Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / net / ethernet / amd / au1000_eth.c
1 /*
2  *
3  * Alchemy Au1x00 ethernet driver
4  *
5  * Copyright 2001-2003, 2006 MontaVista Software Inc.
6  * Copyright 2002 TimeSys Corp.
7  * Added ethtool/mii-tool support,
8  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10  * or riemer@riemer-nt.de: fixed the link beat detection with
11  * ioctls (SIOCGMIIPHY)
12  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13  *  converted to use linux-2.6.x's PHY framework
14  *
15  * Author: MontaVista Software, Inc.
16  *              ppopov@mvista.com or source@mvista.com
17  *
18  * ########################################################################
19  *
20  *  This program is free software; you can distribute it and/or modify it
21  *  under the terms of the GNU General Public License (Version 2) as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope it will be useful, but WITHOUT
25  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27  *  for more details.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, see <http://www.gnu.org/licenses/>.
31  *
32  * ########################################################################
33  *
34  *
35  */
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/capability.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/timer.h>
44 #include <linux/errno.h>
45 #include <linux/in.h>
46 #include <linux/ioport.h>
47 #include <linux/bitops.h>
48 #include <linux/slab.h>
49 #include <linux/interrupt.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
59 #include <linux/cpu.h>
60 #include <linux/io.h>
61
62 #include <asm/mipsregs.h>
63 #include <asm/irq.h>
64 #include <asm/processor.h>
65
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
69
70 #include "au1000_eth.h"
71
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
77
78 #define AU1000_DEF_MSG_ENABLE   (NETIF_MSG_DRV  | \
79                                 NETIF_MSG_PROBE | \
80                                 NETIF_MSG_LINK)
81
82 #define DRV_NAME        "au1000_eth"
83 #define DRV_VERSION     "1.7"
84 #define DRV_AUTHOR      "Pete Popov <ppopov@embeddedalley.com>"
85 #define DRV_DESC        "Au1xxx on-chip Ethernet driver"
86
87 MODULE_AUTHOR(DRV_AUTHOR);
88 MODULE_DESCRIPTION(DRV_DESC);
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92 /* AU1000 MAC registers and bits */
93 #define MAC_CONTROL             0x0
94 #  define MAC_RX_ENABLE         (1 << 2)
95 #  define MAC_TX_ENABLE         (1 << 3)
96 #  define MAC_DEF_CHECK         (1 << 5)
97 #  define MAC_SET_BL(X)         (((X) & 0x3) << 6)
98 #  define MAC_AUTO_PAD          (1 << 8)
99 #  define MAC_DISABLE_RETRY     (1 << 10)
100 #  define MAC_DISABLE_BCAST     (1 << 11)
101 #  define MAC_LATE_COL          (1 << 12)
102 #  define MAC_HASH_MODE         (1 << 13)
103 #  define MAC_HASH_ONLY         (1 << 15)
104 #  define MAC_PASS_ALL          (1 << 16)
105 #  define MAC_INVERSE_FILTER    (1 << 17)
106 #  define MAC_PROMISCUOUS       (1 << 18)
107 #  define MAC_PASS_ALL_MULTI    (1 << 19)
108 #  define MAC_FULL_DUPLEX       (1 << 20)
109 #  define MAC_NORMAL_MODE       0
110 #  define MAC_INT_LOOPBACK      (1 << 21)
111 #  define MAC_EXT_LOOPBACK      (1 << 22)
112 #  define MAC_DISABLE_RX_OWN    (1 << 23)
113 #  define MAC_BIG_ENDIAN        (1 << 30)
114 #  define MAC_RX_ALL            (1 << 31)
115 #define MAC_ADDRESS_HIGH        0x4
116 #define MAC_ADDRESS_LOW         0x8
117 #define MAC_MCAST_HIGH          0xC
118 #define MAC_MCAST_LOW           0x10
119 #define MAC_MII_CNTRL           0x14
120 #  define MAC_MII_BUSY          (1 << 0)
121 #  define MAC_MII_READ          0
122 #  define MAC_MII_WRITE         (1 << 1)
123 #  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
124 #  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
125 #define MAC_MII_DATA            0x18
126 #define MAC_FLOW_CNTRL          0x1C
127 #  define MAC_FLOW_CNTRL_BUSY   (1 << 0)
128 #  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
129 #  define MAC_PASS_CONTROL      (1 << 2)
130 #  define MAC_SET_PAUSE(X)      (((X) & 0xffff) << 16)
131 #define MAC_VLAN1_TAG           0x20
132 #define MAC_VLAN2_TAG           0x24
133
134 /* Ethernet Controller Enable */
135 #  define MAC_EN_CLOCK_ENABLE   (1 << 0)
136 #  define MAC_EN_RESET0         (1 << 1)
137 #  define MAC_EN_TOSS           (0 << 2)
138 #  define MAC_EN_CACHEABLE      (1 << 3)
139 #  define MAC_EN_RESET1         (1 << 4)
