Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / net / ethernet / agere / et131x.c
1 /* Agere Systems Inc.
2  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3  *
4  * Copyright © 2005 Agere Systems Inc.
5  * All rights reserved.
6  *   http://www.agere.com
7  *
8  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9  *
10  *------------------------------------------------------------------------------
11  *
12  * SOFTWARE LICENSE
13  *
14  * This software is provided subject to the following terms and conditions,
15  * which you should read carefully before using the software.  Using this
16  * software indicates your acceptance of these terms and conditions.  If you do
17  * not agree with these terms and conditions, do not use the software.
18  *
19  * Copyright © 2005 Agere Systems Inc.
20  * All rights reserved.
21  *
22  * Redistribution and use in source or binary forms, with or without
23  * modifications, are permitted provided that the following conditions are met:
24  *
25  * . Redistributions of source code must retain the above copyright notice, this
26  *    list of conditions and the following Disclaimer as comments in the code as
27  *    well as in the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * . Redistributions in binary form must reproduce the above copyright notice,
31  *    this list of conditions and the following Disclaimer in the documentation
32  *    and/or other materials provided with the distribution.
33  *
34  * . Neither the name of Agere Systems Inc. nor the names of the contributors
35  *    may be used to endorse or promote products derived from this software
36  *    without specific prior written permission.
37  *
38  * Disclaimer
39  *
40  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51  * DAMAGE.
52  */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS          1000
91 #define MAX_NUM_WRITE_RETRIES           2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104  *       watchdog_interrupt & txdma_xfer_done
105  *
106  * In both cases, when flow control is enabled for either Tx or bi-direction,
107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108  * buffer rings are running low.
109  */
110 #define INT_MASK_DISABLE            0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113  * #define INT_MASK_ENABLE             0xfff6bf17
114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115  */
116 #define INT_MASK_ENABLE             0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE     60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST      128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT       (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER         0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR      0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS          0xA4
150 #define ET1310_PCI_EEPROM_STATUS        0xB2
151 #define ET1310_PCI_ACK_NACK             0xC0
152 #define ET1310_PCI_REPLAY               0xC2
153 #define ET1310_PCI_L0L1LATENCY          0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF    4
163 #define PARM_RX_TIME_INT_DEF    10
164 #define PARM_RX_MEM_END_DEF     0x2bc
165 #define PARM_TX_TIME_INT_DEF    40
166 #define PARM_TX_NUM_BUFS_DEF    4
167 #define PARM_DMA_CACHE_DEF      0
168
169 /* RX defines */
170 #define FBR_CHUNKS              32
171 #define MAX_DESC_PER_RING_RX    1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK      40
175 #define NIC_DEFAULT_NUM_RFD     1024
176 #define NUM_FBRS                2
177
178 #define MAX_PACKETS_HANDLED     256
179
180 #define ALCATEL_MULTICAST_PKT   0x01000000
181 #define ALCATEL_BROADCAST_PKT   0x02000000
182
183 /* typedefs for Free Buffer Descriptors */
184 struct fbr_desc {
185         u32 addr_lo;
186         u32 addr_hi;
187         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
188 };
189
190 /* Packet Status Ring Descriptors
191  *
192  * Word 0:
193  *
194  * top 16 bits are from the Alcatel Status Word as enumerated in
195  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
196  *
197  * 0: hp                        hash pass
198  * 1: ipa                       IP checksum assist
199  * 2: ipp                       IP checksum pass
200  * 3: tcpa                      TCP checksum assist
201  * 4: tcpp                      TCP checksum pass
202  * 5: wol                       WOL Event
203  * 6: rxmac_error               RXMAC Error Indicator
204  * 7: drop                      Drop packet
205  * 8: ft                        Frame Truncated
206  * 9: jp                        Jumbo Packet
207  * 10: vp                       VLAN Packet
208  * 11-15: unused
209  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
210  * 17: asw_RX_DV_event          short receive event detected
211  * 18: asw_false_carrier_event  bad carrier since last good packet
212  * 19: asw_code_err             one or more nibbles signalled as errors
213  * 20: asw_CRC_err              CRC error
214  * 21: asw_len_chk_err          frame length field incorrect
215  * 22: asw_too_long             frame length > 1518 bytes
216  * 23: asw_OK                   valid CRC + no code error
217  * 24: asw_multicast            has a multicast address
218  * 25: asw_broadcast            has a broadcast address
219  * 26: asw_dribble_nibble       spurious bits after EOP
220  * 27: asw_control_frame        is a control frame
221  * 28: asw_pause_frame          is a pause frame
222  * 29: asw_unsupported_op       unsupported OP code
223  * 30: asw_VLAN_tag             VLAN tag detected
224  * 31: asw_long_evt             Rx long event
225  *
226  * Word 1:
227  * 0-15: length                 length in bytes
228  * 16-25: bi                    Buffer Index
229  * 26-27: ri                    Ring Index
230  * 28-31: reserved
231  */
232 struct pkt_stat_desc {
233         u32 word0;
234         u32 word1;
235 };
236
237 /* Typedefs for the RX DMA status word */
238
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
241  * which contains the Free Buffer ring 0 and 1 available offset.
242  *
243  * bit 0-9 FBR1 offset
244  * bit 10 Wrap flag for FBR1
245  * bit 16-25 FBR0 offset
246  * bit 26 Wrap flag for FBR0
247  */
248
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
251  * which contains the Packet Status Ring available offset.
252  *
253  * bit 0-15 reserved
254  * bit 16-27 PSRoffset
255  * bit 28 PSRwrap
256  * bit 29-31 unused
257  */
258
259 /* struct rx_status_block is a structure representing the status of the Rx
260  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
261  */
262 struct rx_status_block {
263         u32 word0;
264         u32 word1;
265 };
266
267 /* Structure for look-up table holding free buffer ring pointers, addresses
268  * and state.
269  */
270 struct fbr_lookup {
271         void            *virt[MAX_DESC_PER_RING_RX];
272         u32              bus_high[MAX_DESC_PER_RING_RX];
273         u32              bus_low[MAX_DESC_PER_RING_RX];
274         void            *ring_virtaddr;
275         dma_addr_t       ring_physaddr;
276         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
277         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
278         u32              local_full;
279         u32              num_entries;
280         dma_addr_t       buffsize;
281 };
282
283 /* struct rx_ring is the structure representing the adaptor's local
284  * reference(s) to the rings
285  */
286 struct rx_ring {
287         struct fbr_lookup *fbr[NUM_FBRS];
288         void *ps_ring_virtaddr;
289         dma_addr_t ps_ring_physaddr;
290         u32 local_psr_full;
291         u32 psr_entries;
292
293         struct rx_status_block *rx_status_block;
294         dma_addr_t rx_status_bus;
295
296         struct list_head recv_list;
297         u32 num_ready_recv;
298
299         u32 num_rfd;
300
301         bool unfinished_receives;
302 };
303
304 /* TX defines */
305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
306  *
307  * 0-15: length of packet
308  * 16-27: VLAN tag
309  * 28: VLAN CFI
310  * 29-31: VLAN priority
311  *
312  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
313  *
314  * 0: last packet in the sequence
315  * 1: first packet in the sequence
316  * 2: interrupt the processor when this pkt sent
317  * 3: Control word - no packet data
318  * 4: Issue half-duplex backpressure : XON/XOFF
319  * 5: send pause frame
320  * 6: Tx frame has error
321  * 7: append CRC
322  * 8: MAC override
323  * 9: pad packet
324  * 10: Packet is a Huge packet
325  * 11: append VLAN tag
326  * 12: IP checksum assist
327  * 13: TCP checksum assist
328  * 14: UDP checksum assist
329  */
330 #define TXDESC_FLAG_LASTPKT             0x0001
331 #define TXDESC_FLAG_FIRSTPKT            0x0002
332 #define TXDESC_FLAG_INTPROC             0x0004
333
334 /* struct tx_desc represents each descriptor on the ring */
335 struct tx_desc {
336         u32 addr_hi;
337         u32 addr_lo;
338         u32 len_vlan;   /* control words how to xmit the */
339         u32 flags;      /* data (detailed above) */
340 };
341
342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
343  * by 0x101c / 0x1020. This is a DMA10 type
344  */
345
346 /* TCB (Transmit Control Block: Host Side) */
347 struct tcb {
348         struct tcb *next;       /* Next entry in ring */
349         u32 count;              /* Used to spot stuck/lost packets */
350         u32 stale;              /* Used to spot stuck/lost packets */
351         struct sk_buff *skb;    /* Network skb we are tied to */
352         u32 index;              /* Ring indexes */
353         u32 index_start;
354 };
355
356 /* Structure representing our local reference(s) to the ring */
357 struct tx_ring {
358         /* TCB (Transmit Control Block) memory and lists */
359         struct tcb *tcb_ring;
360
361         /* List of TCBs that are ready to be used */
362         struct tcb *tcb_qhead;
363         struct tcb *tcb_qtail;
364
365         /* list of TCBs that are currently being sent. */
366         struct tcb *send_head;
367         struct tcb *send_tail;
368         int used;
369
370         /* The actual descriptor ring */
371         struct tx_desc *tx_desc_ring;
372         dma_addr_t tx_desc_ring_pa;
373
374         /* send_idx indicates where we last wrote to in the descriptor ring. */
375         u32 send_idx;
376
377         /* The location of the write-back status block */
378         u32 *tx_status;
379         dma_addr_t tx_status_pa;
380
381         /* Packets since the last IRQ: used for interrupt coalescing */
382         int since_irq;
383 };
384
385 /* Do not change these values: if changed, then change also in respective
386  * TXdma and Rxdma engines
387  */
388 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
389 #define NUM_TCB                      64
390
391 /* These values are all superseded by registry entries to facilitate tuning.
392  * Once the desired performance has been achieved, the optimal registry values
393  * should be re-populated to these #defines:
394  */
395 #define TX_ERROR_PERIOD             1000
396
397 #define LO_MARK_PERCENT_FOR_PSR     15
398 #define LO_MARK_PERCENT_FOR_RX      15
399
400 /* RFD (Receive Frame Descriptor) */
401 struct rfd {
402         struct list_head list_node;
403         struct sk_buff *skb;
404         u32 len;        /* total size of receive frame */
405         u16 bufferindex;
406         u8 ringindex;
407 };
408
409 /* Flow Control */
410 #define FLOW_BOTH       0
411 #define FLOW_TXONLY     1
412 #define FLOW_RXONLY     2
413 #define FLOW_NONE       3
414
415 /* Struct to define some device statistics */
416 struct ce_stats {
417         u32             multicast_pkts_rcvd;
418         u32             rcvd_pkts_dropped;
419
420         u32             tx_underflows;
421         u32             tx_collisions;
422         u32             tx_excessive_collisions;
423         u32             tx_first_collisions;
424         u32             tx_late_collisions;
425         u32             tx_max_pkt_errs;
426         u32             tx_deferred;
427
428         u32             rx_overflows;
429         u32             rx_length_errs;
430         u32             rx_align_errs;
431         u32             rx_crc_errs;
432         u32             rx_code_violations;
433         u32             rx_other_errs;
434
435         u32             interrupt_status;
436 };
437
438 /* The private adapter structure */
439 struct et131x_adapter {
440         struct net_device *netdev;
441         struct pci_dev *pdev;
442         struct mii_bus *mii_bus;
443         struct napi_struct napi;
444
445         /* Flags that indicate current state of the adapter */
446         u32 flags;
447
448         /* local link state, to determine if a state change has occurred */
449         int link;
450
451         /* Configuration  */
452         u8 rom_addr[ETH_ALEN];
453         u8 addr[ETH_ALEN];
454         bool has_eeprom;
455         u8 eeprom_data[2];
456
457         spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
458         spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
459         spinlock_t rcv_lock; /* protects the rx_ring receive list */
460
461         /* Packet Filter and look ahead size */
462         u32 packet_filter;
463
464         /* multicast list */
465         u32 multicast_addr_count;
466         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
467
468         /* Pointer to the device's PCI register space */
469         struct address_map __iomem *regs;
470
471         /* Registry parameters */
472         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
473         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
474
475         /* Derived from the registry: */
476         u8 flow;                /* flow control validated by the far-end */
477
478         /* Minimize init-time */
479         struct timer_list error_timer;
480
481         /* variable putting the phy into coma mode when boot up with no cable
482          * plugged in after 5 seconds
483          */
484         u8 boot_coma;
485
486         /* Tx Memory Variables */
487         struct tx_ring tx_ring;
488
489         /* Rx Memory Variables */
490         struct rx_ring rx_ring;
491
492         struct ce_stats stats;
493 };
494
495 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
496 {
497         u32 reg;
498         int i;
499
500         /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
501          *    bits 7,1:0 both equal to 1, at least once after reset.
502          *    Subsequent operations need only to check that bits 1:0 are equal
503          *    to 1 prior to starting a single byte read/write
504          */
505         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
506                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
507                         return -EIO;
508
509                 /* I2C idle and Phy Queue Avail both true */
510                 if ((reg & 0x3000) == 0x3000) {
511                         if (status)
512                                 *status = reg;
513                         return reg & 0xFF;
514                 }
515         }
516         return -ETIMEDOUT;
517 }
518
519 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
520 {
521         struct pci_dev *pdev = adapter->pdev;
522         int index = 0;
523         int retries;
524         int err = 0;
525         int writeok = 0;
526         u32 status;
527         u32 val = 0;
528
529         /* For an EEPROM, an I2C single byte write is defined as a START
530          * condition followed by the device address, EEPROM address, one byte
531          * of data and a STOP condition.  The STOP condition will trigger the
532          * EEPROM's internally timed write cycle to the nonvolatile memory.
533          * All inputs are disabled during this write cycle and the EEPROM will
534          * not respond to any access until the internal write is complete.
535          */
536         err = eeprom_wait_ready(pdev, NULL);
537         if (err < 0)
538                 return err;
539
540          /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
541           *    and bits 1:0 both =0.  Bit 5 should be set according to the
542           *    type of EEPROM being accessed (1=two byte addressing, 0=one
543           *    byte addressing).
544           */
545         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
546                                   LBCIF_CONTROL_LBCIF_ENABLE |
547                                         LBCIF_CONTROL_I2C_WRITE))
548                 return -EIO;
549
550         /* Prepare EEPROM address for Step 3 */
551         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
552                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
553                         break;
554                 /* Write the data to the LBCIF Data Register (the I2C write
555                  * will begin).
556                  */
557                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
558                         break;
559                 /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
560                  * 1:0 are both equal to 1, the I2C write has completed and the
561                  * internal write cycle of the EEPROM is about to start.
562                  * (bits 1:0 = 01 is a legal state while waiting from both
563                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
564                  * something is broken).
565                  */
566                 err = eeprom_wait_ready(pdev, &status);
567                 if (err < 0)
568                         return 0;
569
570                 /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
571                  * an error has occurred.Don't break here if we are revision
572                  * 1, this is so we do a blind write for load bug.
573                  */
574                 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
575                     adapter->pdev->revision == 0)
576                         break;
577
578                 /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
579                  * ACK error has occurred on the address phase of the write.
580                  * This could be due to an actual hardware failure or the
581                  * EEPROM may still be in its internal write cycle from a
582                  * previous write. This write operation was ignored and must be
583                   *repeated later.
584                  */
585                 if (status & LBCIF_STATUS_ACK_ERROR) {
586                         /* This could be due to an actual hardware failure
587                          * or the EEPROM may still be in its internal write
588                          * cycle from a previous write. This write operation
589                          * was ignored and must be repeated later.
