Merge branch 'thermal-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang...
[cascardo/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61
62 #include <asm/cacheflush.h>
63
64 #include "fec.h"
65
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68
69 #define DRIVER_NAME     "fec"
70
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE    (1 << 5)
75 #define FEC_ENET_RSEM_V 0x84
76 #define FEC_ENET_RSFL_V 16
77 #define FEC_ENET_RAEM_V 0x8
78 #define FEC_ENET_RAFL_V 0x8
79 #define FEC_ENET_OPD_V  0xFFF0
80
81 static struct platform_device_id fec_devtype[] = {
82         {
83                 /* keep it for coldfire */
84                 .name = DRIVER_NAME,
85                 .driver_data = 0,
86         }, {
87                 .name = "imx25-fec",
88                 .driver_data = FEC_QUIRK_USE_GASKET,
89         }, {
90                 .name = "imx27-fec",
91                 .driver_data = 0,
92         }, {
93                 .name = "imx28-fec",
94                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95                                 FEC_QUIRK_SINGLE_MDIO,
96         }, {
97                 .name = "imx6q-fec",
98                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101         }, {
102                 .name = "mvf600-fec",
103                 .driver_data = FEC_QUIRK_ENET_MAC,
104         }, {
105                 .name = "imx6sx-fec",
106                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109                                 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110         }, {
111                 /* sentinel */
112         }
113 };
114 MODULE_DEVICE_TABLE(platform, fec_devtype);
115
116 enum imx_fec_type {
117         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
118         IMX27_FEC,      /* runs on i.mx27/35/51 */
119         IMX28_FEC,
120         IMX6Q_FEC,
121         MVF600_FEC,
122         IMX6SX_FEC,
123 };
124
125 static const struct of_device_id fec_dt_ids[] = {
126         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131         { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132         { /* sentinel */ }
133 };
134 MODULE_DEVICE_TABLE(of, fec_dt_ids);
135
136 static unsigned char macaddr[ETH_ALEN];
137 module_param_array(macaddr, byte, NULL, 0);
138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139
140 #if defined(CONFIG_M5272)
141 /*
142  * Some hardware gets it MAC address out of local flash memory.
143  * if this is non-zero then assume it is the address to get MAC from.
144  */
145 #if defined(CONFIG_NETtel)
146 #define FEC_FLASHMAC    0xf0006006
147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148 #define FEC_FLASHMAC    0xf0006000
149 #elif defined(CONFIG_CANCam)
150 #define FEC_FLASHMAC    0xf0020000
151 #elif defined (CONFIG_M5272C3)
152 #define FEC_FLASHMAC    (0xffe04000 + 4)
153 #elif defined(CONFIG_MOD5272)
154 #define FEC_FLASHMAC    0xffc0406b
155 #else
156 #define FEC_FLASHMAC    0
157 #endif
158 #endif /* CONFIG_M5272 */
159
160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161  */
162 #define PKT_MAXBUF_SIZE         1522
163 #define PKT_MINBUF_SIZE         64
164 #define PKT_MAXBLR_SIZE         1536
165
166 /* FEC receive acceleration */
167 #define FEC_RACC_IPDIS          (1 << 1)
168 #define FEC_RACC_PRODIS         (1 << 2)
169 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170
171 /*
172  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173  * size bits. Other FEC hardware does not, so we need to take that into
174  * account when setting it.
175  */
176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
179 #else
180 #define OPT_FRAME_SIZE  0
181 #endif
182
183 /* FEC MII MMFR bits definition */
184 #define FEC_MMFR_ST             (1 << 30)
185 #define FEC_MMFR_OP_READ        (2 << 28)
186 #define FEC_MMFR_OP_WRITE       (1 << 28)
187 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
188 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
189 #define FEC_MMFR_TA             (2 << 16)
190 #define FEC_MMFR_DATA(v)        (v & 0xffff)
191
192 #define FEC_MII_TIMEOUT         30000 /* us */
193
194 /* Transmitter timeout */
195 #define TX_TIMEOUT (2 * HZ)
196
197 #define FEC_PAUSE_FLAG_AUTONEG  0x1
198 #define FEC_PAUSE_FLAG_ENABLE   0x2
199
200 #define COPYBREAK_DEFAULT       256
201
202 #define TSO_HEADER_SIZE         128
203 /* Max number of allowed TCP segments for software TSO */
204 #define FEC_MAX_TSO_SEGS        100
205 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
206
207 #define IS_TSO_HEADER(txq, addr) \
208         ((addr >= txq->tso_hdrs_dma) && \
209         (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
210
211 static int mii_cnt;
212
213 static inline
214 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
215                                       struct fec_enet_private *fep,
216                                       int queue_id)
217 {
218         struct bufdesc *new_bd = bdp + 1;
219         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
220         struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
221         struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
222         struct bufdesc_ex *ex_base;
223         struct bufdesc *base;
224         int ring_size;
225
226         if (bdp >= txq->tx_bd_base) {
227                 base = txq->tx_bd_base;
228                 ring_size = txq->tx_ring_size;
229                 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
230         } else {
231                 base = rxq->rx_bd_base;
232                 ring_size = rxq->rx_ring_size;
233                 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
234         }
235
236         if (fep->bufdesc_ex)
237                 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
238                         ex_base : ex_new_bd);
239         else
240                 return (new_bd >= (base + ring_size)) ?
241                         base : new_bd;
242 }
243
244 static inline
245 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
246                                       struct fec_enet_private *fep,
247                                       int queue_id)
248 {
249         struct bufdesc *new_bd = bdp - 1;
250         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
251         struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
252         struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
253         struct bufdesc_ex *ex_base;
254         struct bufdesc *base;
255         int ring_size;
256
257         if (bdp >= txq->tx_bd_base) {
258                 base = txq->tx_bd_base;
259                 ring_size = txq->tx_ring_size;
260                 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
261         } else {
262                 base = rxq->rx_bd_base;
263                 ring_size = rxq->rx_ring_size;
264                 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
265         }
266
267         if (fep->bufdesc_ex)
268                 return (struct bufdesc *)((ex_new_bd < ex_base) ?
269                         (ex_new_bd + ring_size) : ex_new_bd);
270         else
271                 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
272 }
273
274 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
275                                 struct fec_enet_private *fep)
276 {
277         return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
278 }
279
280 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
281                                         struct fec_enet_priv_tx_q *txq)
282 {
283         int entries;
284
285         entries = ((const char *)txq->dirty_tx -
286                         (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
287
288         return entries > 0 ? entries : entries + txq->tx_ring_size;
289 }
290
291 static void swap_buffer(void *bufaddr, int len)
292 {
293         int i;
294         unsigned int *buf = bufaddr;
295
296         for (i = 0; i < len; i += 4, buf++)
297                 swab32s(buf);
298 }
299
300 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
301 {
302         int i;
303         unsigned int *src = src_buf;
304         unsigned int *dst = dst_buf;
305
306         for (i = 0; i < len; i += 4, src++, dst++)
307                 *dst = swab32p(src);
308 }
309
310 static void fec_dump(struct net_device *ndev)
311 {
312         struct fec_enet_private *fep = netdev_priv(ndev);
313         struct bufdesc *bdp;
314         struct fec_enet_priv_tx_q *txq;
315         int index = 0;
316
317         netdev_info(ndev, "TX ring dump\n");
318         pr_info("Nr     SC     addr       len  SKB\n");
319
320         txq = fep->tx_queue[0];
321         bdp = txq->tx_bd_base;
322
323         do {
324                 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
325                         index,
326                         bdp == txq->cur_tx ? 'S' : ' ',
327                         bdp == txq->dirty_tx ? 'H' : ' ',
328                         bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
329                         txq->tx_skbuff[index]);
330                 bdp = fec_enet_get_nextdesc(bdp, fep, 0);
331                 index++;
332         } while (bdp != txq->tx_bd_base);
333 }
334
335 static inline bool is_ipv4_pkt(struct sk_buff *skb)
336 {
337         return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
338 }
339
340 static int
341 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
342 {
343         /* Only run for packets requiring a checksum. */
344         if (skb->ip_summed != CHECKSUM_PARTIAL)
345                 return 0;
346
347         if (unlikely(skb_cow_head(skb, 0)))
348                 return -1;
349
350         if (is_ipv4_pkt(skb))
351                 ip_hdr(skb)->check = 0;
352         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
353
354         return 0;
355 }
356
357 static int
358 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
359                              struct sk_buff *skb,
360                              struct net_device *ndev)
361 {
362         struct fec_enet_private *fep = netdev_priv(ndev);
363         struct bufdesc *bdp = txq->cur_tx;
364         struct bufdesc_ex *ebdp;
365         int nr_frags = skb_shinfo(skb)->nr_frags;
366         unsigned short queue = skb_get_queue_mapping(skb);
367         int frag, frag_len;
368         unsigned short status;
369         unsigned int estatus = 0;
370         skb_frag_t *this_frag;
371         unsigned int index;
372         void *bufaddr;
373         dma_addr_t addr;
374         int i;
375
376         for (frag = 0; frag < nr_frags; frag++) {
377                 this_frag = &skb_shinfo(skb)->frags[frag];
378                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
379                 ebdp = (struct bufdesc_ex *)bdp;
380
381                 status = bdp->cbd_sc;
382                 status &= ~BD_ENET_TX_STATS;
383                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
384                 frag_len = skb_shinfo(skb)->frags[frag].size;
385
386                 /* Handle the last BD specially */
387                 if (frag == nr_frags - 1) {
388                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
389                         if (fep->bufdesc_ex) {
390                                 estatus |= BD_ENET_TX_INT;
391                                 if (unlikely(skb_shinfo(skb)->tx_flags &
392                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
393                                         estatus |= BD_ENET_TX_TS;
394                         }
395                 }
396
397                 if (fep->bufdesc_ex) {
398                         if (fep->quirks & FEC_QUIRK_HAS_AVB)
399                                 estatus |= FEC_TX_BD_FTYPE(queue);
400                         if (skb->ip_summed == CHECKSUM_PARTIAL)
401                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
402                         ebdp->cbd_bdu = 0;
403                         ebdp->cbd_esc = estatus;
404                 }
405
406                 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
407
408                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
409                 if (((unsigned long) bufaddr) & fep->tx_align ||
410                         fep->quirks & FEC_QUIRK_SWAP_FRAME) {
411                         memcpy(txq->tx_bounce[index], bufaddr, frag_len);
412                         bufaddr = txq->tx_bounce[index];
413
414                         if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
415                                 swap_buffer(bufaddr, frag_len);
416                 }
417
418                 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
419                                       DMA_TO_DEVICE);
420                 if (dma_mapping_error(&fep->pdev->dev, addr)) {
421                         dev_kfree_skb_any(skb);
422                         if (net_ratelimit())
423                                 netdev_err(ndev, "Tx DMA memory map failed\n");
424                         goto dma_mapping_error;
425                 }
426
427                 bdp->cbd_bufaddr = addr;
428                 bdp->cbd_datlen = frag_len;
429                 bdp->cbd_sc = status;
430         }
431
432         txq->cur_tx = bdp;
433
434         return 0;
435
436 dma_mapping_error:
437         bdp = txq->cur_tx;
438         for (i = 0; i < frag; i++) {
439                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
440                 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
441                                 bdp->cbd_datlen, DMA_TO_DEVICE);
442         }
443         return NETDEV_TX_OK;
444 }
445
446 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
447                                    struct sk_buff *skb, struct net_device *ndev)
448 {
449         struct fec_enet_private *fep = netdev_priv(ndev);
450         int nr_frags = skb_shinfo(skb)->nr_frags;
451         struct bufdesc *bdp, *last_bdp;
452         void *bufaddr;
453         dma_addr_t addr;
454         unsigned short status;
455         unsigned short buflen;
456         unsigned short queue;
457         unsigned int estatus = 0;
458         unsigned int index;
459         int entries_free;
460         int ret;
461
462         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
463         if (entries_free < MAX_SKB_FRAGS + 1) {
464                 dev_kfree_skb_any(skb);
465                 if (net_ratelimit())
466                         netdev_err(ndev, "NOT enough BD for SG!\n");
467                 return NETDEV_TX_OK;
468         }
469
470         /* Protocol checksum off-load for TCP and UDP. */
471         if (fec_enet_clear_csum(skb, ndev)) {
472                 dev_kfree_skb_any(skb);
473                 return NETDEV_TX_OK;
474         }
475
476         /* Fill in a Tx ring entry */
477         bdp = txq->cur_tx;
478         status = bdp->cbd_sc;
479         status &= ~BD_ENET_TX_STATS;
480
481         /* Set buffer length and buffer pointer */
482         bufaddr = skb->data;
483         buflen = skb_headlen(skb);
484
485         queue = skb_get_queue_mapping(skb);
486         index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
487         if (((unsigned long) bufaddr) & fep->tx_align ||
488                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
489                 memcpy(txq->tx_bounce[index], skb->data, buflen);
490                 bufaddr = txq->tx_bounce[index];
491
492                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
493                         swap_buffer(bufaddr, buflen);
494         }
495
496         /* Push the data cache so the CPM does not get stale memory data. */
497         addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
498         if (dma_mapping_error(&fep->pdev->dev, addr)) {
499                 dev_kfree_skb_any(skb);
500                 if (net_ratelimit())
501                         netdev_err(ndev, "Tx DMA memory map failed\n");
502                 return NETDEV_TX_OK;
503         }
504
505         if (nr_frags) {
506                 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
507                 if (ret)
508                         return ret;
509         } else {
510                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
511                 if (fep->bufdesc_ex) {
512                         estatus = BD_ENET_TX_INT;
513                         if (unlikely(skb_shinfo(skb)->tx_flags &
514                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
515                                 estatus |= BD_ENET_TX_TS;
516                 }
517         }
518
519         if (fep->bufdesc_ex) {
520
521                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
522
523                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
524                         fep->hwts_tx_en))
525                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
526
527                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
528                         estatus |= FEC_TX_BD_FTYPE(queue);
529
530                 if (skb->ip_summed == CHECKSUM_PARTIAL)
531                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
532
533                 ebdp->cbd_bdu = 0;
534                 ebdp->cbd_esc = estatus;
535         }
536
537         last_bdp = txq->cur_tx;
538         index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
539         /* Save skb pointer */
540         txq->tx_skbuff[index] = skb;
541
542         bdp->cbd_datlen = buflen;
543         bdp->cbd_bufaddr = addr;
544
545         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
546          * it's the last BD of the frame, and to put the CRC on the end.