140 #  define MAC_EN_RESET2         (1 << 5)
141 #  define MAC_DMA_RESET         (1 << 6)
142
143 /* Ethernet Controller DMA Channels */
144 /* offsets from MAC_TX_RING_ADDR address */
145 #define MAC_TX_BUFF0_STATUS     0x0
146 #  define TX_FRAME_ABORTED      (1 << 0)
147 #  define TX_JAB_TIMEOUT        (1 << 1)
148 #  define TX_NO_CARRIER         (1 << 2)
149 #  define TX_LOSS_CARRIER       (1 << 3)
150 #  define TX_EXC_DEF            (1 << 4)
151 #  define TX_LATE_COLL_ABORT    (1 << 5)
152 #  define TX_EXC_COLL           (1 << 6)
153 #  define TX_UNDERRUN           (1 << 7)
154 #  define TX_DEFERRED           (1 << 8)
155 #  define TX_LATE_COLL          (1 << 9)
156 #  define TX_COLL_CNT_MASK      (0xF << 10)
157 #  define TX_PKT_RETRY          (1 << 31)
158 #define MAC_TX_BUFF0_ADDR       0x4
159 #  define TX_DMA_ENABLE         (1 << 0)
160 #  define TX_T_DONE             (1 << 1)
161 #  define TX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
162 #define MAC_TX_BUFF0_LEN        0x8
163 #define MAC_TX_BUFF1_STATUS     0x10
164 #define MAC_TX_BUFF1_ADDR       0x14
165 #define MAC_TX_BUFF1_LEN        0x18
166 #define MAC_TX_BUFF2_STATUS     0x20
167 #define MAC_TX_BUFF2_ADDR       0x24
168 #define MAC_TX_BUFF2_LEN        0x28
169 #define MAC_TX_BUFF3_STATUS     0x30
170 #define MAC_TX_BUFF3_ADDR       0x34
171 #define MAC_TX_BUFF3_LEN        0x38
172
173 /* offsets from MAC_RX_RING_ADDR */
174 #define MAC_RX_BUFF0_STATUS     0x0
175 #  define RX_FRAME_LEN_MASK     0x3fff
176 #  define RX_WDOG_TIMER         (1 << 14)
177 #  define RX_RUNT               (1 << 15)
178 #  define RX_OVERLEN            (1 << 16)
179 #  define RX_COLL               (1 << 17)
180 #  define RX_ETHER              (1 << 18)
181 #  define RX_MII_ERROR          (1 << 19)
182 #  define RX_DRIBBLING          (1 << 20)
183 #  define RX_CRC_ERROR          (1 << 21)
184 #  define RX_VLAN1              (1 << 22)
185 #  define RX_VLAN2              (1 << 23)
186 #  define RX_LEN_ERROR          (1 << 24)
187 #  define RX_CNTRL_FRAME        (1 << 25)
188 #  define RX_U_CNTRL_FRAME      (1 << 26)
189 #  define RX_MCAST_FRAME        (1 << 27)
190 #  define RX_BCAST_FRAME        (1 << 28)
191 #  define RX_FILTER_FAIL        (1 << 29)
192 #  define RX_PACKET_FILTER      (1 << 30)
193 #  define RX_MISSED_FRAME       (1 << 31)
194
195 #  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
196                     RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
197                     RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
198 #define MAC_RX_BUFF0_ADDR       0x4
199 #  define RX_DMA_ENABLE         (1 << 0)
200 #  define RX_T_DONE             (1 << 1)
201 #  define RX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
202 #  define RX_SET_BUFF_ADDR(X)   ((X) & 0xffffffc0)
203 #define MAC_RX_BUFF1_STATUS     0x10
204 #define MAC_RX_BUFF1_ADDR       0x14
205 #define MAC_RX_BUFF2_STATUS     0x20
206 #define MAC_RX_BUFF2_ADDR       0x24
207 #define MAC_RX_BUFF3_STATUS     0x30
208 #define MAC_RX_BUFF3_ADDR       0x34
209
210 /*
211  * Theory of operation
212  *
213  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
214  * There are four receive and four transmit descriptors.  These
215  * descriptors are not in memory; rather, they are just a set of
216  * hardware registers.
217  *
218  * Since the Au1000 has a coherent data cache, the receive and
219  * transmit buffers are allocated from the KSEG0 segment. The
220  * hardware registers, however, are still mapped at KSEG1 to
221  * make sure there's no out-of-order writes, and that all writes
222  * complete immediately.
223  */
224
225 /*
226  * board-specific configurations
227  *
228  * PHY detection algorithm
229  *
230  * If phy_static_config is undefined, the PHY setup is
231  * autodetected:
232  *
233  * mii_probe() first searches the current MAC's MII bus for a PHY,
234  * selecting the first (or last, if phy_search_highest_addr is
235  * defined) PHY address not already claimed by another netdev.
236  *
237  * If nothing was found that way when searching for the 2nd ethernet
238  * controller's PHY and phy1_search_mac0 is defined, then
239  * the first MII bus is searched as well for an unclaimed PHY; this is
240  * needed in case of a dual-PHY accessible only through the MAC0's MII
241  * bus.
242  *
243  * Finally, if no PHY is found, then the corresponding ethernet
244  * controller is not registered to the network subsystem.
