mx35: add a missing comma in a pad definition
[cascardo/linux.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include "e1000.h"
35
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
40
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
44
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
48
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK            0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO     0x0004
51
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
54
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
57
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
64
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
67                                                 /* 1=Reverse Auto-Negotiation */
68
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
75
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
77
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
80                                                            1 = 50-80M
81                                                            2 = 80-110M
82                                                            3 = 110-140M
83                                                            4 = >140M */
84
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
87
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY  0x5
90
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
93                                            /* 1=Enable SERDES Electrical Idle */
94
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
97
98 /*
99  * A table for the GG82563 cable length where the range is defined
100  * with a lower bound at "index" and the upper bound at
101  * "index + 5".
102  */
103 static const u16 e1000_gg82563_cable_length_table[] =
104          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
107
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                             u16 *data);
118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                              u16 data);
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
121
122 /**
123  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124  *  @hw: pointer to the HW structure
125  **/
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127 {
128         struct e1000_phy_info *phy = &hw->phy;
129         s32 ret_val;
130
131         if (hw->phy.media_type != e1000_media_type_copper) {
132                 phy->type       = e1000_phy_none;
133                 return 0;
134         } else {
135                 phy->ops.power_up = e1000_power_up_phy_copper;
136                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
137         }
138
139         phy->addr               = 1;
140         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
141         phy->reset_delay_us      = 100;
142         phy->type               = e1000_phy_gg82563;
143
144         /* This can only be done after all function pointers are setup. */
145         ret_val = e1000e_get_phy_id(hw);
146
147         /* Verify phy id */
148         if (phy->id != GG82563_E_PHY_ID)
149                 return -E1000_ERR_PHY;
150
151         return ret_val;
152 }
153
154 /**
155  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156  *  @hw: pointer to the HW structure
157  **/
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160         struct e1000_nvm_info *nvm = &hw->nvm;
161         u32 eecd = er32(EECD);
162         u16 size;
163
164         nvm->opcode_bits        = 8;
165         nvm->delay_usec  = 1;
166         switch (nvm->override) {
167         case e1000_nvm_override_spi_large:
168                 nvm->page_size    = 32;
169                 nvm->address_bits = 16;
170                 break;
171         case e1000_nvm_override_spi_small:
172                 nvm->page_size    = 8;
173                 nvm->address_bits = 8;
174                 break;
175         default:
176                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178                 break;
179         }
180
181         nvm->type = e1000_nvm_eeprom_spi;
182
183         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184                           E1000_EECD_SIZE_EX_SHIFT);
185
186         /*
187          * Added to a constant, "size" becomes the left-shift value
188          * for setting word_size.
189          */
190         size += NVM_WORD_SIZE_BASE_SHIFT;
191
192         /* EEPROM access above 16k is unsupported */
193         if (size > 14)
194                 size = 14;
195         nvm->word_size  = 1 << size;
196
197         return 0;
198 }
199
200 /**
201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202  *  @hw: pointer to the HW structure
203  **/
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
205 {
206         struct e1000_hw *hw = &adapter->hw;
207         struct e1000_mac_info *mac = &hw->mac;
208         struct e1000_mac_operations *func = &mac->ops;
209
210         /* Set media type */
211         switch (adapter->pdev->device) {
212         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
213                 hw->phy.media_type = e1000_media_type_internal_serdes;
214                 break;
215         default:
216                 hw->phy.media_type = e1000_media_type_copper;
217                 break;
218         }
219
220         /* Set mta register count */
221         mac->mta_reg_count = 128;
222         /* Set rar entry count */
223         mac->rar_entry_count = E1000_RAR_ENTRIES;
224         /* Set if manageability features are enabled. */
225         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
226                         ? true : false;
227
228         /* check for link */
229         switch (hw->phy.media_type) {
230         case e1000_media_type_copper:
231                 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
232                 func->check_for_link = e1000e_check_for_copper_link;
233                 break;
234         case e1000_media_type_fiber:
235                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
236                 func->check_for_link = e1000e_check_for_fiber_link;
237                 break;
238         case e1000_media_type_internal_serdes:
239                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
240                 func->check_for_link = e1000e_check_for_serdes_link;
241                 break;
242         default:
243                 return -E1000_ERR_CONFIG;
244                 break;
245         }
246
247         return 0;
248 }
249
250 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
251 {
252         struct e1000_hw *hw = &adapter->hw;
253         s32 rc;
254
255         rc = e1000_init_mac_params_80003es2lan(adapter);
256         if (rc)
257                 return rc;
258
259         rc = e1000_init_nvm_params_80003es2lan(hw);
260         if (rc)
261                 return rc;
262
263         rc = e1000_init_phy_params_80003es2lan(hw);
264         if (rc)
265                 return rc;
266
267         return 0;
268 }
269
270 /**
271  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
272  *  @hw: pointer to the HW structure
273  *
274  *  A wrapper to acquire access rights to the correct PHY.