547          */
548         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
549         bdp->cbd_sc = status;
550
551         /* If this was the last BD in the ring, start at the beginning again. */
552         bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
553
554         skb_tx_timestamp(skb);
555
556         txq->cur_tx = bdp;
557
558         /* Trigger transmission start */
559         writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
560
561         return 0;
562 }
563
564 static int
565 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
566                           struct net_device *ndev,
567                           struct bufdesc *bdp, int index, char *data,
568                           int size, bool last_tcp, bool is_last)
569 {
570         struct fec_enet_private *fep = netdev_priv(ndev);
571         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
572         unsigned short queue = skb_get_queue_mapping(skb);
573         unsigned short status;
574         unsigned int estatus = 0;
575         dma_addr_t addr;
576
577         status = bdp->cbd_sc;
578         status &= ~BD_ENET_TX_STATS;
579
580         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
581
582         if (((unsigned long) data) & fep->tx_align ||
583                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
584                 memcpy(txq->tx_bounce[index], data, size);
585                 data = txq->tx_bounce[index];
586
587                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
588                         swap_buffer(data, size);
589         }
590
591         addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
592         if (dma_mapping_error(&fep->pdev->dev, addr)) {
593                 dev_kfree_skb_any(skb);
594                 if (net_ratelimit())
595                         netdev_err(ndev, "Tx DMA memory map failed\n");
596                 return NETDEV_TX_BUSY;
597         }
598
599         bdp->cbd_datlen = size;
600         bdp->cbd_bufaddr = addr;
601
602         if (fep->bufdesc_ex) {
603                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
604                         estatus |= FEC_TX_BD_FTYPE(queue);
605                 if (skb->ip_summed == CHECKSUM_PARTIAL)
606                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
607                 ebdp->cbd_bdu = 0;
608                 ebdp->cbd_esc = estatus;
609         }
610
611         /* Handle the last BD specially */
612         if (last_tcp)
613                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
614         if (is_last) {
615                 status |= BD_ENET_TX_INTR;
616                 if (fep->bufdesc_ex)
617                         ebdp->cbd_esc |= BD_ENET_TX_INT;
618         }
619
620         bdp->cbd_sc = status;
621
622         return 0;
623 }
624
625 static int
626 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
627                          struct sk_buff *skb, struct net_device *ndev,
628                          struct bufdesc *bdp, int index)
629 {
630         struct fec_enet_private *fep = netdev_priv(ndev);
631         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
632         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
633         unsigned short queue = skb_get_queue_mapping(skb);
634         void *bufaddr;
635         unsigned long dmabuf;
636         unsigned short status;
637         unsigned int estatus = 0;
638
639         status = bdp->cbd_sc;
640         status &= ~BD_ENET_TX_STATS;
641         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
642
643         bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
644         dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
645         if (((unsigned long)bufaddr) & fep->tx_align ||
646                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
647                 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
648                 bufaddr = txq->tx_bounce[index];
649
650                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
651                         swap_buffer(bufaddr, hdr_len);
652
653                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
654                                         hdr_len, DMA_TO_DEVICE);
655                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
656                         dev_kfree_skb_any(skb);
657                         if (net_ratelimit())
658                                 netdev_err(ndev, "Tx DMA memory map failed\n");
659                         return NETDEV_TX_BUSY;
660                 }
661         }
662
663         bdp->cbd_bufaddr = dmabuf;
664         bdp->cbd_datlen = hdr_len;
665
666         if (fep->bufdesc_ex) {
667                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
668                         estatus |= FEC_TX_BD_FTYPE(queue);
669                 if (skb->ip_summed == CHECKSUM_PARTIAL)
670                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
671                 ebdp->cbd_bdu = 0;
672                 ebdp->cbd_esc = estatus;
673         }
674
675         bdp->cbd_sc = status;
676
677         return 0;
678 }
679
680 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
681                                    struct sk_buff *skb,
682                                    struct net_device *ndev)
683 {
684         struct fec_enet_private *fep = netdev_priv(ndev);
685         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
686         int total_len, data_left;
687         struct bufdesc *bdp = txq->cur_tx;
688         unsigned short queue = skb_get_queue_mapping(skb);
689         struct tso_t tso;
690         unsigned int index = 0;
691         int ret;
692
693         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
694                 dev_kfree_skb_any(skb);
695                 if (net_ratelimit())
696                         netdev_err(ndev, "NOT enough BD for TSO!\n");
697                 return NETDEV_TX_OK;
698         }
699
700         /* Protocol checksum off-load for TCP and UDP. */
701         if (fec_enet_clear_csum(skb, ndev)) {
702                 dev_kfree_skb_any(skb);
703                 return NETDEV_TX_OK;
704         }
705
706         /* Initialize the TSO handler, and prepare the first payload */
707         tso_start(skb, &tso);
708
709         total_len = skb->len - hdr_len;
710         while (total_len > 0) {
711                 char *hdr;
712
713                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
714                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
715                 total_len -= data_left;
716
717                 /* prepare packet headers: MAC + IP + TCP */
718                 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
719                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
720                 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
721                 if (ret)
722                         goto err_release;
723
724                 while (data_left > 0) {
725                         int size;
726
727                         size = min_t(int, tso.size, data_left);
728                         bdp = fec_enet_get_nextdesc(bdp, fep, queue);
729                         index = fec_enet_get_bd_index(txq->tx_bd_base,
730                                                       bdp, fep);
731                         ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
732                                                         bdp, index,
733                                                         tso.data, size,
734                                                         size == data_left,
735                                                         total_len == 0);
736                         if (ret)
737                                 goto err_release;
738
739                         data_left -= size;
740                         tso_build_data(skb, &tso, size);
741                 }
742
743                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
744         }
745
746         /* Save skb pointer */
747         txq->tx_skbuff[index] = skb;
748
749         skb_tx_timestamp(skb);
750         txq->cur_tx = bdp;
751
752         /* Trigger transmission start */
753         if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
754             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
755             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
756             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
757             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
758                 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
759
760         return 0;
761
762 err_release:
763         /* TODO: Release all used data descriptors for TSO */
764         return ret;
765 }
766
767 static netdev_tx_t
768 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
769 {
770         struct fec_enet_private *fep = netdev_priv(ndev);
771         int entries_free;
772         unsigned short queue;
773         struct fec_enet_priv_tx_q *txq;
774         struct netdev_queue *nq;
775         int ret;
776
777         queue = skb_get_queue_mapping(skb);
778         txq = fep->tx_queue[queue];
779         nq = netdev_get_tx_queue(ndev, queue);
780
781         if (skb_is_gso(skb))
782                 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
783         else
784                 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
785         if (ret)
786                 return ret;
787
788         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
789         if (entries_free <= txq->tx_stop_threshold)
790                 netif_tx_stop_queue(nq);
791
792         return NETDEV_TX_OK;
793 }
794
795 /* Init RX & TX buffer descriptors
796  */
797 static void fec_enet_bd_init(struct net_device *dev)
798 {
799         struct fec_enet_private *fep = netdev_priv(dev);
800         struct fec_enet_priv_tx_q *txq;
801         struct fec_enet_priv_rx_q *rxq;
802         struct bufdesc *bdp;
803         unsigned int i;
804         unsigned int q;
805
806         for (q = 0; q < fep->num_rx_queues; q++) {
807                 /* Initialize the receive buffer descriptors. */
808                 rxq = fep->rx_queue[q];
809                 bdp = rxq->rx_bd_base;
810
811                 for (i = 0; i < rxq->rx_ring_size; i++) {
812
813                         /* Initialize the BD for every fragment in the page. */
814                         if (bdp->cbd_bufaddr)
815                                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
816                         else
817                                 bdp->cbd_sc = 0;
818                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
819                 }
820
821                 /* Set the last buffer to wrap */
822                 bdp = fec_enet_get_prevdesc(bdp, fep, q);
823                 bdp->cbd_sc |= BD_SC_WRAP;
824
825                 rxq->cur_rx = rxq->rx_bd_base;
826         }
827
828         for (q = 0; q < fep->num_tx_queues; q++) {
829                 /* ...and the same for transmit */
830                 txq = fep->tx_queue[q];
831                 bdp = txq->tx_bd_base;
832                 txq->cur_tx = bdp;
833
834                 for (i = 0; i < txq->tx_ring_size; i++) {
835                         /* Initialize the BD for every fragment in the page. */
836                         bdp->cbd_sc = 0;
837                         if (txq->tx_skbuff[i]) {
838                                 dev_kfree_skb_any(txq->tx_skbuff[i]);
839                                 txq->tx_skbuff[i] = NULL;
840                         }
841                         bdp->cbd_bufaddr = 0;
842                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
843                 }
844
845                 /* Set the last buffer to wrap */
846                 bdp = fec_enet_get_prevdesc(bdp, fep, q);
847                 bdp->cbd_sc |= BD_SC_WRAP;
848                 txq->dirty_tx = bdp;
849         }
850 }
851
852 static void fec_enet_active_rxring(struct net_device *ndev)
853 {
854         struct fec_enet_private *fep = netdev_priv(ndev);
855         int i;
856
857         for (i = 0; i < fep->num_rx_queues; i++)
858                 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
859 }
860
861 static void fec_enet_enable_ring(struct net_device *ndev)
862 {
863         struct fec_enet_private *fep = netdev_priv(ndev);
864         struct fec_enet_priv_tx_q *txq;
865         struct fec_enet_priv_rx_q *rxq;
866         int i;
867
868         for (i = 0; i < fep->num_rx_queues; i++) {
869                 rxq = fep->rx_queue[i];
870                 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
871                 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
872
873                 /* enable DMA1/2 */
874                 if (i)
875                         writel(RCMR_MATCHEN | RCMR_CMP(i),
876                                fep->hwp + FEC_RCMR(i));
877         }
878
879         for (i = 0; i < fep->num_tx_queues; i++) {
880                 txq = fep->tx_queue[i];
881                 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
882
883                 /* enable DMA1/2 */
884                 if (i)
885                         writel(DMA_CLASS_EN | IDLE_SLOPE(i),
886                                fep->hwp + FEC_DMA_CFG(i));
887         }
888 }
889
890 static void fec_enet_reset_skb(struct net_device *ndev)
891 {
892         struct fec_enet_private *fep = netdev_priv(ndev);
893         struct fec_enet_priv_tx_q *txq;
894         int i, j;
895
896         for (i = 0; i < fep->num_tx_queues; i++) {
897                 txq = fep->tx_queue[i];
898
899                 for (j = 0; j < txq->tx_ring_size; j++) {
900                         if (txq->tx_skbuff[j]) {
901                                 dev_kfree_skb_any(txq->tx_skbuff[j]);
902                                 txq->tx_skbuff[j] = NULL;
903                         }
904                 }
905         }
906 }
907
908 /*
909  * This function is called to start or restart the FEC during a link
910  * change, transmit timeout, or to reconfigure the FEC.  The network
911  * packet processing for this device must be stopped before this call.