590                          */
591                         udelay(10);
592                         continue;
593                 }
594
595                 writeok = 1;
596                 break;
597         }
598
599         udelay(10);
600
601         while (1) {
602                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
603                                           LBCIF_CONTROL_LBCIF_ENABLE))
604                         writeok = 0;
605
606                 /* Do read until internal ACK_ERROR goes away meaning write
607                  * completed
608                  */
609                 do {
610                         pci_write_config_dword(pdev,
611                                                LBCIF_ADDRESS_REGISTER,
612                                                addr);
613                         do {
614                                 pci_read_config_dword(pdev,
615                                                       LBCIF_DATA_REGISTER,
616                                                       &val);
617                         } while ((val & 0x00010000) == 0);
618                 } while (val & 0x00040000);
619
620                 if ((val & 0xFF00) != 0xC000 || index == 10000)
621                         break;
622                 index++;
623         }
624         return writeok ? 0 : -EIO;
625 }
626
627 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
628 {
629         struct pci_dev *pdev = adapter->pdev;
630         int err;
631         u32 status;
632
633         /* A single byte read is similar to the single byte write, with the
634          * exception of the data flow:
635          */
636         err = eeprom_wait_ready(pdev, NULL);
637         if (err < 0)
638                 return err;
639         /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
640          * and bits 1:0 both =0.  Bit 5 should be set according to the type
641          * of EEPROM being accessed (1=two byte addressing, 0=one byte
642          * addressing).
643          */
644         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
645                                   LBCIF_CONTROL_LBCIF_ENABLE))
646                 return -EIO;
647         /* Write the address to the LBCIF Address Register (I2C read will
648          * begin).
649          */
650         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
651                 return -EIO;
652         /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
653          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
654          * has occurred).
655          */
656         err = eeprom_wait_ready(pdev, &status);
657         if (err < 0)
658                 return err;
659         /* Regardless of error status, read data byte from LBCIF Data
660          * Register.
661          */
662         *pdata = err;
663
664         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
665 }
666
667 static int et131x_init_eeprom(struct et131x_adapter *adapter)
668 {
669         struct pci_dev *pdev = adapter->pdev;
670         u8 eestatus;
671
672         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
673
674         /* THIS IS A WORKAROUND:
675          * I need to call this function twice to get my card in a
676          * LG M1 Express Dual running. I tried also a msleep before this
677          * function, because I thought there could be some time conditions
678          * but it didn't work. Call the whole function twice also work.
679          */
680         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
681                 dev_err(&pdev->dev,
682                         "Could not read PCI config space for EEPROM Status\n");
683                 return -EIO;
684         }
685
686         /* Determine if the error(s) we care about are present. If they are
687          * present we need to fail.
688          */
689         if (eestatus & 0x4C) {
690                 int write_failed = 0;
691
692                 if (pdev->revision == 0x01) {
693                         int     i;
694                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
695
696                         /* Re-write the first 4 bytes if we have an eeprom
697                          * present and the revision id is 1, this fixes the
698                          * corruption seen with 1310 B Silicon
699                          */
700                         for (i = 0; i < 3; i++)
701                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
702                                         write_failed = 1;
703                 }
704                 if (pdev->revision  != 0x01 || write_failed) {
705                         dev_err(&pdev->dev,
706                                 "Fatal EEPROM Status Error - 0x%04x\n",
707                                 eestatus);
708
709                         /* This error could mean that there was an error
710                          * reading the eeprom or that the eeprom doesn't exist.
711                          * We will treat each case the same and not try to
712                          * gather additional information that normally would
713                          * come from the eeprom, like MAC Address
714                          */
715                         adapter->has_eeprom = 0;
716                         return -EIO;
717                 }
718         }
719         adapter->has_eeprom = 1;
720
721         /* Read the EEPROM for information regarding LED behavior. Refer to
722          * et131x_xcvr_init() for its use.
723          */
724         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
725         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
726
727         if (adapter->eeprom_data[0] != 0xcd)
728                 /* Disable all optional features */
729                 adapter->eeprom_data[1] = 0x00;
730
731         return 0;
732 }
733
734 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
735 {
736         /* Setup the receive dma configuration register for normal operation */
737         u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
738         struct rx_ring *rx_ring = &adapter->rx_ring;
739
740         if (rx_ring->fbr[1]->buffsize == 4096)
741                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
742         else if (rx_ring->fbr[1]->buffsize == 8192)
743                 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
744         else if (rx_ring->fbr[1]->buffsize == 16384)
745                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
746
747         csr |= ET_RXDMA_CSR_FBR0_ENABLE;
748         if (rx_ring->fbr[0]->buffsize == 256)
749                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
750         else if (rx_ring->fbr[0]->buffsize == 512)
751                 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
752         else if (rx_ring->fbr[0]->buffsize == 1024)
753                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
754         writel(csr, &adapter->regs->rxdma.csr);
755
756         csr = readl(&adapter->regs->rxdma.csr);
757         if (csr & ET_RXDMA_CSR_HALT_STATUS) {
758                 udelay(5);
759                 csr = readl(&adapter->regs->rxdma.csr);
760                 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
761                         dev_err(&adapter->pdev->dev,
762                                 "RX Dma failed to exit halt state. CSR 0x%08x\n",
763                                 csr);
764                 }
765         }
766 }
767
768 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
769 {
770         u32 csr;
771         /* Setup the receive dma configuration register */
772         writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
773                &adapter->regs->rxdma.csr);
774         csr = readl(&adapter->regs->rxdma.csr);
775         if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
776                 udelay(5);
777                 csr = readl(&adapter->regs->rxdma.csr);
778                 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
779                         dev_err(&adapter->pdev->dev,
780                                 "RX Dma failed to enter halt state. CSR 0x%08x\n",
781                                 csr);
782         }
783 }
784
785 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
786 {
787         /* Setup the transmit dma configuration register for normal
788          * operation
789          */
790         writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
791                &adapter->regs->txdma.csr);
792 }
793
794 static inline void add_10bit(u32 *v, int n)
795 {
796         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
797 }
798
799 static inline void add_12bit(u32 *v, int n)
800 {
801         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
802 }
803
804 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
805 {
806         struct mac_regs __iomem *macregs = &adapter->regs->mac;
807         u32 station1;
808         u32 station2;
809         u32 ipg;
810
811         /* First we need to reset everything.  Write to MAC configuration
812          * register 1 to perform reset.
813          */
814         writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
815                ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
816                ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
817                &macregs->cfg1);
818
819         /* Next lets configure the MAC Inter-packet gap register */
820         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
821         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
822         writel(ipg, &macregs->ipg);
823
824         /* Next lets configure the MAC Half Duplex register */
825         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
826         writel(0x00A1F037, &macregs->hfdp);
827
828         /* Next lets configure the MAC Interface Control register */
829         writel(0, &macregs->if_ctrl);
830
831         writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
832
833         /* Next lets configure the MAC Station Address register.  These
834          * values are read from the EEPROM during initialization and stored
835          * in the adapter structure.  We write what is stored in the adapter
836          * structure to the MAC Station Address registers high and low.  This
837          * station address is used for generating and checking pause control
838          * packets.
839          */
840         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
841                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
842         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
843                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
844                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
845                     adapter->addr[2];
846         writel(station1, &macregs->station_addr_1);
847         writel(station2, &macregs->station_addr_2);
848
849         /* Max ethernet packet in bytes that will be passed by the mac without
850          * being truncated.  Allow the MAC to pass 4 more than our max packet
851          * size.  This is 4 for the Ethernet CRC.
852          *
853          * Packets larger than (registry_jumbo_packet) that do not contain a
854          * VLAN ID will be dropped by the Rx function.
855          */
856         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
857
858         /* clear out MAC config reset */
859         writel(0, &macregs->cfg1);
860 }
861
862 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
863 {
864         int32_t delay = 0;
865         struct mac_regs __iomem *mac = &adapter->regs->mac;
866         struct phy_device *phydev = adapter->netdev->phydev;
867         u32 cfg1;
868         u32 cfg2;
869         u32 ifctrl;
870         u32 ctl;
871
872         ctl = readl(&adapter->regs->txmac.ctl);
873         cfg1 = readl(&mac->cfg1);
874         cfg2 = readl(&mac->cfg2);
875         ifctrl = readl(&mac->if_ctrl);
876
877         /* Set up the if mode bits */
878         cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
879         if (phydev->speed == SPEED_1000) {
880                 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
881                 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
882         } else {
883                 cfg2 |= ET_MAC_CFG2_IFMODE_100;
884                 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
885         }
886
887         cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
888                                                         ET_MAC_CFG1_TX_FLOW;
889
890         cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
891         if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
892                 cfg1 |= ET_MAC_CFG1_RX_FLOW;
893         writel(cfg1, &mac->cfg1);
894
895         /* Now we need to initialize the MAC Configuration 2 register */
896         /* preamble 7, check length, huge frame off, pad crc, crc enable
897          * full duplex off
898          */
899         cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
900         cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
901         cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
902         cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
903         cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
904         cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
905
906         if (phydev->duplex == DUPLEX_FULL)
907                 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
908
909         ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
910         if (phydev->duplex == DUPLEX_HALF)
911                 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
912
913         writel(ifctrl, &mac->if_ctrl);
914         writel(cfg2, &mac->cfg2);
915
916         do {
917                 udelay(10);
918                 delay++;
919                 cfg1 = readl(&mac->cfg1);
920         } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
921
922         if (delay == 100) {
923                 dev_warn(&adapter->pdev->dev,
924                          "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
925                          cfg1);
926         }
927
928         ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
929         writel(ctl, &adapter->regs->txmac.ctl);
930
931         if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
932                 et131x_rx_dma_enable(adapter);
933                 et131x_tx_dma_enable(adapter);
934         }
935 }
936
937 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
938 {
939         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
940
941         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
942 }
943
944 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
945 {
946         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
947         u32 hash1 = 0;
948         u32 hash2 = 0;
949         u32 hash3 = 0;
950         u32 hash4 = 0;
951         u32 pm_csr;
952
953         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
954          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
955          * specified) then we should pass NO multi-cast addresses to the
956          * driver.
957          */
958         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
959                 int i;
960
961                 /* Loop through our multicast array and set up the device */
962                 for (i = 0; i < adapter->multicast_addr_count; i++) {
963                         u32 result;
964
965                         result = ether_crc(6, adapter->multicast_list[i]);
966
967                         result = (result & 0x3F800000) >> 23;
968
969                         if (result < 32) {
970                                 hash1 |= (1 << result);
971                         } else if ((31 < result) && (result < 64)) {
972                                 result -= 32;
973                                 hash2 |= (1 << result);
974                         } else if ((63 < result) && (result < 96)) {
975                                 result -= 64;
976                                 hash3 |= (1 << result);
977                         } else {
978                                 result -= 96;
979                                 hash4 |= (1 << result);
980                         }
981                 }
982         }
983
984         /* Write out the new hash to the device */
985         pm_csr = readl(&adapter->regs->global.pm_csr);
986         if (!et1310_in_phy_coma(adapter)) {
987                 writel(hash1, &rxmac->multi_hash1);
988                 writel(hash2, &rxmac->multi_hash2);
989                 writel(hash3, &rxmac->multi_hash3);
990                 writel(hash4, &rxmac->multi_hash4);
991         }
992 }
993
994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
995 {
996         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
997         u32 uni_pf1;
998         u32 uni_pf2;
999         u32 uni_pf3;
1000         u32 pm_csr;
1001
1002         /* Set up unicast packet filter reg 3 to be the first two octets of
1003          * the MAC address for both address
1004          *
1005          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1006          * MAC address for second address
1007          *
1008          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1009          * MAC address for first address
1010          */
1011         uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1012                   (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1013                   (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1014                    adapter->addr[1];
1015
1016         uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1017                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1018                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1019                    adapter->addr[5];
1020
1021         uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1022                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1023                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1024                    adapter->addr[5];
1025
1026         pm_csr = readl(&adapter->regs->global.pm_csr);
1027         if (!et1310_in_phy_coma(adapter)) {
1028                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1029                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1030                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1031         }
1032 }
1033
1034 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1035 {
1036         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1037         struct phy_device *phydev = adapter->netdev->phydev;
1038         u32 sa_lo;
1039         u32 sa_hi = 0;
1040         u32 pf_ctrl = 0;
1041         u32 __iomem *wolw;
1042
1043         /* Disable the MAC while it is being configured (also disable WOL) */
1044         writel(0x8, &rxmac->ctrl);
1045
1046         /* Initialize WOL to disabled. */
1047         writel(0, &rxmac->crc0);
1048         writel(0, &rxmac->crc12);
1049         writel(0, &rxmac->crc34);
1050
1051         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1052          * its default Values of 0x00000000 because there are not WOL masks
1053          * as of this time.
1054          */
1055         for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1056                 writel(0, wolw);
1057
1058         /* Lets setup the WOL Source Address */
1059         sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1060                 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1061                 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1062                  adapter->addr[5];
1063         writel(sa_lo, &rxmac->sa_lo);
1064
1065         sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1066                        adapter->addr[1];
1067         writel(sa_hi, &rxmac->sa_hi);
1068
1069         /* Disable all Packet Filtering */
1070         writel(0, &rxmac->pf_ctrl);
1071
1072         /* Let's initialize the Unicast Packet filtering address */
1073         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1074                 et1310_setup_device_for_unicast(adapter);
1075                 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1076         } else {
1077                 writel(0, &rxmac->uni_pf_addr1);
1078                 writel(0, &rxmac->uni_pf_addr2);
1079                 writel(0, &rxmac->uni_pf_addr3);
1080         }
1081
1082         /* Let's initialize the Multicast hash */
1083         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1084                 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1085                 et1310_setup_device_for_multicast(adapter);
1086         }
1087
1088         /* Runt packet filtering.  Didn't work in version A silicon. */
1089         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1090         pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1091
1092         if (adapter->registry_jumbo_packet > 8192)
1093                 /* In order to transmit jumbo packets greater than 8k, the
1094                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1095                  * to (16k - Jumbo packet size).  In order to implement this,
1096                  * we must use "cut through" mode in the RxMAC, which chops
1097                  * packets down into segments which are (max_size * 16).  In
1098                  * this case we selected 256 bytes, since this is the size of
1099                  * the PCI-Express TLP's that the 1310 uses.
1100                  *
1101                  * seg_en on, fc_en off, size 0x10
1102                  */
1103                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1104         else
1105                 writel(0, &rxmac->mcif_ctrl_max_seg);
1106
1107         writel(0, &rxmac->mcif_water_mark);
1108         writel(0, &rxmac->mif_ctrl);
1109         writel(0, &rxmac->space_avail);
1110
1111         /* Initialize the the mif_ctrl register
1112          * bit 3:  Receive code error. One or more nibbles were signaled as
1113          *         errors  during the reception of the packet.  Clear this
1114          *         bit in Gigabit, set it in 100Mbit.  This was derived
1115          *         experimentally at UNH.
1116          * bit 4:  Receive CRC error. The packet's CRC did not match the
1117          *         internally generated CRC.
1118          * bit 5:  Receive length check error. Indicates that frame length
1119          *         field value in the packet does not match the actual data
1120          *         byte length and is not a type field.
1121          * bit 16: Receive frame truncated.
1122          * bit 17: Drop packet enable
1123          */
1124         if (phydev && phydev->speed == SPEED_100)
1125                 writel(0x30038, &rxmac->mif_ctrl);
1126         else
1127                 writel(0x30030, &rxmac->mif_ctrl);
1128
1129         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1130          * filter is always enabled since it is where the runt packets are
1131          * supposed to be dropped.  For version A silicon, runt packet
1132          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1133          * but we still leave the packet filter on.
