cb6c7b1c1fb85595cf908415c403fcdd10f97238
[cascardo/linux.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS          10
57 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER     21
59 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
60
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68                                       u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83
84 /**
85  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89 {
90         struct e1000_phy_info *phy = &hw->phy;
91         s32 ret_val;
92
93         if (hw->phy.media_type != e1000_media_type_copper) {
94                 phy->type = e1000_phy_none;
95                 return 0;
96         }
97
98         phy->addr                        = 1;
99         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100         phy->reset_delay_us              = 100;
101
102         phy->ops.power_up                = e1000_power_up_phy_copper;
103         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
104
105         switch (hw->mac.type) {
106         case e1000_82571:
107         case e1000_82572:
108                 phy->type                = e1000_phy_igp_2;
109                 break;
110         case e1000_82573:
111                 phy->type                = e1000_phy_m88;
112                 break;
113         case e1000_82574:
114         case e1000_82583:
115                 phy->type                = e1000_phy_bm;
116                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117                 phy->ops.release = e1000_put_hw_semaphore_82574;
118                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120                 break;
121         default:
122                 return -E1000_ERR_PHY;
123                 break;
124         }
125
126         /* This can only be done after all function pointers are setup. */
127         ret_val = e1000_get_phy_id_82571(hw);
128         if (ret_val) {
129                 e_dbg("Error getting PHY ID\n");
130                 return ret_val;
131         }
132
133         /* Verify phy id */
134         switch (hw->mac.type) {
135         case e1000_82571:
136         case e1000_82572:
137                 if (phy->id != IGP01E1000_I_PHY_ID)
138                         ret_val = -E1000_ERR_PHY;
139                 break;
140         case e1000_82573:
141                 if (phy->id != M88E1111_I_PHY_ID)
142                         ret_val = -E1000_ERR_PHY;
143                 break;
144         case e1000_82574:
145         case e1000_82583:
146                 if (phy->id != BME1000_E_PHY_ID_R2)
147                         ret_val = -E1000_ERR_PHY;
148                 break;
149         default:
150                 ret_val = -E1000_ERR_PHY;
151                 break;
152         }
153
154         if (ret_val)
155                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157         return ret_val;
158 }
159
160 /**
161  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
162  *  @hw: pointer to the HW structure
163  **/
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165 {
166         struct e1000_nvm_info *nvm = &hw->nvm;
167         u32 eecd = er32(EECD);
168         u16 size;
169
170         nvm->opcode_bits = 8;
171         nvm->delay_usec = 1;
172         switch (nvm->override) {
173         case e1000_nvm_override_spi_large:
174                 nvm->page_size = 32;
175                 nvm->address_bits = 16;
176                 break;
177         case e1000_nvm_override_spi_small:
178                 nvm->page_size = 8;
179                 nvm->address_bits = 8;
180                 break;
181         default:
182                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184                 break;
185         }
186
187         switch (hw->mac.type) {
188         case e1000_82573:
189         case e1000_82574:
190         case e1000_82583:
191                 if (((eecd >> 15) & 0x3) == 0x3) {
192                         nvm->type = e1000_nvm_flash_hw;
193                         nvm->word_size = 2048;
194                         /*
195                          * Autonomous Flash update bit must be cleared due
196                          * to Flash update issue.
197                          */
198                         eecd &= ~E1000_EECD_AUPDEN;
199                         ew32(EECD, eecd);
200                         break;
201                 }
202                 /* Fall Through */
203         default:
204                 nvm->type = e1000_nvm_eeprom_spi;
205                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206                                   E1000_EECD_SIZE_EX_SHIFT);
207                 /*
208                  * Added to a constant, "size" becomes the left-shift value
209                  * for setting word_size.
210                  */
211                 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213                 /* EEPROM access above 16k is unsupported */
214                 if (size > 14)
215                         size = 14;
216                 nvm->word_size  = 1 << size;
217                 break;
218         }
219
220         /* Function Pointers */
221         switch (hw->mac.type) {
222         case e1000_82574:
223         case e1000_82583:
224                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225                 nvm->ops.release = e1000_put_hw_semaphore_82574;
226                 break;
227         default:
228                 break;
229         }
230
231         return 0;
232 }
233
234 /**
235  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
236  *  @hw: pointer to the HW structure
237  **/
238 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
239 {
240         struct e1000_hw *hw = &adapter->hw;
241         struct e1000_mac_info *mac = &hw->mac;
242         struct e1000_mac_operations *func = &mac->ops;
243         u32 swsm = 0;
244         u32 swsm2 = 0;
245         bool force_clear_smbi = false;
246
247         /* Set media type */
248         switch (adapter->pdev->device) {
249         case E1000_DEV_ID_82571EB_FIBER:
250         case E1000_DEV_ID_82572EI_FIBER:
251         case E1000_DEV_ID_82571EB_QUAD_FIBER:
252                 hw->phy.media_type = e1000_media_type_fiber;
253                 break;
254         case E1000_DEV_ID_82571EB_SERDES:
255         case E1000_DEV_ID_82572EI_SERDES:
256         case E1000_DEV_ID_82571EB_SERDES_DUAL:
257         case E1000_DEV_ID_82571EB_SERDES_QUAD:
258                 hw->phy.media_type = e1000_media_type_internal_serdes;
259                 break;
260         default:
261                 hw->phy.media_type = e1000_media_type_copper;
262                 break;
263         }
264
265         /* Set mta register count */
266         mac->mta_reg_count = 128;
267         /* Set rar entry count */
268         mac->rar_entry_count = E1000_RAR_ENTRIES;
269         /* Adaptive IFS supported */
270         mac->adaptive_ifs = true;
271
272         /* check for link */
273         switch (hw->phy.media_type) {
274         case e1000_media_type_copper:
275                 func->setup_physical_interface = e1000_setup_copper_link_82571;
276                 func->check_for_link = e1000e_check_for_copper_link;
277                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
278                 break;
279         case e1000_media_type_fiber:
280                 func->setup_physical_interface =
281                         e1000_setup_fiber_serdes_link_82571;
282                 func->check_for_link = e1000e_check_for_fiber_link;
283                 func->get_link_up_info =
284                         e1000e_get_speed_and_duplex_fiber_serdes;
285                 break;
286         case e1000_media_type_internal_serdes:
287                 func->setup_physical_interface =
288                         e1000_setup_fiber_serdes_link_82571;
289                 func->check_for_link = e1000_check_for_serdes_link_82571;
290                 func->get_link_up_info =
291                         e1000e_get_speed_and_duplex_fiber_serdes;
292                 break;
293         default:
294                 return -E1000_ERR_CONFIG;
295                 break;
296         }
297
298         switch (hw->mac.type) {
299         case e1000_82573:
300                 func->set_lan_id = e1000_set_lan_id_single_port;
301                 func->check_mng_mode = e1000e_check_mng_mode_generic;
302                 func->led_on = e1000e_led_on_generic;
303
304                 /* FWSM register */
305                 mac->has_fwsm = true;
306                 /*
307                  * ARC supported; valid only if manageability features are
308                  * enabled.
309                  */
310                 mac->arc_subsystem_valid =
311                         (er32(FWSM) & E1000_FWSM_MODE_MASK)
312                         ? true : false;
313                 break;
314         case e1000_82574:
315         case e1000_82583:
316                 func->set_lan_id = e1000_set_lan_id_single_port;
317                 func->check_mng_mode = e1000_check_mng_mode_82574;
318                 func->led_on = e1000_led_on_82574;
319                 break;
320         default:
321                 func->check_mng_mode = e1000e_check_mng_mode_generic;
322                 func->led_on = e1000e_led_on_generic;
323
324                 /* FWSM register */
325                 mac->has_fwsm = true;
326                 break;
327         }
328
329         /*
330          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
331          * first NVM or PHY acess. This should be done for single-port
332          * devices, and for one port only on dual-port devices so that
333          * for those devices we can still use the SMBI lock to synchronize
334          * inter-port accesses to the PHY & NVM.