245  */
246
247 /* autodetection defaults: phy1_search_mac0 */
248
249 /* static PHY setup
250  *
251  * most boards PHY setup should be detectable properly with the
252  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
253  * you have a switch attached, or want to use the PHY's interrupt
254  * notification capabilities) you can provide a static PHY
255  * configuration here
256  *
257  * IRQs may only be set, if a PHY address was configured
258  * If a PHY address is given, also a bus id is required to be set
259  *
260  * ps: make sure the used irqs are configured properly in the board
261  * specific irq-map
262  */
263
264 static void au1000_enable_mac(struct net_device *dev, int force_reset)
265 {
266         unsigned long flags;
267         struct au1000_private *aup = netdev_priv(dev);
268
269         spin_lock_irqsave(&aup->lock, flags);
270
271         if (force_reset || (!aup->mac_enabled)) {
272                 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
273                 wmb(); /* drain writebuffer */
274                 mdelay(2);
275                 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
276                                 | MAC_EN_CLOCK_ENABLE), aup->enable);
277                 wmb(); /* drain writebuffer */
278                 mdelay(2);
279
280                 aup->mac_enabled = 1;
281         }
282
283         spin_unlock_irqrestore(&aup->lock, flags);
284 }
285
286 /*
287  * MII operations
288  */
289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
290 {
291         struct au1000_private *aup = netdev_priv(dev);
292         u32 *const mii_control_reg = &aup->mac->mii_control;
293         u32 *const mii_data_reg = &aup->mac->mii_data;
294         u32 timedout = 20;
295         u32 mii_control;
296
297         while (readl(mii_control_reg) & MAC_MII_BUSY) {
298                 mdelay(1);
299                 if (--timedout == 0) {
300                         netdev_err(dev, "read_MII busy timeout!!\n");
301                         return -1;
302                 }
303         }
304
305         mii_control = MAC_SET_MII_SELECT_REG(reg) |
306                 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
307
308         writel(mii_control, mii_control_reg);
309
310         timedout = 20;
311         while (readl(mii_control_reg) & MAC_MII_BUSY) {
312                 mdelay(1);
313                 if (--timedout == 0) {
314                         netdev_err(dev, "mdio_read busy timeout!!\n");
315                         return -1;
316                 }
317         }
318         return readl(mii_data_reg);
319 }
320
321 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
322                               int reg, u16 value)
323 {
324         struct au1000_private *aup = netdev_priv(dev);
325         u32 *const mii_control_reg = &aup->mac->mii_control;
326         u32 *const mii_data_reg = &aup->mac->mii_data;
327         u32 timedout = 20;
328         u32 mii_control;
329
330         while (readl(mii_control_reg) & MAC_MII_BUSY) {
331                 mdelay(1);
332                 if (--timedout == 0) {
333                         netdev_err(dev, "mdio_write busy timeout!!\n");
334                         return;
335                 }
336         }
337
338         mii_control = MAC_SET_MII_SELECT_REG(reg) |
339                 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
340
341         writel(value, mii_data_reg);
342         writel(mii_control, mii_control_reg);
343 }
344
345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
346 {
347         struct net_device *const dev = bus->priv;
348
349         /* make sure the MAC associated with this
350          * mii_bus is enabled
351          */
352         au1000_enable_mac(dev, 0);
353
354         return au1000_mdio_read(dev, phy_addr, regnum);
355 }
356
357 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
358                                 u16 value)
359 {
360         struct net_device *const dev = bus->priv;
361
362         /* make sure the MAC associated with this
363          * mii_bus is enabled
364          */
365         au1000_enable_mac(dev, 0);
366
367         au1000_mdio_write(dev, phy_addr, regnum, value);
368         return 0;
369 }
370
371 static int au1000_mdiobus_reset(struct mii_bus *bus)
372 {
373         struct net_device *const dev = bus->priv;
374
375         /* make sure the MAC associated with this
376          * mii_bus is enabled
377          */
378         au1000_enable_mac(dev, 0);
379
380         return 0;
381 }
382
383 static void au1000_hard_stop(struct net_device *dev)
384 {
385         struct au1000_private *aup = netdev_priv(dev);
386         u32 reg;
387
388         netif_dbg(aup, drv, dev, "hard stop\n");
389
390         reg = readl(&aup->mac->control);
391         reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
392         writel(reg, &aup->mac->control);
393         wmb(); /* drain writebuffer */
394         mdelay(10);
395 }
396
397 static void au1000_enable_rx_tx(struct net_device *dev)
398 {
399         struct au1000_private *aup = netdev_priv(dev);
400         u32 reg;
401
402         netif_dbg(aup, hw, dev, "enable_rx_tx\n");
403
404         reg = readl(&aup->mac->control);
405         reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
406         writel(reg, &aup->mac->control);
407         wmb(); /* drain writebuffer */
408         mdelay(10);
409 }
410
411 static void
412 au1000_adjust_link(struct net_device *dev)
413 {
414         struct au1000_private *aup = netdev_priv(dev);
415         struct phy_device *phydev = dev->phydev;
416         unsigned long flags;
417         u32 reg;
418
419         int status_change = 0;
420
421         BUG_ON(!phydev);
422
423         spin_lock_irqsave(&aup->lock, flags);
424
425         if (phydev->link && (aup->old_speed != phydev->speed)) {
426                 /* speed changed */
427
428                 switch (phydev->speed) {
429                 case SPEED_10:
430                 case SPEED_100:
431                         break;
432                 default:
433                         netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
434                                                         phydev->speed);
435                         break;
436                 }
437
438                 aup->old_speed = phydev->speed;
439
440                 status_change = 1;
441         }
442
443         if (phydev->link && (aup->old_duplex != phydev->duplex)) {
444                 /* duplex mode changed */
445
446                 /* switching duplex mode requires to disable rx and tx! */
447                 au1000_hard_stop(dev);
448
449                 reg = readl(&aup->mac->control);
450                 if (DUPLEX_FULL == phydev->duplex) {
451                         reg |= MAC_FULL_DUPLEX;
452                         reg &= ~MAC_DISABLE_RX_OWN;
453                 } else {
454                         reg &= ~MAC_FULL_DUPLEX;
455                         reg |= MAC_DISABLE_RX_OWN;
456                 }
457                 writel(reg, &aup->mac->control);
458                 wmb(); /* drain writebuffer */
459                 mdelay(1);
460
461                 au1000_enable_rx_tx(dev);
462                 aup->old_duplex = phydev->duplex;
463
464                 status_change = 1;
465         }
466
467         if (phydev->link != aup->old_link) {
468                 /* link state changed */
469
470                 if (!phydev->link) {
471                         /* link went down */
472                         aup->old_speed = 0;
473                         aup->old_duplex = -1;
474                 }
475
476                 aup->old_link = phydev->link;
477                 status_change = 1;
478         }
479
480         spin_unlock_irqrestore(&aup->lock, flags);
481
482         if (status_change) {
483                 if (phydev->link)
484                         netdev_info(dev, "link up (%d/%s)\n",
485                                phydev->speed,
486                                DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