1134          */
1135         writel(pf_ctrl, &rxmac->pf_ctrl);
1136         writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1137 }
1138
1139 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1140 {
1141         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1142
1143         /* We need to update the Control Frame Parameters
1144          * cfpt - control frame pause timer set to 64 (0x40)
1145          * cfep - control frame extended pause timer set to 0x0
1146          */
1147         if (adapter->flow == FLOW_NONE)
1148                 writel(0, &txmac->cf_param);
1149         else
1150                 writel(0x40, &txmac->cf_param);
1151 }
1152
1153 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1154 {
1155         struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1156         u32 __iomem *reg;
1157
1158         /* initialize all the macstat registers to zero on the device  */
1159         for (reg = &macstat->txrx_0_64_byte_frames;
1160              reg <= &macstat->carry_reg2; reg++)
1161                 writel(0, reg);
1162
1163         /* Unmask any counters that we want to track the overflow of.
1164          * Initially this will be all counters.  It may become clear later
1165          * that we do not need to track all counters.
1166          */
1167         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1168         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1169 }
1170
1171 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1172                                u8 reg, u16 *value)
1173 {
1174         struct mac_regs __iomem *mac = &adapter->regs->mac;
1175         int status = 0;
1176         u32 delay = 0;
1177         u32 mii_addr;
1178         u32 mii_cmd;
1179         u32 mii_indicator;
1180
1181         /* Save a local copy of the registers we are dealing with so we can
1182          * set them back
1183          */
1184         mii_addr = readl(&mac->mii_mgmt_addr);
1185         mii_cmd = readl(&mac->mii_mgmt_cmd);
1186
1187         /* Stop the current operation */
1188         writel(0, &mac->mii_mgmt_cmd);
1189
1190         /* Set up the register we need to read from on the correct PHY */
1191         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1192
1193         writel(0x1, &mac->mii_mgmt_cmd);
1194
1195         do {
1196                 udelay(50);
1197                 delay++;
1198                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1199         } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1200
1201         /* If we hit the max delay, we could not read the register */
1202         if (delay == 50) {
1203                 dev_warn(&adapter->pdev->dev,
1204                          "reg 0x%08x could not be read\n", reg);
1205                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1206                          mii_indicator);
1207
1208                 status = -EIO;
1209                 goto out;
1210         }
1211
1212         /* If we hit here we were able to read the register and we need to
1213          * return the value to the caller
1214          */
1215         *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1216
1217 out:
1218         /* Stop the read operation */
1219         writel(0, &mac->mii_mgmt_cmd);
1220
1221         /* set the registers we touched back to the state at which we entered
1222          * this function
1223          */
1224         writel(mii_addr, &mac->mii_mgmt_addr);
1225         writel(mii_cmd, &mac->mii_mgmt_cmd);
1226
1227         return status;
1228 }
1229
1230 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1231 {
1232         struct phy_device *phydev = adapter->netdev->phydev;
1233
1234         if (!phydev)
1235                 return -EIO;
1236
1237         return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1238 }
1239
1240 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1241                             u16 value)
1242 {
1243         struct mac_regs __iomem *mac = &adapter->regs->mac;
1244         int status = 0;
1245         u32 delay = 0;
1246         u32 mii_addr;
1247         u32 mii_cmd;
1248         u32 mii_indicator;
1249
1250         /* Save a local copy of the registers we are dealing with so we can
1251          * set them back
1252          */
1253         mii_addr = readl(&mac->mii_mgmt_addr);
1254         mii_cmd = readl(&mac->mii_mgmt_cmd);
1255
1256         /* Stop the current operation */
1257         writel(0, &mac->mii_mgmt_cmd);
1258
1259         /* Set up the register we need to write to on the correct PHY */
1260         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1261
1262         /* Add the value to write to the registers to the mac */
1263         writel(value, &mac->mii_mgmt_ctrl);
1264
1265         do {
1266                 udelay(50);
1267                 delay++;
1268                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1269         } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1270
1271         /* If we hit the max delay, we could not write the register */
1272         if (delay == 100) {
1273                 u16 tmp;
1274
1275                 dev_warn(&adapter->pdev->dev,
1276                          "reg 0x%08x could not be written", reg);
1277                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1278                          mii_indicator);
1279                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1280                          readl(&mac->mii_mgmt_cmd));
1281
1282                 et131x_mii_read(adapter, reg, &tmp);
1283
1284                 status = -EIO;
1285         }
1286         /* Stop the write operation */
1287         writel(0, &mac->mii_mgmt_cmd);
1288
1289         /* set the registers we touched back to the state at which we entered
1290          * this function
1291          */
1292         writel(mii_addr, &mac->mii_mgmt_addr);
1293         writel(mii_cmd, &mac->mii_mgmt_cmd);
1294
1295         return status;
1296 }
1297
1298 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1299                                     u16 regnum,
1300                                     u16 bitnum,
1301                                     u8 *value)
1302 {
1303         u16 reg;
1304         u16 mask = 1 << bitnum;
1305
1306         et131x_mii_read(adapter, regnum, &reg);
1307
1308         *value = (reg & mask) >> bitnum;
1309 }
1310
1311 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1312 {
1313         struct phy_device *phydev = adapter->netdev->phydev;
1314
1315         if (phydev->duplex == DUPLEX_HALF) {
1316                 adapter->flow = FLOW_NONE;
1317         } else {
1318                 char remote_pause, remote_async_pause;
1319
1320                 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1321                 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1322
1323                 if (remote_pause && remote_async_pause) {
1324                         adapter->flow = adapter->wanted_flow;
1325                 } else if (remote_pause && !remote_async_pause) {
1326                         if (adapter->wanted_flow == FLOW_BOTH)
1327                                 adapter->flow = FLOW_BOTH;
1328                         else
1329                                 adapter->flow = FLOW_NONE;
1330                 } else if (!remote_pause && !remote_async_pause) {
1331                         adapter->flow = FLOW_NONE;
1332                 } else {
1333                         if (adapter->wanted_flow == FLOW_BOTH)
1334                                 adapter->flow = FLOW_RXONLY;
1335                         else
1336                                 adapter->flow = FLOW_NONE;
1337                 }
1338         }
1339 }
1340
1341 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1342 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1343 {
1344         struct ce_stats *stats = &adapter->stats;
1345         struct macstat_regs __iomem *macstat =
1346                 &adapter->regs->macstat;
1347
1348         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1349         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1350         stats->tx_deferred             += readl(&macstat->tx_deferred);
1351         stats->tx_excessive_collisions +=
1352                                 readl(&macstat->tx_multiple_collisions);
1353         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1354         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1355         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1356
1357         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1358         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1359         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1360         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1361         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1362         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1363         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1364 }
1365
1366 /* et1310_handle_macstat_interrupt
1367  *
1368  * One of the MACSTAT counters has wrapped.  Update the local copy of
1369  * the statistics held in the adapter structure, checking the "wrap"
1370  * bit for each counter.
1371  */
1372 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1373 {
1374         u32 carry_reg1;
1375         u32 carry_reg2;
1376
1377         /* Read the interrupt bits from the register(s).  These are Clear On
1378          * Write.
1379          */
1380         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1381         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1382
1383         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1384         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1385
1386         /* We need to do update the host copy of all the MAC_STAT counters.
1387          * For each counter, check it's overflow bit.  If the overflow bit is
1388          * set, then increment the host version of the count by one complete
1389          * revolution of the counter.  This routine is called when the counter
1390          * block indicates that one of the counters has wrapped.
1391          */
1392         if (carry_reg1 & (1 << 14))
1393                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1394         if (carry_reg1 & (1 << 8))
1395                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1396         if (carry_reg1 & (1 << 7))
1397                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1398         if (carry_reg1 & (1 << 2))
1399                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1400         if (carry_reg1 & (1 << 6))
1401                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1402         if (carry_reg1 & (1 << 3))
1403                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1404         if (carry_reg1 & (1 << 0))
1405                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1406         if (carry_reg2 & (1 << 16))
1407                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1408         if (carry_reg2 & (1 << 15))
1409                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1410         if (carry_reg2 & (1 << 6))
1411                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1412         if (carry_reg2 & (1 << 8))
1413                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1414         if (carry_reg2 & (1 << 5))
1415                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1416         if (carry_reg2 & (1 << 4))
1417                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1418         if (carry_reg2 & (1 << 2))
1419                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1420 }
1421
1422 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1423 {
1424         struct net_device *netdev = bus->priv;
1425         struct et131x_adapter *adapter = netdev_priv(netdev);
1426         u16 value;
1427         int ret;
1428
1429         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1430
1431         if (ret < 0)
1432                 return ret;
1433
1434         return value;
1435 }
1436
1437 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1438                              int reg, u16 value)
1439 {
1440         struct net_device *netdev = bus->priv;
1441         struct et131x_adapter *adapter = netdev_priv(netdev);
1442
1443         return et131x_mii_write(adapter, phy_addr, reg, value);
1444 }
1445
1446 /*      et1310_phy_power_switch -       PHY power control
1447  *      @adapter: device to control
1448  *      @down: true for off/false for back on
1449  *
1450  *      one hundred, ten, one thousand megs
1451  *      How would you like to have your LAN accessed
1452  *      Can't you see that this code processed
1453  *      Phy power, phy power..
1454  */
1455 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1456 {
1457         u16 data;
1458         struct  phy_device *phydev = adapter->netdev->phydev;
1459
1460         et131x_mii_read(adapter, MII_BMCR, &data);
1461         data &= ~BMCR_PDOWN;
1462         if (down)
1463                 data |= BMCR_PDOWN;
1464         et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1465 }
1466
1467 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1468 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1469 {
1470         u16 lcr2;
1471         struct  phy_device *phydev = adapter->netdev->phydev;
1472
1473         /* Set the LED behavior such that LED 1 indicates speed (off =
1474          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1475          * link and activity (on for link, blink off for activity).
1476          *
1477          * NOTE: Some customizations have been added here for specific
1478          * vendors; The LED behavior is now determined by vendor data in the
1479          * EEPROM. However, the above description is the default.
1480          */
1481         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1482                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1483
1484                 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1485                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1486
1487                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1488                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1489                 else
1490                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1491
1492                 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1493         }
1494 }
1495
1496 /* et131x_configure_global_regs - configure JAGCore global regs */
1497 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1498 {
1499         struct global_regs __iomem *regs = &adapter->regs->global;
1500
1501         writel(0, &regs->rxq_start_addr);
1502         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1503
1504         if (adapter->registry_jumbo_packet < 2048) {
1505                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1506                  * block of RAM that the driver can split between Tx
1507                  * and Rx as it desires.  Our default is to split it
1508                  * 50/50:
1509                  */
1510                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1511                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1512         } else if (adapter->registry_jumbo_packet < 8192) {
1513                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1514                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1515                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1516         } else {
1517                 /* 9216 is the only packet size greater than 8k that
1518                  * is available. The Tx buffer has to be big enough
1519                  * for one whole packet on the Tx side. We'll make
1520                  * the Tx 9408, and give the rest to Rx
1521                  */
1522                 writel(0x01b3, &regs->rxq_end_addr);
1523                 writel(0x01b4, &regs->txq_start_addr);
1524         }
1525
1526         /* Initialize the loopback register. Disable all loopbacks. */
1527         writel(0, &regs->loopback);
1528
1529         writel(0, &regs->msi_config);
1530
1531         /* By default, disable the watchdog timer.  It will be enabled when
1532          * a packet is queued.
1533          */
1534         writel(0, &regs->watchdog_timer);
1535 }
1536
1537 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1538 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1539 {
1540         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1541         struct rx_ring *rx_local = &adapter->rx_ring;
1542         struct fbr_desc *fbr_entry;
1543         u32 entry;
1544         u32 psr_num_des;
1545         unsigned long flags;
1546         u8 id;
1547
1548         et131x_rx_dma_disable(adapter);
1549
1550         /* Load the completion writeback physical address */
1551         writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1552         writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1553
1554         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1555
1556         /* Set the address and parameters of the packet status ring */
1557         writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1558         writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1559         writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1560         writel(0, &rx_dma->psr_full_offset);
1561
1562         psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1563         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1564                &rx_dma->psr_min_des);
1565
1566         spin_lock_irqsave(&adapter->rcv_lock, flags);
1567
1568         /* These local variables track the PSR in the adapter structure */
1569         rx_local->local_psr_full = 0;
1570
1571         for (id = 0; id < NUM_FBRS; id++) {
1572                 u32 __iomem *num_des;
1573                 u32 __iomem *full_offset;
1574                 u32 __iomem *min_des;
1575                 u32 __iomem *base_hi;
1576                 u32 __iomem *base_lo;
1577                 struct fbr_lookup *fbr = rx_local->fbr[id];
1578
1579                 if (id == 0) {
1580                         num_des = &rx_dma->fbr0_num_des;
1581                         full_offset = &rx_dma->fbr0_full_offset;
1582                         min_des = &rx_dma->fbr0_min_des;
1583                         base_hi = &rx_dma->fbr0_base_hi;
1584                         base_lo = &rx_dma->fbr0_base_lo;
1585                 } else {
1586                         num_des = &rx_dma->fbr1_num_des;
1587                         full_offset = &rx_dma->fbr1_full_offset;
1588                         min_des = &rx_dma->fbr1_min_des;
1589                         base_hi = &rx_dma->fbr1_base_hi;
1590                         base_lo = &rx_dma->fbr1_base_lo;
1591                 }
1592
1593                 /* Now's the best time to initialize FBR contents */
1594                 fbr_entry = fbr->ring_virtaddr;
1595                 for (entry = 0; entry < fbr->num_entries; entry++) {
1596                         fbr_entry->addr_hi = fbr->bus_high[entry];
1597                         fbr_entry->addr_lo = fbr->bus_low[entry];
1598                         fbr_entry->word2 = entry;
1599                         fbr_entry++;
1600                 }
1601
1602                 /* Set the address and parameters of Free buffer ring 1 and 0 */
1603                 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1604                 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1605                 writel(fbr->num_entries - 1, num_des);
1606                 writel(ET_DMA10_WRAP, full_offset);
1607
1608                 /* This variable tracks the free buffer ring 1 full position,
1609                  * so it has to match the above.
1610                  */
1611                 fbr->local_full = ET_DMA10_WRAP;
1612                 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1613                        min_des);
1614         }
1615
1616         /* Program the number of packets we will receive before generating an
1617          * interrupt.
1618          * For version B silicon, this value gets updated once autoneg is
1619          *complete.
1620          */
1621         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1622
1623         /* The "time_done" is not working correctly to coalesce interrupts
1624          * after a given time period, but rather is giving us an interrupt
1625          * regardless of whether we have received packets.
1626          * This value gets updated once autoneg is complete.
1627          */
1628         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1629
1630         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1631 }
1632
1633 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1634  *
1635  * Configure the transmit engine with the ring buffers we have created
1636  * and prepare it for use.