335          */
336         switch (hw->mac.type) {
337         case e1000_82571:
338         case e1000_82572:
339                 swsm2 = er32(SWSM2);
340
341                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
342                         /* Only do this for the first interface on this card */
343                         ew32(SWSM2,
344                             swsm2 | E1000_SWSM2_LOCK);
345                         force_clear_smbi = true;
346                 } else
347                         force_clear_smbi = false;
348                 break;
349         default:
350                 force_clear_smbi = true;
351                 break;
352         }
353
354         if (force_clear_smbi) {
355                 /* Make sure SWSM.SMBI is clear */
356                 swsm = er32(SWSM);
357                 if (swsm & E1000_SWSM_SMBI) {
358                         /* This bit should not be set on a first interface, and
359                          * indicates that the bootagent or EFI code has
360                          * improperly left this bit enabled
361                          */
362                         e_dbg("Please update your 82571 Bootagent\n");
363                 }
364                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
365         }
366
367         /*
368          * Initialize device specific counter of SMBI acquisition
369          * timeouts.
370          */
371          hw->dev_spec.e82571.smb_counter = 0;
372
373         return 0;
374 }
375
376 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
377 {
378         struct e1000_hw *hw = &adapter->hw;
379         static int global_quad_port_a; /* global port a indication */
380         struct pci_dev *pdev = adapter->pdev;
381         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
382         s32 rc;
383
384         rc = e1000_init_mac_params_82571(adapter);
385         if (rc)
386                 return rc;
387
388         rc = e1000_init_nvm_params_82571(hw);
389         if (rc)
390                 return rc;
391
392         rc = e1000_init_phy_params_82571(hw);
393         if (rc)
394                 return rc;
395
396         /* tag quad port adapters first, it's used below */
397         switch (pdev->device) {
398         case E1000_DEV_ID_82571EB_QUAD_COPPER:
399         case E1000_DEV_ID_82571EB_QUAD_FIBER:
400         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
401         case E1000_DEV_ID_82571PT_QUAD_COPPER:
402                 adapter->flags |= FLAG_IS_QUAD_PORT;
403                 /* mark the first port */
404                 if (global_quad_port_a == 0)
405                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
406                 /* Reset for multiple quad port adapters */
407                 global_quad_port_a++;
408                 if (global_quad_port_a == 4)
409                         global_quad_port_a = 0;
410                 break;
411         default:
412                 break;
413         }
414
415         switch (adapter->hw.mac.type) {
416         case e1000_82571:
417                 /* these dual ports don't have WoL on port B at all */
418                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
419                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
420                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
421                     (is_port_b))
422                         adapter->flags &= ~FLAG_HAS_WOL;
423                 /* quad ports only support WoL on port A */
424                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
425                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
426                         adapter->flags &= ~FLAG_HAS_WOL;
427                 /* Does not support WoL on any port */
428                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
429                         adapter->flags &= ~FLAG_HAS_WOL;
430                 break;
431         case e1000_82573:
432         case e1000_82574:
433         case e1000_82583:
434                 /* Disable ASPM L0s due to hardware errata */
435                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
436
437                 if (pdev->device == E1000_DEV_ID_82573L) {
438                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
439                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
440                 }
441                 break;
442         default:
443                 break;
444         }
445
446         return 0;
447 }
448
449 /**
450  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
451  *  @hw: pointer to the HW structure
452  *
453  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
454  *  revision in the hardware structure.
455  **/
456 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
457 {
458         struct e1000_phy_info *phy = &hw->phy;
459         s32 ret_val;
460         u16 phy_id = 0;
461
462         switch (hw->mac.type) {
463         case e1000_82571:
464         case e1000_82572:
465                 /*
466                  * The 82571 firmware may still be configuring the PHY.
467                  * In this case, we cannot access the PHY until the
468                  * configuration is done.  So we explicitly set the
469                  * PHY ID.
470                  */
471                 phy->id = IGP01E1000_I_PHY_ID;
472                 break;
473         case e1000_82573:
474                 return e1000e_get_phy_id(hw);
475                 break;
476         case e1000_82574:
477         case e1000_82583:
478                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
479                 if (ret_val)
480                         return ret_val;
481
482                 phy->id = (u32)(phy_id << 16);
483                 udelay(20);
484                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
485                 if (ret_val)
486                         return ret_val;
487
488                 phy->id |= (u32)(phy_id);
489                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
490                 break;
491         default:
492                 return -E1000_ERR_PHY;
493                 break;
494         }
495
496         return 0;
497 }
498
499 /**
500  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
501  *  @hw: pointer to the HW structure
502  *
503  *  Acquire the HW semaphore to access the PHY or NVM
504  **/
505 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
506 {
507         u32 swsm;
508         s32 sw_timeout = hw->nvm.word_size + 1;
509         s32 fw_timeout = hw->nvm.word_size + 1;
510         s32 i = 0;
511
512         /*
513          * If we have timedout 3 times on trying to acquire
514          * the inter-port SMBI semaphore, there is old code
515          * operating on the other port, and it is not
516          * releasing SMBI. Modify the number of times that
517          * we try for the semaphore to interwork with this
518          * older code.
519          */
520         if (hw->dev_spec.e82571.smb_counter > 2)
521                 sw_timeout = 1;
522
523         /* Get the SW semaphore */
524         while (i < sw_timeout) {
525                 swsm = er32(SWSM);
526                 if (!(swsm & E1000_SWSM_SMBI))
527                         break;
528
529                 udelay(50);
530                 i++;
531         }
532
533         if (i == sw_timeout) {
534                 e_dbg("Driver can't access device - SMBI bit is set.\n");
535                 hw->dev_spec.e82571.smb_counter++;
536         }
537         /* Get the FW semaphore. */
538         for (i = 0; i < fw_timeout; i++) {
539                 swsm = er32(SWSM);
540                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
541
542                 /* Semaphore acquired if bit latched */
543                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
544                         break;
545
546                 udelay(50);
547         }
548
549         if (i == fw_timeout) {
550                 /* Release semaphores */
551                 e1000_put_hw_semaphore_82571(hw);
552                 e_dbg("Driver can't access the NVM\n");
553                 return -E1000_ERR_NVM;
554         }
555
556         return 0;
557 }
558
559 /**
560  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
561  *  @hw: pointer to the HW structure
562  *
563  *  Release hardware semaphore used to access the PHY or NVM
564  **/
565 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
566 {
567         u32 swsm;
568
569         swsm = er32(SWSM);
570         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
571         ew32(SWSM, swsm);
572 }
573 /**
574  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
575  *  @hw: pointer to the HW structure
576  *
577  *  Acquire the HW semaphore during reset.
578  *
579  **/
580 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
581 {
582         u32 extcnf_ctrl;
583         s32 ret_val = 0;
584         s32 i = 0;
585
586         extcnf_ctrl = er32(EXTCNF_CTRL);
587         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
588         do {
589                 ew32(EXTCNF_CTRL, extcnf_ctrl);
590                 extcnf_ctrl = er32(EXTCNF_CTRL);
591
592                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
593                         break;
594
595                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
596
597                 msleep(2);
598                 i++;
599         } while (i < MDIO_OWNERSHIP_TIMEOUT);
600
601         if (i == MDIO_OWNERSHIP_TIMEOUT) {
602                 /* Release semaphores */
603                 e1000_put_hw_semaphore_82573(hw);
604                 e_dbg("Driver can't access the PHY\n");
605                 ret_val = -E1000_ERR_PHY;
606                 goto out;
607         }
608
609 out:
610         return ret_val;
611 }
612
613 /**
614  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
615  *  @hw: pointer to the HW structure
616  *
617  *  Release hardware semaphore used during reset.