275  **/
276 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
277 {
278         u16 mask;
279
280         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
281         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
282 }
283
284 /**
285  *  e1000_release_phy_80003es2lan - Release rights to access PHY
286  *  @hw: pointer to the HW structure
287  *
288  *  A wrapper to release access rights to the correct PHY.
289  **/
290 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
291 {
292         u16 mask;
293
294         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
295         e1000_release_swfw_sync_80003es2lan(hw, mask);
296 }
297
298 /**
299  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
300  *  @hw: pointer to the HW structure
301  *
302  *  Acquire the semaphore to access the Kumeran interface.
303  *
304  **/
305 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
306 {
307         u16 mask;
308
309         mask = E1000_SWFW_CSR_SM;
310
311         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
312 }
313
314 /**
315  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
316  *  @hw: pointer to the HW structure
317  *
318  *  Release the semaphore used to access the Kumeran interface
319  **/
320 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
321 {
322         u16 mask;
323
324         mask = E1000_SWFW_CSR_SM;
325
326         e1000_release_swfw_sync_80003es2lan(hw, mask);
327 }
328
329 /**
330  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
331  *  @hw: pointer to the HW structure
332  *
333  *  Acquire the semaphore to access the EEPROM.
334  **/
335 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
336 {
337         s32 ret_val;
338
339         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
340         if (ret_val)
341                 return ret_val;
342
343         ret_val = e1000e_acquire_nvm(hw);
344
345         if (ret_val)
346                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
347
348         return ret_val;
349 }
350
351 /**
352  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
353  *  @hw: pointer to the HW structure
354  *
355  *  Release the semaphore used to access the EEPROM.
356  **/
357 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
358 {
359         e1000e_release_nvm(hw);
360         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
361 }
362
363 /**
364  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
365  *  @hw: pointer to the HW structure
366  *  @mask: specifies which semaphore to acquire
367  *
368  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
369  *  will also specify which port we're acquiring the lock for.
370  **/
371 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
372 {
373         u32 swfw_sync;
374         u32 swmask = mask;
375         u32 fwmask = mask << 16;
376         s32 i = 0;
377         s32 timeout = 50;
378
379         while (i < timeout) {
380                 if (e1000e_get_hw_semaphore(hw))
381                         return -E1000_ERR_SWFW_SYNC;
382
383                 swfw_sync = er32(SW_FW_SYNC);
384                 if (!(swfw_sync & (fwmask | swmask)))
385                         break;
386
387                 /*
388                  * Firmware currently using resource (fwmask)
389                  * or other software thread using resource (swmask)
390                  */
391                 e1000e_put_hw_semaphore(hw);
392                 mdelay(5);
393                 i++;
394         }
395
396         if (i == timeout) {
397                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
398                 return -E1000_ERR_SWFW_SYNC;
399         }
400
401         swfw_sync |= swmask;
402         ew32(SW_FW_SYNC, swfw_sync);
403
404         e1000e_put_hw_semaphore(hw);
405
406         return 0;
407 }
408
409 /**
410  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
411  *  @hw: pointer to the HW structure
412  *  @mask: specifies which semaphore to acquire
413  *
414  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
415  *  will also specify which port we're releasing the lock for.
416  **/
417 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
418 {
419         u32 swfw_sync;
420
421         while (e1000e_get_hw_semaphore(hw) != 0);
422         /* Empty */
423
424         swfw_sync = er32(SW_FW_SYNC);
425         swfw_sync &= ~mask;
426         ew32(SW_FW_SYNC, swfw_sync);
427
428         e1000e_put_hw_semaphore(hw);
429 }
430
431 /**
432  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
433  *  @hw: pointer to the HW structure
434  *  @offset: offset of the register to read
435  *  @data: pointer to the data returned from the operation
436  *
437  *  Read the GG82563 PHY register.