1637  */
1638 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1639 {
1640         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1641         struct tx_ring *tx_ring = &adapter->tx_ring;
1642
1643         /* Load the hardware with the start of the transmit descriptor ring. */
1644         writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1645         writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1646
1647         /* Initialise the transmit DMA engine */
1648         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1649
1650         /* Load the completion writeback physical address */
1651         writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1652         writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1653
1654         *tx_ring->tx_status = 0;
1655
1656         writel(0, &txdma->service_request);
1657         tx_ring->send_idx = 0;
1658 }
1659
1660 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1661 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1662 {
1663         et131x_configure_global_regs(adapter);
1664         et1310_config_mac_regs1(adapter);
1665
1666         /* Configure the MMC registers */
1667         /* All we need to do is initialize the Memory Control Register */
1668         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1669
1670         et1310_config_rxmac_regs(adapter);
1671         et1310_config_txmac_regs(adapter);
1672
1673         et131x_config_rx_dma_regs(adapter);
1674         et131x_config_tx_dma_regs(adapter);
1675
1676         et1310_config_macstat_regs(adapter);
1677
1678         et1310_phy_power_switch(adapter, 0);
1679         et131x_xcvr_init(adapter);
1680 }
1681
1682 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1683 static void et131x_soft_reset(struct et131x_adapter *adapter)
1684 {
1685         u32 reg;
1686
1687         /* Disable MAC Core */
1688         reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1689               ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1690               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1691         writel(reg, &adapter->regs->mac.cfg1);
1692
1693         reg = ET_RESET_ALL;
1694         writel(reg, &adapter->regs->global.sw_reset);
1695
1696         reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1697               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1698         writel(reg, &adapter->regs->mac.cfg1);
1699         writel(0, &adapter->regs->mac.cfg1);
1700 }
1701
1702 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1703 {
1704         u32 mask;
1705
1706         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1707                 mask = INT_MASK_ENABLE;
1708         else
1709                 mask = INT_MASK_ENABLE_NO_FLOW;
1710
1711         writel(mask, &adapter->regs->global.int_mask);
1712 }
1713
1714 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1715 {
1716         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1717 }
1718
1719 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1720 {
1721         /* Setup the transmit dma configuration register */
1722         writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1723                &adapter->regs->txdma.csr);
1724 }
1725
1726 static void et131x_enable_txrx(struct net_device *netdev)
1727 {
1728         struct et131x_adapter *adapter = netdev_priv(netdev);
1729
1730         et131x_rx_dma_enable(adapter);
1731         et131x_tx_dma_enable(adapter);
1732
1733         if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1734                 et131x_enable_interrupts(adapter);
1735
1736         netif_start_queue(netdev);
1737 }
1738
1739 static void et131x_disable_txrx(struct net_device *netdev)
1740 {
1741         struct et131x_adapter *adapter = netdev_priv(netdev);
1742
1743         netif_stop_queue(netdev);
1744
1745         et131x_rx_dma_disable(adapter);
1746         et131x_tx_dma_disable(adapter);
1747
1748         et131x_disable_interrupts(adapter);
1749 }
1750
1751 static void et131x_init_send(struct et131x_adapter *adapter)
1752 {
1753         int i;
1754         struct tx_ring *tx_ring = &adapter->tx_ring;
1755         struct tcb *tcb = tx_ring->tcb_ring;
1756
1757         tx_ring->tcb_qhead = tcb;
1758
1759         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1760
1761         for (i = 0; i < NUM_TCB; i++) {
1762                 tcb->next = tcb + 1;
1763                 tcb++;
1764         }
1765
1766         tcb--;
1767         tx_ring->tcb_qtail = tcb;
1768         tcb->next = NULL;
1769         /* Curr send queue should now be empty */
1770         tx_ring->send_head = NULL;
1771         tx_ring->send_tail = NULL;
1772 }
1773
1774 /* et1310_enable_phy_coma
1775  *
1776  * driver receive an phy status change interrupt while in D0 and check that
1777  * phy_status is down.
1778  *
1779  *          -- gate off JAGCore;
1780  *          -- set gigE PHY in Coma mode
1781  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1782  *             re-initialize jagcore and gigE PHY
1783  */
1784 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1785 {
1786         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1787
1788         /* Stop sending packets. */
1789         adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1790
1791         /* Wait for outstanding Receive packets */
1792         et131x_disable_txrx(adapter->netdev);
1793
1794         /* Gate off JAGCore 3 clock domains */
1795         pmcsr &= ~ET_PMCSR_INIT;
1796         writel(pmcsr, &adapter->regs->global.pm_csr);
1797
1798         /* Program gigE PHY in to Coma mode */
1799         pmcsr |= ET_PM_PHY_SW_COMA;
1800         writel(pmcsr, &adapter->regs->global.pm_csr);
1801 }
1802
1803 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1804 {
1805         u32 pmcsr;
1806
1807         pmcsr = readl(&adapter->regs->global.pm_csr);
1808
1809         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1810         pmcsr |= ET_PMCSR_INIT;
1811         pmcsr &= ~ET_PM_PHY_SW_COMA;
1812         writel(pmcsr, &adapter->regs->global.pm_csr);
1813
1814         /* Restore the GbE PHY speed and duplex modes;
1815          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1816          */
1817
1818         /* Re-initialize the send structures */
1819         et131x_init_send(adapter);
1820
1821         /* Bring the device back to the state it was during init prior to
1822          * autonegotiation being complete.  This way, when we get the auto-neg
1823          * complete interrupt, we can complete init by calling ConfigMacREGS2.
1824          */
1825         et131x_soft_reset(adapter);
1826
1827         et131x_adapter_setup(adapter);
1828
1829         /* Allow Tx to restart */
1830         adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1831
1832         et131x_enable_txrx(adapter->netdev);
1833 }
1834
1835 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1836 {
1837         u32 tmp_free_buff_ring = *free_buff_ring;
1838
1839         tmp_free_buff_ring++;
1840         /* This works for all cases where limit < 1024. The 1023 case
1841          * works because 1023++ is 1024 which means the if condition is not
1842          * taken but the carry of the bit into the wrap bit toggles the wrap
1843          * value correctly
1844          */
1845         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1846                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1847                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1848         }
1849         /* For the 1023 case */
1850         tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1851         *free_buff_ring = tmp_free_buff_ring;
1852         return tmp_free_buff_ring;
1853 }
1854
1855 /* et131x_rx_dma_memory_alloc
1856  *
1857  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1858  * and the Packet Status Ring.
1859  */
1860 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1861 {
1862         u8 id;
1863         u32 i, j;
1864         u32 bufsize;
1865         u32 psr_size;
1866         u32 fbr_chunksize;
1867         struct rx_ring *rx_ring = &adapter->rx_ring;
1868         struct fbr_lookup *fbr;
1869
1870         /* Alloc memory for the lookup table */
1871         rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1872         if (rx_ring->fbr[0] == NULL)
1873                 return -ENOMEM;
1874         rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1875         if (rx_ring->fbr[1] == NULL)
1876                 return -ENOMEM;
1877
1878         /* The first thing we will do is configure the sizes of the buffer
1879          * rings. These will change based on jumbo packet support.  Larger
1880          * jumbo packets increases the size of each entry in FBR0, and the
1881          * number of entries in FBR0, while at the same time decreasing the
1882          * number of entries in FBR1.
1883          *
1884          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1885          * entries are huge in order to accommodate a "jumbo" frame, then it
1886          * will have less entries.  Conversely, FBR1 will now be relied upon
1887          * to carry more "normal" frames, thus it's entry size also increases
1888          * and the number of entries goes up too (since it now carries
1889          * "small" + "regular" packets.
1890          *
1891          * In this scheme, we try to maintain 512 entries between the two
1892          * rings. Also, FBR1 remains a constant size - when it's size doubles
1893          * the number of entries halves.  FBR0 increases in size, however.
1894          */
1895         if (adapter->registry_jumbo_packet < 2048) {
1896                 rx_ring->fbr[0]->buffsize = 256;
1897                 rx_ring->fbr[0]->num_entries = 512;
1898                 rx_ring->fbr[1]->buffsize = 2048;
1899                 rx_ring->fbr[1]->num_entries = 512;
1900         } else if (adapter->registry_jumbo_packet < 4096) {
1901                 rx_ring->fbr[0]->buffsize = 512;
1902                 rx_ring->fbr[0]->num_entries = 1024;
1903                 rx_ring->fbr[1]->buffsize = 4096;
1904                 rx_ring->fbr[1]->num_entries = 512;
1905         } else {
1906                 rx_ring->fbr[0]->buffsize = 1024;
1907                 rx_ring->fbr[0]->num_entries = 768;
1908                 rx_ring->fbr[1]->buffsize = 16384;
1909                 rx_ring->fbr[1]->num_entries = 128;
1910         }
1911
1912         rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1913                                rx_ring->fbr[1]->num_entries;
1914
1915         for (id = 0; id < NUM_FBRS; id++) {
1916                 fbr = rx_ring->fbr[id];
1917                 /* Allocate an area of memory for Free Buffer Ring */
1918                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1919                 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1920                                                         bufsize,
1921                                                         &fbr->ring_physaddr,
1922                                                         GFP_KERNEL);
1923                 if (!fbr->ring_virtaddr) {
1924                         dev_err(&adapter->pdev->dev,
1925                                 "Cannot alloc memory for Free Buffer Ring %d\n",
1926                                 id);
1927                         return -ENOMEM;
1928                 }
1929         }
1930
1931         for (id = 0; id < NUM_FBRS; id++) {
1932                 fbr = rx_ring->fbr[id];
1933                 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1934
1935                 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1936                         dma_addr_t fbr_physaddr;
1937
1938                         fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1939                                         &adapter->pdev->dev, fbr_chunksize,
1940                                         &fbr->mem_physaddrs[i],
1941                                         GFP_KERNEL);
1942
1943                         if (!fbr->mem_virtaddrs[i]) {
1944                                 dev_err(&adapter->pdev->dev,
1945                                         "Could not alloc memory\n");
1946                                 return -ENOMEM;
1947                         }
1948
1949                         /* See NOTE in "Save Physical Address" comment above */
1950                         fbr_physaddr = fbr->mem_physaddrs[i];
1951
1952                         for (j = 0; j < FBR_CHUNKS; j++) {
1953                                 u32 k = (i * FBR_CHUNKS) + j;
1954
1955                                 /* Save the Virtual address of this index for
1956                                  * quick access later
1957                                  */
1958                                 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1959                                                    (j * fbr->buffsize);
1960
1961                                 /* now store the physical address in the
1962                                  * descriptor so the device can access it
1963                                  */
1964                                 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1965                                 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1966                                 fbr_physaddr += fbr->buffsize;
1967                         }
1968                 }
1969         }
1970
1971         /* Allocate an area of memory for FIFO of Packet Status ring entries */
1972         psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1973
1974         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1975                                                   psr_size,
1976                                                   &rx_ring->ps_ring_physaddr,
1977                                                   GFP_KERNEL);
1978
1979         if (!rx_ring->ps_ring_virtaddr) {
1980                 dev_err(&adapter->pdev->dev,
1981                         "Cannot alloc memory for Packet Status Ring\n");
1982                 return -ENOMEM;
1983         }
1984
1985         /* Allocate an area of memory for writeback of status information */
1986         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1987                                             sizeof(struct rx_status_block),
1988                                             &rx_ring->rx_status_bus,
1989                                             GFP_KERNEL);
1990         if (!rx_ring->rx_status_block) {
1991                 dev_err(&adapter->pdev->dev,
1992                         "Cannot alloc memory for Status Block\n");
1993                 return -ENOMEM;
1994         }
1995         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1996
1997         /* The RFDs are going to be put on lists later on, so initialize the
1998          * lists now.
1999          */
2000         INIT_LIST_HEAD(&rx_ring->recv_list);
2001         return 0;
2002 }
2003
2004 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2005 {
2006         u8 id;
2007         u32 ii;
2008         u32 bufsize;
2009         u32 psr_size;
2010         struct rfd *rfd;
2011         struct rx_ring *rx_ring = &adapter->rx_ring;
2012         struct fbr_lookup *fbr;
2013
2014         /* Free RFDs and associated packet descriptors */
2015         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2016
2017         while (!list_empty(&rx_ring->recv_list)) {
2018                 rfd = list_entry(rx_ring->recv_list.next,
2019                                  struct rfd, list_node);
2020
2021                 list_del(&rfd->list_node);
2022                 rfd->skb = NULL;
2023                 kfree(rfd);
2024         }
2025
2026         /* Free Free Buffer Rings */
2027         for (id = 0; id < NUM_FBRS; id++) {
2028                 fbr = rx_ring->fbr[id];
2029
2030                 if (!fbr || !fbr->ring_virtaddr)
2031                         continue;
2032
2033                 /* First the packet memory */
2034                 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2035                         if (fbr->mem_virtaddrs[ii]) {
2036                                 bufsize = fbr->buffsize * FBR_CHUNKS;
2037
2038                                 dma_free_coherent(&adapter->pdev->dev,
2039                                                   bufsize,
2040                                                   fbr->mem_virtaddrs[ii],
2041                                                   fbr->mem_physaddrs[ii]);
2042
2043                                 fbr->mem_virtaddrs[ii] = NULL;
2044                         }
2045                 }
2046
2047                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2048
2049                 dma_free_coherent(&adapter->pdev->dev,
2050                                   bufsize,
2051                                   fbr->ring_virtaddr,
2052                                   fbr->ring_physaddr);
2053
2054                 fbr->ring_virtaddr = NULL;
2055         }
2056
2057         /* Free Packet Status Ring */
2058         if (rx_ring->ps_ring_virtaddr) {
2059                 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2060
2061                 dma_free_coherent(&adapter->pdev->dev, psr_size,
2062                                   rx_ring->ps_ring_virtaddr,
2063                                   rx_ring->ps_ring_physaddr);
2064
2065                 rx_ring->ps_ring_virtaddr = NULL;
2066         }
2067
2068         /* Free area of memory for the writeback of status information */
2069         if (rx_ring->rx_status_block) {
2070                 dma_free_coherent(&adapter->pdev->dev,
2071                                   sizeof(struct rx_status_block),
2072                                   rx_ring->rx_status_block,
2073                                   rx_ring->rx_status_bus);
2074                 rx_ring->rx_status_block = NULL;
2075         }
2076
2077         /* Free the FBR Lookup Table */
2078         kfree(rx_ring->fbr[0]);
2079         kfree(rx_ring->fbr[1]);
2080
2081         /* Reset Counters */
2082         rx_ring->num_ready_recv = 0;
2083 }
2084
2085 /* et131x_init_recv - Initialize receive data structures */
2086 static int et131x_init_recv(struct et131x_adapter *adapter)
2087 {
2088         struct rfd *rfd;
2089         u32 rfdct;
2090         struct rx_ring *rx_ring = &adapter->rx_ring;
2091
2092         /* Setup each RFD */
2093         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2094                 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2095                 if (!rfd)
2096                         return -ENOMEM;
2097
2098                 rfd->skb = NULL;
2099
2100                 /* Add this RFD to the recv_list */
2101                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2102
2103                 /* Increment the available RFD's */
2104                 rx_ring->num_ready_recv++;
2105         }
2106
2107         return 0;
2108 }
2109
2110 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2111 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2112 {
2113         struct phy_device *phydev = adapter->netdev->phydev;
2114
2115         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2116          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2117          */
2118         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2119                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2120                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2121         }
2122 }
2123
2124 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2125 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2126 {
2127         struct rx_ring *rx_local = &adapter->rx_ring;
2128         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2129         u16 buff_index = rfd->bufferindex;
2130         u8 ring_index = rfd->ringindex;
2131         unsigned long flags;
2132         struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2133
2134         /* We don't use any of the OOB data besides status. Otherwise, we
2135          * need to clean up OOB data
2136          */
2137         if (buff_index < fbr->num_entries) {
2138                 u32 free_buff_ring;
2139                 u32 __iomem *offset;
2140                 struct fbr_desc *next;
2141
2142                 if (ring_index == 0)
2143                         offset = &rx_dma->fbr0_full_offset;
2144                 else
2145                         offset = &rx_dma->fbr1_full_offset;
2146
2147                 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2148                        INDEX10(fbr->local_full);
2149
2150                 /* Handle the Free Buffer Ring advancement here. Write
2151                  * the PA / Buffer Index for the returned buffer into
2152                  * the oldest (next to be freed)FBR entry
2153                  */
2154                 next->addr_hi = fbr->bus_high[buff_index];
2155                 next->addr_lo = fbr->bus_low[buff_index];
2156                 next->word2 = buff_index;
2157
2158                 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2159                                                      fbr->num_entries - 1);
2160                 writel(free_buff_ring, offset);
2161         } else {
2162                 dev_err(&adapter->pdev->dev,
2163                         "%s illegal Buffer Index returned\n", __func__);
2164         }
2165
2166         /* The processing on this RFD is done, so put it back on the tail of
2167          * our list
2168          */
2169         spin_lock_irqsave(&adapter->rcv_lock, flags);
2170         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2171         rx_local->num_ready_recv++;
2172         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2173
2174         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2175 }
2176
2177 /* nic_rx_pkts - Checks the hardware for available packets
2178  *
2179  * Checks the hardware for available packets, using completion ring
2180  * If packets are available, it gets an RFD from the recv_list, attaches
2181  * the packet to it, puts the RFD in the RecvPendList, and also returns
2182  * the pointer to the RFD.