618  *
619  **/
620 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
621 {
622         u32 extcnf_ctrl;
623
624         extcnf_ctrl = er32(EXTCNF_CTRL);
625         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
626         ew32(EXTCNF_CTRL, extcnf_ctrl);
627 }
628
629 static DEFINE_MUTEX(swflag_mutex);
630
631 /**
632  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
633  *  @hw: pointer to the HW structure
634  *
635  *  Acquire the HW semaphore to access the PHY or NVM.
636  *
637  **/
638 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
639 {
640         s32 ret_val;
641
642         mutex_lock(&swflag_mutex);
643         ret_val = e1000_get_hw_semaphore_82573(hw);
644         if (ret_val)
645                 mutex_unlock(&swflag_mutex);
646         return ret_val;
647 }
648
649 /**
650  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
651  *  @hw: pointer to the HW structure
652  *
653  *  Release hardware semaphore used to access the PHY or NVM
654  *
655  **/
656 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
657 {
658         e1000_put_hw_semaphore_82573(hw);
659         mutex_unlock(&swflag_mutex);
660 }
661
662 /**
663  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
664  *  @hw: pointer to the HW structure
665  *  @active: true to enable LPLU, false to disable
666  *
667  *  Sets the LPLU D0 state according to the active flag.
668  *  LPLU will not be activated unless the
669  *  device autonegotiation advertisement meets standards of
670  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
671  *  This is a function pointer entry point only called by
672  *  PHY setup routines.
673  **/
674 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
675 {
676         u16 data = er32(POEMB);
677
678         if (active)
679                 data |= E1000_PHY_CTRL_D0A_LPLU;
680         else
681                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
682
683         ew32(POEMB, data);
684         return 0;
685 }
686
687 /**
688  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
689  *  @hw: pointer to the HW structure
690  *  @active: boolean used to enable/disable lplu
691  *
692  *  The low power link up (lplu) state is set to the power management level D3
693  *  when active is true, else clear lplu for D3. LPLU
694  *  is used during Dx states where the power conservation is most important.
695  *  During driver activity, SmartSpeed should be enabled so performance is
696  *  maintained.
697  **/
698 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
699 {
700         u16 data = er32(POEMB);
701
702         if (!active) {
703                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
704         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
705                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
706                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
707                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
708         }
709
710         ew32(POEMB, data);
711         return 0;
712 }
713
714 /**
715  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
716  *  @hw: pointer to the HW structure
717  *
718  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
719  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
720  *  for EEPROM access grant bit.  If the access grant bit is not set, release
721  *  hardware semaphore.
722  **/
723 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
724 {
725         s32 ret_val;
726
727         ret_val = e1000_get_hw_semaphore_82571(hw);
728         if (ret_val)
729                 return ret_val;
730
731         switch (hw->mac.type) {
732         case e1000_82573:
733                 break;
734         default:
735                 ret_val = e1000e_acquire_nvm(hw);
736                 break;
737         }
738
739         if (ret_val)
740                 e1000_put_hw_semaphore_82571(hw);
741
742         return ret_val;
743 }
744
745 /**
746  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
747  *  @hw: pointer to the HW structure
748  *
749  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
750  **/
751 static void e1000_release_nvm_82571(struct e1000_hw *hw)
752 {
753         e1000e_release_nvm(hw);
754         e1000_put_hw_semaphore_82571(hw);
755 }
756
757 /**
758  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
759  *  @hw: pointer to the HW structure
760  *  @offset: offset within the EEPROM to be written to
761  *  @words: number of words to write
762  *  @data: 16 bit word(s) to be written to the EEPROM
763  *
764  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
765  *
766  *  If e1000e_update_nvm_checksum is not called after this function, the
767  *  EEPROM will most likely contain an invalid checksum.
768  **/
769 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
770                                  u16 *data)
771 {
772         s32 ret_val;
773
774         switch (hw->mac.type) {
775         case e1000_82573:
776         case e1000_82574:
777         case e1000_82583:
778                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
779                 break;
780         case e1000_82571:
781         case e1000_82572:
782                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
783                 break;
784         default:
785                 ret_val = -E1000_ERR_NVM;
786                 break;
787         }
788
789         return ret_val;
790 }
791
792 /**
793  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
794  *  @hw: pointer to the HW structure
795  *
796  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
797  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
798  *  value to the EEPROM.
799  **/
800 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
801 {
802         u32 eecd;
803         s32 ret_val;
804         u16 i;
805
806         ret_val = e1000e_update_nvm_checksum_generic(hw);
807         if (ret_val)
808                 return ret_val;
809
810         /*
811          * If our nvm is an EEPROM, then we're done
812          * otherwise, commit the checksum to the flash NVM.
813          */
814         if (hw->nvm.type != e1000_nvm_flash_hw)
815                 return ret_val;
816
817         /* Check for pending operations. */
818         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
819                 msleep(1);
820                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
821                         break;
822         }
823
824         if (i == E1000_FLASH_UPDATES)
825                 return -E1000_ERR_NVM;
826
827         /* Reset the firmware if using STM opcode. */
828         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
829                 /*
830                  * The enabling of and the actual reset must be done
831                  * in two write cycles.
832                  */
833                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
834                 e1e_flush();
835                 ew32(HICR, E1000_HICR_FW_RESET);
836         }
837
838         /* Commit the write to flash */
839         eecd = er32(EECD) | E1000_EECD_FLUPD;
840         ew32(EECD, eecd);
841
842         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
843                 msleep(1);
844                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
845                         break;
846         }
847
848         if (i == E1000_FLASH_UPDATES)
849                 return -E1000_ERR_NVM;
850
851         return 0;
852 }
853
854 /**
855  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
856  *  @hw: pointer to the HW structure
857  *
858  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
859  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
860  **/
861 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
862 {
863         if (hw->nvm.type == e1000_nvm_flash_hw)
864                 e1000_fix_nvm_checksum_82571(hw);
865
866         return e1000e_validate_nvm_checksum_generic(hw);
867 }
868
869 /**
870  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
871  *  @hw: pointer to the HW structure
872  *  @offset: offset within the EEPROM to be written to
873  *  @words: number of words to write
874  *  @data: 16 bit word(s) to be written to the EEPROM
875  *
876  *  After checking for invalid values, poll the EEPROM to ensure the previous
877  *  command has completed before trying to write the next word.  After write
878  *  poll for completion.
879  *
880  *  If e1000e_update_nvm_checksum is not called after this function, the
881  *  EEPROM will most likely contain an invalid checksum.
882  **/
883 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
884                                       u16 words, u16 *data)
885 {
886         struct e1000_nvm_info *nvm = &hw->nvm;
887         u32 i, eewr = 0;
888         s32 ret_val = 0;
889
890         /*
891          * A check for invalid values:  offset too large, too many words,
892          * and not enough words.
893          */
894         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
895             (words == 0)) {
896                 e_dbg("nvm parameter(s) out of bounds\n");
897                 return -E1000_ERR_NVM;
898         }
899
900         for (i = 0; i < words; i++) {
901                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
902                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
903                        E1000_NVM_RW_REG_START;
904
905                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
906                 if (ret_val)
907                         break;
908
909                 ew32(EEWR, eewr);
910
911                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
912                 if (ret_val)
913                         break;
914         }
915
916         return ret_val;
917 }
918
919 /**
920  *  e1000_get_cfg_done_82571 - Poll for configuration done
921  *  @hw: pointer to the HW structure
922  *
923  *  Reads the management control register for the config done bit to be set.