487                 else
488                         netdev_info(dev, "link down\n");
489         }
490 }
491
492 static int au1000_mii_probe(struct net_device *dev)
493 {
494         struct au1000_private *const aup = netdev_priv(dev);
495         struct phy_device *phydev = NULL;
496         int phy_addr;
497
498         if (aup->phy_static_config) {
499                 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
500
501                 if (aup->phy_addr)
502                         phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
503                 else
504                         netdev_info(dev, "using PHY-less setup\n");
505                 return 0;
506         }
507
508         /* find the first (lowest address) PHY
509          * on the current MAC's MII bus
510          */
511         for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
512                 if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
513                         phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
514                         if (!aup->phy_search_highest_addr)
515                                 /* break out with first one found */
516                                 break;
517                 }
518
519         if (aup->phy1_search_mac0) {
520                 /* try harder to find a PHY */
521                 if (!phydev && (aup->mac_id == 1)) {
522                         /* no PHY found, maybe we have a dual PHY? */
523                         dev_info(&dev->dev, ": no PHY found on MAC1, "
524                                 "let's see if it's attached to MAC0...\n");
525
526                         /* find the first (lowest address) non-attached
527                          * PHY on the MAC0 MII bus
528                          */
529                         for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
530                                 struct phy_device *const tmp_phydev =
531                                         mdiobus_get_phy(aup->mii_bus,
532                                                         phy_addr);
533
534                                 if (aup->mac_id == 1)
535                                         break;
536
537                                 /* no PHY here... */
538                                 if (!tmp_phydev)
539                                         continue;
540
541                                 /* already claimed by MAC0 */
542                                 if (tmp_phydev->attached_dev)
543                                         continue;
544
545                                 phydev = tmp_phydev;
546                                 break; /* found it */
547                         }
548                 }
549         }
550
551         if (!phydev) {
552                 netdev_err(dev, "no PHY found\n");
553                 return -1;
554         }
555
556         /* now we are supposed to have a proper phydev, to attach to... */
557         BUG_ON(phydev->attached_dev);
558
559         phydev = phy_connect(dev, phydev_name(phydev),
560                              &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
561
562         if (IS_ERR(phydev)) {
563                 netdev_err(dev, "Could not attach to PHY\n");
564                 return PTR_ERR(phydev);
565         }
566
567         /* mask with MAC supported features */
568         phydev->supported &= (SUPPORTED_10baseT_Half
569                               | SUPPORTED_10baseT_Full
570                               | SUPPORTED_100baseT_Half
571                               | SUPPORTED_100baseT_Full
572                               | SUPPORTED_Autoneg
573                               /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
574                               | SUPPORTED_MII
575                               | SUPPORTED_TP);
576
577         phydev->advertising = phydev->supported;
578
579         aup->old_link = 0;
580         aup->old_speed = 0;
581         aup->old_duplex = -1;
582
583         phy_attached_info(phydev);
584
585         return 0;
586 }
587
588
589 /*
590  * Buffer allocation/deallocation routines. The buffer descriptor returned
591  * has the virtual and dma address of a buffer suitable for
592  * both, receive and transmit operations.
593  */
594 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
595 {
596         struct db_dest *pDB;
597         pDB = aup->pDBfree;
598
599         if (pDB)
600                 aup->pDBfree = pDB->pnext;
601
602         return pDB;
603 }
604
605 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
606 {
607         struct db_dest *pDBfree = aup->pDBfree;
608         if (pDBfree)
609                 pDBfree->pnext = pDB;
610         aup->pDBfree = pDB;
611 }
612
613 static void au1000_reset_mac_unlocked(struct net_device *dev)
614 {
615         struct au1000_private *const aup = netdev_priv(dev);
616         int i;
617
618         au1000_hard_stop(dev);
619
620         writel(MAC_EN_CLOCK_ENABLE, aup->enable);
621         wmb(); /* drain writebuffer */
622         mdelay(2);
623         writel(0, aup->enable);
624         wmb(); /* drain writebuffer */
625         mdelay(2);
626
627         aup->tx_full = 0;
628         for (i = 0; i < NUM_RX_DMA; i++) {
629                 /* reset control bits */
630                 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
631         }
632         for (i = 0; i < NUM_TX_DMA; i++) {
633                 /* reset control bits */
634                 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
635         }
636
637         aup->mac_enabled = 0;
638
639 }
640
641 static void au1000_reset_mac(struct net_device *dev)
642 {
643         struct au1000_private *const aup = netdev_priv(dev);
644         unsigned long flags;
645
646         netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
647                                         (unsigned)aup);
648
649         spin_lock_irqsave(&aup->lock, flags);
650
651         au1000_reset_mac_unlocked(dev);
652
653         spin_unlock_irqrestore(&aup->lock, flags);
654 }
655
656 /*
657  * Setup the receive and transmit "rings".  These pointers are the addresses
658  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
659  * these are not descriptors sitting in memory.
660  */
661 static void
662 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
663 {
664         int i;
665
666         for (i = 0; i < NUM_RX_DMA; i++) {
667                 aup->rx_dma_ring[i] = (struct rx_dma *)
668                         (tx_base + 0x100 + sizeof(struct rx_dma) * i);
669         }
670         for (i = 0; i < NUM_TX_DMA; i++) {
671                 aup->tx_dma_ring[i] = (struct tx_dma *)
672                         (tx_base + sizeof(struct tx_dma) * i);
673         }
674 }
675
676 /*
677  * ethtool operations
678  */
679
680 static void
681 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
682 {
683         struct au1000_private *aup = netdev_priv(dev);
684
685         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
686         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
687         snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
688                  aup->mac_id);
689 }
690
691 static void au1000_set_msglevel(struct net_device *dev, u32 value)
692 {
693         struct au1000_private *aup = netdev_priv(dev);
694         aup->msg_enable = value;
695 }
696
697 static u32 au1000_get_msglevel(struct net_device *dev)
698 {
699         struct au1000_private *aup = netdev_priv(dev);
700         return aup->msg_enable;
701 }
702
703 static const struct ethtool_ops au1000_ethtool_ops = {
704         .get_drvinfo = au1000_get_drvinfo,
705         .get_link = ethtool_op_get_link,
706         .get_msglevel = au1000_get_msglevel,
707         .set_msglevel = au1000_set_msglevel,
708         .get_link_ksettings = phy_ethtool_get_link_ksettings,
709         .set_link_ksettings = phy_ethtool_set_link_ksettings,
710 };
711
712
713 /*
714  * Initialize the interface.