2183  */
2184 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2185 {
2186         struct rx_ring *rx_local = &adapter->rx_ring;
2187         struct rx_status_block *status;
2188         struct pkt_stat_desc *psr;
2189         struct rfd *rfd;
2190         unsigned long flags;
2191         struct list_head *element;
2192         u8 ring_index;
2193         u16 buff_index;
2194         u32 len;
2195         u32 word0;
2196         u32 word1;
2197         struct sk_buff *skb;
2198         struct fbr_lookup *fbr;
2199
2200         /* RX Status block is written by the DMA engine prior to every
2201          * interrupt. It contains the next to be used entry in the Packet
2202          * Status Ring, and also the two Free Buffer rings.
2203          */
2204         status = rx_local->rx_status_block;
2205         word1 = status->word1 >> 16;
2206
2207         /* Check the PSR and wrap bits do not match */
2208         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2209                 return NULL; /* Looks like this ring is not updated yet */
2210
2211         /* The packet status ring indicates that data is available. */
2212         psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2213                         (rx_local->local_psr_full & 0xFFF);
2214
2215         /* Grab any information that is required once the PSR is advanced,
2216          * since we can no longer rely on the memory being accurate
2217          */
2218         len = psr->word1 & 0xFFFF;
2219         ring_index = (psr->word1 >> 26) & 0x03;
2220         fbr = rx_local->fbr[ring_index];
2221         buff_index = (psr->word1 >> 16) & 0x3FF;
2222         word0 = psr->word0;
2223
2224         /* Indicate that we have used this PSR entry. */
2225         /* FIXME wrap 12 */
2226         add_12bit(&rx_local->local_psr_full, 1);
2227         if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2228                 /* Clear psr full and toggle the wrap bit */
2229                 rx_local->local_psr_full &=  ~0xFFF;
2230                 rx_local->local_psr_full ^= 0x1000;
2231         }
2232
2233         writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2234
2235         if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2236                 /* Illegal buffer or ring index cannot be used by S/W*/
2237                 dev_err(&adapter->pdev->dev,
2238                         "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2239                         rx_local->local_psr_full & 0xFFF, len, buff_index);
2240                 return NULL;
2241         }
2242
2243         /* Get and fill the RFD. */
2244         spin_lock_irqsave(&adapter->rcv_lock, flags);
2245
2246         element = rx_local->recv_list.next;
2247         rfd = list_entry(element, struct rfd, list_node);
2248
2249         if (!rfd) {
2250                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2251                 return NULL;
2252         }
2253
2254         list_del(&rfd->list_node);
2255         rx_local->num_ready_recv--;
2256
2257         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2258
2259         rfd->bufferindex = buff_index;
2260         rfd->ringindex = ring_index;
2261
2262         /* In V1 silicon, there is a bug which screws up filtering of runt
2263          * packets. Therefore runt packet filtering is disabled in the MAC and
2264          * the packets are dropped here. They are also counted here.
2265          */
2266         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2267                 adapter->stats.rx_other_errs++;
2268                 rfd->len = 0;
2269                 goto out;
2270         }
2271
2272         if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2273                 adapter->stats.multicast_pkts_rcvd++;
2274
2275         rfd->len = len;
2276
2277         skb = dev_alloc_skb(rfd->len + 2);
2278         if (!skb)
2279                 return NULL;
2280
2281         adapter->netdev->stats.rx_bytes += rfd->len;
2282
2283         memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2284
2285         skb->protocol = eth_type_trans(skb, adapter->netdev);
2286         skb->ip_summed = CHECKSUM_NONE;
2287         netif_receive_skb(skb);
2288
2289 out:
2290         nic_return_rfd(adapter, rfd);
2291         return rfd;
2292 }
2293
2294 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2295 {
2296         struct rfd *rfd = NULL;
2297         int count = 0;
2298         int limit = budget;
2299         bool done = true;
2300         struct rx_ring *rx_ring = &adapter->rx_ring;
2301
2302         if (budget > MAX_PACKETS_HANDLED)
2303                 limit = MAX_PACKETS_HANDLED;
2304
2305         /* Process up to available RFD's */
2306         while (count < limit) {
2307                 if (list_empty(&rx_ring->recv_list)) {
2308                         WARN_ON(rx_ring->num_ready_recv != 0);
2309                         done = false;
2310                         break;
2311                 }
2312
2313                 rfd = nic_rx_pkts(adapter);
2314
2315                 if (rfd == NULL)
2316                         break;
2317
2318                 /* Do not receive any packets until a filter has been set.
2319                  * Do not receive any packets until we have link.
2320                  * If length is zero, return the RFD in order to advance the
2321                  * Free buffer ring.
2322                  */
2323                 if (!adapter->packet_filter ||
2324                     !netif_carrier_ok(adapter->netdev) ||
2325                     rfd->len == 0)
2326                         continue;
2327
2328                 adapter->netdev->stats.rx_packets++;
2329
2330                 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2331                         dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2332
2333                 count++;
2334         }
2335
2336         if (count == limit || !done) {
2337                 rx_ring->unfinished_receives = true;
2338                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2339                        &adapter->regs->global.watchdog_timer);
2340         } else {
2341                 /* Watchdog timer will disable itself if appropriate. */
2342                 rx_ring->unfinished_receives = false;
2343         }
2344
2345         return count;
2346 }
2347
2348 /* et131x_tx_dma_memory_alloc
2349  *
2350  * Allocates memory that will be visible both to the device and to the CPU.
2351  * The OS will pass us packets, pointers to which we will insert in the Tx
2352  * Descriptor queue. The device will read this queue to find the packets in
2353  * memory. The device will update the "status" in memory each time it xmits a
2354  * packet.
2355  */
2356 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2357 {
2358         int desc_size = 0;
2359         struct tx_ring *tx_ring = &adapter->tx_ring;
2360
2361         /* Allocate memory for the TCB's (Transmit Control Block) */
2362         tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2363                                     GFP_ATOMIC | GFP_DMA);
2364         if (!tx_ring->tcb_ring)
2365                 return -ENOMEM;
2366
2367         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2368         tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2369                                                    desc_size,
2370                                                    &tx_ring->tx_desc_ring_pa,
2371                                                    GFP_KERNEL);
2372         if (!tx_ring->tx_desc_ring) {
2373                 dev_err(&adapter->pdev->dev,
2374                         "Cannot alloc memory for Tx Ring\n");
2375                 return -ENOMEM;
2376         }
2377
2378         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2379                                                     sizeof(u32),
2380                                                     &tx_ring->tx_status_pa,
2381                                                     GFP_KERNEL);
2382         if (!tx_ring->tx_status) {
2383                 dev_err(&adapter->pdev->dev,
2384                         "Cannot alloc memory for Tx status block\n");
2385                 return -ENOMEM;
2386         }
2387         return 0;
2388 }
2389
2390 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2391 {
2392         int desc_size = 0;
2393         struct tx_ring *tx_ring = &adapter->tx_ring;
2394
2395         if (tx_ring->tx_desc_ring) {
2396                 /* Free memory relating to Tx rings here */
2397                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2398                 dma_free_coherent(&adapter->pdev->dev,
2399                                   desc_size,
2400                                   tx_ring->tx_desc_ring,
2401                                   tx_ring->tx_desc_ring_pa);
2402                 tx_ring->tx_desc_ring = NULL;
2403         }
2404
2405         /* Free memory for the Tx status block */
2406         if (tx_ring->tx_status) {
2407                 dma_free_coherent(&adapter->pdev->dev,
2408                                   sizeof(u32),
2409                                   tx_ring->tx_status,
2410                                   tx_ring->tx_status_pa);
2411
2412                 tx_ring->tx_status = NULL;
2413         }
2414         /* Free the memory for the tcb structures */
2415         kfree(tx_ring->tcb_ring);
2416 }
2417
2418 /* nic_send_packet - NIC specific send handler for version B silicon. */
2419 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2420 {
2421         u32 i;
2422         struct tx_desc desc[24];
2423         u32 frag = 0;
2424         u32 thiscopy, remainder;
2425         struct sk_buff *skb = tcb->skb;
2426         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2427         struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2428         struct phy_device *phydev = adapter->netdev->phydev;
2429         dma_addr_t dma_addr;
2430         struct tx_ring *tx_ring = &adapter->tx_ring;
2431
2432         /* Part of the optimizations of this send routine restrict us to
2433          * sending 24 fragments at a pass.  In practice we should never see
2434          * more than 5 fragments.
2435          */
2436
2437         /* nr_frags should be no more than 18. */
2438         BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2439
2440         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2441
2442         for (i = 0; i < nr_frags; i++) {
2443                 /* If there is something in this element, lets get a
2444                  * descriptor from the ring and get the necessary data
2445                  */
2446                 if (i == 0) {
2447                         /* If the fragments are smaller than a standard MTU,
2448                          * then map them to a single descriptor in the Tx
2449                          * Desc ring. However, if they're larger, as is
2450                          * possible with support for jumbo packets, then
2451                          * split them each across 2 descriptors.
2452                          *
2453                          * This will work until we determine why the hardware
2454                          * doesn't seem to like large fragments.
2455                          */
2456                         if (skb_headlen(skb) <= 1514) {
2457                                 /* Low 16bits are length, high is vlan and
2458                                  * unused currently so zero
2459                                  */
2460                                 desc[frag].len_vlan = skb_headlen(skb);
2461                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2462                                                           skb->data,
2463                                                           skb_headlen(skb),
2464                                                           DMA_TO_DEVICE);
2465                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2466                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2467                                 frag++;
2468                         } else {
2469                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2470                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2471                                                           skb->data,
2472                                                           skb_headlen(skb) / 2,
2473                                                           DMA_TO_DEVICE);
2474                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2475                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2476                                 frag++;
2477
2478                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2479                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2480                                                           skb->data +
2481                                                           skb_headlen(skb) / 2,
2482                                                           skb_headlen(skb) / 2,
2483                                                           DMA_TO_DEVICE);
2484                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2485                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2486                                 frag++;
2487                         }
2488                 } else {
2489                         desc[frag].len_vlan = frags[i - 1].size;
2490                         dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2491                                                     &frags[i - 1],
2492                                                     0,
2493                                                     frags[i - 1].size,
2494                                                     DMA_TO_DEVICE);
2495                         desc[frag].addr_lo = lower_32_bits(dma_addr);
2496                         desc[frag].addr_hi = upper_32_bits(dma_addr);
2497                         frag++;
2498                 }
2499         }
2500
2501         if (phydev && phydev->speed == SPEED_1000) {
2502                 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2503                         /* Last element & Interrupt flag */
2504                         desc[frag - 1].flags =
2505                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2506                         tx_ring->since_irq = 0;
2507                 } else { /* Last element */
2508                         desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2509                 }
2510         } else {
2511                 desc[frag - 1].flags =
2512                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2513         }
2514
2515         desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2516
2517         tcb->index_start = tx_ring->send_idx;
2518         tcb->stale = 0;
2519
2520         thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2521
2522         if (thiscopy >= frag) {
2523                 remainder = 0;
2524                 thiscopy = frag;
2525         } else {
2526                 remainder = frag - thiscopy;
2527         }
2528
2529         memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2530                desc,
2531                sizeof(struct tx_desc) * thiscopy);
2532
2533         add_10bit(&tx_ring->send_idx, thiscopy);
2534
2535         if (INDEX10(tx_ring->send_idx) == 0 ||
2536             INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2537                 tx_ring->send_idx &= ~ET_DMA10_MASK;
2538                 tx_ring->send_idx ^= ET_DMA10_WRAP;
2539         }
2540
2541         if (remainder) {
2542                 memcpy(tx_ring->tx_desc_ring,
2543                        desc + thiscopy,
2544                        sizeof(struct tx_desc) * remainder);
2545
2546                 add_10bit(&tx_ring->send_idx, remainder);
2547         }
2548
2549         if (INDEX10(tx_ring->send_idx) == 0) {
2550                 if (tx_ring->send_idx)
2551                         tcb->index = NUM_DESC_PER_RING_TX - 1;
2552                 else
2553                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2554         } else {
2555                 tcb->index = tx_ring->send_idx - 1;
2556         }
2557
2558         spin_lock(&adapter->tcb_send_qlock);
2559
2560         if (tx_ring->send_tail)
2561                 tx_ring->send_tail->next = tcb;
2562         else
2563                 tx_ring->send_head = tcb;
2564
2565         tx_ring->send_tail = tcb;
2566
2567         WARN_ON(tcb->next != NULL);
2568
2569         tx_ring->used++;
2570
2571         spin_unlock(&adapter->tcb_send_qlock);
2572
2573         /* Write the new write pointer back to the device. */
2574         writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2575
2576         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2577          * timer to wake us up if this packet isn't followed by N more.
