3817                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
3818                 .family = MV88E6XXX_FAMILY_6352,
3819                 .name = "Marvell 88E6352",
3820                 .num_databases = 4096,
3821                 .num_ports = 7,
3822                 .port_base_addr = 0x10,
3823                 .age_time_coeff = 15000,
3824                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3825         },
3826 };
3827
3828 static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3829 {
3830         int i;
3831
3832         for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
3833                 if (mv88e6xxx_table[i].prod_num == prod_num)
3834                         return &mv88e6xxx_table[i];
3835
3836         return NULL;
3837 }
3838
3839 static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3840 {
3841         const struct mv88e6xxx_info *info;
3842         unsigned int prod_num, rev;
3843         u16 id;
3844         int err;
3845
3846         mutex_lock(&chip->reg_lock);
3847         err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
3848         mutex_unlock(&chip->reg_lock);
3849         if (err)
3850                 return err;
3851
3852         prod_num = (id & 0xfff0) >> 4;
3853         rev = id & 0x000f;
3854
3855         info = mv88e6xxx_lookup_info(prod_num);
3856         if (!info)
3857                 return -ENODEV;
3858
3859         /* Update the compatible info with the probed one */
3860         chip->info = info;
3861
3862         dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
3863                  chip->info->prod_num, chip->info->name, rev);
3864
3865         return 0;
3866 }
3867
3868 static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3869 {
3870         struct mv88e6xxx_chip *chip;
3871
3872         chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
3873         if (!chip)
3874                 return NULL;
3875
3876         chip->dev = dev;
3877
3878         mutex_init(&chip->reg_lock);
3879
3880         return chip;
3881 }
3882
3883 static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
3884         .read = mv88e6xxx_read,
3885         .write = mv88e6xxx_write,
3886 };
3887
3888 static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
3889 {
3890         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
3891                 chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
3892         } else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
3893                 chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
3894                 mv88e6xxx_ppu_state_init(chip);
3895         } else {
3896                 chip->phy_ops = &mv88e6xxx_phy_ops;
3897         }
3898 }
3899
3900 static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
3901 {
3902         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
3903                 mv88e6xxx_ppu_state_destroy(chip);
3904         }
3905 }
3906
3907 static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3908                               struct mii_bus *bus, int sw_addr)
3909 {
3910         /* ADDR[0] pin is unavailable externally and considered zero */
3911         if (sw_addr & 0x1)
3912                 return -EINVAL;
3913
3914         if (sw_addr == 0)
3915                 chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3916         else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3917                 chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3918         else
3919                 return -EINVAL;
3920
3921         chip->bus = bus;
3922         chip->sw_addr = sw_addr;
3923
3924         return 0;
3925 }
3926
3927 static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
3928 {
3929         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3930
3931         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
3932                 return DSA_TAG_PROTO_EDSA;
3933
3934         return DSA_TAG_PROTO_DSA;
3935 }
3936
3937 static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
3938                                        struct device *host_dev, int sw_addr,
3939                                        void **priv)
3940 {
3941         struct mv88e6xxx_chip *chip;
3942         struct mii_bus *bus;
3943         int err;
3944
3945         bus = dsa_host_dev_to_mii_bus(host_dev);
3946         if (!bus)
3947                 return NULL;
3948
3949         chip = mv88e6xxx_alloc_chip(dsa_dev);
3950         if (!chip)
3951                 return NULL;
3952
3953         /* Legacy SMI probing will only support chips similar to 88E6085 */
3954         chip->info = &mv88e6xxx_table[MV88E6085];
3955
3956         err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3957         if (err)
3958                 goto free;
3959
3960         err = mv88e6xxx_detect(chip);
3961         if (err)
3962                 goto free;
3963
3964         mv88e6xxx_phy_init(chip);
3965
3966         err = mv88e6xxx_mdio_register(chip, NULL);
3967         if (err)
3968                 goto free;
3969
3970         *priv = chip;
3971
3972         return chip->info->name;
3973 free:
3974         devm_kfree(dsa_dev, chip);
3975
3976         return NULL;
3977 }
3978
3979 static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3980         .probe                  = mv88e6xxx_drv_probe,
3981         .get_tag_protocol       = mv88e6xxx_get_tag_protocol,
3982         .setup                  = mv88e6xxx_setup,
3983         .set_addr               = mv88e6xxx_set_addr,
3984         .adjust_link            = mv88e6xxx_adjust_link,