715  *
716  * When the device powers up, the clocks are disabled and the
717  * mac is in reset state.  When the interface is closed, we
718  * do the same -- reset the device and disable the clocks to
719  * conserve power. Thus, whenever au1000_init() is called,
720  * the device should already be in reset state.
721  */
722 static int au1000_init(struct net_device *dev)
723 {
724         struct au1000_private *aup = netdev_priv(dev);
725         unsigned long flags;
726         int i;
727         u32 control;
728
729         netif_dbg(aup, hw, dev, "au1000_init\n");
730
731         /* bring the device out of reset */
732         au1000_enable_mac(dev, 1);
733
734         spin_lock_irqsave(&aup->lock, flags);
735
736         writel(0, &aup->mac->control);
737         aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
738         aup->tx_tail = aup->tx_head;
739         aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
740
741         writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
742                                         &aup->mac->mac_addr_high);
743         writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
744                 dev->dev_addr[1]<<8 | dev->dev_addr[0],
745                                         &aup->mac->mac_addr_low);
746
747
748         for (i = 0; i < NUM_RX_DMA; i++)
749                 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
750
751         wmb(); /* drain writebuffer */
752
753         control = MAC_RX_ENABLE | MAC_TX_ENABLE;
754 #ifndef CONFIG_CPU_LITTLE_ENDIAN
755         control |= MAC_BIG_ENDIAN;
756 #endif
757         if (dev->phydev) {
758                 if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
759                         control |= MAC_FULL_DUPLEX;
760                 else
761                         control |= MAC_DISABLE_RX_OWN;
762         } else { /* PHY-less op, assume full-duplex */
763                 control |= MAC_FULL_DUPLEX;
764         }
765
766         writel(control, &aup->mac->control);
767         writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
768         wmb(); /* drain writebuffer */
769
770         spin_unlock_irqrestore(&aup->lock, flags);
771         return 0;
772 }
773
774 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
775 {
776         struct net_device_stats *ps = &dev->stats;
777
778         ps->rx_packets++;
779         if (status & RX_MCAST_FRAME)
780                 ps->multicast++;
781
782         if (status & RX_ERROR) {
783                 ps->rx_errors++;
784                 if (status & RX_MISSED_FRAME)
785                         ps->rx_missed_errors++;
786                 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
787                         ps->rx_length_errors++;
788                 if (status & RX_CRC_ERROR)
789                         ps->rx_crc_errors++;
790                 if (status & RX_COLL)
791                         ps->collisions++;
792         } else
793                 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
794
795 }
796
797 /*
798  * Au1000 receive routine.
799  */
800 static int au1000_rx(struct net_device *dev)
801 {
802         struct au1000_private *aup = netdev_priv(dev);
803         struct sk_buff *skb;
804         struct rx_dma *prxd;
805         u32 buff_stat, status;
806         struct db_dest *pDB;
807         u32     frmlen;
808
809         netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
810
811         prxd = aup->rx_dma_ring[aup->rx_head];
812         buff_stat = prxd->buff_stat;
813         while (buff_stat & RX_T_DONE)  {
814                 status = prxd->status;
815                 pDB = aup->rx_db_inuse[aup->rx_head];
816                 au1000_update_rx_stats(dev, status);
817                 if (!(status & RX_ERROR))  {
818
819                         /* good frame */
820                         frmlen = (status & RX_FRAME_LEN_MASK);
821                         frmlen -= 4; /* Remove FCS */
822                         skb = netdev_alloc_skb(dev, frmlen + 2);
823                         if (skb == NULL) {
824                                 dev->stats.rx_dropped++;
825                                 continue;
826                         }
827                         skb_reserve(skb, 2);    /* 16 byte IP header align */
828                         skb_copy_to_linear_data(skb,
829                                 (unsigned char *)pDB->vaddr, frmlen);
830                         skb_put(skb, frmlen);
831                         skb->protocol = eth_type_trans(skb, dev);
832                         netif_rx(skb);  /* pass the packet to upper layers */
833                 } else {
834                         if (au1000_debug > 4) {
835                                 pr_err("rx_error(s):");
836                                 if (status & RX_MISSED_FRAME)
837                                         pr_cont(" miss");
838                                 if (status & RX_WDOG_TIMER)
839                                         pr_cont(" wdog");
840                                 if (status & RX_RUNT)
841                                         pr_cont(" runt");
842                                 if (status & RX_OVERLEN)
843                                         pr_cont(" overlen");
844                                 if (status & RX_COLL)
845                                         pr_cont(" coll");
846                                 if (status & RX_MII_ERROR)
847                                         pr_cont(" mii error");
848                                 if (status & RX_CRC_ERROR)
849                                         pr_cont(" crc error");
850                                 if (status & RX_LEN_ERROR)
851                                         pr_cont(" len error");
852                                 if (status & RX_U_CNTRL_FRAME)
853                                         pr_cont(" u control frame");
854                                 pr_cont("\n");
855                         }
856                 }
857                 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
858                 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
859                 wmb(); /* drain writebuffer */
860
861                 /* next descriptor */
862                 prxd = aup->rx_dma_ring[aup->rx_head];
863                 buff_stat = prxd->buff_stat;
864         }
865         return 0;
866 }
867
868 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
869 {
870         struct net_device_stats *ps = &dev->stats;
871
872         if (status & TX_FRAME_ABORTED) {
873                 if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
874                         if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
875                                 /* any other tx errors are only valid
876                                  * in half duplex mode
877                                  */
878                                 ps->tx_errors++;
879                                 ps->tx_aborted_errors++;
880                         }
881                 } else {
882                         ps->tx_errors++;
883                         ps->tx_aborted_errors++;
884                         if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
885                                 ps->tx_carrier_errors++;
886                 }
887         }
888 }
889
890 /*
891  * Called from the interrupt service routine to acknowledge
892  * the TX DONE bits.  This is a must if the irq is setup as
893  * edge triggered.