924  **/
925 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
926 {
927         s32 timeout = PHY_CFG_TIMEOUT;
928
929         while (timeout) {
930                 if (er32(EEMNGCTL) &
931                     E1000_NVM_CFG_DONE_PORT_0)
932                         break;
933                 msleep(1);
934                 timeout--;
935         }
936         if (!timeout) {
937                 e_dbg("MNG configuration cycle has not completed.\n");
938                 return -E1000_ERR_RESET;
939         }
940
941         return 0;
942 }
943
944 /**
945  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
946  *  @hw: pointer to the HW structure
947  *  @active: true to enable LPLU, false to disable
948  *
949  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
950  *  this function also disables smart speed and vice versa.  LPLU will not be
951  *  activated unless the device autonegotiation advertisement meets standards
952  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
953  *  pointer entry point only called by PHY setup routines.
954  **/
955 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
956 {
957         struct e1000_phy_info *phy = &hw->phy;
958         s32 ret_val;
959         u16 data;
960
961         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
962         if (ret_val)
963                 return ret_val;
964
965         if (active) {
966                 data |= IGP02E1000_PM_D0_LPLU;
967                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
968                 if (ret_val)
969                         return ret_val;
970
971                 /* When LPLU is enabled, we should disable SmartSpeed */
972                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
973                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
974                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
975                 if (ret_val)
976                         return ret_val;
977         } else {
978                 data &= ~IGP02E1000_PM_D0_LPLU;
979                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
980                 /*
981                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
982                  * during Dx states where the power conservation is most
983                  * important.  During driver activity we should enable
984                  * SmartSpeed, so performance is maintained.
985                  */
986                 if (phy->smart_speed == e1000_smart_speed_on) {
987                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
988                                            &data);
989                         if (ret_val)
990                                 return ret_val;
991
992                         data |= IGP01E1000_PSCFR_SMART_SPEED;
993                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
994                                            data);
995                         if (ret_val)
996                                 return ret_val;
997                 } else if (phy->smart_speed == e1000_smart_speed_off) {
998                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
999                                            &data);
1000                         if (ret_val)
1001                                 return ret_val;
1002
1003                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1004                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1005                                            data);
1006                         if (ret_val)
1007                                 return ret_val;
1008                 }
1009         }
1010
1011         return 0;
1012 }
1013
1014 /**
1015  *  e1000_reset_hw_82571 - Reset hardware
1016  *  @hw: pointer to the HW structure
1017  *
1018  *  This resets the hardware into a known state.
1019  **/
1020 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1021 {
1022         u32 ctrl, ctrl_ext;
1023         s32 ret_val;
1024
1025         /*
1026          * Prevent the PCI-E bus from sticking if there is no TLP connection
1027          * on the last TLP read/write transaction when MAC is reset.
1028          */
1029         ret_val = e1000e_disable_pcie_master(hw);
1030         if (ret_val)
1031                 e_dbg("PCI-E Master disable polling has failed.\n");
1032
1033         e_dbg("Masking off all interrupts\n");
1034         ew32(IMC, 0xffffffff);
1035
1036         ew32(RCTL, 0);
1037         ew32(TCTL, E1000_TCTL_PSP);
1038         e1e_flush();
1039
1040         msleep(10);
1041
1042         /*
1043          * Must acquire the MDIO ownership before MAC reset.
1044          * Ownership defaults to firmware after a reset.
1045          */
1046         switch (hw->mac.type) {
1047         case e1000_82573:
1048                 ret_val = e1000_get_hw_semaphore_82573(hw);
1049                 break;
1050         case e1000_82574:
1051         case e1000_82583:
1052                 ret_val = e1000_get_hw_semaphore_82574(hw);
1053                 break;
1054         default:
1055                 break;
1056         }
1057         if (ret_val)
1058                 e_dbg("Cannot acquire MDIO ownership\n");
1059
1060         ctrl = er32(CTRL);
1061
1062         e_dbg("Issuing a global reset to MAC\n");
1063         ew32(CTRL, ctrl | E1000_CTRL_RST);
1064
1065         /* Must release MDIO ownership and mutex after MAC reset. */
1066         switch (hw->mac.type) {
1067         case e1000_82574:
1068         case e1000_82583:
1069                 e1000_put_hw_semaphore_82574(hw);
1070                 break;
1071         default:
1072                 break;
1073         }
1074
1075         if (hw->nvm.type == e1000_nvm_flash_hw) {
1076                 udelay(10);
1077                 ctrl_ext = er32(CTRL_EXT);
1078                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1079                 ew32(CTRL_EXT, ctrl_ext);
1080                 e1e_flush();
1081         }
1082
1083         ret_val = e1000e_get_auto_rd_done(hw);
1084         if (ret_val)
1085                 /* We don't want to continue accessing MAC registers. */
1086                 return ret_val;
1087
1088         /*
1089          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1090          * Need to wait for Phy configuration completion before accessing
1091          * NVM and Phy.
1092          */
1093
1094         switch (hw->mac.type) {
1095         case e1000_82573:
1096         case e1000_82574:
1097         case e1000_82583:
1098                 msleep(25);
1099                 break;
1100         default:
1101                 break;
1102         }
1103
1104         /* Clear any pending interrupt events. */
1105         ew32(IMC, 0xffffffff);
1106         er32(ICR);
1107
1108         if (hw->mac.type == e1000_82571) {
1109                 /* Install any alternate MAC address into RAR0 */
1110                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1111                 if (ret_val)
1112                         return ret_val;
1113
1114                 e1000e_set_laa_state_82571(hw, true);
1115         }
1116
1117         /* Reinitialize the 82571 serdes link state machine */
1118         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1119                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1120
1121         return 0;
1122 }
1123
1124 /**
1125  *  e1000_init_hw_82571 - Initialize hardware
1126  *  @hw: pointer to the HW structure
1127  *
1128  *  This inits the hardware readying it for operation.
1129  **/
1130 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1131 {
1132         struct e1000_mac_info *mac = &hw->mac;
1133         u32 reg_data;
1134         s32 ret_val;
1135         u16 i, rar_count = mac->rar_entry_count;
1136
1137         e1000_initialize_hw_bits_82571(hw);
1138
1139         /* Initialize identification LED */
1140         ret_val = e1000e_id_led_init(hw);
1141         if (ret_val)
1142                 e_dbg("Error initializing identification LED\n");
1143                 /* This is not fatal and we should not stop init due to this */
1144
1145         /* Disabling VLAN filtering */
1146         e_dbg("Initializing the IEEE VLAN\n");
1147         mac->ops.clear_vfta(hw);
1148
1149         /* Setup the receive address. */
1150         /*
1151          * If, however, a locally administered address was assigned to the
1152          * 82571, we must reserve a RAR for it to work around an issue where
1153          * resetting one port will reload the MAC on the other port.
1154          */
1155         if (e1000e_get_laa_state_82571(hw))
1156                 rar_count--;
1157         e1000e_init_rx_addrs(hw, rar_count);
1158
1159         /* Zero out the Multicast HASH table */
1160         e_dbg("Zeroing the MTA\n");
1161         for (i = 0; i < mac->mta_reg_count; i++)
1162                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1163
1164         /* Setup link and flow control */
1165         ret_val = e1000_setup_link_82571(hw);
1166
1167         /* Set the transmit descriptor write-back policy */
1168         reg_data = er32(TXDCTL(0));
1169         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1170                    E1000_TXDCTL_FULL_TX_DESC_WB |
1171                    E1000_TXDCTL_COUNT_DESC;
1172         ew32(TXDCTL(0), reg_data);
1173
1174         /* ...for both queues. */
1175         switch (mac->type) {
1176         case e1000_82573:
1177                 e1000e_enable_tx_pkt_filtering(hw);
1178                 /* fall through */
1179         case e1000_82574:
1180         case e1000_82583:
1181                 reg_data = er32(GCR);
1182                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1183                 ew32(GCR, reg_data);
1184                 break;
1185         default:
1186                 reg_data = er32(TXDCTL(1));
1187                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1188                            E1000_TXDCTL_FULL_TX_DESC_WB |
1189                            E1000_TXDCTL_COUNT_DESC;
1190                 ew32(TXDCTL(1), reg_data);
1191                 break;
1192         }
1193
1194         /*
1195          * Clear all of the statistics registers (clear on read).  It is
1196          * important that we do this after we have tried to establish link
1197          * because the symbol error count will increment wildly if there
1198          * is no link.