912  */
913 static void
914 fec_restart(struct net_device *ndev)
915 {
916         struct fec_enet_private *fep = netdev_priv(ndev);
917         u32 val;
918         u32 temp_mac[2];
919         u32 rcntl = OPT_FRAME_SIZE | 0x04;
920         u32 ecntl = 0x2; /* ETHEREN */
921
922         /* Whack a reset.  We should wait for this.
923          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
924          * instead of reset MAC itself.
925          */
926         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
927                 writel(0, fep->hwp + FEC_ECNTRL);
928         } else {
929                 writel(1, fep->hwp + FEC_ECNTRL);
930                 udelay(10);
931         }
932
933         /*
934          * enet-mac reset will reset mac address registers too,
935          * so need to reconfigure it.
936          */
937         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
938                 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
939                 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
940                 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
941         }
942
943         /* Clear any outstanding interrupt. */
944         writel(0xffffffff, fep->hwp + FEC_IEVENT);
945
946         fec_enet_bd_init(ndev);
947
948         fec_enet_enable_ring(ndev);
949
950         /* Reset tx SKB buffers. */
951         fec_enet_reset_skb(ndev);
952
953         /* Enable MII mode */
954         if (fep->full_duplex == DUPLEX_FULL) {
955                 /* FD enable */
956                 writel(0x04, fep->hwp + FEC_X_CNTRL);
957         } else {
958                 /* No Rcv on Xmit */
959                 rcntl |= 0x02;
960                 writel(0x0, fep->hwp + FEC_X_CNTRL);
961         }
962
963         /* Set MII speed */
964         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
965
966 #if !defined(CONFIG_M5272)
967         /* set RX checksum */
968         val = readl(fep->hwp + FEC_RACC);
969         if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
970                 val |= FEC_RACC_OPTIONS;
971         else
972                 val &= ~FEC_RACC_OPTIONS;
973         writel(val, fep->hwp + FEC_RACC);
974 #endif
975
976         /*
977          * The phy interface and speed need to get configured
978          * differently on enet-mac.
979          */
980         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
981                 /* Enable flow control and length check */
982                 rcntl |= 0x40000000 | 0x00000020;
983
984                 /* RGMII, RMII or MII */
985                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
986                         rcntl |= (1 << 6);
987                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
988                         rcntl |= (1 << 8);
989                 else
990                         rcntl &= ~(1 << 8);
991
992                 /* 1G, 100M or 10M */
993                 if (fep->phy_dev) {
994                         if (fep->phy_dev->speed == SPEED_1000)
995                                 ecntl |= (1 << 5);
996                         else if (fep->phy_dev->speed == SPEED_100)
997                                 rcntl &= ~(1 << 9);
998                         else
999                                 rcntl |= (1 << 9);
1000                 }
1001         } else {
1002 #ifdef FEC_MIIGSK_ENR
1003                 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004                         u32 cfgr;
1005                         /* disable the gasket and wait */
1006                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008                                 udelay(1);
1009
1010                         /*
1011                          * configure the gasket:
1012                          *   RMII, 50 MHz, no loopback, no echo
1013                          *   MII, 25 MHz, no loopback, no echo
1014                          */
1015                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017                         if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1018                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020
1021                         /* re-enable the gasket */
1022                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023                 }
1024 #endif
1025         }
1026
1027 #if !defined(CONFIG_M5272)
1028         /* enable pause frame*/
1029         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031              fep->phy_dev && fep->phy_dev->pause)) {
1032                 rcntl |= FEC_ENET_FCE;
1033
1034                 /* set FIFO threshold parameter to reduce overrun */
1035                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039
1040                 /* OPD */
1041                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042         } else {
1043                 rcntl &= ~FEC_ENET_FCE;
1044         }
1045 #endif /* !defined(CONFIG_M5272) */
1046
1047         writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048
1049         /* Setup multicast filter. */
1050         set_multicast_list(ndev);
1051 #ifndef CONFIG_M5272
1052         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054 #endif
1055
1056         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057                 /* enable ENET endian swap */
1058                 ecntl |= (1 << 8);
1059                 /* enable ENET store and forward mode */
1060                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1061         }
1062
1063         if (fep->bufdesc_ex)
1064                 ecntl |= (1 << 4);
1065
1066 #ifndef CONFIG_M5272
1067         /* Enable the MIB statistic event counters */
1068         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069 #endif
1070
1071         /* And last, enable the transmit and receive processing */
1072         writel(ecntl, fep->hwp + FEC_ECNTRL);
1073         fec_enet_active_rxring(ndev);
1074
1075         if (fep->bufdesc_ex)
1076                 fec_ptp_start_cyclecounter(ndev);
1077
1078         /* Enable interrupts we wish to service */
1079         if (fep->link)
1080                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081         else
1082                 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083
1084         /* Init the interrupt coalescing */
1085         fec_enet_itr_coal_init(ndev);
1086
1087 }
1088
1089 static void
1090 fec_stop(struct net_device *ndev)
1091 {
1092         struct fec_enet_private *fep = netdev_priv(ndev);
1093         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1094
1095         /* We cannot expect a graceful transmit stop without link !!! */
1096         if (fep->link) {
1097                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1098                 udelay(10);
1099                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1100                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1101         }
1102
1103         /* Whack a reset.  We should wait for this.
1104          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1105          * instead of reset MAC itself.
1106          */
1107         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1108                 writel(0, fep->hwp + FEC_ECNTRL);
1109         } else {
1110                 writel(1, fep->hwp + FEC_ECNTRL);
1111                 udelay(10);
1112         }
1113         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1114         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1115
1116         /* We have to keep ENET enabled to have MII interrupt stay working */
1117         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1118                 writel(2, fep->hwp + FEC_ECNTRL);
1119                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1120         }
1121 }
1122
1123
1124 static void
1125 fec_timeout(struct net_device *ndev)
1126 {
1127         struct fec_enet_private *fep = netdev_priv(ndev);
1128
1129         fec_dump(ndev);
1130
1131         ndev->stats.tx_errors++;
1132
1133         schedule_work(&fep->tx_timeout_work);
1134 }
1135
1136 static void fec_enet_timeout_work(struct work_struct *work)
1137 {
1138         struct fec_enet_private *fep =
1139                 container_of(work, struct fec_enet_private, tx_timeout_work);
1140         struct net_device *ndev = fep->netdev;
1141
1142         rtnl_lock();
1143         if (netif_device_present(ndev) || netif_running(ndev)) {
1144                 napi_disable(&fep->napi);
1145                 netif_tx_lock_bh(ndev);
1146                 fec_restart(ndev);
1147                 netif_wake_queue(ndev);
1148                 netif_tx_unlock_bh(ndev);
1149                 napi_enable(&fep->napi);
1150         }
1151         rtnl_unlock();
1152 }
1153
1154 static void
1155 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1156         struct skb_shared_hwtstamps *hwtstamps)
1157 {
1158         unsigned long flags;
1159         u64 ns;
1160
1161         spin_lock_irqsave(&fep->tmreg_lock, flags);
1162         ns = timecounter_cyc2time(&fep->tc, ts);
1163         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1164
1165         memset(hwtstamps, 0, sizeof(*hwtstamps));
1166         hwtstamps->hwtstamp = ns_to_ktime(ns);
1167 }
1168
1169 static void
1170 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1171 {
1172         struct  fec_enet_private *fep;
1173         struct bufdesc *bdp;
1174         unsigned short status;
1175         struct  sk_buff *skb;
1176         struct fec_enet_priv_tx_q *txq;
1177         struct netdev_queue *nq;
1178         int     index = 0;
1179         int     entries_free;
1180
1181         fep = netdev_priv(ndev);
1182
1183         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1184
1185         txq = fep->tx_queue[queue_id];
1186         /* get next bdp of dirty_tx */
1187         nq = netdev_get_tx_queue(ndev, queue_id);
1188         bdp = txq->dirty_tx;
1189
1190         /* get next bdp of dirty_tx */
1191         bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1192
1193         while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1194
1195                 /* current queue is empty */
1196                 if (bdp == txq->cur_tx)
1197                         break;
1198
1199                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1200
1201                 skb = txq->tx_skbuff[index];
1202                 txq->tx_skbuff[index] = NULL;
1203                 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1204                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1205                                         bdp->cbd_datlen, DMA_TO_DEVICE);
1206                 bdp->cbd_bufaddr = 0;
1207                 if (!skb) {
1208                         bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1209                         continue;
1210                 }
1211
1212                 /* Check for errors. */
1213                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1214                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1215                                    BD_ENET_TX_CSL)) {
1216                         ndev->stats.tx_errors++;
1217                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1218                                 ndev->stats.tx_heartbeat_errors++;
1219                         if (status & BD_ENET_TX_LC)  /* Late collision */
1220                                 ndev->stats.tx_window_errors++;
1221                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1222                                 ndev->stats.tx_aborted_errors++;
1223                         if (status & BD_ENET_TX_UN)  /* Underrun */
1224                                 ndev->stats.tx_fifo_errors++;
1225                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1226                                 ndev->stats.tx_carrier_errors++;
1227                 } else {
1228                         ndev->stats.tx_packets++;
1229                         ndev->stats.tx_bytes += skb->len;
1230                 }
1231
1232                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1233                         fep->bufdesc_ex) {
1234                         struct skb_shared_hwtstamps shhwtstamps;
1235                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1236
1237                         fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1238                         skb_tstamp_tx(skb, &shhwtstamps);
1239                 }
1240
1241                 /* Deferred means some collisions occurred during transmit,
1242                  * but we eventually sent the packet OK.
1243                  */
1244                 if (status & BD_ENET_TX_DEF)
1245                         ndev->stats.collisions++;
1246
1247                 /* Free the sk buffer associated with this last transmit */
1248                 dev_kfree_skb_any(skb);
1249
1250                 txq->dirty_tx = bdp;
1251
1252                 /* Update pointer to next buffer descriptor to be transmitted */
1253                 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1254
1255                 /* Since we have freed up a buffer, the ring is no longer full
1256                  */
1257                 if (netif_queue_stopped(ndev)) {
1258                         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1259                         if (entries_free >= txq->tx_wake_threshold)
1260                                 netif_tx_wake_queue(nq);
1261                 }
1262         }
1263
1264         /* ERR006538: Keep the transmitter going */
1265         if (bdp != txq->cur_tx &&
1266             readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1267                 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1268 }
1269
1270 static void
1271 fec_enet_tx(struct net_device *ndev)
1272 {
1273         struct fec_enet_private *fep = netdev_priv(ndev);
1274         u16 queue_id;
1275         /* First process class A queue, then Class B and Best Effort queue */
1276         for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1277                 clear_bit(queue_id, &fep->work_tx);
1278                 fec_enet_tx_queue(ndev, queue_id);
1279         }
1280         return;
1281 }
1282
1283 static int
1284 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1285 {
1286         struct  fec_enet_private *fep = netdev_priv(ndev);
1287         int off;
1288
1289         off = ((unsigned long)skb->data) & fep->rx_align;
1290         if (off)
1291                 skb_reserve(skb, fep->rx_align + 1 - off);
1292
1293         bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1294                                           FEC_ENET_RX_FRSIZE - fep->rx_align,
1295                                           DMA_FROM_DEVICE);
1296         if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1297                 if (net_ratelimit())
1298                         netdev_err(ndev, "Rx DMA memory map failed\n");
1299                 return -ENOMEM;
1300         }
1301
1302         return 0;
1303 }
1304
1305 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1306                                struct bufdesc *bdp, u32 length, bool swap)
1307 {
1308         struct  fec_enet_private *fep = netdev_priv(ndev);
1309         struct sk_buff *new_skb;
1310
1311         if (length > fep->rx_copybreak)
1312                 return false;
1313
1314         new_skb = netdev_alloc_skb(ndev, length);
1315         if (!new_skb)
1316                 return false;
1317
1318         dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1319                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
1320                                 DMA_FROM_DEVICE);
1321         if (!swap)
1322                 memcpy(new_skb->data, (*skb)->data, length);
1323         else
1324                 swap_buffer2(new_skb->data, (*skb)->data, length);
1325         *skb = new_skb;
1326
1327         return true;
1328 }
1329
1330 /* During a receive, the cur_rx points to the current incoming buffer.