438  **/
439 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
440                                                   u32 offset, u16 *data)
441 {
442         s32 ret_val;
443         u32 page_select;
444         u16 temp;
445
446         ret_val = e1000_acquire_phy_80003es2lan(hw);
447         if (ret_val)
448                 return ret_val;
449
450         /* Select Configuration Page */
451         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
452                 page_select = GG82563_PHY_PAGE_SELECT;
453         } else {
454                 /*
455                  * Use Alternative Page Select register to access
456                  * registers 30 and 31
457                  */
458                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
459         }
460
461         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
462         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
463         if (ret_val) {
464                 e1000_release_phy_80003es2lan(hw);
465                 return ret_val;
466         }
467
468         if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
469                 /*
470                  * The "ready" bit in the MDIC register may be incorrectly set
471                  * before the device has completed the "Page Select" MDI
472                  * transaction.  So we wait 200us after each MDI command...
473                  */
474                 udelay(200);
475
476                 /* ...and verify the command was successful. */
477                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
478
479                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
480                         ret_val = -E1000_ERR_PHY;
481                         e1000_release_phy_80003es2lan(hw);
482                         return ret_val;
483                 }
484
485                 udelay(200);
486
487                 ret_val = e1000e_read_phy_reg_mdic(hw,
488                                                   MAX_PHY_REG_ADDRESS & offset,
489                                                   data);
490
491                 udelay(200);
492         } else {
493                 ret_val = e1000e_read_phy_reg_mdic(hw,
494                                                   MAX_PHY_REG_ADDRESS & offset,
495                                                   data);
496         }
497
498         e1000_release_phy_80003es2lan(hw);
499
500         return ret_val;
501 }
502
503 /**
504  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
505  *  @hw: pointer to the HW structure
506  *  @offset: offset of the register to read
507  *  @data: value to write to the register
508  *
509  *  Write to the GG82563 PHY register.
510  **/
511 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
512                                                    u32 offset, u16 data)
513 {
514         s32 ret_val;
515         u32 page_select;
516         u16 temp;
517
518         ret_val = e1000_acquire_phy_80003es2lan(hw);
519         if (ret_val)
520                 return ret_val;
521
522         /* Select Configuration Page */
523         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
524                 page_select = GG82563_PHY_PAGE_SELECT;
525         } else {
526                 /*
527                  * Use Alternative Page Select register to access
528                  * registers 30 and 31
529                  */
530                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
531         }
532
533         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
534         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
535         if (ret_val) {
536                 e1000_release_phy_80003es2lan(hw);
537                 return ret_val;
538         }
539
540         if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
541                 /*
542                  * The "ready" bit in the MDIC register may be incorrectly set
543                  * before the device has completed the "Page Select" MDI
544                  * transaction.  So we wait 200us after each MDI command...
545                  */
546                 udelay(200);
547
548                 /* ...and verify the command was successful. */
549                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
550
551                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
552                         e1000_release_phy_80003es2lan(hw);
553                         return -E1000_ERR_PHY;
554                 }
555
556                 udelay(200);
557
558                 ret_val = e1000e_write_phy_reg_mdic(hw,
559                                                   MAX_PHY_REG_ADDRESS & offset,
560                                                   data);
561
562                 udelay(200);
563         } else {
564                 ret_val = e1000e_write_phy_reg_mdic(hw,
565                                                   MAX_PHY_REG_ADDRESS & offset,
566                                                   data);
567         }
568
569         e1000_release_phy_80003es2lan(hw);
570
571         return ret_val;
572 }
573
574 /**
575  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
576  *  @hw: pointer to the HW structure
577  *  @offset: offset of the register to read
578  *  @words: number of words to write
579  *  @data: buffer of data to write to the NVM
580  *
581  *  Write "words" of data to the ESB2 NVM.
582  **/
583 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
584                                        u16 words, u16 *data)
585 {
586         return e1000e_write_nvm_spi(hw, offset, words, data);
587 }
588
589 /**
590  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
591  *  @hw: pointer to the HW structure
592  *
593  *  Wait a specific amount of time for manageability processes to complete.
594  *  This is a function pointer entry point called by the phy module.
595  **/
596 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
597 {
598         s32 timeout = PHY_CFG_TIMEOUT;
599         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
600
601         if (hw->bus.func == 1)
602                 mask = E1000_NVM_CFG_DONE_PORT_1;
603
604         while (timeout) {
605                 if (er32(EEMNGCTL) & mask)
606                         break;
607                 msleep(1);
608                 timeout--;
609         }
610         if (!timeout) {
611                 e_dbg("MNG configuration cycle has not completed.\n");
612                 return -E1000_ERR_RESET;
613         }
614
615         return 0;
616 }
617
618 /**
619  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
620  *  @hw: pointer to the HW structure
621  *
622  *  Force the speed and duplex settings onto the PHY.  This is a
623  *  function pointer entry point called by the phy module.