1199          */
1200         e1000_clear_hw_cntrs_82571(hw);
1201
1202         return ret_val;
1203 }
1204
1205 /**
1206  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Initializes required hardware-dependent bits needed for normal operation.
1210  **/
1211 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1212 {
1213         u32 reg;
1214
1215         /* Transmit Descriptor Control 0 */
1216         reg = er32(TXDCTL(0));
1217         reg |= (1 << 22);
1218         ew32(TXDCTL(0), reg);
1219
1220         /* Transmit Descriptor Control 1 */
1221         reg = er32(TXDCTL(1));
1222         reg |= (1 << 22);
1223         ew32(TXDCTL(1), reg);
1224
1225         /* Transmit Arbitration Control 0 */
1226         reg = er32(TARC(0));
1227         reg &= ~(0xF << 27); /* 30:27 */
1228         switch (hw->mac.type) {
1229         case e1000_82571:
1230         case e1000_82572:
1231                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1232                 break;
1233         default:
1234                 break;
1235         }
1236         ew32(TARC(0), reg);
1237
1238         /* Transmit Arbitration Control 1 */
1239         reg = er32(TARC(1));
1240         switch (hw->mac.type) {
1241         case e1000_82571:
1242         case e1000_82572:
1243                 reg &= ~((1 << 29) | (1 << 30));
1244                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1245                 if (er32(TCTL) & E1000_TCTL_MULR)
1246                         reg &= ~(1 << 28);
1247                 else
1248                         reg |= (1 << 28);
1249                 ew32(TARC(1), reg);
1250                 break;
1251         default:
1252                 break;
1253         }
1254
1255         /* Device Control */
1256         switch (hw->mac.type) {
1257         case e1000_82573:
1258         case e1000_82574:
1259         case e1000_82583:
1260                 reg = er32(CTRL);
1261                 reg &= ~(1 << 29);
1262                 ew32(CTRL, reg);
1263                 break;
1264         default:
1265                 break;
1266         }
1267
1268         /* Extended Device Control */
1269         switch (hw->mac.type) {
1270         case e1000_82573:
1271         case e1000_82574:
1272         case e1000_82583:
1273                 reg = er32(CTRL_EXT);
1274                 reg &= ~(1 << 23);
1275                 reg |= (1 << 22);
1276                 ew32(CTRL_EXT, reg);
1277                 break;
1278         default:
1279                 break;
1280         }
1281
1282         if (hw->mac.type == e1000_82571) {
1283                 reg = er32(PBA_ECC);
1284                 reg |= E1000_PBA_ECC_CORR_EN;
1285                 ew32(PBA_ECC, reg);
1286         }
1287         /*
1288          * Workaround for hardware errata.
1289          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1290          */
1291
1292         if ((hw->mac.type == e1000_82571) ||
1293            (hw->mac.type == e1000_82572)) {
1294                 reg = er32(CTRL_EXT);
1295                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1296                 ew32(CTRL_EXT, reg);
1297         }
1298
1299
1300         /* PCI-Ex Control Registers */
1301         switch (hw->mac.type) {
1302         case e1000_82574:
1303         case e1000_82583:
1304                 reg = er32(GCR);
1305                 reg |= (1 << 22);
1306                 ew32(GCR, reg);
1307
1308                 /*
1309                  * Workaround for hardware errata.
1310                  * apply workaround for hardware errata documented in errata
1311                  * docs Fixes issue where some error prone or unreliable PCIe
1312                  * completions are occurring, particularly with ASPM enabled.
1313                  * Without fix, issue can cause tx timeouts.
1314                  */
1315                 reg = er32(GCR2);
1316                 reg |= 1;
1317                 ew32(GCR2, reg);
1318                 break;
1319         default:
1320                 break;
1321         }
1322 }
1323
1324 /**
1325  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1326  *  @hw: pointer to the HW structure
1327  *
1328  *  Clears the register array which contains the VLAN filter table by
1329  *  setting all the values to 0.
1330  **/
1331 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1332 {
1333         u32 offset;
1334         u32 vfta_value = 0;
1335         u32 vfta_offset = 0;
1336         u32 vfta_bit_in_reg = 0;
1337
1338         switch (hw->mac.type) {
1339         case e1000_82573:
1340         case e1000_82574:
1341         case e1000_82583:
1342                 if (hw->mng_cookie.vlan_id != 0) {
1343                         /*
1344                          * The VFTA is a 4096b bit-field, each identifying
1345                          * a single VLAN ID.  The following operations
1346                          * determine which 32b entry (i.e. offset) into the
1347                          * array we want to set the VLAN ID (i.e. bit) of
1348                          * the manageability unit.
1349                          */
1350                         vfta_offset = (hw->mng_cookie.vlan_id >>
1351                                        E1000_VFTA_ENTRY_SHIFT) &
1352                                       E1000_VFTA_ENTRY_MASK;
1353                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1354                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1355                 }
1356                 break;
1357         default:
1358                 break;
1359         }
1360         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1361                 /*
1362                  * If the offset we want to clear is the same offset of the
1363                  * manageability VLAN ID, then clear all bits except that of
1364                  * the manageability unit.
1365                  */
1366                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1367                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1368                 e1e_flush();
1369         }
1370 }
1371
1372 /**
1373  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1374  *  @hw: pointer to the HW structure
1375  *
1376  *  Reads the NVM Initialization Control Word 2 and returns true
1377  *  (>0) if any manageability is enabled, else false (0).
1378  **/
1379 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1380 {
1381         u16 data;
1382
1383         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1384         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1385 }
1386
1387 /**
1388  *  e1000_led_on_82574 - Turn LED on
1389  *  @hw: pointer to the HW structure
1390  *
1391  *  Turn LED on.
1392  **/
1393 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1394 {
1395         u32 ctrl;
1396         u32 i;
1397
1398         ctrl = hw->mac.ledctl_mode2;
1399         if (!(E1000_STATUS_LU & er32(STATUS))) {
1400                 /*
1401                  * If no link, then turn LED on by setting the invert bit
1402                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1403                  */
1404                 for (i = 0; i < 4; i++)
1405                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1406                             E1000_LEDCTL_MODE_LED_ON)
1407                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1408         }
1409         ew32(LEDCTL, ctrl);
1410
1411         return 0;
1412 }
1413
1414 /**
1415  *  e1000_check_phy_82574 - check 82574 phy hung state
1416  *  @hw: pointer to the HW structure
1417  *
1418  *  Returns whether phy is hung or not
1419  **/
1420 bool e1000_check_phy_82574(struct e1000_hw *hw)
1421 {
1422         u16 status_1kbt = 0;
1423         u16 receive_errors = 0;
1424         bool phy_hung = false;
1425         s32 ret_val = 0;
1426
1427         /*
1428          * Read PHY Receive Error counter first, if its is max - all F's then
1429          * read the Base1000T status register If both are max then PHY is hung.
1430          */
1431         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1432
1433         if (ret_val)
1434                 goto out;
1435         if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1436                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1437                 if (ret_val)
1438                         goto out;
1439                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1440                     E1000_IDLE_ERROR_COUNT_MASK)
1441                         phy_hung = true;
1442         }
1443 out:
1444         return phy_hung;
1445 }
1446
1447 /**
1448  *  e1000_setup_link_82571 - Setup flow control and link settings
1449  *  @hw: pointer to the HW structure
1450  *
1451  *  Determines which flow control settings to use, then configures flow
1452  *  control.  Calls the appropriate media-specific link configuration
1453  *  function.  Assuming the adapter has a valid link partner, a valid link
1454  *  should be established.  Assumes the hardware has previously been reset
1455  *  and the transmitter and receiver are not enabled.