1331  * When we update through the ring, if the next incoming buffer has
1332  * not been given to the system, we just set the empty indicator,
1333  * effectively tossing the packet.
1334  */
1335 static int
1336 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1337 {
1338         struct fec_enet_private *fep = netdev_priv(ndev);
1339         struct fec_enet_priv_rx_q *rxq;
1340         struct bufdesc *bdp;
1341         unsigned short status;
1342         struct  sk_buff *skb_new = NULL;
1343         struct  sk_buff *skb;
1344         ushort  pkt_len;
1345         __u8 *data;
1346         int     pkt_received = 0;
1347         struct  bufdesc_ex *ebdp = NULL;
1348         bool    vlan_packet_rcvd = false;
1349         u16     vlan_tag;
1350         int     index = 0;
1351         bool    is_copybreak;
1352         bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1353
1354 #ifdef CONFIG_M532x
1355         flush_cache_all();
1356 #endif
1357         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1358         rxq = fep->rx_queue[queue_id];
1359
1360         /* First, grab all of the stats for the incoming packet.
1361          * These get messed up if we get called due to a busy condition.
1362          */
1363         bdp = rxq->cur_rx;
1364
1365         while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1366
1367                 if (pkt_received >= budget)
1368                         break;
1369                 pkt_received++;
1370
1371                 /* Since we have allocated space to hold a complete frame,
1372                  * the last indicator should be set.
1373                  */
1374                 if ((status & BD_ENET_RX_LAST) == 0)
1375                         netdev_err(ndev, "rcv is not +last\n");
1376
1377
1378                 /* Check for errors. */
1379                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1380                            BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1381                         ndev->stats.rx_errors++;
1382                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1383                                 /* Frame too long or too short. */
1384                                 ndev->stats.rx_length_errors++;
1385                         }
1386                         if (status & BD_ENET_RX_NO)     /* Frame alignment */
1387                                 ndev->stats.rx_frame_errors++;
1388                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1389                                 ndev->stats.rx_crc_errors++;
1390                         if (status & BD_ENET_RX_OV)     /* FIFO overrun */
1391                                 ndev->stats.rx_fifo_errors++;
1392                 }
1393
1394                 /* Report late collisions as a frame error.
1395                  * On this error, the BD is closed, but we don't know what we
1396                  * have in the buffer.  So, just drop this frame on the floor.
1397                  */
1398                 if (status & BD_ENET_RX_CL) {
1399                         ndev->stats.rx_errors++;
1400                         ndev->stats.rx_frame_errors++;
1401                         goto rx_processing_done;
1402                 }
1403
1404                 /* Process the incoming frame. */
1405                 ndev->stats.rx_packets++;
1406                 pkt_len = bdp->cbd_datlen;
1407                 ndev->stats.rx_bytes += pkt_len;
1408
1409                 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1410                 skb = rxq->rx_skbuff[index];
1411
1412                 /* The packet length includes FCS, but we don't want to
1413                  * include that when passing upstream as it messes up
1414                  * bridging applications.
1415                  */
1416                 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1417                                                   need_swap);
1418                 if (!is_copybreak) {
1419                         skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1420                         if (unlikely(!skb_new)) {
1421                                 ndev->stats.rx_dropped++;
1422                                 goto rx_processing_done;
1423                         }
1424                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1425                                          FEC_ENET_RX_FRSIZE - fep->rx_align,
1426                                          DMA_FROM_DEVICE);
1427                 }
1428
1429                 prefetch(skb->data - NET_IP_ALIGN);
1430                 skb_put(skb, pkt_len - 4);
1431                 data = skb->data;
1432                 if (!is_copybreak && need_swap)
1433                         swap_buffer(data, pkt_len);
1434
1435                 /* Extract the enhanced buffer descriptor */
1436                 ebdp = NULL;
1437                 if (fep->bufdesc_ex)
1438                         ebdp = (struct bufdesc_ex *)bdp;
1439
1440                 /* If this is a VLAN packet remove the VLAN Tag */
1441                 vlan_packet_rcvd = false;
1442                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1443                         fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1444                         /* Push and remove the vlan tag */
1445                         struct vlan_hdr *vlan_header =
1446                                         (struct vlan_hdr *) (data + ETH_HLEN);
1447                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1448
1449                         vlan_packet_rcvd = true;
1450
1451                         skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1452                                                        data, (2 * ETH_ALEN));
1453                         skb_pull(skb, VLAN_HLEN);
1454                 }
1455
1456                 skb->protocol = eth_type_trans(skb, ndev);
1457
1458                 /* Get receive timestamp from the skb */
1459                 if (fep->hwts_rx_en && fep->bufdesc_ex)
1460                         fec_enet_hwtstamp(fep, ebdp->ts,
1461                                           skb_hwtstamps(skb));
1462
1463                 if (fep->bufdesc_ex &&
1464                     (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1465                         if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1466                                 /* don't check it */
1467                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1468                         } else {
1469                                 skb_checksum_none_assert(skb);
1470                         }
1471                 }
1472
1473                 /* Handle received VLAN packets */
1474                 if (vlan_packet_rcvd)
1475                         __vlan_hwaccel_put_tag(skb,
1476                                                htons(ETH_P_8021Q),
1477                                                vlan_tag);
1478
1479                 napi_gro_receive(&fep->napi, skb);
1480
1481                 if (is_copybreak) {
1482                         dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1483                                                    FEC_ENET_RX_FRSIZE - fep->rx_align,
1484                                                    DMA_FROM_DEVICE);
1485                 } else {
1486                         rxq->rx_skbuff[index] = skb_new;
1487                         fec_enet_new_rxbdp(ndev, bdp, skb_new);
1488                 }
1489
1490 rx_processing_done:
1491                 /* Clear the status flags for this buffer */
1492                 status &= ~BD_ENET_RX_STATS;
1493
1494                 /* Mark the buffer empty */
1495                 status |= BD_ENET_RX_EMPTY;
1496                 bdp->cbd_sc = status;
1497
1498                 if (fep->bufdesc_ex) {
1499                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1500
1501                         ebdp->cbd_esc = BD_ENET_RX_INT;
1502                         ebdp->cbd_prot = 0;
1503                         ebdp->cbd_bdu = 0;
1504                 }
1505
1506                 /* Update BD pointer to next entry */
1507                 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1508
1509                 /* Doing this here will keep the FEC running while we process
1510                  * incoming frames.  On a heavily loaded network, we should be
1511                  * able to keep up at the expense of system resources.
1512                  */
1513                 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1514         }
1515         rxq->cur_rx = bdp;
1516         return pkt_received;
1517 }
1518
1519 static int
1520 fec_enet_rx(struct net_device *ndev, int budget)
1521 {
1522         int     pkt_received = 0;
1523         u16     queue_id;
1524         struct fec_enet_private *fep = netdev_priv(ndev);
1525
1526         for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1527                 clear_bit(queue_id, &fep->work_rx);
1528                 pkt_received += fec_enet_rx_queue(ndev,
1529                                         budget - pkt_received, queue_id);
1530         }
1531         return pkt_received;
1532 }
1533
1534 static bool
1535 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1536 {
1537         if (int_events == 0)
1538                 return false;
1539
1540         if (int_events & FEC_ENET_RXF)
1541                 fep->work_rx |= (1 << 2);
1542         if (int_events & FEC_ENET_RXF_1)
1543                 fep->work_rx |= (1 << 0);
1544         if (int_events & FEC_ENET_RXF_2)
1545                 fep->work_rx |= (1 << 1);
1546
1547         if (int_events & FEC_ENET_TXF)
1548                 fep->work_tx |= (1 << 2);
1549         if (int_events & FEC_ENET_TXF_1)
1550                 fep->work_tx |= (1 << 0);
1551         if (int_events & FEC_ENET_TXF_2)
1552                 fep->work_tx |= (1 << 1);
1553
1554         return true;
1555 }
1556
1557 static irqreturn_t
1558 fec_enet_interrupt(int irq, void *dev_id)
1559 {
1560         struct net_device *ndev = dev_id;
1561         struct fec_enet_private *fep = netdev_priv(ndev);
1562         uint int_events;
1563         irqreturn_t ret = IRQ_NONE;
1564
1565         int_events = readl(fep->hwp + FEC_IEVENT);
1566         writel(int_events, fep->hwp + FEC_IEVENT);
1567         fec_enet_collect_events(fep, int_events);
1568
1569         if (fep->work_tx || fep->work_rx) {
1570                 ret = IRQ_HANDLED;
1571
1572                 if (napi_schedule_prep(&fep->napi)) {
1573                         /* Disable the NAPI interrupts */
1574                         writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1575                         __napi_schedule(&fep->napi);
1576                 }
1577         }
1578
1579         if (int_events & FEC_ENET_MII) {
1580                 ret = IRQ_HANDLED;
1581                 complete(&fep->mdio_done);
1582         }
1583
1584         if (fep->ptp_clock)
1585                 fec_ptp_check_pps_event(fep);
1586
1587         return ret;
1588 }
1589
1590 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1591 {
1592         struct net_device *ndev = napi->dev;
1593         struct fec_enet_private *fep = netdev_priv(ndev);
1594         int pkts;
1595
1596         pkts = fec_enet_rx(ndev, budget);
1597
1598         fec_enet_tx(ndev);
1599
1600         if (pkts < budget) {
1601                 napi_complete(napi);
1602                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1603         }
1604         return pkts;
1605 }
1606
1607 /* ------------------------------------------------------------------------- */
1608 static void fec_get_mac(struct net_device *ndev)
1609 {
1610         struct fec_enet_private *fep = netdev_priv(ndev);
1611         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1612         unsigned char *iap, tmpaddr[ETH_ALEN];
1613
1614         /*
1615          * try to get mac address in following order:
1616          *
1617          * 1) module parameter via kernel command line in form
1618          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1619          */
1620         iap = macaddr;
1621
1622         /*
1623          * 2) from device tree data
1624          */
1625         if (!is_valid_ether_addr(iap)) {
1626                 struct device_node *np = fep->pdev->dev.of_node;
1627                 if (np) {
1628                         const char *mac = of_get_mac_address(np);
1629                         if (mac)
1630                                 iap = (unsigned char *) mac;
1631                 }
1632         }
1633
1634         /*
1635          * 3) from flash or fuse (via platform data)
1636          */
1637         if (!is_valid_ether_addr(iap)) {
1638 #ifdef CONFIG_M5272
1639                 if (FEC_FLASHMAC)
1640                         iap = (unsigned char *)FEC_FLASHMAC;
1641 #else
1642                 if (pdata)
1643                         iap = (unsigned char *)&pdata->mac;
1644 #endif
1645         }
1646
1647         /*
1648          * 4) FEC mac registers set by bootloader
1649          */
1650         if (!is_valid_ether_addr(iap)) {
1651                 *((__be32 *) &tmpaddr[0]) =
1652                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1653                 *((__be16 *) &tmpaddr[4]) =
1654                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1655                 iap = &tmpaddr[0];
1656         }
1657
1658         /*
1659          * 5) random mac address
1660          */
1661         if (!is_valid_ether_addr(iap)) {
1662                 /* Report it and use a random ethernet address instead */
1663                 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1664                 eth_hw_addr_random(ndev);
1665                 netdev_info(ndev, "Using random MAC address: %pM\n",
1666                             ndev->dev_addr);
1667                 return;
1668         }
1669
1670         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1671
1672         /* Adjust MAC if using macaddr */
1673         if (iap == macaddr)
1674                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1675 }
1676
1677 /* ------------------------------------------------------------------------- */
1678
1679 /*
1680  * Phy section
1681  */
1682 static void fec_enet_adjust_link(struct net_device *ndev)
1683 {
1684         struct fec_enet_private *fep = netdev_priv(ndev);
1685         struct phy_device *phy_dev = fep->phy_dev;
1686         int status_change = 0;
1687
1688         /* Prevent a state halted on mii error */
1689         if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1690                 phy_dev->state = PHY_RESUMING;
1691                 return;
1692         }
1693
1694         /*
1695          * If the netdev is down, or is going down, we're not interested
1696          * in link state events, so just mark our idea of the link as down
1697          * and ignore the event.