2578          */
2579         if (phydev && phydev->speed == SPEED_1000) {
2580                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2581                        &adapter->regs->global.watchdog_timer);
2582         }
2583         return 0;
2584 }
2585
2586 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2587 {
2588         int status;
2589         struct tcb *tcb;
2590         unsigned long flags;
2591         struct tx_ring *tx_ring = &adapter->tx_ring;
2592
2593         /* All packets must have at least a MAC address and a protocol type */
2594         if (skb->len < ETH_HLEN)
2595                 return -EIO;
2596
2597         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2598
2599         tcb = tx_ring->tcb_qhead;
2600
2601         if (tcb == NULL) {
2602                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2603                 return -ENOMEM;
2604         }
2605
2606         tx_ring->tcb_qhead = tcb->next;
2607
2608         if (tx_ring->tcb_qhead == NULL)
2609                 tx_ring->tcb_qtail = NULL;
2610
2611         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2612
2613         tcb->skb = skb;
2614         tcb->next = NULL;
2615
2616         status = nic_send_packet(adapter, tcb);
2617
2618         if (status != 0) {
2619                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2620
2621                 if (tx_ring->tcb_qtail)
2622                         tx_ring->tcb_qtail->next = tcb;
2623                 else
2624                         /* Apparently ready Q is empty. */
2625                         tx_ring->tcb_qhead = tcb;
2626
2627                 tx_ring->tcb_qtail = tcb;
2628                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2629                 return status;
2630         }
2631         WARN_ON(tx_ring->used > NUM_TCB);
2632         return 0;
2633 }
2634
2635 /* free_send_packet - Recycle a struct tcb */
2636 static inline void free_send_packet(struct et131x_adapter *adapter,
2637                                     struct tcb *tcb)
2638 {
2639         unsigned long flags;
2640         struct tx_desc *desc = NULL;
2641         struct net_device_stats *stats = &adapter->netdev->stats;
2642         struct tx_ring *tx_ring = &adapter->tx_ring;
2643         u64  dma_addr;
2644
2645         if (tcb->skb) {
2646                 stats->tx_bytes += tcb->skb->len;
2647
2648                 /* Iterate through the TX descriptors on the ring
2649                  * corresponding to this packet and umap the fragments
2650                  * they point to
2651                  */
2652                 do {
2653                         desc = tx_ring->tx_desc_ring +
2654                                INDEX10(tcb->index_start);
2655
2656                         dma_addr = desc->addr_lo;
2657                         dma_addr |= (u64)desc->addr_hi << 32;
2658
2659                         dma_unmap_single(&adapter->pdev->dev,
2660                                          dma_addr,
2661                                          desc->len_vlan, DMA_TO_DEVICE);
2662
2663                         add_10bit(&tcb->index_start, 1);
2664                         if (INDEX10(tcb->index_start) >=
2665                                                         NUM_DESC_PER_RING_TX) {
2666                                 tcb->index_start &= ~ET_DMA10_MASK;
2667                                 tcb->index_start ^= ET_DMA10_WRAP;
2668                         }
2669                 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2670
2671                 dev_kfree_skb_any(tcb->skb);
2672         }
2673
2674         memset(tcb, 0, sizeof(struct tcb));
2675
2676         /* Add the TCB to the Ready Q */
2677         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2678
2679         stats->tx_packets++;
2680
2681         if (tx_ring->tcb_qtail)
2682                 tx_ring->tcb_qtail->next = tcb;
2683         else /* Apparently ready Q is empty. */
2684                 tx_ring->tcb_qhead = tcb;
2685
2686         tx_ring->tcb_qtail = tcb;
2687
2688         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2689         WARN_ON(tx_ring->used < 0);
2690 }
2691
2692 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2693 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2694 {
2695         struct tcb *tcb;
2696         unsigned long flags;
2697         u32 freed = 0;
2698         struct tx_ring *tx_ring = &adapter->tx_ring;
2699
2700         /* Any packets being sent? Check the first TCB on the send list */
2701         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2702
2703         tcb = tx_ring->send_head;
2704
2705         while (tcb != NULL && freed < NUM_TCB) {
2706                 struct tcb *next = tcb->next;
2707
2708                 tx_ring->send_head = next;
2709
2710                 if (next == NULL)
2711                         tx_ring->send_tail = NULL;
2712
2713                 tx_ring->used--;
2714
2715                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2716
2717                 freed++;
2718                 free_send_packet(adapter, tcb);
2719
2720                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2721
2722                 tcb = tx_ring->send_head;
2723         }
2724
2725         WARN_ON(freed == NUM_TCB);
2726
2727         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2728
2729         tx_ring->used = 0;
2730 }
2731
2732 /* et131x_handle_send_pkts
2733  *
2734  * Re-claim the send resources, complete sends and get more to send from
2735  * the send wait queue.
2736  */
2737 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2738 {
2739         unsigned long flags;
2740         u32 serviced;
2741         struct tcb *tcb;
2742         u32 index;
2743         struct tx_ring *tx_ring = &adapter->tx_ring;
2744
2745         serviced = readl(&adapter->regs->txdma.new_service_complete);
2746         index = INDEX10(serviced);
2747
2748         /* Has the ring wrapped?  Process any descriptors that do not have
2749          * the same "wrap" indicator as the current completion indicator
2750          */
2751         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2752
2753         tcb = tx_ring->send_head;
2754
2755         while (tcb &&
2756                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2757                index < INDEX10(tcb->index)) {
2758                 tx_ring->used--;
2759                 tx_ring->send_head = tcb->next;
2760                 if (tcb->next == NULL)
2761                         tx_ring->send_tail = NULL;
2762
2763                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2764                 free_send_packet(adapter, tcb);
2765                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2766
2767                 /* Goto the next packet */
2768                 tcb = tx_ring->send_head;
2769         }
2770         while (tcb &&
2771                !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2772                index > (tcb->index & ET_DMA10_MASK)) {
2773                 tx_ring->used--;
2774                 tx_ring->send_head = tcb->next;
2775                 if (tcb->next == NULL)
2776                         tx_ring->send_tail = NULL;
2777
2778                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2779                 free_send_packet(adapter, tcb);
2780                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2781
2782                 /* Goto the next packet */
2783                 tcb = tx_ring->send_head;
2784         }
2785
2786         /* Wake up the queue when we hit a low-water mark */
2787         if (tx_ring->used <= NUM_TCB / 3)
2788                 netif_wake_queue(adapter->netdev);
2789
2790         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2791 }
2792
2793 static int et131x_get_regs_len(struct net_device *netdev)
2794 {
2795 #define ET131X_REGS_LEN 256
2796         return ET131X_REGS_LEN * sizeof(u32);
2797 }
2798
2799 static void et131x_get_regs(struct net_device *netdev,
2800                             struct ethtool_regs *regs, void *regs_data)
2801 {
2802         struct et131x_adapter *adapter = netdev_priv(netdev);
2803         struct address_map __iomem *aregs = adapter->regs;
2804         u32 *regs_buff = regs_data;
2805         u32 num = 0;
2806         u16 tmp;
2807
2808         memset(regs_data, 0, et131x_get_regs_len(netdev));
2809
2810         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2811                         adapter->pdev->device;
2812
2813         /* PHY regs */
2814         et131x_mii_read(adapter, MII_BMCR, &tmp);
2815         regs_buff[num++] = tmp;
2816         et131x_mii_read(adapter, MII_BMSR, &tmp);
2817         regs_buff[num++] = tmp;
2818         et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2819         regs_buff[num++] = tmp;
2820         et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2821         regs_buff[num++] = tmp;
2822         et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2823         regs_buff[num++] = tmp;
2824         et131x_mii_read(adapter, MII_LPA, &tmp);
2825         regs_buff[num++] = tmp;
2826         et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2827         regs_buff[num++] = tmp;
2828         /* Autoneg next page transmit reg */
2829         et131x_mii_read(adapter, 0x07, &tmp);
2830         regs_buff[num++] = tmp;
2831         /* Link partner next page reg */
2832         et131x_mii_read(adapter, 0x08, &tmp);
2833         regs_buff[num++] = tmp;
2834         et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2835         regs_buff[num++] = tmp;
2836         et131x_mii_read(adapter, MII_STAT1000, &tmp);
2837         regs_buff[num++] = tmp;
2838         et131x_mii_read(adapter, 0x0b, &tmp);
2839         regs_buff[num++] = tmp;
2840         et131x_mii_read(adapter, 0x0c, &tmp);
2841         regs_buff[num++] = tmp;
2842         et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2843         regs_buff[num++] = tmp;
2844         et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2845         regs_buff[num++] = tmp;
2846         et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2847         regs_buff[num++] = tmp;
2848
2849         et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2850         regs_buff[num++] = tmp;
2851         et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2852         regs_buff[num++] = tmp;
2853         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2854         regs_buff[num++] = tmp;
2855         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2856         regs_buff[num++] = tmp;
2857         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2858         regs_buff[num++] = tmp;
2859
2860         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2861         regs_buff[num++] = tmp;
2862         et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2863         regs_buff[num++] = tmp;
2864         et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2865         regs_buff[num++] = tmp;
2866         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2867         regs_buff[num++] = tmp;
2868         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2869         regs_buff[num++] = tmp;
2870         et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2871         regs_buff[num++] = tmp;
2872         et131x_mii_read(adapter, PHY_LED_1, &tmp);
2873         regs_buff[num++] = tmp;
2874         et131x_mii_read(adapter, PHY_LED_2, &tmp);
2875         regs_buff[num++] = tmp;
2876
2877         /* Global regs */
2878         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2879         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2880         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2881         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2882         regs_buff[num++] = readl(&aregs->global.pm_csr);
2883         regs_buff[num++] = adapter->stats.interrupt_status;
2884         regs_buff[num++] = readl(&aregs->global.int_mask);
2885         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2886         regs_buff[num++] = readl(&aregs->global.int_status_alias);
2887         regs_buff[num++] = readl(&aregs->global.sw_reset);
2888         regs_buff[num++] = readl(&aregs->global.slv_timer);
2889         regs_buff[num++] = readl(&aregs->global.msi_config);
2890         regs_buff[num++] = readl(&aregs->global.loopback);
2891         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2892
2893         /* TXDMA regs */
2894         regs_buff[num++] = readl(&aregs->txdma.csr);
2895         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2896         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2897         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2898         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2899         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2900         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2901         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2902         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2903         regs_buff[num++] = readl(&aregs->txdma.service_request);
2904         regs_buff[num++] = readl(&aregs->txdma.service_complete);
2905         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2906         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2907         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2908         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2909         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2910         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2911         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2912         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2913         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2914         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2915         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2916         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2917         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2918         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2919         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2920
2921         /* RXDMA regs */
2922         regs_buff[num++] = readl(&aregs->rxdma.csr);
2923         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2924         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2925         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2926         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2927         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2928         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2929         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2930         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2931         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2932         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2933         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2934         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2935         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2936         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2937         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2938         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2939         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2940         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2941         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2942         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2943         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2944         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2945         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2946         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2947         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2948         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2949         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2950         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2951 }
2952
2953 static void et131x_get_drvinfo(struct net_device *netdev,
2954                                struct ethtool_drvinfo *info)
2955 {
2956         struct et131x_adapter *adapter = netdev_priv(netdev);
2957
2958         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2959         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2960         strlcpy(info->bus_info, pci_name(adapter->pdev),
2961                 sizeof(info->bus_info));
2962 }
2963
2964 static const struct ethtool_ops et131x_ethtool_ops = {
2965         .get_drvinfo    = et131x_get_drvinfo,
2966         .get_regs_len   = et131x_get_regs_len,
2967         .get_regs       = et131x_get_regs,
2968         .get_link       = ethtool_op_get_link,
2969         .get_link_ksettings = phy_ethtool_get_link_ksettings,
2970         .set_link_ksettings = phy_ethtool_set_link_ksettings,
2971 };
2972
2973 /* et131x_hwaddr_init - set up the MAC Address */
2974 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2975 {
2976         /* If have our default mac from init and no mac address from
2977          * EEPROM then we need to generate the last octet and set it on the
2978          * device
2979          */
2980         if (is_zero_ether_addr(adapter->rom_addr)) {
2981                 /* We need to randomly generate the last octet so we
2982                  * decrease our chances of setting the mac address to
2983                  * same as another one of our cards in the system
2984                  */
2985                 get_random_bytes(&adapter->addr[5], 1);
2986                 /* We have the default value in the register we are
2987                  * working with so we need to copy the current
2988                  * address into the permanent address
2989                  */
2990                 ether_addr_copy(adapter->rom_addr, adapter->addr);
2991         } else {
2992                 /* We do not have an override address, so set the
2993                  * current address to the permanent address and add
2994                  * it to the device
2995                  */
2996                 ether_addr_copy(adapter->addr, adapter->rom_addr);
2997         }
2998 }
2999
3000 static int et131x_pci_init(struct et131x_adapter *adapter,
3001                            struct pci_dev *pdev)
3002 {
3003         u16 max_payload;
3004         int i, rc;
3005
3006         rc = et131x_init_eeprom(adapter);
3007         if (rc < 0)
3008                 goto out;
3009
3010         if (!pci_is_pcie(pdev)) {
3011                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3012                 goto err_out;
3013         }
3014
3015         /* Program the Ack/Nak latency and replay timers */
3016         max_payload = pdev->pcie_mpss;
3017
3018         if (max_payload < 2) {
3019                 static const u16 acknak[2] = { 0x76, 0xD0 };
3020                 static const u16 replay[2] = { 0x1E0, 0x2ED };
3021
3022                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3023                                           acknak[max_payload])) {
3024                         dev_err(&pdev->dev,
3025                                 "Could not write PCI config space for ACK/NAK\n");
3026                         goto err_out;
3027                 }
3028                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3029                                           replay[max_payload])) {
3030                         dev_err(&pdev->dev,
3031                                 "Could not write PCI config space for Replay Timer\n");
3032                         goto err_out;
3033                 }
3034         }
3035
3036         /* l0s and l1 latency timers.  We are using default values.
3037          * Representing 001 for L0s and 010 for L1
3038          */
3039         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3040                 dev_err(&pdev->dev,
3041                         "Could not write PCI config space for Latency Timers\n");
3042                 goto err_out;
3043         }
3044
3045         /* Change the max read size to 2k */
3046         if (pcie_set_readrq(pdev, 2048)) {
3047                 dev_err(&pdev->dev,
3048                         "Couldn't change PCI config space for Max read size\n");
3049                 goto err_out;
3050         }
3051
3052         /* Get MAC address from config space if an eeprom exists, otherwise
3053          * the MAC address there will not be valid
3054          */
3055         if (!adapter->has_eeprom) {
3056                 et131x_hwaddr_init(adapter);
3057                 return 0;
3058         }
3059
3060         for (i = 0; i < ETH_ALEN; i++) {
3061                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3062                                          adapter->rom_addr + i)) {
3063                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3064                         goto err_out;
3065                 }
3066         }
3067         ether_addr_copy(adapter->addr, adapter->rom_addr);
3068 out:
3069         return rc;
3070 err_out:
3071         rc = -EIO;
3072         goto out;
3073 }
3074
3075 /* et131x_error_timer_handler
3076  * @data: timer-specific variable; here a pointer to our adapter structure
3077  *
3078  * The routine called when the error timer expires, to track the number of
3079  * recurring errors.
3080  */
3081 static void et131x_error_timer_handler(unsigned long data)
3082 {
3083         struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3084         struct phy_device *phydev = adapter->netdev->phydev;
3085
3086         if (et1310_in_phy_coma(adapter)) {
3087                 /* Bring the device immediately out of coma, to
3088                  * prevent it from sleeping indefinitely, this
3089                  * mechanism could be improved!
3090                  */
3091                 et1310_disable_phy_coma(adapter);
3092                 adapter->boot_coma = 20;
3093         } else {
3094                 et1310_update_macstat_host_counters(adapter);
3095         }
3096
3097         if (!phydev->link && adapter->boot_coma < 11)
3098                 adapter->boot_coma++;
3099
3100         if (adapter->boot_coma == 10) {
3101                 if (!phydev->link) {
3102                         if (!et1310_in_phy_coma(adapter)) {
3103                                 /* NOTE - This was originally a 'sync with
3104                                  *  interrupt'. How to do that under Linux?
3105                                  */
3106                                 et131x_enable_interrupts(adapter);
3107                                 et1310_enable_phy_coma(adapter);
3108                         }
3109                 }
3110         }
3111
3112         /* This is a periodic timer, so reschedule */
3113         mod_timer(&adapter->error_timer, jiffies +
3114                   msecs_to_jiffies(TX_ERROR_PERIOD));
3115 }
3116
3117 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3118 {
3119         et131x_tx_dma_memory_free(adapter);
3120         et131x_rx_dma_memory_free(adapter);
3121 }
3122
3123 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3124 {
3125         int status;
3126
3127         status = et131x_tx_dma_memory_alloc(adapter);
3128         if (status) {
3129                 dev_err(&adapter->pdev->dev,
3130                         "et131x_tx_dma_memory_alloc FAILED\n");
3131                 et131x_tx_dma_memory_free(adapter);
3132                 return status;
3133         }
3134
3135         status = et131x_rx_dma_memory_alloc(adapter);
3136         if (status) {
3137                 dev_err(&adapter->pdev->dev,
3138                         "et131x_rx_dma_memory_alloc FAILED\n");
3139                 et131x_adapter_memory_free(adapter);
3140                 return status;
3141         }
3142
3143         status = et131x_init_recv(adapter);
3144         if (status) {
3145                 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3146                 et131x_adapter_memory_free(adapter);
3147         }
3148         return status;
3149 }
3150
3151 static void et131x_adjust_link(struct net_device *netdev)
3152 {
3153         struct et131x_adapter *adapter = netdev_priv(netdev);
3154         struct  phy_device *phydev = netdev->phydev;
3155
3156         if (!phydev)
3157                 return;
3158         if (phydev->link == adapter->link)
3159                 return;
3160
3161         /* Check to see if we are in coma mode and if
3162          * so, disable it because we will not be able
3163          * to read PHY values until we are out.