1456  **/
1457 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1458 {
1459         /*
1460          * 82573 does not have a word in the NVM to determine
1461          * the default flow control setting, so we explicitly
1462          * set it to full.
1463          */
1464         switch (hw->mac.type) {
1465         case e1000_82573:
1466         case e1000_82574:
1467         case e1000_82583:
1468                 if (hw->fc.requested_mode == e1000_fc_default)
1469                         hw->fc.requested_mode = e1000_fc_full;
1470                 break;
1471         default:
1472                 break;
1473         }
1474
1475         return e1000e_setup_link(hw);
1476 }
1477
1478 /**
1479  *  e1000_setup_copper_link_82571 - Configure copper link settings
1480  *  @hw: pointer to the HW structure
1481  *
1482  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1483  *  for link, once link is established calls to configure collision distance
1484  *  and flow control are called.
1485  **/
1486 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1487 {
1488         u32 ctrl;
1489         s32 ret_val;
1490
1491         ctrl = er32(CTRL);
1492         ctrl |= E1000_CTRL_SLU;
1493         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1494         ew32(CTRL, ctrl);
1495
1496         switch (hw->phy.type) {
1497         case e1000_phy_m88:
1498         case e1000_phy_bm:
1499                 ret_val = e1000e_copper_link_setup_m88(hw);
1500                 break;
1501         case e1000_phy_igp_2:
1502                 ret_val = e1000e_copper_link_setup_igp(hw);
1503                 break;
1504         default:
1505                 return -E1000_ERR_PHY;
1506                 break;
1507         }
1508
1509         if (ret_val)
1510                 return ret_val;
1511
1512         ret_val = e1000e_setup_copper_link(hw);
1513
1514         return ret_val;
1515 }
1516
1517 /**
1518  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1519  *  @hw: pointer to the HW structure
1520  *
1521  *  Configures collision distance and flow control for fiber and serdes links.
1522  *  Upon successful setup, poll for link.
1523  **/
1524 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1525 {
1526         switch (hw->mac.type) {
1527         case e1000_82571:
1528         case e1000_82572:
1529                 /*
1530                  * If SerDes loopback mode is entered, there is no form
1531                  * of reset to take the adapter out of that mode.  So we
1532                  * have to explicitly take the adapter out of loopback
1533                  * mode.  This prevents drivers from twiddling their thumbs
1534                  * if another tool failed to take it out of loopback mode.
1535                  */
1536                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1537                 break;
1538         default:
1539                 break;
1540         }
1541
1542         return e1000e_setup_fiber_serdes_link(hw);
1543 }
1544
1545 /**
1546  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1547  *  @hw: pointer to the HW structure
1548  *
1549  *  Reports the link state as up or down.
1550  *
1551  *  If autonegotiation is supported by the link partner, the link state is
1552  *  determined by the result of autonegotiation. This is the most likely case.
1553  *  If autonegotiation is not supported by the link partner, and the link
1554  *  has a valid signal, force the link up.
1555  *
1556  *  The link state is represented internally here by 4 states:
1557  *
1558  *  1) down
1559  *  2) autoneg_progress
1560  *  3) autoneg_complete (the link successfully autonegotiated)
1561  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1562  *
1563  **/
1564 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1565 {
1566         struct e1000_mac_info *mac = &hw->mac;
1567         u32 rxcw;
1568         u32 ctrl;
1569         u32 status;
1570         u32 txcw;
1571         u32 i;
1572         s32 ret_val = 0;
1573
1574         ctrl = er32(CTRL);
1575         status = er32(STATUS);
1576         rxcw = er32(RXCW);
1577
1578         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1579
1580                 /* Receiver is synchronized with no invalid bits.  */
1581                 switch (mac->serdes_link_state) {
1582                 case e1000_serdes_link_autoneg_complete:
1583                         if (!(status & E1000_STATUS_LU)) {
1584                                 /*
1585                                  * We have lost link, retry autoneg before
1586                                  * reporting link failure
1587                                  */
1588                                 mac->serdes_link_state =
1589                                     e1000_serdes_link_autoneg_progress;
1590                                 mac->serdes_has_link = false;
1591                                 e_dbg("AN_UP     -> AN_PROG\n");
1592                         } else {
1593                                 mac->serdes_has_link = true;
1594                         }
1595                         break;
1596
1597                 case e1000_serdes_link_forced_up:
1598                         /*
1599                          * If we are receiving /C/ ordered sets, re-enable
1600                          * auto-negotiation in the TXCW register and disable
1601                          * forced link in the Device Control register in an
1602                          * attempt to auto-negotiate with our link partner.
1603                          * If the partner code word is null, stop forcing
1604                          * and restart auto negotiation.
1605                          */
1606                         if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1607                                 /* Enable autoneg, and unforce link up */
1608                                 ew32(TXCW, mac->txcw);
1609                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1610                                 mac->serdes_link_state =
1611                                     e1000_serdes_link_autoneg_progress;
1612                                 mac->serdes_has_link = false;
1613                                 e_dbg("FORCED_UP -> AN_PROG\n");
1614                         } else {
1615                                 mac->serdes_has_link = true;
1616                         }
1617                         break;
1618
1619                 case e1000_serdes_link_autoneg_progress:
1620                         if (rxcw & E1000_RXCW_C) {
1621                                 /*
1622                                  * We received /C/ ordered sets, meaning the
1623                                  * link partner has autonegotiated, and we can
1624                                  * trust the Link Up (LU) status bit.
1625                                  */
1626                                 if (status & E1000_STATUS_LU) {
1627                                         mac->serdes_link_state =
1628                                             e1000_serdes_link_autoneg_complete;
1629                                         e_dbg("AN_PROG   -> AN_UP\n");
1630                                         mac->serdes_has_link = true;
1631                                 } else {
1632                                         /* Autoneg completed, but failed. */
1633                                         mac->serdes_link_state =
1634                                             e1000_serdes_link_down;
1635                                         e_dbg("AN_PROG   -> DOWN\n");
1636                                 }
1637                         } else {
1638                                 /*
1639                                  * The link partner did not autoneg.
1640                                  * Force link up and full duplex, and change
1641                                  * state to forced.
1642                                  */
1643                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1644                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1645                                 ew32(CTRL, ctrl);
1646
1647                                 /* Configure Flow Control after link up. */
1648                                 ret_val = e1000e_config_fc_after_link_up(hw);
1649                                 if (ret_val) {
1650                                         e_dbg("Error config flow control\n");
1651                                         break;
1652                                 }
1653                                 mac->serdes_link_state =
1654                                     e1000_serdes_link_forced_up;
1655                                 mac->serdes_has_link = true;
1656                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1657                         }
1658                         break;
1659
1660                 case e1000_serdes_link_down:
1661                 default:
1662                         /*
1663                          * The link was down but the receiver has now gained
1664                          * valid sync, so lets see if we can bring the link
1665                          * up.