1698          */
1699         if (!netif_running(ndev) || !netif_device_present(ndev)) {
1700                 fep->link = 0;
1701         } else if (phy_dev->link) {
1702                 if (!fep->link) {
1703                         fep->link = phy_dev->link;
1704                         status_change = 1;
1705                 }
1706
1707                 if (fep->full_duplex != phy_dev->duplex) {
1708                         fep->full_duplex = phy_dev->duplex;
1709                         status_change = 1;
1710                 }
1711
1712                 if (phy_dev->speed != fep->speed) {
1713                         fep->speed = phy_dev->speed;
1714                         status_change = 1;
1715                 }
1716
1717                 /* if any of the above changed restart the FEC */
1718                 if (status_change) {
1719                         napi_disable(&fep->napi);
1720                         netif_tx_lock_bh(ndev);
1721                         fec_restart(ndev);
1722                         netif_wake_queue(ndev);
1723                         netif_tx_unlock_bh(ndev);
1724                         napi_enable(&fep->napi);
1725                 }
1726         } else {
1727                 if (fep->link) {
1728                         napi_disable(&fep->napi);
1729                         netif_tx_lock_bh(ndev);
1730                         fec_stop(ndev);
1731                         netif_tx_unlock_bh(ndev);
1732                         napi_enable(&fep->napi);
1733                         fep->link = phy_dev->link;
1734                         status_change = 1;
1735                 }
1736         }
1737
1738         if (status_change)
1739                 phy_print_status(phy_dev);
1740 }
1741
1742 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1743 {
1744         struct fec_enet_private *fep = bus->priv;
1745         unsigned long time_left;
1746
1747         fep->mii_timeout = 0;
1748         init_completion(&fep->mdio_done);
1749
1750         /* start a read op */
1751         writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1752                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1753                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1754
1755         /* wait for end of transfer */
1756         time_left = wait_for_completion_timeout(&fep->mdio_done,
1757                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1758         if (time_left == 0) {
1759                 fep->mii_timeout = 1;
1760                 netdev_err(fep->netdev, "MDIO read timeout\n");
1761                 return -ETIMEDOUT;
1762         }
1763
1764         /* return value */
1765         return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1766 }
1767
1768 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1769                            u16 value)
1770 {
1771         struct fec_enet_private *fep = bus->priv;
1772         unsigned long time_left;
1773
1774         fep->mii_timeout = 0;
1775         init_completion(&fep->mdio_done);
1776
1777         /* start a write op */
1778         writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1779                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1780                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1781                 fep->hwp + FEC_MII_DATA);
1782
1783         /* wait for end of transfer */
1784         time_left = wait_for_completion_timeout(&fep->mdio_done,
1785                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1786         if (time_left == 0) {
1787                 fep->mii_timeout = 1;
1788                 netdev_err(fep->netdev, "MDIO write timeout\n");
1789                 return -ETIMEDOUT;
1790         }
1791
1792         return 0;
1793 }
1794
1795 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1796 {
1797         struct fec_enet_private *fep = netdev_priv(ndev);
1798         int ret;
1799
1800         if (enable) {
1801                 ret = clk_prepare_enable(fep->clk_ahb);
1802                 if (ret)
1803                         return ret;
1804                 ret = clk_prepare_enable(fep->clk_ipg);
1805                 if (ret)
1806                         goto failed_clk_ipg;
1807                 if (fep->clk_enet_out) {
1808                         ret = clk_prepare_enable(fep->clk_enet_out);
1809                         if (ret)
1810                                 goto failed_clk_enet_out;
1811                 }
1812                 if (fep->clk_ptp) {
1813                         mutex_lock(&fep->ptp_clk_mutex);
1814                         ret = clk_prepare_enable(fep->clk_ptp);
1815                         if (ret) {
1816                                 mutex_unlock(&fep->ptp_clk_mutex);
1817                                 goto failed_clk_ptp;
1818                         } else {
1819                                 fep->ptp_clk_on = true;
1820                         }
1821                         mutex_unlock(&fep->ptp_clk_mutex);
1822                 }
1823                 if (fep->clk_ref) {
1824                         ret = clk_prepare_enable(fep->clk_ref);
1825                         if (ret)
1826                                 goto failed_clk_ref;
1827                 }
1828         } else {
1829                 clk_disable_unprepare(fep->clk_ahb);
1830                 clk_disable_unprepare(fep->clk_ipg);
1831                 if (fep->clk_enet_out)
1832                         clk_disable_unprepare(fep->clk_enet_out);
1833                 if (fep->clk_ptp) {
1834                         mutex_lock(&fep->ptp_clk_mutex);
1835                         clk_disable_unprepare(fep->clk_ptp);
1836                         fep->ptp_clk_on = false;
1837                         mutex_unlock(&fep->ptp_clk_mutex);
1838                 }
1839                 if (fep->clk_ref)
1840                         clk_disable_unprepare(fep->clk_ref);
1841         }
1842
1843         return 0;
1844
1845 failed_clk_ref:
1846         if (fep->clk_ref)
1847                 clk_disable_unprepare(fep->clk_ref);
1848 failed_clk_ptp:
1849         if (fep->clk_enet_out)
1850                 clk_disable_unprepare(fep->clk_enet_out);
1851 failed_clk_enet_out:
1852                 clk_disable_unprepare(fep->clk_ipg);
1853 failed_clk_ipg:
1854                 clk_disable_unprepare(fep->clk_ahb);
1855
1856         return ret;
1857 }
1858
1859 static int fec_enet_mii_probe(struct net_device *ndev)
1860 {
1861         struct fec_enet_private *fep = netdev_priv(ndev);
1862         struct phy_device *phy_dev = NULL;
1863         char mdio_bus_id[MII_BUS_ID_SIZE];
1864         char phy_name[MII_BUS_ID_SIZE + 3];
1865         int phy_id;
1866         int dev_id = fep->dev_id;
1867
1868         fep->phy_dev = NULL;
1869
1870         if (fep->phy_node) {
1871                 phy_dev = of_phy_connect(ndev, fep->phy_node,
1872                                          &fec_enet_adjust_link, 0,
1873                                          fep->phy_interface);
1874                 if (!phy_dev)
1875                         return -ENODEV;
1876         } else {
1877                 /* check for attached phy */
1878                 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1879                         if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1880                                 continue;
1881                         if (fep->mii_bus->phy_map[phy_id] == NULL)
1882                                 continue;
1883                         if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1884                                 continue;
1885                         if (dev_id--)
1886                                 continue;
1887                         strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1888                         break;
1889                 }
1890
1891                 if (phy_id >= PHY_MAX_ADDR) {
1892                         netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1893                         strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1894                         phy_id = 0;
1895                 }
1896
1897                 snprintf(phy_name, sizeof(phy_name),
1898                          PHY_ID_FMT, mdio_bus_id, phy_id);
1899                 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1900                                       fep->phy_interface);
1901         }
1902
1903         if (IS_ERR(phy_dev)) {
1904                 netdev_err(ndev, "could not attach to PHY\n");
1905                 return PTR_ERR(phy_dev);
1906         }
1907
1908         /* mask with MAC supported features */
1909         if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1910                 phy_dev->supported &= PHY_GBIT_FEATURES;
1911                 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1912 #if !defined(CONFIG_M5272)
1913                 phy_dev->supported |= SUPPORTED_Pause;
1914 #endif
1915         }
1916         else
1917                 phy_dev->supported &= PHY_BASIC_FEATURES;
1918
1919         phy_dev->advertising = phy_dev->supported;
1920
1921         fep->phy_dev = phy_dev;
1922         fep->link = 0;
1923         fep->full_duplex = 0;
1924
1925         netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1926                     fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1927                     fep->phy_dev->irq);
1928
1929         return 0;
1930 }
1931
1932 static int fec_enet_mii_init(struct platform_device *pdev)
1933 {
1934         static struct mii_bus *fec0_mii_bus;
1935         struct net_device *ndev = platform_get_drvdata(pdev);
1936         struct fec_enet_private *fep = netdev_priv(ndev);
1937         struct device_node *node;
1938         int err = -ENXIO, i;
1939
1940         /*
1941          * The i.MX28 dual fec interfaces are not equal.
1942          * Here are the differences:
1943          *
1944          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1945          *  - fec0 acts as the 1588 time master while fec1 is slave
1946          *  - external phys can only be configured by fec0
1947          *
1948          * That is to say fec1 can not work independently. It only works
1949          * when fec0 is working. The reason behind this design is that the
1950          * second interface is added primarily for Switch mode.
1951          *
1952          * Because of the last point above, both phys are attached on fec0
1953          * mdio interface in board design, and need to be configured by
1954          * fec0 mii_bus.
1955          */
1956         if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1957                 /* fec1 uses fec0 mii_bus */
1958                 if (mii_cnt && fec0_mii_bus) {
1959                         fep->mii_bus = fec0_mii_bus;
1960                         mii_cnt++;
1961                         return 0;
1962                 }
1963                 return -ENOENT;
1964         }
1965
1966         fep->mii_timeout = 0;
1967
1968         /*
1969          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1970          *
1971          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1972          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1973          * Reference Manual has an error on this, and gets fixed on i.MX6Q
1974          * document.