624  **/
625 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
626 {
627         s32 ret_val;
628         u16 phy_data;
629         bool link;
630
631         /*
632          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
633          * forced whenever speed and duplex are forced.
634          */
635         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
636         if (ret_val)
637                 return ret_val;
638
639         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
640         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
641         if (ret_val)
642                 return ret_val;
643
644         e_dbg("GG82563 PSCR: %X\n", phy_data);
645
646         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
647         if (ret_val)
648                 return ret_val;
649
650         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
651
652         /* Reset the phy to commit changes. */
653         phy_data |= MII_CR_RESET;
654
655         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
656         if (ret_val)
657                 return ret_val;
658
659         udelay(1);
660
661         if (hw->phy.autoneg_wait_to_complete) {
662                 e_dbg("Waiting for forced speed/duplex link "
663                          "on GG82563 phy.\n");
664
665                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
666                                                      100000, &link);
667                 if (ret_val)
668                         return ret_val;
669
670                 if (!link) {
671                         /*
672                          * We didn't get link.
673                          * Reset the DSP and cross our fingers.
674                          */
675                         ret_val = e1000e_phy_reset_dsp(hw);
676                         if (ret_val)
677                                 return ret_val;
678                 }
679
680                 /* Try once more */
681                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
682                                                      100000, &link);
683                 if (ret_val)
684                         return ret_val;
685         }
686
687         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
688         if (ret_val)
689                 return ret_val;
690
691         /*
692          * Resetting the phy means we need to verify the TX_CLK corresponds
693          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
694          */
695         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
696         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
697                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
698         else
699                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
700
701         /*
702          * In addition, we must re-enable CRS on Tx for both half and full
703          * duplex.
704          */
705         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
706         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
707
708         return ret_val;
709 }
710
711 /**
712  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
713  *  @hw: pointer to the HW structure
714  *
715  *  Find the approximate cable length as measured by the GG82563 PHY.
716  *  This is a function pointer entry point called by the phy module.
717  **/
718 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
719 {
720         struct e1000_phy_info *phy = &hw->phy;
721         s32 ret_val = 0;
722         u16 phy_data, index;
723
724         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
725         if (ret_val)
726                 goto out;
727
728         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
729
730         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
731                 ret_val = -E1000_ERR_PHY;
732                 goto out;
733         }
734
735         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
736         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
737
738         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
739
740 out:
741         return ret_val;
742 }
743
744 /**
745  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
746  *  @hw: pointer to the HW structure
747  *  @speed: pointer to speed buffer
748  *  @duplex: pointer to duplex buffer
749  *
750  *  Retrieve the current speed and duplex configuration.
751  **/
752 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
753                                               u16 *duplex)
754 {
755         s32 ret_val;
756
757         if (hw->phy.media_type == e1000_media_type_copper) {
758                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
759                                                                     speed,
760                                                                     duplex);
761                 hw->phy.ops.cfg_on_link_up(hw);
762         } else {
763                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
764                                                                   speed,
765                                                                   duplex);
766         }
767
768         return ret_val;
769 }
770
771 /**
772  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
773  *  @hw: pointer to the HW structure
774  *
775  *  Perform a global reset to the ESB2 controller.
776  **/
777 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
778 {
779         u32 ctrl, icr;
780         s32 ret_val;
781
782         /*
783          * Prevent the PCI-E bus from sticking if there is no TLP connection
784          * on the last TLP read/write transaction when MAC is reset.