3164          */
3165         if (et1310_in_phy_coma(adapter))
3166                 et1310_disable_phy_coma(adapter);
3167
3168         adapter->link = phydev->link;
3169         phy_print_status(phydev);
3170
3171         if (phydev->link) {
3172                 adapter->boot_coma = 20;
3173                 if (phydev->speed == SPEED_10) {
3174                         u16 register18;
3175
3176                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3177                                         &register18);
3178                         et131x_mii_write(adapter, phydev->mdio.addr,
3179                                          PHY_MPHY_CONTROL_REG,
3180                                          register18 | 0x4);
3181                         et131x_mii_write(adapter, phydev->mdio.addr,
3182                                          PHY_INDEX_REG, register18 | 0x8402);
3183                         et131x_mii_write(adapter, phydev->mdio.addr,
3184                                          PHY_DATA_REG, register18 | 511);
3185                         et131x_mii_write(adapter, phydev->mdio.addr,
3186                                          PHY_MPHY_CONTROL_REG, register18);
3187                 }
3188
3189                 et1310_config_flow_control(adapter);
3190
3191                 if (phydev->speed == SPEED_1000 &&
3192                     adapter->registry_jumbo_packet > 2048) {
3193                         u16 reg;
3194
3195                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
3196                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3197                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3198                         et131x_mii_write(adapter, phydev->mdio.addr,
3199                                          PHY_CONFIG, reg);
3200                 }
3201
3202                 et131x_set_rx_dma_timer(adapter);
3203                 et1310_config_mac_regs2(adapter);
3204         } else {
3205                 adapter->boot_coma = 0;
3206
3207                 if (phydev->speed == SPEED_10) {
3208                         u16 register18;
3209
3210                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3211                                         &register18);
3212                         et131x_mii_write(adapter, phydev->mdio.addr,
3213                                          PHY_MPHY_CONTROL_REG,
3214                                          register18 | 0x4);
3215                         et131x_mii_write(adapter, phydev->mdio.addr,
3216                                          PHY_INDEX_REG, register18 | 0x8402);
3217                         et131x_mii_write(adapter, phydev->mdio.addr,
3218                                          PHY_DATA_REG, register18 | 511);
3219                         et131x_mii_write(adapter, phydev->mdio.addr,
3220                                          PHY_MPHY_CONTROL_REG, register18);
3221                 }
3222
3223                 et131x_free_busy_send_packets(adapter);
3224                 et131x_init_send(adapter);
3225
3226                 /* Bring the device back to the state it was during
3227                  * init prior to autonegotiation being complete. This
3228                  * way, when we get the auto-neg complete interrupt,
3229                  * we can complete init by calling config_mac_regs2.
3230                  */
3231                 et131x_soft_reset(adapter);
3232
3233                 et131x_adapter_setup(adapter);
3234
3235                 et131x_disable_txrx(netdev);
3236                 et131x_enable_txrx(netdev);
3237         }
3238 }
3239
3240 static int et131x_mii_probe(struct net_device *netdev)
3241 {
3242         struct et131x_adapter *adapter = netdev_priv(netdev);
3243         struct  phy_device *phydev = NULL;
3244
3245         phydev = phy_find_first(adapter->mii_bus);
3246         if (!phydev) {
3247                 dev_err(&adapter->pdev->dev, "no PHY found\n");
3248                 return -ENODEV;
3249         }
3250
3251         phydev = phy_connect(netdev, phydev_name(phydev),
3252                              &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3253
3254         if (IS_ERR(phydev)) {
3255                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3256                 return PTR_ERR(phydev);
3257         }
3258
3259         phydev->supported &= (SUPPORTED_10baseT_Half |
3260                               SUPPORTED_10baseT_Full |
3261                               SUPPORTED_100baseT_Half |
3262                               SUPPORTED_100baseT_Full |
3263                               SUPPORTED_Autoneg |
3264                               SUPPORTED_MII |
3265                               SUPPORTED_TP);
3266
3267         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3268                 phydev->supported |= SUPPORTED_1000baseT_Half |
3269                                      SUPPORTED_1000baseT_Full;
3270
3271         phydev->advertising = phydev->supported;
3272         phydev->autoneg = AUTONEG_ENABLE;
3273
3274         phy_attached_info(phydev);
3275
3276         return 0;
3277 }
3278
3279 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3280                                                   struct pci_dev *pdev)
3281 {
3282         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3283
3284         struct et131x_adapter *adapter;
3285
3286         adapter = netdev_priv(netdev);
3287         adapter->pdev = pci_dev_get(pdev);
3288         adapter->netdev = netdev;
3289
3290         spin_lock_init(&adapter->tcb_send_qlock);
3291         spin_lock_init(&adapter->tcb_ready_qlock);
3292         spin_lock_init(&adapter->rcv_lock);
3293
3294         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3295
3296         ether_addr_copy(adapter->addr, default_mac);
3297
3298         return adapter;
3299 }
3300
3301 static void et131x_pci_remove(struct pci_dev *pdev)
3302 {
3303         struct net_device *netdev = pci_get_drvdata(pdev);
3304         struct et131x_adapter *adapter = netdev_priv(netdev);
3305
3306         unregister_netdev(netdev);
3307         netif_napi_del(&adapter->napi);
3308         phy_disconnect(netdev->phydev);
3309         mdiobus_unregister(adapter->mii_bus);
3310         mdiobus_free(adapter->mii_bus);
3311
3312         et131x_adapter_memory_free(adapter);
3313         iounmap(adapter->regs);
3314         pci_dev_put(pdev);
3315
3316         free_netdev(netdev);
3317         pci_release_regions(pdev);
3318         pci_disable_device(pdev);
3319 }
3320
3321 static void et131x_up(struct net_device *netdev)
3322 {
3323         et131x_enable_txrx(netdev);
3324         phy_start(netdev->phydev);
3325 }
3326
3327 static void et131x_down(struct net_device *netdev)
3328 {
3329         /* Save the timestamp for the TX watchdog, prevent a timeout */
3330         netif_trans_update(netdev);
3331
3332         phy_stop(netdev->phydev);
3333         et131x_disable_txrx(netdev);
3334 }
3335
3336 #ifdef CONFIG_PM_SLEEP
3337 static int et131x_suspend(struct device *dev)
3338 {
3339         struct pci_dev *pdev = to_pci_dev(dev);
3340         struct net_device *netdev = pci_get_drvdata(pdev);
3341
3342         if (netif_running(netdev)) {
3343                 netif_device_detach(netdev);
3344                 et131x_down(netdev);
3345                 pci_save_state(pdev);
3346         }
3347
3348         return 0;
3349 }
3350
3351 static int et131x_resume(struct device *dev)
3352 {
3353         struct pci_dev *pdev = to_pci_dev(dev);
3354         struct net_device *netdev = pci_get_drvdata(pdev);
3355
3356         if (netif_running(netdev)) {
3357                 pci_restore_state(pdev);
3358                 et131x_up(netdev);
3359                 netif_device_attach(netdev);
3360         }
3361
3362         return 0;
3363 }
3364 #endif
3365
3366 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3367
3368 static irqreturn_t et131x_isr(int irq, void *dev_id)
3369 {
3370         bool handled = true;
3371         bool enable_interrupts = true;
3372         struct net_device *netdev = dev_id;
3373         struct et131x_adapter *adapter = netdev_priv(netdev);
3374         struct address_map __iomem *iomem = adapter->regs;
3375         struct rx_ring *rx_ring = &adapter->rx_ring;
3376         struct tx_ring *tx_ring = &adapter->tx_ring;
3377         u32 status;
3378
3379         if (!netif_device_present(netdev)) {
3380                 handled = false;
3381                 enable_interrupts = false;
3382                 goto out;
3383         }
3384
3385         et131x_disable_interrupts(adapter);
3386
3387         status = readl(&adapter->regs->global.int_status);
3388
3389         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3390                 status &= ~INT_MASK_ENABLE;
3391         else
3392                 status &= ~INT_MASK_ENABLE_NO_FLOW;
3393
3394         /* Make sure this is our interrupt */
3395         if (!status) {
3396                 handled = false;
3397                 et131x_enable_interrupts(adapter);
3398                 goto out;
3399         }
3400
3401         /* This is our interrupt, so process accordingly */
3402         if (status & ET_INTR_WATCHDOG) {
3403                 struct tcb *tcb = tx_ring->send_head;
3404
3405                 if (tcb)
3406                         if (++tcb->stale > 1)
3407                                 status |= ET_INTR_TXDMA_ISR;
3408
3409                 if (rx_ring->unfinished_receives)
3410                         status |= ET_INTR_RXDMA_XFR_DONE;
3411                 else if (tcb == NULL)
3412                         writel(0, &adapter->regs->global.watchdog_timer);
3413
3414                 status &= ~ET_INTR_WATCHDOG;
3415         }
3416
3417         if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3418                 enable_interrupts = false;
3419                 napi_schedule(&adapter->napi);
3420         }
3421
3422         status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3423
3424         if (!status)
3425                 goto out;
3426
3427         if (status & ET_INTR_TXDMA_ERR) {
3428                 /* Following read also clears the register (COR) */
3429                 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3430
3431                 dev_warn(&adapter->pdev->dev,
3432                          "TXDMA_ERR interrupt, error = %d\n",
3433                          txdma_err);
3434         }
3435
3436         if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3437                 /* This indicates the number of unused buffers in RXDMA free
3438                  * buffer ring 0 is <= the limit you programmed. Free buffer
3439                  * resources need to be returned.  Free buffers are consumed as
3440                  * packets are passed from the network to the host. The host
3441                  * becomes aware of the packets from the contents of the packet
3442                  * status ring. This ring is queried when the packet done
3443                  * interrupt occurs. Packets are then passed to the OS. When
3444                  * the OS is done with the packets the resources can be
3445                  * returned to the ET1310 for re-use. This interrupt is one
3446                  * method of returning resources.
3447                  */
3448
3449                 /*  If the user has flow control on, then we will
3450                  * send a pause packet, otherwise just exit
3451                  */
3452                 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3453                         u32 pm_csr;
3454
3455                         /* Tell the device to send a pause packet via the back
3456                          * pressure register (bp req and bp xon/xoff)
3457                          */
3458                         pm_csr = readl(&iomem->global.pm_csr);
3459                         if (!et1310_in_phy_coma(adapter))
3460                                 writel(3, &iomem->txmac.bp_ctrl);
3461                 }
3462         }
3463
3464         /* Handle Packet Status Ring Low Interrupt */
3465         if (status & ET_INTR_RXDMA_STAT_LOW) {
3466                 /* Same idea as with the two Free Buffer Rings. Packets going
3467                  * from the network to the host each consume a free buffer
3468                  * resource and a packet status resource. These resources are
3469                  * passed to the OS. When the OS is done with the resources,
3470                  * they need to be returned to the ET1310. This is one method
3471                  * of returning the resources.
3472                  */
3473         }
3474
3475         if (status & ET_INTR_RXDMA_ERR) {
3476                 /* The rxdma_error interrupt is sent when a time-out on a
3477                  * request issued by the JAGCore has occurred or a completion is
3478                  * returned with an un-successful status. In both cases the
3479                  * request is considered complete. The JAGCore will
3480                  * automatically re-try the request in question. Normally
3481                  * information on events like these are sent to the host using
3482                  * the "Advanced Error Reporting" capability. This interrupt is
3483                  * another way of getting similar information. The only thing
3484                  * required is to clear the interrupt by reading the ISR in the
3485                  * global resources. The JAGCore will do a re-try on the
3486                  * request. Normally you should never see this interrupt. If
3487                  * you start to see this interrupt occurring frequently then
3488                  * something bad has occurred. A reset might be the thing to do.
3489                  */
3490                 /* TRAP();*/
3491
3492                 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3493                          readl(&iomem->txmac.tx_test));
3494         }
3495
3496         /* Handle the Wake on LAN Event */
3497         if (status & ET_INTR_WOL) {
3498                 /* This is a secondary interrupt for wake on LAN. The driver
3499                  * should never see this, if it does, something serious is
3500                  * wrong.
3501                  */
3502                 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3503         }
3504
3505         if (status & ET_INTR_TXMAC) {
3506                 u32 err = readl(&iomem->txmac.err);
3507
3508                 /* When any of the errors occur and TXMAC generates an
3509                  * interrupt to report these errors, it usually means that
3510                  * TXMAC has detected an error in the data stream retrieved
3511                  * from the on-chip Tx Q. All of these errors are catastrophic
3512                  * and TXMAC won't be able to recover data when these errors
3513                  * occur. In a nutshell, the whole Tx path will have to be reset
3514                  * and re-configured afterwards.
3515                  */
3516                 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3517                          err);
3518
3519                 /* If we are debugging, we want to see this error, otherwise we
3520                  * just want the device to be reset and continue
3521                  */
3522         }
3523
3524         if (status & ET_INTR_RXMAC) {
3525                 /* These interrupts are catastrophic to the device, what we need
3526                  * to do is disable the interrupts and set the flag to cause us
3527                  * to reset so we can solve this issue.
3528                  */
3529                 dev_warn(&adapter->pdev->dev,
3530                          "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3531                          readl(&iomem->rxmac.err_reg));
3532
3533                 dev_warn(&adapter->pdev->dev,
3534                          "Enable 0x%08x, Diag 0x%08x\n",
3535                          readl(&iomem->rxmac.ctrl),
3536                          readl(&iomem->rxmac.rxq_diag));
3537
3538                 /* If we are debugging, we want to see this error, otherwise we
3539                  * just want the device to be reset and continue
3540                  */
3541         }
3542
3543         if (status & ET_INTR_MAC_STAT) {
3544                 /* This means at least one of the un-masked counters in the
3545                  * MAC_STAT block has rolled over. Use this to maintain the top,
3546                  * software managed bits of the counter(s).
3547                  */
3548                 et1310_handle_macstat_interrupt(adapter);
3549         }
3550
3551         if (status & ET_INTR_SLV_TIMEOUT) {
3552                 /* This means a timeout has occurred on a read or write request
3553                  * to one of the JAGCore registers. The Global Resources block
3554                  * has terminated the request and on a read request, returned a
3555                  * "fake" value. The most likely reasons are: Bad Address or the
3556                  * addressed module is in a power-down state and can't respond.