1975          */
1976         fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1977         if (fep->quirks & FEC_QUIRK_ENET_MAC)
1978                 fep->phy_speed--;
1979         fep->phy_speed <<= 1;
1980         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1981
1982         fep->mii_bus = mdiobus_alloc();
1983         if (fep->mii_bus == NULL) {
1984                 err = -ENOMEM;
1985                 goto err_out;
1986         }
1987
1988         fep->mii_bus->name = "fec_enet_mii_bus";
1989         fep->mii_bus->read = fec_enet_mdio_read;
1990         fep->mii_bus->write = fec_enet_mdio_write;
1991         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1992                 pdev->name, fep->dev_id + 1);
1993         fep->mii_bus->priv = fep;
1994         fep->mii_bus->parent = &pdev->dev;
1995
1996         fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1997         if (!fep->mii_bus->irq) {
1998                 err = -ENOMEM;
1999                 goto err_out_free_mdiobus;
2000         }
2001
2002         for (i = 0; i < PHY_MAX_ADDR; i++)
2003                 fep->mii_bus->irq[i] = PHY_POLL;
2004
2005         node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2006         if (node) {
2007                 err = of_mdiobus_register(fep->mii_bus, node);
2008                 of_node_put(node);
2009         } else {
2010                 err = mdiobus_register(fep->mii_bus);
2011         }
2012
2013         if (err)
2014                 goto err_out_free_mdio_irq;
2015
2016         mii_cnt++;
2017
2018         /* save fec0 mii_bus */
2019         if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2020                 fec0_mii_bus = fep->mii_bus;
2021
2022         return 0;
2023
2024 err_out_free_mdio_irq:
2025         kfree(fep->mii_bus->irq);
2026 err_out_free_mdiobus:
2027         mdiobus_free(fep->mii_bus);
2028 err_out:
2029         return err;
2030 }
2031
2032 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2033 {
2034         if (--mii_cnt == 0) {
2035                 mdiobus_unregister(fep->mii_bus);
2036                 kfree(fep->mii_bus->irq);
2037                 mdiobus_free(fep->mii_bus);
2038         }
2039 }
2040
2041 static int fec_enet_get_settings(struct net_device *ndev,
2042                                   struct ethtool_cmd *cmd)
2043 {
2044         struct fec_enet_private *fep = netdev_priv(ndev);
2045         struct phy_device *phydev = fep->phy_dev;
2046
2047         if (!phydev)
2048                 return -ENODEV;
2049
2050         return phy_ethtool_gset(phydev, cmd);
2051 }
2052
2053 static int fec_enet_set_settings(struct net_device *ndev,
2054                                  struct ethtool_cmd *cmd)
2055 {
2056         struct fec_enet_private *fep = netdev_priv(ndev);
2057         struct phy_device *phydev = fep->phy_dev;
2058
2059         if (!phydev)
2060                 return -ENODEV;
2061
2062         return phy_ethtool_sset(phydev, cmd);
2063 }
2064
2065 static void fec_enet_get_drvinfo(struct net_device *ndev,
2066                                  struct ethtool_drvinfo *info)
2067 {
2068         struct fec_enet_private *fep = netdev_priv(ndev);
2069
2070         strlcpy(info->driver, fep->pdev->dev.driver->name,
2071                 sizeof(info->driver));
2072         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2073         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2074 }
2075
2076 static int fec_enet_get_ts_info(struct net_device *ndev,
2077                                 struct ethtool_ts_info *info)
2078 {
2079         struct fec_enet_private *fep = netdev_priv(ndev);
2080
2081         if (fep->bufdesc_ex) {
2082
2083                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2084                                         SOF_TIMESTAMPING_RX_SOFTWARE |
2085                                         SOF_TIMESTAMPING_SOFTWARE |
2086                                         SOF_TIMESTAMPING_TX_HARDWARE |
2087                                         SOF_TIMESTAMPING_RX_HARDWARE |
2088                                         SOF_TIMESTAMPING_RAW_HARDWARE;
2089                 if (fep->ptp_clock)
2090                         info->phc_index = ptp_clock_index(fep->ptp_clock);
2091                 else
2092                         info->phc_index = -1;
2093
2094                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2095                                  (1 << HWTSTAMP_TX_ON);
2096
2097                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2098                                    (1 << HWTSTAMP_FILTER_ALL);
2099                 return 0;
2100         } else {
2101                 return ethtool_op_get_ts_info(ndev, info);
2102         }
2103 }
2104
2105 #if !defined(CONFIG_M5272)
2106
2107 static void fec_enet_get_pauseparam(struct net_device *ndev,
2108                                     struct ethtool_pauseparam *pause)
2109 {
2110         struct fec_enet_private *fep = netdev_priv(ndev);
2111
2112         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2113         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2114         pause->rx_pause = pause->tx_pause;
2115 }
2116
2117 static int fec_enet_set_pauseparam(struct net_device *ndev,
2118                                    struct ethtool_pauseparam *pause)
2119 {
2120         struct fec_enet_private *fep = netdev_priv(ndev);
2121
2122         if (!fep->phy_dev)
2123                 return -ENODEV;
2124
2125         if (pause->tx_pause != pause->rx_pause) {
2126                 netdev_info(ndev,
2127                         "hardware only support enable/disable both tx and rx");
2128                 return -EINVAL;
2129         }
2130
2131         fep->pause_flag = 0;
2132
2133         /* tx pause must be same as rx pause */
2134         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2135         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2136
2137         if (pause->rx_pause || pause->autoneg) {
2138                 fep->phy_dev->supported |= ADVERTISED_Pause;
2139                 fep->phy_dev->advertising |= ADVERTISED_Pause;
2140         } else {
2141                 fep->phy_dev->supported &= ~ADVERTISED_Pause;
2142                 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2143         }
2144
2145         if (pause->autoneg) {
2146                 if (netif_running(ndev))
2147                         fec_stop(ndev);
2148                 phy_start_aneg(fep->phy_dev);
2149         }
2150         if (netif_running(ndev)) {
2151                 napi_disable(&fep->napi);
2152                 netif_tx_lock_bh(ndev);
2153                 fec_restart(ndev);
2154                 netif_wake_queue(ndev);
2155                 netif_tx_unlock_bh(ndev);
2156                 napi_enable(&fep->napi);
2157         }
2158
2159         return 0;
2160 }
2161
2162 static const struct fec_stat {
2163         char name[ETH_GSTRING_LEN];
2164         u16 offset;
2165 } fec_stats[] = {
2166         /* RMON TX */
2167         { "tx_dropped", RMON_T_DROP },
2168         { "tx_packets", RMON_T_PACKETS },
2169         { "tx_broadcast", RMON_T_BC_PKT },
2170         { "tx_multicast", RMON_T_MC_PKT },
2171         { "tx_crc_errors", RMON_T_CRC_ALIGN },
2172         { "tx_undersize", RMON_T_UNDERSIZE },
2173         { "tx_oversize", RMON_T_OVERSIZE },
2174         { "tx_fragment", RMON_T_FRAG },
2175         { "tx_jabber", RMON_T_JAB },
2176         { "tx_collision", RMON_T_COL },
2177         { "tx_64byte", RMON_T_P64 },
2178         { "tx_65to127byte", RMON_T_P65TO127 },
2179         { "tx_128to255byte", RMON_T_P128TO255 },
2180         { "tx_256to511byte", RMON_T_P256TO511 },
2181         { "tx_512to1023byte", RMON_T_P512TO1023 },
2182         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2183         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2184         { "tx_octets", RMON_T_OCTETS },
2185
2186         /* IEEE TX */
2187         { "IEEE_tx_drop", IEEE_T_DROP },
2188         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2189         { "IEEE_tx_1col", IEEE_T_1COL },
2190         { "IEEE_tx_mcol", IEEE_T_MCOL },
2191         { "IEEE_tx_def", IEEE_T_DEF },
2192         { "IEEE_tx_lcol", IEEE_T_LCOL },
2193         { "IEEE_tx_excol", IEEE_T_EXCOL },
2194         { "IEEE_tx_macerr", IEEE_T_MACERR },
2195         { "IEEE_tx_cserr", IEEE_T_CSERR },
2196         { "IEEE_tx_sqe", IEEE_T_SQE },
2197         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2198         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2199
2200         /* RMON RX */
2201         { "rx_packets", RMON_R_PACKETS },
2202         { "rx_broadcast", RMON_R_BC_PKT },
2203         { "rx_multicast", RMON_R_MC_PKT },
2204         { "rx_crc_errors", RMON_R_CRC_ALIGN },
2205         { "rx_undersize", RMON_R_UNDERSIZE },
2206         { "rx_oversize", RMON_R_OVERSIZE },
2207         { "rx_fragment", RMON_R_FRAG },
2208         { "rx_jabber", RMON_R_JAB },
2209         { "rx_64byte", RMON_R_P64 },
2210         { "rx_65to127byte", RMON_R_P65TO127 },
2211         { "rx_128to255byte", RMON_R_P128TO255 },
2212         { "rx_256to511byte", RMON_R_P256TO511 },
2213         { "rx_512to1023byte", RMON_R_P512TO1023 },
2214         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2215         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2216         { "rx_octets", RMON_R_OCTETS },
2217
2218         /* IEEE RX */
2219         { "IEEE_rx_drop", IEEE_R_DROP },
2220         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2221         { "IEEE_rx_crc", IEEE_R_CRC },
2222         { "IEEE_rx_align", IEEE_R_ALIGN },
2223         { "IEEE_rx_macerr", IEEE_R_MACERR },
2224         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2225         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2226 };
2227
2228 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2229         struct ethtool_stats *stats, u64 *data)
2230 {
2231         struct fec_enet_private *fep = netdev_priv(dev);
2232         int i;
2233
2234         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2235                 data[i] = readl(fep->hwp + fec_stats[i].offset);
2236 }
2237
2238 static void fec_enet_get_strings(struct net_device *netdev,
2239         u32 stringset, u8 *data)
2240 {
2241         int i;
2242         switch (stringset) {
2243         case ETH_SS_STATS:
2244                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2245                         memcpy(data + i * ETH_GSTRING_LEN,
2246                                 fec_stats[i].name, ETH_GSTRING_LEN);
2247                 break;
2248         }
2249 }
2250
2251 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2252 {
2253         switch (sset) {
2254         case ETH_SS_STATS:
2255                 return ARRAY_SIZE(fec_stats);
2256         default:
2257                 return -EOPNOTSUPP;
2258         }
2259 }
2260 #endif /* !defined(CONFIG_M5272) */
2261
2262 static int fec_enet_nway_reset(struct net_device *dev)
2263 {
2264         struct fec_enet_private *fep = netdev_priv(dev);
2265         struct phy_device *phydev = fep->phy_dev;
2266
2267         if (!phydev)
2268                 return -ENODEV;
2269
2270         return genphy_restart_aneg(phydev);
2271 }
2272
2273 /* ITR clock source is enet system clock (clk_ahb).
2274  * TCTT unit is cycle_ns * 64 cycle
2275  * So, the ICTT value = X us / (cycle_ns * 64)
2276  */
2277 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2278 {
2279         struct fec_enet_private *fep = netdev_priv(ndev);
2280
2281         return us * (fep->itr_clk_rate / 64000) / 1000;
2282 }
2283
2284 /* Set threshold for interrupt coalescing */
2285 static void fec_enet_itr_coal_set(struct net_device *ndev)
2286 {
2287         struct fec_enet_private *fep = netdev_priv(ndev);
2288         int rx_itr, tx_itr;
2289
2290         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2291                 return;
2292
2293         /* Must be greater than zero to avoid unpredictable behavior */
2294         if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2295             !fep->tx_time_itr || !fep->tx_pkts_itr)
2296                 return;
2297
2298         /* Select enet system clock as Interrupt Coalescing
2299          * timer Clock Source
2300          */
2301         rx_itr = FEC_ITR_CLK_SEL;
2302         tx_itr = FEC_ITR_CLK_SEL;
2303
2304         /* set ICFT and ICTT */
2305         rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2306         rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2307         tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2308         tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2309
2310         rx_itr |= FEC_ITR_EN;
2311         tx_itr |= FEC_ITR_EN;
2312
2313         writel(tx_itr, fep->hwp + FEC_TXIC0);
2314         writel(rx_itr, fep->hwp + FEC_RXIC0);
2315         writel(tx_itr, fep->hwp + FEC_TXIC1);
2316         writel(rx_itr, fep->hwp + FEC_RXIC1);
2317         writel(tx_itr, fep->hwp + FEC_TXIC2);
2318         writel(rx_itr, fep->hwp + FEC_RXIC2);
2319 }
2320
2321 static int
2322 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2323 {
2324         struct fec_enet_private *fep = netdev_priv(ndev);
2325
2326         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2327                 return -EOPNOTSUPP;
2328
2329         ec->rx_coalesce_usecs = fep->rx_time_itr;
2330         ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2331
2332         ec->tx_coalesce_usecs = fep->tx_time_itr;
2333         ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2334
2335         return 0;
2336 }
2337
2338 static int
2339 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2340 {
2341         struct fec_enet_private *fep = netdev_priv(ndev);
2342         unsigned int cycle;
2343
2344         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2345                 return -EOPNOTSUPP;
2346
2347         if (ec->rx_max_coalesced_frames > 255) {
2348                 pr_err("Rx coalesced frames exceed hardware limiation");
2349                 return -EINVAL;
2350         }
2351
2352         if (ec->tx_max_coalesced_frames > 255) {
2353                 pr_err("Tx coalesced frame exceed hardware limiation");
2354                 return -EINVAL;
2355         }
2356
2357         cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2358         if (cycle > 0xFFFF) {