785          */
786         ret_val = e1000e_disable_pcie_master(hw);
787         if (ret_val)
788                 e_dbg("PCI-E Master disable polling has failed.\n");
789
790         e_dbg("Masking off all interrupts\n");
791         ew32(IMC, 0xffffffff);
792
793         ew32(RCTL, 0);
794         ew32(TCTL, E1000_TCTL_PSP);
795         e1e_flush();
796
797         msleep(10);
798
799         ctrl = er32(CTRL);
800
801         ret_val = e1000_acquire_phy_80003es2lan(hw);
802         e_dbg("Issuing a global reset to MAC\n");
803         ew32(CTRL, ctrl | E1000_CTRL_RST);
804         e1000_release_phy_80003es2lan(hw);
805
806         ret_val = e1000e_get_auto_rd_done(hw);
807         if (ret_val)
808                 /* We don't want to continue accessing MAC registers. */
809                 return ret_val;
810
811         /* Clear any pending interrupt events. */
812         ew32(IMC, 0xffffffff);
813         icr = er32(ICR);
814
815         return 0;
816 }
817
818 /**
819  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
820  *  @hw: pointer to the HW structure
821  *
822  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
823  **/
824 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
825 {
826         struct e1000_mac_info *mac = &hw->mac;
827         u32 reg_data;
828         s32 ret_val;
829         u16 i;
830
831         e1000_initialize_hw_bits_80003es2lan(hw);
832
833         /* Initialize identification LED */
834         ret_val = e1000e_id_led_init(hw);
835         if (ret_val)
836                 e_dbg("Error initializing identification LED\n");
837                 /* This is not fatal and we should not stop init due to this */
838
839         /* Disabling VLAN filtering */
840         e_dbg("Initializing the IEEE VLAN\n");
841         mac->ops.clear_vfta(hw);
842
843         /* Setup the receive address. */
844         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
845
846         /* Zero out the Multicast HASH table */
847         e_dbg("Zeroing the MTA\n");
848         for (i = 0; i < mac->mta_reg_count; i++)
849                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
850
851         /* Setup link and flow control */
852         ret_val = e1000e_setup_link(hw);
853
854         /* Set the transmit descriptor write-back policy */
855         reg_data = er32(TXDCTL(0));
856         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
857                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
858         ew32(TXDCTL(0), reg_data);
859
860         /* ...for both queues. */
861         reg_data = er32(TXDCTL(1));
862         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
863                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
864         ew32(TXDCTL(1), reg_data);
865
866         /* Enable retransmit on late collisions */
867         reg_data = er32(TCTL);
868         reg_data |= E1000_TCTL_RTLC;
869         ew32(TCTL, reg_data);
870
871         /* Configure Gigabit Carry Extend Padding */
872         reg_data = er32(TCTL_EXT);
873         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
874         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
875         ew32(TCTL_EXT, reg_data);
876
877         /* Configure Transmit Inter-Packet Gap */
878         reg_data = er32(TIPG);
879         reg_data &= ~E1000_TIPG_IPGT_MASK;
880         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
881         ew32(TIPG, reg_data);
882
883         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
884         reg_data &= ~0x00100000;
885         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
886
887         /* default to true to enable the MDIC W/A */
888         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
889
890         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
891                                       E1000_KMRNCTRLSTA_OFFSET >>
892                                       E1000_KMRNCTRLSTA_OFFSET_SHIFT,
893                                       &i);
894         if (!ret_val) {
895                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
896                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
897                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
898         }
899
900         /*
901          * Clear all of the statistics registers (clear on read).  It is
902          * important that we do this after we have tried to establish link
903          * because the symbol error count will increment wildly if there
904          * is no link.
905          */
906         e1000_clear_hw_cntrs_80003es2lan(hw);
907
908         return ret_val;
909 }
910
911 /**
912  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
913  *  @hw: pointer to the HW structure
914  *
915  *  Initializes required hardware-dependent bits needed for normal operation.
916  **/
917 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
918 {
919         u32 reg;
920
921         /* Transmit Descriptor Control 0 */
922         reg = er32(TXDCTL(0));
923         reg |= (1 << 22);
924         ew32(TXDCTL(0), reg);
925
926         /* Transmit Descriptor Control 1 */
927         reg = er32(TXDCTL(1));
928         reg |= (1 << 22);
929         ew32(TXDCTL(1), reg);
930
931         /* Transmit Arbitration Control 0 */
932         reg = er32(TARC(0));
933         reg &= ~(0xF << 27); /* 30:27 */
934         if (hw->phy.media_type != e1000_media_type_copper)
935                 reg &= ~(1 << 20);
936         ew32(TARC(0), reg);
937
938         /* Transmit Arbitration Control 1 */
939         reg = er32(TARC(1));
940         if (er32(TCTL) & E1000_TCTL_MULR)
941                 reg &= ~(1 << 28);
942         else
943                 reg |= (1 << 28);
944         ew32(TARC(1), reg);
945 }
946
947 /**
948  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
949  *  @hw: pointer to the HW structure
950  *
951  *  Setup some GG82563 PHY registers for obtaining link
952  **/
953 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
954 {
955         struct e1000_phy_info *phy = &hw->phy;
956         s32 ret_val;
957         u32 ctrl_ext;
958         u16 data;
959
960         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
961         if (ret_val)
962                 return ret_val;
963
964         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
965         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
966         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
967
968         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
969         if (ret_val)
970                 return ret_val;
971
972         /*
973          * Options:
974          *   MDI/MDI-X = 0 (default)
975          *   0 - Auto for all speeds
976          *   1 - MDI mode
977          *   2 - MDI-X mode
978          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
979          */
980         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
981         if (ret_val)