3557                  */
3558         }
3559
3560 out:
3561         if (enable_interrupts)
3562                 et131x_enable_interrupts(adapter);
3563
3564         return IRQ_RETVAL(handled);
3565 }
3566
3567 static int et131x_poll(struct napi_struct *napi, int budget)
3568 {
3569         struct et131x_adapter *adapter =
3570                 container_of(napi, struct et131x_adapter, napi);
3571         int work_done = et131x_handle_recv_pkts(adapter, budget);
3572
3573         et131x_handle_send_pkts(adapter);
3574
3575         if (work_done < budget) {
3576                 napi_complete(&adapter->napi);
3577                 et131x_enable_interrupts(adapter);
3578         }
3579
3580         return work_done;
3581 }
3582
3583 /* et131x_stats - Return the current device statistics  */
3584 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3585 {
3586         struct et131x_adapter *adapter = netdev_priv(netdev);
3587         struct net_device_stats *stats = &adapter->netdev->stats;
3588         struct ce_stats *devstat = &adapter->stats;
3589
3590         stats->rx_errors = devstat->rx_length_errs +
3591                            devstat->rx_align_errs +
3592                            devstat->rx_crc_errs +
3593                            devstat->rx_code_violations +
3594                            devstat->rx_other_errs;
3595         stats->tx_errors = devstat->tx_max_pkt_errs;
3596         stats->multicast = devstat->multicast_pkts_rcvd;
3597         stats->collisions = devstat->tx_collisions;
3598
3599         stats->rx_length_errors = devstat->rx_length_errs;
3600         stats->rx_over_errors = devstat->rx_overflows;
3601         stats->rx_crc_errors = devstat->rx_crc_errs;
3602         stats->rx_dropped = devstat->rcvd_pkts_dropped;
3603
3604         /* NOTE: Not used, can't find analogous statistics */
3605         /* stats->rx_frame_errors     = devstat->; */
3606         /* stats->rx_fifo_errors      = devstat->; */
3607         /* stats->rx_missed_errors    = devstat->; */
3608
3609         /* stats->tx_aborted_errors   = devstat->; */
3610         /* stats->tx_carrier_errors   = devstat->; */
3611         /* stats->tx_fifo_errors      = devstat->; */
3612         /* stats->tx_heartbeat_errors = devstat->; */
3613         /* stats->tx_window_errors    = devstat->; */
3614         return stats;
3615 }
3616
3617 static int et131x_open(struct net_device *netdev)
3618 {
3619         struct et131x_adapter *adapter = netdev_priv(netdev);
3620         struct pci_dev *pdev = adapter->pdev;
3621         unsigned int irq = pdev->irq;
3622         int result;
3623
3624         /* Start the timer to track NIC errors */
3625         init_timer(&adapter->error_timer);
3626         adapter->error_timer.expires = jiffies +
3627                 msecs_to_jiffies(TX_ERROR_PERIOD);
3628         adapter->error_timer.function = et131x_error_timer_handler;
3629         adapter->error_timer.data = (unsigned long)adapter;
3630         add_timer(&adapter->error_timer);
3631
3632         result = request_irq(irq, et131x_isr,
3633                              IRQF_SHARED, netdev->name, netdev);
3634         if (result) {
3635                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3636                 return result;
3637         }
3638
3639         adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3640
3641         napi_enable(&adapter->napi);
3642
3643         et131x_up(netdev);
3644
3645         return result;
3646 }
3647
3648 static int et131x_close(struct net_device *netdev)
3649 {
3650         struct et131x_adapter *adapter = netdev_priv(netdev);
3651
3652         et131x_down(netdev);
3653         napi_disable(&adapter->napi);
3654
3655         adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3656         free_irq(adapter->pdev->irq, netdev);
3657
3658         /* Stop the error timer */
3659         return del_timer_sync(&adapter->error_timer);
3660 }
3661
3662 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3663                         int cmd)
3664 {
3665         if (!netdev->phydev)
3666                 return -EINVAL;
3667
3668         return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
3669 }
3670
3671 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3672 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3673 {
3674         int filter = adapter->packet_filter;
3675         u32 ctrl;
3676         u32 pf_ctrl;
3677
3678         ctrl = readl(&adapter->regs->rxmac.ctrl);
3679         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3680
3681         /* Default to disabled packet filtering */
3682         ctrl |= 0x04;
3683
3684         /* Set us to be in promiscuous mode so we receive everything, this
3685          * is also true when we get a packet filter of 0
3686          */
3687         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3688                 pf_ctrl &= ~7;  /* Clear filter bits */
3689         else {
3690                 /* Set us up with Multicast packet filtering.  Three cases are
3691                  * possible - (1) we have a multi-cast list, (2) we receive ALL
3692                  * multicast entries or (3) we receive none.
3693                  */
3694                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3695                         pf_ctrl &= ~2;  /* Multicast filter bit */
3696                 else {
3697                         et1310_setup_device_for_multicast(adapter);
3698                         pf_ctrl |= 2;
3699                         ctrl &= ~0x04;
3700                 }
3701
3702                 /* Set us up with Unicast packet filtering */
3703                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3704                         et1310_setup_device_for_unicast(adapter);
3705                         pf_ctrl |= 4;
3706                         ctrl &= ~0x04;
3707                 }
3708
3709                 /* Set us up with Broadcast packet filtering */
3710                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3711                         pf_ctrl |= 1;   /* Broadcast filter bit */
3712                         ctrl &= ~0x04;
3713                 } else {
3714                         pf_ctrl &= ~1;
3715                 }
3716
3717                 /* Setup the receive mac configuration registers - Packet
3718                  * Filter control + the enable / disable for packet filter
3719                  * in the control reg.
3720                  */
3721                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3722                 writel(ctrl, &adapter->regs->rxmac.ctrl);
3723         }
3724         return 0;
3725 }
3726
3727 static void et131x_multicast(struct net_device *netdev)
3728 {
3729         struct et131x_adapter *adapter = netdev_priv(netdev);
3730         int packet_filter;
3731         struct netdev_hw_addr *ha;
3732         int i;
3733
3734         /* Before we modify the platform-independent filter flags, store them
3735          * locally. This allows us to determine if anything's changed and if
3736          * we even need to bother the hardware
3737          */
3738         packet_filter = adapter->packet_filter;
3739
3740         /* Clear the 'multicast' flag locally; because we only have a single
3741          * flag to check multicast, and multiple multicast addresses can be
3742          * set, this is the easiest way to determine if more than one
3743          * multicast address is being set.
3744          */
3745         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3746
3747         /* Check the net_device flags and set the device independent flags
3748          * accordingly
3749          */
3750         if (netdev->flags & IFF_PROMISC)
3751                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3752         else
3753                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3754
3755         if ((netdev->flags & IFF_ALLMULTI) ||
3756             (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3757                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3758
3759         if (netdev_mc_count(netdev) < 1) {
3760                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3761                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3762         } else {
3763                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3764         }
3765
3766         /* Set values in the private adapter struct */
3767         i = 0;
3768         netdev_for_each_mc_addr(ha, netdev) {
3769                 if (i == NIC_MAX_MCAST_LIST)
3770                         break;
3771                 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3772         }
3773         adapter->multicast_addr_count = i;
3774
3775         /* Are the new flags different from the previous ones? If not, then no
3776          * action is required
3777          *
3778          * NOTE - This block will always update the multicast_list with the
3779          *        hardware, even if the addresses aren't the same.
3780          */
3781         if (packet_filter != adapter->packet_filter)
3782                 et131x_set_packet_filter(adapter);
3783 }
3784
3785 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3786 {
3787         struct et131x_adapter *adapter = netdev_priv(netdev);
3788         struct tx_ring *tx_ring = &adapter->tx_ring;
3789
3790         /* stop the queue if it's getting full */
3791         if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3792                 netif_stop_queue(netdev);
3793
3794         /* Save the timestamp for the TX timeout watchdog */
3795         netif_trans_update(netdev);
3796
3797         /* TCB is not available */
3798         if (tx_ring->used >= NUM_TCB)
3799                 goto drop_err;
3800
3801         if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3802             !netif_carrier_ok(netdev))
3803                 goto drop_err;
3804
3805         if (send_packet(skb, adapter))
3806                 goto drop_err;
3807
3808         return NETDEV_TX_OK;
3809
3810 drop_err:
3811         dev_kfree_skb_any(skb);
3812         adapter->netdev->stats.tx_dropped++;
3813         return NETDEV_TX_OK;
3814 }
3815
3816 /* et131x_tx_timeout - Timeout handler
3817  *
3818  * The handler called when a Tx request times out. The timeout period is
3819  * specified by the 'tx_timeo" element in the net_device structure (see
3820  * et131x_alloc_device() to see how this value is set).
3821  */
3822 static void et131x_tx_timeout(struct net_device *netdev)
3823 {
3824         struct et131x_adapter *adapter = netdev_priv(netdev);
3825         struct tx_ring *tx_ring = &adapter->tx_ring;
3826         struct tcb *tcb;
3827         unsigned long flags;
3828
3829         /* If the device is closed, ignore the timeout */
3830         if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3831                 return;
3832
3833         /* Any nonrecoverable hardware error?
3834          * Checks adapter->flags for any failure in phy reading
3835          */
3836         if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3837                 return;
3838
3839         /* Hardware failure? */
3840         if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3841                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3842                 return;
3843         }
3844
3845         /* Is send stuck? */
3846         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3847         tcb = tx_ring->send_head;
3848         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3849
3850         if (tcb) {
3851                 tcb->count++;
3852
3853                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3854                         dev_warn(&adapter->pdev->dev,
3855                                  "Send stuck - reset. tcb->WrIndex %x\n",
3856                                  tcb->index);
3857
3858                         adapter->netdev->stats.tx_errors++;
3859
3860                         /* perform reset of tx/rx */
3861                         et131x_disable_txrx(netdev);
3862                         et131x_enable_txrx(netdev);
3863                 }
3864         }
3865 }
3866
3867 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3868 {
3869         int result = 0;
3870         struct et131x_adapter *adapter = netdev_priv(netdev);
3871
3872         if (new_mtu < 64 || new_mtu > 9216)
3873                 return -EINVAL;
3874
3875         et131x_disable_txrx(netdev);
3876
3877         netdev->mtu = new_mtu;
3878
3879         et131x_adapter_memory_free(adapter);
3880
3881         /* Set the config parameter for Jumbo Packet support */
3882         adapter->registry_jumbo_packet = new_mtu + 14;
3883         et131x_soft_reset(adapter);
3884
3885         result = et131x_adapter_memory_alloc(adapter);
3886         if (result != 0) {
3887                 dev_warn(&adapter->pdev->dev,
3888                          "Change MTU failed; couldn't re-alloc DMA memory\n");
3889                 return result;
3890         }
3891
3892         et131x_init_send(adapter);
3893         et131x_hwaddr_init(adapter);
3894         ether_addr_copy(netdev->dev_addr, adapter->addr);
3895
3896         /* Init the device with the new settings */
3897         et131x_adapter_setup(adapter);
3898         et131x_enable_txrx(netdev);
3899
3900         return result;
3901 }
3902
3903 static const struct net_device_ops et131x_netdev_ops = {
3904         .ndo_open               = et131x_open,
3905         .ndo_stop               = et131x_close,
3906         .ndo_start_xmit         = et131x_tx,
3907         .ndo_set_rx_mode        = et131x_multicast,
3908         .ndo_tx_timeout         = et131x_tx_timeout,
3909         .ndo_change_mtu         = et131x_change_mtu,
3910         .ndo_set_mac_address    = eth_mac_addr,
3911         .ndo_validate_addr      = eth_validate_addr,
3912         .ndo_get_stats          = et131x_stats,
3913         .ndo_do_ioctl           = et131x_ioctl,
3914 };
3915
3916 static int et131x_pci_setup(struct pci_dev *pdev,
3917                             const struct pci_device_id *ent)
3918 {
3919         struct net_device *netdev;
3920         struct et131x_adapter *adapter;
3921         int rc;
3922
3923         rc = pci_enable_device(pdev);
3924         if (rc < 0) {
3925                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3926                 goto out;
3927         }
3928
3929         /* Perform some basic PCI checks */
3930         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3931                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3932                 rc = -ENODEV;
3933                 goto err_disable;
3934         }
3935
3936         rc = pci_request_regions(pdev, DRIVER_NAME);
3937         if (rc < 0) {
3938                 dev_err(&pdev->dev, "Can't get PCI resources\n");
3939                 goto err_disable;
3940         }
3941
3942         pci_set_master(pdev);
3943
3944         /* Check the DMA addressing support of this device */
3945         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3946             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3947                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3948                 rc = -EIO;
3949                 goto err_release_res;
3950         }
3951
3952         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3953         if (!netdev) {
3954                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3955                 rc = -ENOMEM;
3956                 goto err_release_res;
3957         }
3958
3959         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3960         netdev->netdev_ops     = &et131x_netdev_ops;
3961
3962         SET_NETDEV_DEV(netdev, &pdev->dev);
3963         netdev->ethtool_ops = &et131x_ethtool_ops;
3964
3965         adapter = et131x_adapter_init(netdev, pdev);
3966
3967         rc = et131x_pci_init(adapter, pdev);
3968         if (rc < 0)
3969                 goto err_free_dev;
3970
3971         /* Map the bus-relative registers to system virtual memory */
3972         adapter->regs = pci_ioremap_bar(pdev, 0);
3973         if (!adapter->regs) {
3974                 dev_err(&pdev->dev, "Cannot map device registers\n");
3975                 rc = -ENOMEM;
3976                 goto err_free_dev;
3977         }
3978
3979         /* If Phy COMA mode was enabled when we went down, disable it here. */
3980         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3981
3982         et131x_soft_reset(adapter);
3983         et131x_disable_interrupts(adapter);
3984
3985         rc = et131x_adapter_memory_alloc(adapter);
3986         if (rc < 0) {
3987                 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3988                 goto err_iounmap;
3989         }
3990
3991         et131x_init_send(adapter);
3992
3993         netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3994
3995         ether_addr_copy(netdev->dev_addr, adapter->addr);
3996
3997         rc = -ENOMEM;
3998
3999         adapter->mii_bus = mdiobus_alloc();
4000         if (!adapter->mii_bus) {
4001                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4002                 goto err_mem_free;
4003         }
4004
4005         adapter->mii_bus->name = "et131x_eth_mii";
4006         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4007                  (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4008         adapter->mii_bus->priv = netdev;
4009         adapter->mii_bus->read = et131x_mdio_read;
4010         adapter->mii_bus->write = et131x_mdio_write;
4011
4012         rc = mdiobus_register(adapter->mii_bus);
4013         if (rc < 0) {
4014                 dev_err(&pdev->dev, "failed to register MII bus\n");
4015                 goto err_mdio_free;
4016         }
4017
4018         rc = et131x_mii_probe(netdev);
4019         if (rc < 0) {
4020                 dev_err(&pdev->dev, "failed to probe MII bus\n");
4021                 goto err_mdio_unregister;
4022         }
4023
4024         et131x_adapter_setup(adapter);
4025
4026         /* Init variable for counting how long we do not have link status */
4027         adapter->boot_coma = 0;
4028         et1310_disable_phy_coma(adapter);
4029
4030         /* We can enable interrupts now
4031          *
4032          *  NOTE - Because registration of interrupt handler is done in the
4033          *         device's open(), defer enabling device interrupts to that
4034          *         point
4035          */
4036
4037         rc = register_netdev(netdev);
4038         if (rc < 0) {
4039                 dev_err(&pdev->dev, "register_netdev() failed\n");
4040                 goto err_phy_disconnect;
4041         }
4042
4043         /* Register the net_device struct with the PCI subsystem. Save a copy
4044          * of the PCI config space for this device now that the device has
4045          * been initialized, just in case it needs to be quickly restored.
4046          */
4047         pci_set_drvdata(pdev, netdev);
4048 out:
4049         return rc;
4050
4051 err_phy_disconnect:
4052         phy_disconnect(netdev->phydev);
4053 err_mdio_unregister:
4054         mdiobus_unregister(adapter->mii_bus);
4055 err_mdio_free:
4056         mdiobus_free(adapter->mii_bus);
4057 err_mem_free:
4058         et131x_adapter_memory_free(adapter);
4059 err_iounmap:
4060         iounmap(adapter->regs);
4061 err_free_dev:
4062         pci_dev_put(pdev);
4063         free_netdev(netdev);
4064 err_release_res:
4065         pci_release_regions(pdev);
4066 err_disable:
4067         pci_disable_device(pdev);
4068         goto out;
4069 }
4070
4071 static const struct pci_device_id et131x_pci_table[] = {
4072         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4073         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4074         { 0,}
4075 };
4076 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4077
4078 static struct pci_driver et131x_driver = {
4079         .name           = DRIVER_NAME,
4080         .id_table       = et131x_pci_table,
4081         .probe          = et131x_pci_setup,
4082         .remove         = et131x_pci_remove,
4083         .driver.pm      = &et131x_pm_ops,
4084 };
4085
4086 module_pci_driver(et131x_driver);