2359                 pr_err("Rx coalesed usec exceeed hardware limiation");
2360                 return -EINVAL;
2361         }
2362
2363         cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2364         if (cycle > 0xFFFF) {
2365                 pr_err("Rx coalesed usec exceeed hardware limiation");
2366                 return -EINVAL;
2367         }
2368
2369         fep->rx_time_itr = ec->rx_coalesce_usecs;
2370         fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2371
2372         fep->tx_time_itr = ec->tx_coalesce_usecs;
2373         fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2374
2375         fec_enet_itr_coal_set(ndev);
2376
2377         return 0;
2378 }
2379
2380 static void fec_enet_itr_coal_init(struct net_device *ndev)
2381 {
2382         struct ethtool_coalesce ec;
2383
2384         ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2385         ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2386
2387         ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2388         ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2389
2390         fec_enet_set_coalesce(ndev, &ec);
2391 }
2392
2393 static int fec_enet_get_tunable(struct net_device *netdev,
2394                                 const struct ethtool_tunable *tuna,
2395                                 void *data)
2396 {
2397         struct fec_enet_private *fep = netdev_priv(netdev);
2398         int ret = 0;
2399
2400         switch (tuna->id) {
2401         case ETHTOOL_RX_COPYBREAK:
2402                 *(u32 *)data = fep->rx_copybreak;
2403                 break;
2404         default:
2405                 ret = -EINVAL;
2406                 break;
2407         }
2408
2409         return ret;
2410 }
2411
2412 static int fec_enet_set_tunable(struct net_device *netdev,
2413                                 const struct ethtool_tunable *tuna,
2414                                 const void *data)
2415 {
2416         struct fec_enet_private *fep = netdev_priv(netdev);
2417         int ret = 0;
2418
2419         switch (tuna->id) {
2420         case ETHTOOL_RX_COPYBREAK:
2421                 fep->rx_copybreak = *(u32 *)data;
2422                 break;
2423         default:
2424                 ret = -EINVAL;
2425                 break;
2426         }
2427
2428         return ret;
2429 }
2430
2431 static const struct ethtool_ops fec_enet_ethtool_ops = {
2432         .get_settings           = fec_enet_get_settings,
2433         .set_settings           = fec_enet_set_settings,
2434         .get_drvinfo            = fec_enet_get_drvinfo,
2435         .nway_reset             = fec_enet_nway_reset,
2436         .get_link               = ethtool_op_get_link,
2437         .get_coalesce           = fec_enet_get_coalesce,
2438         .set_coalesce           = fec_enet_set_coalesce,
2439 #ifndef CONFIG_M5272
2440         .get_pauseparam         = fec_enet_get_pauseparam,
2441         .set_pauseparam         = fec_enet_set_pauseparam,
2442         .get_strings            = fec_enet_get_strings,
2443         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2444         .get_sset_count         = fec_enet_get_sset_count,
2445 #endif
2446         .get_ts_info            = fec_enet_get_ts_info,
2447         .get_tunable            = fec_enet_get_tunable,
2448         .set_tunable            = fec_enet_set_tunable,
2449 };
2450
2451 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2452 {
2453         struct fec_enet_private *fep = netdev_priv(ndev);
2454         struct phy_device *phydev = fep->phy_dev;
2455
2456         if (!netif_running(ndev))
2457                 return -EINVAL;
2458
2459         if (!phydev)
2460                 return -ENODEV;
2461
2462         if (fep->bufdesc_ex) {
2463                 if (cmd == SIOCSHWTSTAMP)
2464                         return fec_ptp_set(ndev, rq);
2465                 if (cmd == SIOCGHWTSTAMP)
2466                         return fec_ptp_get(ndev, rq);
2467         }
2468
2469         return phy_mii_ioctl(phydev, rq, cmd);
2470 }
2471
2472 static void fec_enet_free_buffers(struct net_device *ndev)
2473 {
2474         struct fec_enet_private *fep = netdev_priv(ndev);
2475         unsigned int i;
2476         struct sk_buff *skb;
2477         struct bufdesc  *bdp;
2478         struct fec_enet_priv_tx_q *txq;
2479         struct fec_enet_priv_rx_q *rxq;
2480         unsigned int q;
2481
2482         for (q = 0; q < fep->num_rx_queues; q++) {
2483                 rxq = fep->rx_queue[q];
2484                 bdp = rxq->rx_bd_base;
2485                 for (i = 0; i < rxq->rx_ring_size; i++) {
2486                         skb = rxq->rx_skbuff[i];
2487                         rxq->rx_skbuff[i] = NULL;
2488                         if (skb) {
2489                                 dma_unmap_single(&fep->pdev->dev,
2490                                                  bdp->cbd_bufaddr,
2491                                                  FEC_ENET_RX_FRSIZE - fep->rx_align,
2492                                                  DMA_FROM_DEVICE);
2493                                 dev_kfree_skb(skb);
2494                         }
2495                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
2496                 }
2497         }
2498
2499         for (q = 0; q < fep->num_tx_queues; q++) {
2500                 txq = fep->tx_queue[q];
2501                 bdp = txq->tx_bd_base;
2502                 for (i = 0; i < txq->tx_ring_size; i++) {
2503                         kfree(txq->tx_bounce[i]);
2504                         txq->tx_bounce[i] = NULL;
2505                         skb = txq->tx_skbuff[i];
2506                         txq->tx_skbuff[i] = NULL;
2507                         dev_kfree_skb(skb);
2508                 }
2509         }
2510 }
2511
2512 static void fec_enet_free_queue(struct net_device *ndev)
2513 {
2514         struct fec_enet_private *fep = netdev_priv(ndev);
2515         int i;
2516         struct fec_enet_priv_tx_q *txq;
2517
2518         for (i = 0; i < fep->num_tx_queues; i++)
2519                 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2520                         txq = fep->tx_queue[i];
2521                         dma_free_coherent(NULL,
2522                                           txq->tx_ring_size * TSO_HEADER_SIZE,
2523                                           txq->tso_hdrs,
2524                                           txq->tso_hdrs_dma);
2525                 }
2526
2527         for (i = 0; i < fep->num_rx_queues; i++)
2528                 if (fep->rx_queue[i])
2529                         kfree(fep->rx_queue[i]);
2530
2531         for (i = 0; i < fep->num_tx_queues; i++)
2532                 if (fep->tx_queue[i])
2533                         kfree(fep->tx_queue[i]);
2534 }
2535
2536 static int fec_enet_alloc_queue(struct net_device *ndev)
2537 {
2538         struct fec_enet_private *fep = netdev_priv(ndev);
2539         int i;
2540         int ret = 0;
2541         struct fec_enet_priv_tx_q *txq;
2542
2543         for (i = 0; i < fep->num_tx_queues; i++) {
2544                 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2545                 if (!txq) {
2546                         ret = -ENOMEM;
2547                         goto alloc_failed;
2548                 }
2549
2550                 fep->tx_queue[i] = txq;
2551                 txq->tx_ring_size = TX_RING_SIZE;
2552                 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2553
2554                 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2555                 txq->tx_wake_threshold =
2556                                 (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2557
2558                 txq->tso_hdrs = dma_alloc_coherent(NULL,
2559                                         txq->tx_ring_size * TSO_HEADER_SIZE,
2560                                         &txq->tso_hdrs_dma,
2561                                         GFP_KERNEL);
2562                 if (!txq->tso_hdrs) {
2563                         ret = -ENOMEM;
2564                         goto alloc_failed;
2565                 }
2566         }
2567
2568         for (i = 0; i < fep->num_rx_queues; i++) {
2569                 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2570                                            GFP_KERNEL);
2571                 if (!fep->rx_queue[i]) {
2572                         ret = -ENOMEM;
2573                         goto alloc_failed;
2574                 }
2575
2576                 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2577                 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2578         }
2579         return ret;
2580
2581 alloc_failed:
2582         fec_enet_free_queue(ndev);
2583         return ret;
2584 }
2585
2586 static int
2587 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2588 {
2589         struct fec_enet_private *fep = netdev_priv(ndev);
2590         unsigned int i;
2591         struct sk_buff *skb;
2592         struct bufdesc  *bdp;
2593         struct fec_enet_priv_rx_q *rxq;
2594
2595         rxq = fep->rx_queue[queue];
2596         bdp = rxq->rx_bd_base;
2597         for (i = 0; i < rxq->rx_ring_size; i++) {
2598                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2599                 if (!skb)
2600                         goto err_alloc;
2601
2602                 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2603                         dev_kfree_skb(skb);
2604                         goto err_alloc;
2605                 }
2606
2607                 rxq->rx_skbuff[i] = skb;
2608                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2609
2610                 if (fep->bufdesc_ex) {
2611                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2612                         ebdp->cbd_esc = BD_ENET_RX_INT;
2613                 }
2614
2615                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2616         }
2617
2618         /* Set the last buffer to wrap. */
2619         bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2620         bdp->cbd_sc |= BD_SC_WRAP;
2621         return 0;
2622
2623  err_alloc:
2624         fec_enet_free_buffers(ndev);
2625         return -ENOMEM;
2626 }
2627
2628 static int
2629 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2630 {
2631         struct fec_enet_private *fep = netdev_priv(ndev);
2632         unsigned int i;
2633         struct bufdesc  *bdp;
2634         struct fec_enet_priv_tx_q *txq;
2635
2636         txq = fep->tx_queue[queue];
2637         bdp = txq->tx_bd_base;
2638         for (i = 0; i < txq->tx_ring_size; i++) {
2639                 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2640                 if (!txq->tx_bounce[i])
2641                         goto err_alloc;
2642
2643                 bdp->cbd_sc = 0;
2644                 bdp->cbd_bufaddr = 0;
2645
2646                 if (fep->bufdesc_ex) {
2647                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2648                         ebdp->cbd_esc = BD_ENET_TX_INT;
2649                 }
2650
2651                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2652         }
2653
2654         /* Set the last buffer to wrap. */
2655         bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2656         bdp->cbd_sc |= BD_SC_WRAP;
2657
2658         return 0;
2659
2660  err_alloc:
2661         fec_enet_free_buffers(ndev);
2662         return -ENOMEM;
2663 }
2664
2665 static int fec_enet_alloc_buffers(struct net_device *ndev)
2666 {
2667         struct fec_enet_private *fep = netdev_priv(ndev);
2668         unsigned int i;
2669
2670         for (i = 0; i < fep->num_rx_queues; i++)
2671                 if (fec_enet_alloc_rxq_buffers(ndev, i))
2672                         return -ENOMEM;
2673
2674         for (i = 0; i < fep->num_tx_queues; i++)
2675                 if (fec_enet_alloc_txq_buffers(ndev, i))
2676                         return -ENOMEM;
2677         return 0;
2678 }
2679
2680 static int
2681 fec_enet_open(struct net_device *ndev)
2682 {
2683         struct fec_enet_private *fep = netdev_priv(ndev);
2684         int ret;
2685
2686         pinctrl_pm_select_default_state(&fep->pdev->dev);
2687         ret = fec_enet_clk_enable(ndev, true);
2688         if (ret)
2689                 return ret;
2690
2691         /* I should reset the ring buffers here, but I don't yet know
2692          * a simple way to do that.
2693          */
2694
2695         ret = fec_enet_alloc_buffers(ndev);
2696         if (ret)
2697                 goto err_enet_alloc;
2698
2699         /* Probe and connect to PHY when open the interface */
2700         ret = fec_enet_mii_probe(ndev);
2701         if (ret)
2702                 goto err_enet_mii_probe;
2703
2704         fec_restart(ndev);
2705         napi_enable(&fep->napi);
2706         phy_start(fep->phy_dev);
2707         netif_tx_start_all_queues(ndev);
2708
2709         return 0;
2710
2711 err_enet_mii_probe:
2712         fec_enet_free_buffers(ndev);
2713 err_enet_alloc:
2714         fec_enet_clk_enable(ndev, false);
2715         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2716         return ret;
2717 }
2718
2719 static int
2720 fec_enet_close(struct net_device *ndev)
2721 {
2722         struct fec_enet_private *fep = netdev_priv(ndev);
2723
2724         phy_stop(fep->phy_dev);
2725
2726         if (netif_device_present(ndev)) {
2727                 napi_disable(&fep->napi);
2728                 netif_tx_disable(ndev);
2729                 fec_stop(ndev);
2730         }
2731
2732         phy_disconnect(fep->phy_dev);
2733         fep->phy_dev = NULL;
2734
2735         fec_enet_clk_enable(ndev, false);
2736         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2737         fec_enet_free_buffers(ndev);
2738
2739         return 0;
2740 }
2741
2742 /* Set or clear the multicast filter for this adaptor.
2743  * Skeleton taken from sunlance driver.
2744  * The CPM Ethernet implementation allows Multicast as well as individual
2745  * MAC address filtering.  Some of the drivers check to make sure it is
2746  * a group multicast address, and discard those that are not.  I guess I
2747  * will do the same for now, but just remove the test if you want
2748  * individual filtering as well (do the upper net layers want or support
2749  * this kind of feature?).