982                 return ret_val;
983
984         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
985
986         switch (phy->mdix) {
987         case 1:
988                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
989                 break;
990         case 2:
991                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
992                 break;
993         case 0:
994         default:
995                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
996                 break;
997         }
998
999         /*
1000          * Options:
1001          *   disable_polarity_correction = 0 (default)
1002          *       Automatic Correction for Reversed Cable Polarity
1003          *   0 - Disabled
1004          *   1 - Enabled
1005          */
1006         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1007         if (phy->disable_polarity_correction)
1008                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1009
1010         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1011         if (ret_val)
1012                 return ret_val;
1013
1014         /* SW Reset the PHY so all changes take effect */
1015         ret_val = e1000e_commit_phy(hw);
1016         if (ret_val) {
1017                 e_dbg("Error Resetting the PHY\n");
1018                 return ret_val;
1019         }
1020
1021         /* Bypass Rx and Tx FIFO's */
1022         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1023                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1024                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1025                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1026         if (ret_val)
1027                 return ret_val;
1028
1029         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1030                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1031                                        &data);
1032         if (ret_val)
1033                 return ret_val;
1034         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1035         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1036                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1037                                         data);
1038         if (ret_val)
1039                 return ret_val;
1040
1041         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1042         if (ret_val)
1043                 return ret_val;
1044
1045         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1046         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1047         if (ret_val)
1048                 return ret_val;
1049
1050         ctrl_ext = er32(CTRL_EXT);
1051         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1052         ew32(CTRL_EXT, ctrl_ext);
1053
1054         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1055         if (ret_val)
1056                 return ret_val;
1057
1058         /*
1059          * Do not init these registers when the HW is in IAMT mode, since the
1060          * firmware will have already initialized them.  We only initialize
1061          * them if the HW is not in IAMT mode.
1062          */
1063         if (!e1000e_check_mng_mode(hw)) {
1064                 /* Enable Electrical Idle on the PHY */
1065                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1066                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1067                 if (ret_val)
1068                         return ret_val;
1069
1070                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1071                 if (ret_val)
1072                         return ret_val;
1073
1074                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1075                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1076                 if (ret_val)
1077                         return ret_val;
1078         }
1079
1080         /*
1081          * Workaround: Disable padding in Kumeran interface in the MAC
1082          * and in the PHY to avoid CRC errors.
1083          */
1084         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1085         if (ret_val)
1086                 return ret_val;
1087
1088         data |= GG82563_ICR_DIS_PADDING;
1089         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1090         if (ret_val)
1091                 return ret_val;
1092
1093         return 0;
1094 }
1095
1096 /**
1097  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1098  *  @hw: pointer to the HW structure
1099  *
1100  *  Essentially a wrapper for setting up all things "copper" related.
1101  *  This is a function pointer entry point called by the mac module.
1102  **/
1103 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1104 {
1105         u32 ctrl;
1106         s32 ret_val;
1107         u16 reg_data;
1108
1109         ctrl = er32(CTRL);
1110         ctrl |= E1000_CTRL_SLU;
1111         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1112         ew32(CTRL, ctrl);
1113
1114         /*
1115          * Set the mac to wait the maximum time between each
1116          * iteration and increase the max iterations when
1117          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1118          */
1119         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1120                                                    0xFFFF);
1121         if (ret_val)
1122                 return ret_val;
1123         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1124                                                   &reg_data);
1125         if (ret_val)
1126                 return ret_val;
1127         reg_data |= 0x3F;
1128         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1129                                                    reg_data);
1130         if (ret_val)
1131                 return ret_val;
1132         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1133                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1134                                       &reg_data);
1135         if (ret_val)
1136                 return ret_val;
1137         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1138         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1139                                         E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1140                                         reg_data);
1141         if (ret_val)
1142                 return ret_val;
1143
1144         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1145         if (ret_val)
1146                 return ret_val;
1147
1148         ret_val = e1000e_setup_copper_link(hw);
1149
1150         return 0;
1151 }
1152
1153 /**
1154  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1155  *  @hw: pointer to the HW structure
1156  *  @duplex: current duplex setting
1157  *
1158  *  Configure the KMRN interface by applying last minute quirks for
1159  *  10/100 operation.