1666                          */
1667                         ew32(TXCW, mac->txcw);
1668                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1669                         mac->serdes_link_state =
1670                             e1000_serdes_link_autoneg_progress;
1671                         mac->serdes_has_link = false;
1672                         e_dbg("DOWN      -> AN_PROG\n");
1673                         break;
1674                 }
1675         } else {
1676                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1677                         mac->serdes_has_link = false;
1678                         mac->serdes_link_state = e1000_serdes_link_down;
1679                         e_dbg("ANYSTATE  -> DOWN\n");
1680                 } else {
1681                         /*
1682                          * Check several times, if Sync and Config
1683                          * both are consistently 1 then simply ignore
1684                          * the Invalid bit and restart Autoneg
1685                          */
1686                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1687                                 udelay(10);
1688                                 rxcw = er32(RXCW);
1689                                 if ((rxcw & E1000_RXCW_IV) &&
1690                                     !((rxcw & E1000_RXCW_SYNCH) &&
1691                                       (rxcw & E1000_RXCW_C))) {
1692                                         mac->serdes_has_link = false;
1693                                         mac->serdes_link_state =
1694                                             e1000_serdes_link_down;
1695                                         e_dbg("ANYSTATE  -> DOWN\n");
1696                                         break;
1697                                 }
1698                         }
1699
1700                         if (i == AN_RETRY_COUNT) {
1701                                 txcw = er32(TXCW);
1702                                 txcw |= E1000_TXCW_ANE;
1703                                 ew32(TXCW, txcw);
1704                                 mac->serdes_link_state =
1705                                     e1000_serdes_link_autoneg_progress;
1706                                 mac->serdes_has_link = false;
1707                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1708                         }
1709                 }
1710         }
1711
1712         return ret_val;
1713 }
1714
1715 /**
1716  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1717  *  @hw: pointer to the HW structure
1718  *  @data: pointer to the NVM (EEPROM)
1719  *
1720  *  Read the EEPROM for the current default LED configuration.  If the
1721  *  LED configuration is not valid, set to a valid LED configuration.
1722  **/
1723 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1724 {
1725         s32 ret_val;
1726
1727         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1728         if (ret_val) {
1729                 e_dbg("NVM Read Error\n");
1730                 return ret_val;
1731         }
1732
1733         switch (hw->mac.type) {
1734         case e1000_82573:
1735         case e1000_82574:
1736         case e1000_82583:
1737                 if (*data == ID_LED_RESERVED_F746)
1738                         *data = ID_LED_DEFAULT_82573;
1739                 break;
1740         default:
1741                 if (*data == ID_LED_RESERVED_0000 ||
1742                     *data == ID_LED_RESERVED_FFFF)
1743                         *data = ID_LED_DEFAULT;
1744                 break;
1745         }
1746
1747         return 0;
1748 }
1749
1750 /**
1751  *  e1000e_get_laa_state_82571 - Get locally administered address state
1752  *  @hw: pointer to the HW structure
1753  *
1754  *  Retrieve and return the current locally administered address state.
1755  **/
1756 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1757 {
1758         if (hw->mac.type != e1000_82571)
1759                 return false;
1760
1761         return hw->dev_spec.e82571.laa_is_present;
1762 }
1763
1764 /**
1765  *  e1000e_set_laa_state_82571 - Set locally administered address state
1766  *  @hw: pointer to the HW structure
1767  *  @state: enable/disable locally administered address
1768  *
1769  *  Enable/Disable the current locally administered address state.
1770  **/
1771 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1772 {
1773         if (hw->mac.type != e1000_82571)
1774                 return;
1775
1776         hw->dev_spec.e82571.laa_is_present = state;
1777
1778         /* If workaround is activated... */
1779         if (state)
1780                 /*
1781                  * Hold a copy of the LAA in RAR[14] This is done so that
1782                  * between the time RAR[0] gets clobbered and the time it
1783                  * gets fixed, the actual LAA is in one of the RARs and no
1784                  * incoming packets directed to this port are dropped.
1785                  * Eventually the LAA will be in RAR[0] and RAR[14].
1786                  */
1787                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1788 }
1789
1790 /**
1791  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1792  *  @hw: pointer to the HW structure
1793  *
1794  *  Verifies that the EEPROM has completed the update.  After updating the
1795  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1796  *  the checksum fix is not implemented, we need to set the bit and update
1797  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1798  *  we need to return bad checksum.
1799  **/
1800 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1801 {
1802         struct e1000_nvm_info *nvm = &hw->nvm;
1803         s32 ret_val;
1804         u16 data;
1805
1806         if (nvm->type != e1000_nvm_flash_hw)
1807                 return 0;
1808
1809         /*
1810          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1811          * 10h-12h.  Checksum may need to be fixed.
1812          */
1813         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1814         if (ret_val)
1815                 return ret_val;
1816
1817         if (!(data & 0x10)) {
1818                 /*
1819                  * Read 0x23 and check bit 15.  This bit is a 1
1820                  * when the checksum has already been fixed.  If
1821                  * the checksum is still wrong and this bit is a
1822                  * 1, we need to return bad checksum.  Otherwise,
1823                  * we need to set this bit to a 1 and update the
1824                  * checksum.
1825                  */
1826                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1827                 if (ret_val)
1828                         return ret_val;
1829
1830                 if (!(data & 0x8000)) {
1831                         data |= 0x8000;
1832                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1833                         if (ret_val)
1834                                 return ret_val;
1835                         ret_val = e1000e_update_nvm_checksum(hw);
1836                 }
1837         }
1838
1839         return 0;
1840 }
1841
1842 /**
1843  *  e1000_read_mac_addr_82571 - Read device MAC address
1844  *  @hw: pointer to the HW structure
1845  **/
1846 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1847 {
1848         s32 ret_val = 0;
1849
1850         if (hw->mac.type == e1000_82571) {
1851                 /*
1852                  * If there's an alternate MAC address place it in RAR0
1853                  * so that it will override the Si installed default perm
1854                  * address.
1855                  */
1856                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1857                 if (ret_val)
1858                         goto out;
1859         }
1860
1861         ret_val = e1000_read_mac_addr_generic(hw);
1862
1863 out:
1864         return ret_val;
1865 }
1866
1867 /**
1868  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1869  * @hw: pointer to the HW structure
1870  *
1871  * In the case of a PHY power down to save power, or to turn off link during a
1872  * driver unload, or wake on lan is not enabled, remove the link.
1873  **/
1874 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1875 {
1876         struct e1000_phy_info *phy = &hw->phy;
1877         struct e1000_mac_info *mac = &hw->mac;
1878
1879         if (!(phy->ops.check_reset_block))
1880                 return;
1881
1882         /* If the management interface is not enabled, then power down */
1883         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1884                 e1000_power_down_phy_copper(hw);
1885 }
1886
1887 /**
1888  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1889  *  @hw: pointer to the HW structure
1890  *
1891  *  Clears the hardware counters by reading the counter registers.