894  */
895 static void au1000_tx_ack(struct net_device *dev)
896 {
897         struct au1000_private *aup = netdev_priv(dev);
898         struct tx_dma *ptxd;
899
900         ptxd = aup->tx_dma_ring[aup->tx_tail];
901
902         while (ptxd->buff_stat & TX_T_DONE) {
903                 au1000_update_tx_stats(dev, ptxd->status);
904                 ptxd->buff_stat &= ~TX_T_DONE;
905                 ptxd->len = 0;
906                 wmb(); /* drain writebuffer */
907
908                 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
909                 ptxd = aup->tx_dma_ring[aup->tx_tail];
910
911                 if (aup->tx_full) {
912                         aup->tx_full = 0;
913                         netif_wake_queue(dev);
914                 }
915         }
916 }
917
918 /*
919  * Au1000 interrupt service routine.
920  */
921 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
922 {
923         struct net_device *dev = dev_id;
924
925         /* Handle RX interrupts first to minimize chance of overrun */
926
927         au1000_rx(dev);
928         au1000_tx_ack(dev);
929         return IRQ_RETVAL(1);
930 }
931
932 static int au1000_open(struct net_device *dev)
933 {
934         int retval;
935         struct au1000_private *aup = netdev_priv(dev);
936
937         netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
938
939         retval = request_irq(dev->irq, au1000_interrupt, 0,
940                                         dev->name, dev);
941         if (retval) {
942                 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
943                 return retval;
944         }
945
946         retval = au1000_init(dev);
947         if (retval) {
948                 netdev_err(dev, "error in au1000_init\n");
949                 free_irq(dev->irq, dev);
950                 return retval;
951         }
952
953         if (dev->phydev) {
954                 /* cause the PHY state machine to schedule a link state check */
955                 dev->phydev->state = PHY_CHANGELINK;
956                 phy_start(dev->phydev);
957         }
958
959         netif_start_queue(dev);
960
961         netif_dbg(aup, drv, dev, "open: Initialization done.\n");
962
963         return 0;
964 }
965
966 static int au1000_close(struct net_device *dev)
967 {
968         unsigned long flags;
969         struct au1000_private *const aup = netdev_priv(dev);
970
971         netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
972
973         if (dev->phydev)
974                 phy_stop(dev->phydev);
975
976         spin_lock_irqsave(&aup->lock, flags);
977
978         au1000_reset_mac_unlocked(dev);
979
980         /* stop the device */
981         netif_stop_queue(dev);
982
983         /* disable the interrupt */
984         free_irq(dev->irq, dev);
985         spin_unlock_irqrestore(&aup->lock, flags);
986
987         return 0;
988 }
989
990 /*
991  * Au1000 transmit routine.
992  */
993 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
994 {
995         struct au1000_private *aup = netdev_priv(dev);
996         struct net_device_stats *ps = &dev->stats;
997         struct tx_dma *ptxd;
998         u32 buff_stat;
999         struct db_dest *pDB;
1000         int i;
1001
1002         netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
1003                                 (unsigned)aup, skb->len,
1004                                 skb->data, aup->tx_head);
1005
1006         ptxd = aup->tx_dma_ring[aup->tx_head];
1007         buff_stat = ptxd->buff_stat;
1008         if (buff_stat & TX_DMA_ENABLE) {
1009                 /* We've wrapped around and the transmitter is still busy */
1010                 netif_stop_queue(dev);
1011                 aup->tx_full = 1;
1012                 return NETDEV_TX_BUSY;
1013         } else if (buff_stat & TX_T_DONE) {
1014                 au1000_update_tx_stats(dev, ptxd->status);
1015                 ptxd->len = 0;
1016         }
1017
1018         if (aup->tx_full) {
1019                 aup->tx_full = 0;
1020                 netif_wake_queue(dev);
1021         }
1022
1023         pDB = aup->tx_db_inuse[aup->tx_head];
1024         skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
1025         if (skb->len < ETH_ZLEN) {
1026                 for (i = skb->len; i < ETH_ZLEN; i++)
1027                         ((char *)pDB->vaddr)[i] = 0;
1028
1029                 ptxd->len = ETH_ZLEN;
1030         } else
1031                 ptxd->len = skb->len;
1032
1033         ps->tx_packets++;
1034         ps->tx_bytes += ptxd->len;
1035
1036         ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1037         wmb(); /* drain writebuffer */
1038         dev_kfree_skb(skb);
1039         aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1040         return NETDEV_TX_OK;
1041 }
1042
1043 /*
1044  * The Tx ring has been full longer than the watchdog timeout
1045  * value. The transmitter must be hung?