1160  **/
1161 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1162 {
1163         s32 ret_val = 0;
1164         u16 speed;
1165         u16 duplex;
1166
1167         if (hw->phy.media_type == e1000_media_type_copper) {
1168                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1169                                                              &duplex);
1170                 if (ret_val)
1171                         return ret_val;
1172
1173                 if (speed == SPEED_1000)
1174                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1175                 else
1176                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1177         }
1178
1179         return ret_val;
1180 }
1181
1182 /**
1183  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1184  *  @hw: pointer to the HW structure
1185  *  @duplex: current duplex setting
1186  *
1187  *  Configure the KMRN interface by applying last minute quirks for
1188  *  10/100 operation.
1189  **/
1190 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1191 {
1192         s32 ret_val;
1193         u32 tipg;
1194         u32 i = 0;
1195         u16 reg_data, reg_data2;
1196
1197         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1198         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1199                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1200                                        reg_data);
1201         if (ret_val)
1202                 return ret_val;
1203
1204         /* Configure Transmit Inter-Packet Gap */
1205         tipg = er32(TIPG);
1206         tipg &= ~E1000_TIPG_IPGT_MASK;
1207         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1208         ew32(TIPG, tipg);
1209
1210         do {
1211                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1212                 if (ret_val)
1213                         return ret_val;
1214
1215                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1216                 if (ret_val)
1217                         return ret_val;
1218                 i++;
1219         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1220
1221         if (duplex == HALF_DUPLEX)
1222                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1223         else
1224                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1225
1226         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1227
1228         return 0;
1229 }
1230
1231 /**
1232  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1233  *  @hw: pointer to the HW structure
1234  *
1235  *  Configure the KMRN interface by applying last minute quirks for
1236  *  gigabit operation.
1237  **/
1238 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1239 {
1240         s32 ret_val;
1241         u16 reg_data, reg_data2;
1242         u32 tipg;
1243         u32 i = 0;
1244
1245         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1246         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1247                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1248                                        reg_data);
1249         if (ret_val)
1250                 return ret_val;
1251
1252         /* Configure Transmit Inter-Packet Gap */
1253         tipg = er32(TIPG);
1254         tipg &= ~E1000_TIPG_IPGT_MASK;
1255         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1256         ew32(TIPG, tipg);
1257
1258         do {
1259                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1260                 if (ret_val)
1261                         return ret_val;
1262
1263                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1264                 if (ret_val)
1265                         return ret_val;
1266                 i++;
1267         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1268
1269         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1270         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1271
1272         return ret_val;
1273 }
1274
1275 /**
1276  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1277  *  @hw: pointer to the HW structure
1278  *  @offset: register offset to be read
1279  *  @data: pointer to the read data
1280  *
1281  *  Acquire semaphore, then read the PHY register at offset
1282  *  using the kumeran interface.  The information retrieved is stored in data.
1283  *  Release the semaphore before exiting.
1284  **/
1285 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1286                                            u16 *data)
1287 {
1288         u32 kmrnctrlsta;
1289         s32 ret_val = 0;
1290
1291         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1292         if (ret_val)
1293                 return ret_val;
1294
1295         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1296                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1297         ew32(KMRNCTRLSTA, kmrnctrlsta);
1298
1299         udelay(2);
1300
1301         kmrnctrlsta = er32(KMRNCTRLSTA);
1302         *data = (u16)kmrnctrlsta;
1303
1304         e1000_release_mac_csr_80003es2lan(hw);
1305
1306         return ret_val;
1307 }
1308
1309 /**
1310  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1311  *  @hw: pointer to the HW structure
1312  *  @offset: register offset to write to
1313  *  @data: data to write at register offset
1314  *
1315  *  Acquire semaphore, then write the data to PHY register
1316  *  at the offset using the kumeran interface.  Release semaphore
1317  *  before exiting.
1318  **/
1319 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1320                                             u16 data)
1321 {
1322         u32 kmrnctrlsta;
1323         s32 ret_val = 0;
1324
1325         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1326         if (ret_val)
1327                 return ret_val;
1328
1329         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1330                        E1000_KMRNCTRLSTA_OFFSET) | data;
1331         ew32(KMRNCTRLSTA, kmrnctrlsta);
1332
1333         udelay(2);
1334
1335         e1000_release_mac_csr_80003es2lan(hw);
1336
1337         return ret_val;
1338 }
1339
1340 /**
1341  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1342  * @hw: pointer to the HW structure
1343  *
1344  * In the case of a PHY power down to save power, or to turn off link during a
1345  * driver unload, or wake on lan is not enabled, remove the link.