3985         .get_strings            = mv88e6xxx_get_strings,
3986         .get_ethtool_stats      = mv88e6xxx_get_ethtool_stats,
3987         .get_sset_count         = mv88e6xxx_get_sset_count,
3988         .set_eee                = mv88e6xxx_set_eee,
3989         .get_eee                = mv88e6xxx_get_eee,
3990 #ifdef CONFIG_NET_DSA_HWMON
3991         .get_temp               = mv88e6xxx_get_temp,
3992         .get_temp_limit         = mv88e6xxx_get_temp_limit,
3993         .set_temp_limit         = mv88e6xxx_set_temp_limit,
3994         .get_temp_alarm         = mv88e6xxx_get_temp_alarm,
3995 #endif
3996         .get_eeprom_len         = mv88e6xxx_get_eeprom_len,
3997         .get_eeprom             = mv88e6xxx_get_eeprom,
3998         .set_eeprom             = mv88e6xxx_set_eeprom,
3999         .get_regs_len           = mv88e6xxx_get_regs_len,
4000         .get_regs               = mv88e6xxx_get_regs,
4001         .set_ageing_time        = mv88e6xxx_set_ageing_time,
4002         .port_bridge_join       = mv88e6xxx_port_bridge_join,
4003         .port_bridge_leave      = mv88e6xxx_port_bridge_leave,
4004         .port_stp_state_set     = mv88e6xxx_port_stp_state_set,
4005         .port_vlan_filtering    = mv88e6xxx_port_vlan_filtering,
4006         .port_vlan_prepare      = mv88e6xxx_port_vlan_prepare,
4007         .port_vlan_add          = mv88e6xxx_port_vlan_add,
4008         .port_vlan_del          = mv88e6xxx_port_vlan_del,
4009         .port_vlan_dump         = mv88e6xxx_port_vlan_dump,
4010         .port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
4011         .port_fdb_add           = mv88e6xxx_port_fdb_add,
4012         .port_fdb_del           = mv88e6xxx_port_fdb_del,
4013         .port_fdb_dump          = mv88e6xxx_port_fdb_dump,
4014 };
4015
4016 static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4017                                      struct device_node *np)
4018 {
4019         struct device *dev = chip->dev;
4020         struct dsa_switch *ds;
4021
4022         ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
4023         if (!ds)
4024                 return -ENOMEM;
4025
4026         ds->dev = dev;
4027         ds->priv = chip;
4028         ds->drv = &mv88e6xxx_switch_driver;
4029
4030         dev_set_drvdata(dev, ds);
4031
4032         return dsa_register_switch(ds, np);
4033 }
4034
4035 static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4036 {
4037         dsa_unregister_switch(chip->ds);
4038 }
4039
4040 static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4041 {
4042         struct device *dev = &mdiodev->dev;
4043         struct device_node *np = dev->of_node;
4044         const struct mv88e6xxx_info *compat_info;
4045         struct mv88e6xxx_chip *chip;
4046         u32 eeprom_len;
4047         int err;
4048
4049         compat_info = of_device_get_match_data(dev);
4050         if (!compat_info)
4051                 return -EINVAL;
4052
4053         chip = mv88e6xxx_alloc_chip(dev);
4054         if (!chip)
4055                 return -ENOMEM;
4056
4057         chip->info = compat_info;
4058
4059         err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4060         if (err)
4061                 return err;
4062
4063         err = mv88e6xxx_detect(chip);
4064         if (err)
4065                 return err;
4066
4067         mv88e6xxx_phy_init(chip);
4068
4069         chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
4070         if (IS_ERR(chip->reset))
4071                 return PTR_ERR(chip->reset);
4072
4073         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4074             !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4075                 chip->eeprom_len = eeprom_len;
4076
4077         err = mv88e6xxx_mdio_register(chip, np);
4078         if (err)
4079                 return err;
4080
4081         err = mv88e6xxx_register_switch(chip, np);
4082         if (err) {
4083                 mv88e6xxx_mdio_unregister(chip);
4084                 return err;
4085         }
4086
4087         return 0;
4088 }
4089
4090 static void mv88e6xxx_remove(struct mdio_device *mdiodev)
4091 {
4092         struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4093         struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4094
4095         mv88e6xxx_phy_destroy(chip);
4096         mv88e6xxx_unregister_switch(chip);
4097         mv88e6xxx_mdio_unregister(chip);
4098 }
4099
4100 static const struct of_device_id mv88e6xxx_of_match[] = {
4101         {
4102                 .compatible = "marvell,mv88e6085",
4103                 .data = &mv88e6xxx_table[MV88E6085],
4104         },
4105         { /* sentinel */ },
4106 };
4107
4108 MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
4109
4110 static struct mdio_driver mv88e6xxx_driver = {
4111         .probe  = mv88e6xxx_probe,
4112         .remove = mv88e6xxx_remove,
4113         .mdiodrv.driver = {
4114                 .name = "mv88e6085",
4115                 .of_match_table = mv88e6xxx_of_match,
4116         },
4117 };
4118
4119 static int __init mv88e6xxx_init(void)
4120 {
4121         register_switch_driver(&mv88e6xxx_switch_driver);
4122         return mdio_driver_register(&mv88e6xxx_driver);
4123 }
4124 module_init(mv88e6xxx_init);
4125
4126 static void __exit mv88e6xxx_cleanup(void)
4127 {
4128         mdio_driver_unregister(&mv88e6xxx_driver);
4129         unregister_switch_driver(&mv88e6xxx_switch_driver);
4130 }
4131 module_exit(mv88e6xxx_cleanup);
4132
4133 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
4134 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
4135 MODULE_LICENSE("GPL");