1892  **/
1893 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1894 {
1895         e1000e_clear_hw_cntrs_base(hw);
1896
1897         er32(PRC64);
1898         er32(PRC127);
1899         er32(PRC255);
1900         er32(PRC511);
1901         er32(PRC1023);
1902         er32(PRC1522);
1903         er32(PTC64);
1904         er32(PTC127);
1905         er32(PTC255);
1906         er32(PTC511);
1907         er32(PTC1023);
1908         er32(PTC1522);
1909
1910         er32(ALGNERRC);
1911         er32(RXERRC);
1912         er32(TNCRS);
1913         er32(CEXTERR);
1914         er32(TSCTC);
1915         er32(TSCTFC);
1916
1917         er32(MGTPRC);
1918         er32(MGTPDC);
1919         er32(MGTPTC);
1920
1921         er32(IAC);
1922         er32(ICRXOC);
1923
1924         er32(ICRXPTC);
1925         er32(ICRXATC);
1926         er32(ICTXPTC);
1927         er32(ICTXATC);
1928         er32(ICTXQEC);
1929         er32(ICTXQMTC);
1930         er32(ICRXDMTC);
1931 }
1932
1933 static struct e1000_mac_operations e82571_mac_ops = {
1934         /* .check_mng_mode: mac type dependent */
1935         /* .check_for_link: media type dependent */
1936         .id_led_init            = e1000e_id_led_init,
1937         .cleanup_led            = e1000e_cleanup_led_generic,
1938         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1939         .get_bus_info           = e1000e_get_bus_info_pcie,
1940         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1941         /* .get_link_up_info: media type dependent */
1942         /* .led_on: mac type dependent */
1943         .led_off                = e1000e_led_off_generic,
1944         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1945         .write_vfta             = e1000_write_vfta_generic,
1946         .clear_vfta             = e1000_clear_vfta_82571,
1947         .reset_hw               = e1000_reset_hw_82571,
1948         .init_hw                = e1000_init_hw_82571,
1949         .setup_link             = e1000_setup_link_82571,
1950         /* .setup_physical_interface: media type dependent */
1951         .setup_led              = e1000e_setup_led_generic,
1952         .read_mac_addr          = e1000_read_mac_addr_82571,
1953 };
1954
1955 static struct e1000_phy_operations e82_phy_ops_igp = {
1956         .acquire                = e1000_get_hw_semaphore_82571,
1957         .check_polarity         = e1000_check_polarity_igp,
1958         .check_reset_block      = e1000e_check_reset_block_generic,
1959         .commit                 = NULL,
1960         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1961         .get_cfg_done           = e1000_get_cfg_done_82571,
1962         .get_cable_length       = e1000e_get_cable_length_igp_2,
1963         .get_info               = e1000e_get_phy_info_igp,
1964         .read_reg               = e1000e_read_phy_reg_igp,
1965         .release                = e1000_put_hw_semaphore_82571,
1966         .reset                  = e1000e_phy_hw_reset_generic,
1967         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1968         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1969         .write_reg              = e1000e_write_phy_reg_igp,
1970         .cfg_on_link_up         = NULL,
1971 };
1972
1973 static struct e1000_phy_operations e82_phy_ops_m88 = {
1974         .acquire                = e1000_get_hw_semaphore_82571,
1975         .check_polarity         = e1000_check_polarity_m88,
1976         .check_reset_block      = e1000e_check_reset_block_generic,
1977         .commit                 = e1000e_phy_sw_reset,
1978         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1979         .get_cfg_done           = e1000e_get_cfg_done,
1980         .get_cable_length       = e1000e_get_cable_length_m88,
1981         .get_info               = e1000e_get_phy_info_m88,
1982         .read_reg               = e1000e_read_phy_reg_m88,
1983         .release                = e1000_put_hw_semaphore_82571,
1984         .reset                  = e1000e_phy_hw_reset_generic,
1985         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1986         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1987         .write_reg              = e1000e_write_phy_reg_m88,
1988         .cfg_on_link_up         = NULL,
1989 };
1990
1991 static struct e1000_phy_operations e82_phy_ops_bm = {
1992         .acquire                = e1000_get_hw_semaphore_82571,
1993         .check_polarity         = e1000_check_polarity_m88,
1994         .check_reset_block      = e1000e_check_reset_block_generic,
1995         .commit                 = e1000e_phy_sw_reset,
1996         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1997         .get_cfg_done           = e1000e_get_cfg_done,
1998         .get_cable_length       = e1000e_get_cable_length_m88,
1999         .get_info               = e1000e_get_phy_info_m88,
2000         .read_reg               = e1000e_read_phy_reg_bm2,
2001         .release                = e1000_put_hw_semaphore_82571,
2002         .reset                  = e1000e_phy_hw_reset_generic,
2003         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
2004         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
2005         .write_reg              = e1000e_write_phy_reg_bm2,
2006         .cfg_on_link_up         = NULL,
2007 };
2008
2009 static struct e1000_nvm_operations e82571_nvm_ops = {
2010         .acquire                = e1000_acquire_nvm_82571,
2011         .read                   = e1000e_read_nvm_eerd,
2012         .release                = e1000_release_nvm_82571,
2013         .update                 = e1000_update_nvm_checksum_82571,
2014         .valid_led_default      = e1000_valid_led_default_82571,
2015         .validate               = e1000_validate_nvm_checksum_82571,
2016         .write                  = e1000_write_nvm_82571,
2017 };
2018
2019 struct e1000_info e1000_82571_info = {
2020         .mac                    = e1000_82571,
2021         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2022                                   | FLAG_HAS_JUMBO_FRAMES
2023                                   | FLAG_HAS_WOL
2024                                   | FLAG_APME_IN_CTRL3
2025                                   | FLAG_RX_CSUM_ENABLED
2026                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2027                                   | FLAG_HAS_SMART_POWER_DOWN
2028                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
2029                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
2030                                   | FLAG_APME_CHECK_PORT_B,
2031         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2032                                   | FLAG2_DMA_BURST,
2033         .pba                    = 38,
2034         .max_hw_frame_size      = DEFAULT_JUMBO,
2035         .get_variants           = e1000_get_variants_82571,
2036         .mac_ops                = &e82571_mac_ops,
2037         .phy_ops                = &e82_phy_ops_igp,
2038         .nvm_ops                = &e82571_nvm_ops,
2039 };
2040
2041 struct e1000_info e1000_82572_info = {
2042         .mac                    = e1000_82572,
2043         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2044                                   | FLAG_HAS_JUMBO_FRAMES
2045                                   | FLAG_HAS_WOL
2046                                   | FLAG_APME_IN_CTRL3
2047                                   | FLAG_RX_CSUM_ENABLED
2048                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2049                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2050         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2051                                   | FLAG2_DMA_BURST,
2052         .pba                    = 38,
2053         .max_hw_frame_size      = DEFAULT_JUMBO,
2054         .get_variants           = e1000_get_variants_82571,
2055         .mac_ops                = &e82571_mac_ops,
2056         .phy_ops                = &e82_phy_ops_igp,
2057         .nvm_ops                = &e82571_nvm_ops,
2058 };
2059
2060 struct e1000_info e1000_82573_info = {
2061         .mac                    = e1000_82573,
2062         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2063                                   | FLAG_HAS_WOL
2064                                   | FLAG_APME_IN_CTRL3
2065                                   | FLAG_RX_CSUM_ENABLED
2066                                   | FLAG_HAS_SMART_POWER_DOWN
2067                                   | FLAG_HAS_AMT
2068                                   | FLAG_HAS_SWSM_ON_LOAD,
2069         .flags2                 = FLAG2_DISABLE_ASPM_L1,
2070         .pba                    = 20,
2071         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2072         .get_variants           = e1000_get_variants_82571,
2073         .mac_ops                = &e82571_mac_ops,
2074         .phy_ops                = &e82_phy_ops_m88,
2075         .nvm_ops                = &e82571_nvm_ops,
2076 };
2077
2078 struct e1000_info e1000_82574_info = {
2079         .mac                    = e1000_82574,
2080         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2081                                   | FLAG_HAS_MSIX
2082                                   | FLAG_HAS_JUMBO_FRAMES
2083                                   | FLAG_HAS_WOL
2084                                   | FLAG_APME_IN_CTRL3
2085                                   | FLAG_RX_CSUM_ENABLED
2086                                   | FLAG_HAS_SMART_POWER_DOWN
2087                                   | FLAG_HAS_AMT
2088                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2089         .flags2                   = FLAG2_CHECK_PHY_HANG,
2090         .pba                    = 32,
2091         .max_hw_frame_size      = DEFAULT_JUMBO,
2092         .get_variants           = e1000_get_variants_82571,
2093         .mac_ops                = &e82571_mac_ops,
2094         .phy_ops                = &e82_phy_ops_bm,
2095         .nvm_ops                = &e82571_nvm_ops,
2096 };
2097
2098 struct e1000_info e1000_82583_info = {
2099         .mac                    = e1000_82583,
2100         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2101                                   | FLAG_HAS_WOL
2102                                   | FLAG_APME_IN_CTRL3
2103                                   | FLAG_RX_CSUM_ENABLED
2104                                   | FLAG_HAS_SMART_POWER_DOWN
2105                                   | FLAG_HAS_AMT
2106                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2107         .pba                    = 32,
2108         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2109         .get_variants           = e1000_get_variants_82571,
2110         .mac_ops                = &e82571_mac_ops,
2111         .phy_ops                = &e82_phy_ops_bm,
2112         .nvm_ops                = &e82571_nvm_ops,
2113 };
2114