1346  **/
1347 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1348 {
1349         /* If the management interface is not enabled, then power down */
1350         if (!(hw->mac.ops.check_mng_mode(hw) ||
1351               hw->phy.ops.check_reset_block(hw)))
1352                 e1000_power_down_phy_copper(hw);
1353
1354         return;
1355 }
1356
1357 /**
1358  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1359  *  @hw: pointer to the HW structure
1360  *
1361  *  Clears the hardware counters by reading the counter registers.
1362  **/
1363 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1364 {
1365         e1000e_clear_hw_cntrs_base(hw);
1366
1367         er32(PRC64);
1368         er32(PRC127);
1369         er32(PRC255);
1370         er32(PRC511);
1371         er32(PRC1023);
1372         er32(PRC1522);
1373         er32(PTC64);
1374         er32(PTC127);
1375         er32(PTC255);
1376         er32(PTC511);
1377         er32(PTC1023);
1378         er32(PTC1522);
1379
1380         er32(ALGNERRC);
1381         er32(RXERRC);
1382         er32(TNCRS);
1383         er32(CEXTERR);
1384         er32(TSCTC);
1385         er32(TSCTFC);
1386
1387         er32(MGTPRC);
1388         er32(MGTPDC);
1389         er32(MGTPTC);
1390
1391         er32(IAC);
1392         er32(ICRXOC);
1393
1394         er32(ICRXPTC);
1395         er32(ICRXATC);
1396         er32(ICTXPTC);
1397         er32(ICTXATC);
1398         er32(ICTXQEC);
1399         er32(ICTXQMTC);
1400         er32(ICRXDMTC);
1401 }
1402
1403 static struct e1000_mac_operations es2_mac_ops = {
1404         .id_led_init            = e1000e_id_led_init,
1405         .check_mng_mode         = e1000e_check_mng_mode_generic,
1406         /* check_for_link dependent on media type */
1407         .cleanup_led            = e1000e_cleanup_led_generic,
1408         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1409         .get_bus_info           = e1000e_get_bus_info_pcie,
1410         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1411         .led_on                 = e1000e_led_on_generic,
1412         .led_off                = e1000e_led_off_generic,
1413         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1414         .write_vfta             = e1000_write_vfta_generic,
1415         .clear_vfta             = e1000_clear_vfta_generic,
1416         .reset_hw               = e1000_reset_hw_80003es2lan,
1417         .init_hw                = e1000_init_hw_80003es2lan,
1418         .setup_link             = e1000e_setup_link,
1419         /* setup_physical_interface dependent on media type */
1420         .setup_led              = e1000e_setup_led_generic,
1421 };
1422
1423 static struct e1000_phy_operations es2_phy_ops = {
1424         .acquire                = e1000_acquire_phy_80003es2lan,
1425         .check_polarity         = e1000_check_polarity_m88,
1426         .check_reset_block      = e1000e_check_reset_block_generic,
1427         .commit                 = e1000e_phy_sw_reset,
1428         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1429         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1430         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1431         .get_info               = e1000e_get_phy_info_m88,
1432         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1433         .release                = e1000_release_phy_80003es2lan,
1434         .reset                  = e1000e_phy_hw_reset_generic,
1435         .set_d0_lplu_state      = NULL,
1436         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1437         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1438         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1439 };
1440
1441 static struct e1000_nvm_operations es2_nvm_ops = {
1442         .acquire                = e1000_acquire_nvm_80003es2lan,
1443         .read                   = e1000e_read_nvm_eerd,
1444         .release                = e1000_release_nvm_80003es2lan,
1445         .update                 = e1000e_update_nvm_checksum_generic,
1446         .valid_led_default      = e1000e_valid_led_default,
1447         .validate               = e1000e_validate_nvm_checksum_generic,
1448         .write                  = e1000_write_nvm_80003es2lan,
1449 };
1450
1451 struct e1000_info e1000_es2_info = {
1452         .mac                    = e1000_80003es2lan,
1453         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1454                                   | FLAG_HAS_JUMBO_FRAMES
1455                                   | FLAG_HAS_WOL
1456                                   | FLAG_APME_IN_CTRL3
1457                                   | FLAG_RX_CSUM_ENABLED
1458                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1459                                   | FLAG_RX_NEEDS_RESTART /* errata */
1460                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1461                                   | FLAG_APME_CHECK_PORT_B
1462                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1463                                   | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1464         .pba                    = 38,
1465         .max_hw_frame_size      = DEFAULT_JUMBO,
1466         .get_variants           = e1000_get_variants_80003es2lan,
1467         .mac_ops                = &es2_mac_ops,
1468         .phy_ops                = &es2_phy_ops,
1469         .nvm_ops                = &es2_nvm_ops,
1470 };
1471