1046  */
1047 static void au1000_tx_timeout(struct net_device *dev)
1048 {
1049         netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1050         au1000_reset_mac(dev);
1051         au1000_init(dev);
1052         netif_trans_update(dev); /* prevent tx timeout */
1053         netif_wake_queue(dev);
1054 }
1055
1056 static void au1000_multicast_list(struct net_device *dev)
1057 {
1058         struct au1000_private *aup = netdev_priv(dev);
1059         u32 reg;
1060
1061         netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1062         reg = readl(&aup->mac->control);
1063         if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
1064                 reg |= MAC_PROMISCUOUS;
1065         } else if ((dev->flags & IFF_ALLMULTI)  ||
1066                            netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1067                 reg |= MAC_PASS_ALL_MULTI;
1068                 reg &= ~MAC_PROMISCUOUS;
1069                 netdev_info(dev, "Pass all multicast\n");
1070         } else {
1071                 struct netdev_hw_addr *ha;
1072                 u32 mc_filter[2];       /* Multicast hash filter */
1073
1074                 mc_filter[1] = mc_filter[0] = 0;
1075                 netdev_for_each_mc_addr(ha, dev)
1076                         set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1077                                         (long *)mc_filter);
1078                 writel(mc_filter[1], &aup->mac->multi_hash_high);
1079                 writel(mc_filter[0], &aup->mac->multi_hash_low);
1080                 reg &= ~MAC_PROMISCUOUS;
1081                 reg |= MAC_HASH_MODE;
1082         }
1083         writel(reg, &aup->mac->control);
1084 }
1085
1086 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1087 {
1088         if (!netif_running(dev))
1089                 return -EINVAL;
1090
1091         if (!dev->phydev)
1092                 return -EINVAL; /* PHY not controllable */
1093
1094         return phy_mii_ioctl(dev->phydev, rq, cmd);
1095 }
1096
1097 static const struct net_device_ops au1000_netdev_ops = {
1098         .ndo_open               = au1000_open,
1099         .ndo_stop               = au1000_close,
1100         .ndo_start_xmit         = au1000_tx,
1101         .ndo_set_rx_mode        = au1000_multicast_list,
1102         .ndo_do_ioctl           = au1000_ioctl,
1103         .ndo_tx_timeout         = au1000_tx_timeout,
1104         .ndo_set_mac_address    = eth_mac_addr,
1105         .ndo_validate_addr      = eth_validate_addr,
1106         .ndo_change_mtu         = eth_change_mtu,
1107 };
1108
1109 static int au1000_probe(struct platform_device *pdev)
1110 {
1111         struct au1000_private *aup = NULL;
1112         struct au1000_eth_platform_data *pd;
1113         struct net_device *dev = NULL;
1114         struct db_dest *pDB, *pDBfree;
1115         int irq, i, err = 0;
1116         struct resource *base, *macen, *macdma;
1117
1118         base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1119         if (!base) {
1120                 dev_err(&pdev->dev, "failed to retrieve base register\n");
1121                 err = -ENODEV;
1122                 goto out;
1123         }
1124
1125         macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1126         if (!macen) {
1127                 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1128                 err = -ENODEV;
1129                 goto out;
1130         }
1131
1132         irq = platform_get_irq(pdev, 0);
1133         if (irq < 0) {
1134                 dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1135                 err = -ENODEV;
1136                 goto out;
1137         }
1138
1139         macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1140         if (!macdma) {
1141                 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1142                 err = -ENODEV;
1143                 goto out;
1144         }
1145
1146         if (!request_mem_region(base->start, resource_size(base),
1147                                                         pdev->name)) {
1148                 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1149                 err = -ENXIO;
1150                 goto out;
1151         }
1152
1153         if (!request_mem_region(macen->start, resource_size(macen),
1154                                                         pdev->name)) {
1155                 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1156                 err = -ENXIO;
1157                 goto err_request;
1158         }
1159
1160         if (!request_mem_region(macdma->start, resource_size(macdma),
1161                                                         pdev->name)) {
1162                 dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1163                 err = -ENXIO;
1164                 goto err_macdma;
1165         }
1166
1167         dev = alloc_etherdev(sizeof(struct au1000_private));
1168         if (!dev) {
1169                 err = -ENOMEM;
1170                 goto err_alloc;
1171         }
1172
1173         SET_NETDEV_DEV(dev, &pdev->dev);
1174         platform_set_drvdata(pdev, dev);
1175         aup = netdev_priv(dev);
1176
1177         spin_lock_init(&aup->lock);
1178         aup->msg_enable = (au1000_debug < 4 ?
1179                                 AU1000_DEF_MSG_ENABLE : au1000_debug);
1180
1181         /* Allocate the data buffers
1182          * Snooping works fine with eth on all au1xxx
1183          */
1184         aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1185                                                 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1186                                                 &aup->dma_addr, 0);
1187         if (!aup->vaddr) {
1188                 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1189                 err = -ENOMEM;
1190                 goto err_vaddr;
1191         }
1192
1193         /* aup->mac is the base address of the MAC's registers */
1194         aup->mac = (struct mac_reg *)
1195                         ioremap_nocache(base->start, resource_size(base));
1196         if (!aup->mac) {
1197                 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1198                 err = -ENXIO;
1199                 goto err_remap1;
1200         }
1201
1202         /* Setup some variables for quick register address access */
1203         aup->enable = (u32 *)ioremap_nocache(macen->start,
1204                                                 resource_size(macen));
1205         if (!aup->enable) {
1206                 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1207                 err = -ENXIO;
1208                 goto err_remap2;
1209         }
1210         aup->mac_id = pdev->id;
1211
1212         aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1213         if (!aup->macdma) {
1214                 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1215                 err = -ENXIO;
1216                 goto err_remap3;
1217         }
1218
1219         au1000_setup_hw_rings(aup, aup->macdma);
1220
1221         writel(0, aup->enable);
1222         aup->mac_enabled = 0;
1223
1224         pd = dev_get_platdata(&pdev->dev);
1225         if (!pd) {
1226                 dev_info(&pdev->dev, "no platform_data passed,"
1227                                         " PHY search on MAC0\n");
1228                 aup->phy1_search_mac0 = 1;
1229         } else {
1230                 if (is_valid_ether_addr(pd->mac)) {
1231                         memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1232                 } else {
1233                         /* Set a random MAC since no valid provided by platform_data. */
1234                         eth_hw_addr_random(dev);
1235                 }
1236
1237                 aup->phy_static_config = pd->phy_static_config;
1238                 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1239                 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1240                 aup->phy_addr = pd->phy_addr;
1241                 aup->phy_busid = pd->phy_busid;
1242                 aup->phy_irq = pd->phy_irq;
1243         }
1244
1245         if (aup->phy_busid > 0) {
1246                 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1247                 err = -ENODEV;
1248                 goto err_mdiobus_alloc;
1249         }
1250
1251         aup->mii_bus = mdiobus_alloc();
1252         if (aup->mii_bus == NULL) {
1253                 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1254                 err = -ENOMEM;
1255                 goto err_mdiobus_alloc;
1256         }
1257
1258         aup->mii_bus->priv = dev;
1259         aup->mii_bus->read = au1000_mdiobus_read;
1260         aup->mii_bus->write = au1000_mdiobus_write;
1261         aup->mii_bus->reset = au1000_mdiobus_reset;
1262         aup->mii_bus->name = "au1000_eth_mii";
1263         snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1264                 pdev->name, aup->mac_id);
1265
1266         /* if known, set corresponding PHY IRQs */
1267         if (aup->phy_static_config)
1268                 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1269                         aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1270
1271         err = mdiobus_register(aup->mii_bus);
1272         if (err) {
1273                 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1274                 goto err_mdiobus_reg;
1275         }
1276
1277         err = au1000_mii_probe(dev);
1278         if (err != 0)
1279                 goto err_out;
1280
1281         pDBfree = NULL;
1282         /* setup the data buffer descriptors and attach a buffer to each one */
1283         pDB = aup->db;
1284         for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1285                 pDB->pnext = pDBfree;
1286                 pDBfree = pDB;
1287                 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1288                 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1289                 pDB++;
1290         }
1291         aup->pDBfree = pDBfree;
1292
1293         err = -ENODEV;
1294         for (i = 0; i < NUM_RX_DMA; i++) {
1295                 pDB = au1000_GetFreeDB(aup);
1296                 if (!pDB)
1297                         goto err_out;
1298
1299                 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1300                 aup->rx_db_inuse[i] = pDB;
1301         }
1302
1303         err = -ENODEV;
1304         for (i = 0; i < NUM_TX_DMA; i++) {
1305                 pDB = au1000_GetFreeDB(aup);
1306                 if (!pDB)
1307                         goto err_out;
1308
1309                 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1310                 aup->tx_dma_ring[i]->len = 0;
1311                 aup->tx_db_inuse[i] = pDB;
1312         }
1313
1314         dev->base_addr = base->start;
1315         dev->irq = irq;
1316         dev->netdev_ops = &au1000_netdev_ops;
1317         dev->ethtool_ops = &au1000_ethtool_ops;
1318         dev->watchdog_timeo = ETH_TX_TIMEOUT;
1319
1320         /*
1321          * The boot code uses the ethernet controller, so reset it to start
1322          * fresh.  au1000_init() expects that the device is in reset state.
1323          */
1324         au1000_reset_mac(dev);
1325
1326         err = register_netdev(dev);
1327         if (err) {
1328                 netdev_err(dev, "Cannot register net device, aborting.\n");
1329                 goto err_out;
1330         }
1331
1332         netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1333                         (unsigned long)base->start, irq);
1334
1335         pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1336
1337         return 0;
1338
1339 err_out:
1340         if (aup->mii_bus != NULL)
1341                 mdiobus_unregister(aup->mii_bus);
1342
1343         /* here we should have a valid dev plus aup-> register addresses
1344          * so we can reset the mac properly.
1345          */
1346         au1000_reset_mac(dev);
1347
1348         for (i = 0; i < NUM_RX_DMA; i++) {
1349                 if (aup->rx_db_inuse[i])
1350                         au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1351         }
1352         for (i = 0; i < NUM_TX_DMA; i++) {
1353                 if (aup->tx_db_inuse[i])
1354                         au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1355         }
1356 err_mdiobus_reg:
1357         mdiobus_free(aup->mii_bus);
1358 err_mdiobus_alloc:
1359         iounmap(aup->macdma);
1360 err_remap3:
1361         iounmap(aup->enable);
1362 err_remap2:
1363         iounmap(aup->mac);
1364 err_remap1:
1365         dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1366                              (void *)aup->vaddr, aup->dma_addr);
1367 err_vaddr:
1368         free_netdev(dev);
1369 err_alloc:
1370         release_mem_region(macdma->start, resource_size(macdma));
1371 err_macdma:
1372         release_mem_region(macen->start, resource_size(macen));
1373 err_request:
1374         release_mem_region(base->start, resource_size(base));
1375 out:
1376         return err;
1377 }
1378
1379 static int au1000_remove(struct platform_device *pdev)
1380 {
1381         struct net_device *dev = platform_get_drvdata(pdev);
1382         struct au1000_private *aup = netdev_priv(dev);
1383         int i;
1384         struct resource *base, *macen;
1385
1386         unregister_netdev(dev);
1387         mdiobus_unregister(aup->mii_bus);
1388         mdiobus_free(aup->mii_bus);
1389
1390         for (i = 0; i < NUM_RX_DMA; i++)
1391                 if (aup->rx_db_inuse[i])
1392                         au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1393
1394         for (i = 0; i < NUM_TX_DMA; i++)
1395                 if (aup->tx_db_inuse[i])
1396                         au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1397
1398         dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1399                         (NUM_TX_BUFFS + NUM_RX_BUFFS),
1400                         (void *)aup->vaddr, aup->dma_addr);
1401
1402         iounmap(aup->macdma);
1403         iounmap(aup->mac);
1404         iounmap(aup->enable);
1405
1406         base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1407         release_mem_region(base->start, resource_size(base));
1408
1409         base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1410         release_mem_region(base->start, resource_size(base));
1411
1412         macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1413         release_mem_region(macen->start, resource_size(macen));
1414
1415         free_netdev(dev);
1416
1417         return 0;
1418 }
1419
1420 static struct platform_driver au1000_eth_driver = {
1421         .probe  = au1000_probe,
1422         .remove = au1000_remove,
1423         .driver = {
1424                 .name   = "au1000-eth",
1425         },
1426 };
1427
1428 module_platform_driver(au1000_eth_driver);
1429
1430 MODULE_ALIAS("platform:au1000-eth");