2750  */
2751
2752 #define HASH_BITS       6               /* #bits in hash */
2753 #define CRC32_POLY      0xEDB88320
2754
2755 static void set_multicast_list(struct net_device *ndev)
2756 {
2757         struct fec_enet_private *fep = netdev_priv(ndev);
2758         struct netdev_hw_addr *ha;
2759         unsigned int i, bit, data, crc, tmp;
2760         unsigned char hash;
2761
2762         if (ndev->flags & IFF_PROMISC) {
2763                 tmp = readl(fep->hwp + FEC_R_CNTRL);
2764                 tmp |= 0x8;
2765                 writel(tmp, fep->hwp + FEC_R_CNTRL);
2766                 return;
2767         }
2768
2769         tmp = readl(fep->hwp + FEC_R_CNTRL);
2770         tmp &= ~0x8;
2771         writel(tmp, fep->hwp + FEC_R_CNTRL);
2772
2773         if (ndev->flags & IFF_ALLMULTI) {
2774                 /* Catch all multicast addresses, so set the
2775                  * filter to all 1's
2776                  */
2777                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2778                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2779
2780                 return;
2781         }
2782
2783         /* Clear filter and add the addresses in hash register
2784          */
2785         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2786         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2787
2788         netdev_for_each_mc_addr(ha, ndev) {
2789                 /* calculate crc32 value of mac address */
2790                 crc = 0xffffffff;
2791
2792                 for (i = 0; i < ndev->addr_len; i++) {
2793                         data = ha->addr[i];
2794                         for (bit = 0; bit < 8; bit++, data >>= 1) {
2795                                 crc = (crc >> 1) ^
2796                                 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2797                         }
2798                 }
2799
2800                 /* only upper 6 bits (HASH_BITS) are used
2801                  * which point to specific bit in he hash registers
2802                  */
2803                 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2804
2805                 if (hash > 31) {
2806                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2807                         tmp |= 1 << (hash - 32);
2808                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2809                 } else {
2810                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2811                         tmp |= 1 << hash;
2812                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2813                 }
2814         }
2815 }
2816
2817 /* Set a MAC change in hardware. */
2818 static int
2819 fec_set_mac_address(struct net_device *ndev, void *p)
2820 {
2821         struct fec_enet_private *fep = netdev_priv(ndev);
2822         struct sockaddr *addr = p;
2823
2824         if (addr) {
2825                 if (!is_valid_ether_addr(addr->sa_data))
2826                         return -EADDRNOTAVAIL;
2827                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2828         }
2829
2830         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2831                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2832                 fep->hwp + FEC_ADDR_LOW);
2833         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2834                 fep->hwp + FEC_ADDR_HIGH);
2835         return 0;
2836 }
2837
2838 #ifdef CONFIG_NET_POLL_CONTROLLER
2839 /**
2840  * fec_poll_controller - FEC Poll controller function
2841  * @dev: The FEC network adapter
2842  *
2843  * Polled functionality used by netconsole and others in non interrupt mode
2844  *
2845  */
2846 static void fec_poll_controller(struct net_device *dev)
2847 {
2848         int i;
2849         struct fec_enet_private *fep = netdev_priv(dev);
2850
2851         for (i = 0; i < FEC_IRQ_NUM; i++) {
2852                 if (fep->irq[i] > 0) {
2853                         disable_irq(fep->irq[i]);
2854                         fec_enet_interrupt(fep->irq[i], dev);
2855                         enable_irq(fep->irq[i]);
2856                 }
2857         }
2858 }
2859 #endif
2860
2861 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2862 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2863         netdev_features_t features)
2864 {
2865         struct fec_enet_private *fep = netdev_priv(netdev);
2866         netdev_features_t changed = features ^ netdev->features;
2867
2868         netdev->features = features;
2869
2870         /* Receive checksum has been changed */
2871         if (changed & NETIF_F_RXCSUM) {
2872                 if (features & NETIF_F_RXCSUM)
2873                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2874                 else
2875                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2876         }
2877 }
2878
2879 static int fec_set_features(struct net_device *netdev,
2880         netdev_features_t features)
2881 {
2882         struct fec_enet_private *fep = netdev_priv(netdev);
2883         netdev_features_t changed = features ^ netdev->features;
2884
2885         if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2886                 napi_disable(&fep->napi);
2887                 netif_tx_lock_bh(netdev);
2888                 fec_stop(netdev);
2889                 fec_enet_set_netdev_features(netdev, features);
2890                 fec_restart(netdev);
2891                 netif_tx_wake_all_queues(netdev);
2892                 netif_tx_unlock_bh(netdev);
2893                 napi_enable(&fep->napi);
2894         } else {
2895                 fec_enet_set_netdev_features(netdev, features);
2896         }
2897
2898         return 0;
2899 }
2900
2901 static const struct net_device_ops fec_netdev_ops = {
2902         .ndo_open               = fec_enet_open,
2903         .ndo_stop               = fec_enet_close,
2904         .ndo_start_xmit         = fec_enet_start_xmit,
2905         .ndo_set_rx_mode        = set_multicast_list,
2906         .ndo_change_mtu         = eth_change_mtu,
2907         .ndo_validate_addr      = eth_validate_addr,
2908         .ndo_tx_timeout         = fec_timeout,
2909         .ndo_set_mac_address    = fec_set_mac_address,
2910         .ndo_do_ioctl           = fec_enet_ioctl,
2911 #ifdef CONFIG_NET_POLL_CONTROLLER
2912         .ndo_poll_controller    = fec_poll_controller,
2913 #endif
2914         .ndo_set_features       = fec_set_features,
2915 };
2916
2917  /*
2918   * XXX:  We need to clean up on failure exits here.
2919   *
2920   */
2921 static int fec_enet_init(struct net_device *ndev)
2922 {
2923         struct fec_enet_private *fep = netdev_priv(ndev);
2924         struct fec_enet_priv_tx_q *txq;
2925         struct fec_enet_priv_rx_q *rxq;
2926         struct bufdesc *cbd_base;
2927         dma_addr_t bd_dma;
2928         int bd_size;
2929         unsigned int i;
2930
2931 #if defined(CONFIG_ARM)
2932         fep->rx_align = 0xf;
2933         fep->tx_align = 0xf;
2934 #else
2935         fep->rx_align = 0x3;
2936         fep->tx_align = 0x3;
2937 #endif
2938
2939         fec_enet_alloc_queue(ndev);
2940
2941         if (fep->bufdesc_ex)
2942                 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2943         else
2944                 fep->bufdesc_size = sizeof(struct bufdesc);
2945         bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2946                         fep->bufdesc_size;
2947
2948         /* Allocate memory for buffer descriptors. */
2949         cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2950                                       GFP_KERNEL);
2951         if (!cbd_base) {
2952                 return -ENOMEM;
2953         }
2954
2955         memset(cbd_base, 0, bd_size);
2956
2957         /* Get the Ethernet address */
2958         fec_get_mac(ndev);
2959         /* make sure MAC we just acquired is programmed into the hw */
2960         fec_set_mac_address(ndev, NULL);
2961
2962         /* Set receive and transmit descriptor base. */
2963         for (i = 0; i < fep->num_rx_queues; i++) {
2964                 rxq = fep->rx_queue[i];
2965                 rxq->index = i;
2966                 rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2967                 rxq->bd_dma = bd_dma;
2968                 if (fep->bufdesc_ex) {
2969                         bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
2970                         cbd_base = (struct bufdesc *)
2971                                 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
2972                 } else {
2973                         bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
2974                         cbd_base += rxq->rx_ring_size;
2975                 }
2976         }
2977
2978         for (i = 0; i < fep->num_tx_queues; i++) {
2979                 txq = fep->tx_queue[i];
2980                 txq->index = i;
2981                 txq->tx_bd_base = (struct bufdesc *)cbd_base;
2982                 txq->bd_dma = bd_dma;
2983                 if (fep->bufdesc_ex) {
2984                         bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
2985                         cbd_base = (struct bufdesc *)
2986                          (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
2987                 } else {
2988                         bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
2989                         cbd_base += txq->tx_ring_size;
2990                 }
2991         }
2992
2993
2994         /* The FEC Ethernet specific entries in the device structure */
2995         ndev->watchdog_timeo = TX_TIMEOUT;
2996         ndev->netdev_ops = &fec_netdev_ops;
2997         ndev->ethtool_ops = &fec_enet_ethtool_ops;
2998
2999         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3000         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3001
3002         if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3003                 /* enable hw VLAN support */
3004                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3005
3006         if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3007                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3008
3009                 /* enable hw accelerator */
3010                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3011                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3012                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3013         }
3014
3015         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3016                 fep->tx_align = 0;
3017                 fep->rx_align = 0x3f;
3018         }
3019
3020         ndev->hw_features = ndev->features;
3021
3022         fec_restart(ndev);
3023
3024         return 0;
3025 }
3026
3027 #ifdef CONFIG_OF
3028 static void fec_reset_phy(struct platform_device *pdev)
3029 {
3030         int err, phy_reset;
3031         int msec = 1;
3032         struct device_node *np = pdev->dev.of_node;
3033
3034         if (!np)
3035                 return;
3036
3037         of_property_read_u32(np, "phy-reset-duration", &msec);
3038         /* A sane reset duration should not be longer than 1s */
3039         if (msec > 1000)
3040                 msec = 1;
3041
3042         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3043         if (!gpio_is_valid(phy_reset))
3044                 return;
3045
3046         err = devm_gpio_request_one(&pdev->dev, phy_reset,
3047                                     GPIOF_OUT_INIT_LOW, "phy-reset");
3048         if (err) {
3049                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3050                 return;
3051         }
3052         msleep(msec);
3053         gpio_set_value(phy_reset, 1);
3054 }
3055 #else /* CONFIG_OF */
3056 static void fec_reset_phy(struct platform_device *pdev)
3057 {
3058         /*
3059          * In case of platform probe, the reset has been done
3060          * by machine code.
3061          */
3062 }
3063 #endif /* CONFIG_OF */
3064
3065 static void
3066 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3067 {
3068         struct device_node *np = pdev->dev.of_node;
3069         int err;
3070
3071         *num_tx = *num_rx = 1;
3072
3073         if (!np || !of_device_is_available(np))
3074                 return;
3075
3076         /* parse the num of tx and rx queues */
3077         err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3078         if (err)
3079                 *num_tx = 1;
3080
3081         err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3082         if (err)
3083                 *num_rx = 1;
3084
3085         if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3086                 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3087                          *num_tx);
3088                 *num_tx = 1;
3089                 return;
3090         }
3091
3092         if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3093                 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3094                          *num_rx);
3095                 *num_rx = 1;
3096                 return;
3097         }
3098
3099 }
3100
3101 static int
3102 fec_probe(struct platform_device *pdev)
3103 {
3104         struct fec_enet_private *fep;
3105         struct fec_platform_data *pdata;
3106         struct net_device *ndev;
3107         int i, irq, ret = 0;
3108         struct resource *r;
3109         const struct of_device_id *of_id;
3110         static int dev_id;
3111         struct device_node *np = pdev->dev.of_node, *phy_node;
3112         int num_tx_qs;
3113         int num_rx_qs;
3114
3115         fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3116
3117         /* Init network device */
3118         ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3119                                   num_tx_qs, num_rx_qs);
3120         if (!ndev)
3121                 return -ENOMEM;
3122
3123         SET_NETDEV_DEV(ndev, &pdev->dev);
3124
3125         /* setup board info structure */
3126         fep = netdev_priv(ndev);
3127
3128         of_id = of_match_device(fec_dt_ids, &pdev->dev);
3129         if (of_id)
3130                 pdev->id_entry = of_id->data;
3131         fep->quirks = pdev->id_entry->driver_data;
3132
3133         fep->netdev = ndev;
3134         fep->num_rx_queues = num_rx_qs;
3135         fep->num_tx_queues = num_tx_qs;
3136
3137 #if !defined(CONFIG_M5272)
3138         /* default enable pause frame auto negotiation */
3139         if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3140                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3141 #endif
3142
3143         /* Select default pin state */
3144         pinctrl_pm_select_default_state(&pdev->dev);
3145
3146         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3147         fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3148         if (IS_ERR(fep->hwp)) {
3149                 ret = PTR_ERR(fep->hwp);
3150                 goto failed_ioremap;
3151         }
3152
3153         fep->pdev = pdev;
3154         fep->dev_id = dev_id++;
3155
3156         platform_set_drvdata(pdev, ndev);
3157
3158         phy_node = of_parse_phandle(np, "phy-handle", 0);
3159         if (!phy_node && of_phy_is_fixed_link(np)) {
3160                 ret = of_phy_register_fixed_link(np);
3161                 if (ret < 0) {
3162                         dev_err(&pdev->dev,
3163                                 "broken fixed-link specification\n");
3164                         goto failed_phy;
3165                 }
3166                 phy_node = of_node_get(np);
3167         }
3168         fep->phy_node = phy_node;
3169
3170         ret = of_get_phy_mode(pdev->dev.of_node);
3171         if (ret < 0) {
3172                 pdata = dev_get_platdata(&pdev->dev);
3173                 if (pdata)
3174                         fep->phy_interface = pdata->phy;
3175                 else
3176                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
3177         } else {
3178                 fep->phy_interface = ret;
3179         }
3180
3181         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3182         if (IS_ERR(fep->clk_ipg)) {
3183                 ret = PTR_ERR(fep->clk_ipg);
3184                 goto failed_clk;
3185         }
3186
3187         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3188         if (IS_ERR(fep->clk_ahb)) {
3189                 ret = PTR_ERR(fep->clk_ahb);
3190                 goto failed_clk;
3191         }
3192
3193         fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3194
3195         /* enet_out is optional, depends on board */
3196         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3197         if (IS_ERR(fep->clk_enet_out))
3198                 fep->clk_enet_out = NULL;
3199
3200         fep->ptp_clk_on = false;
3201         mutex_init(&fep->ptp_clk_mutex);
3202
3203         /* clk_ref is optional, depends on board */
3204         fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3205         if (IS_ERR(fep->clk_ref))
3206                 fep->clk_ref = NULL;
3207
3208         fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3209         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3210         if (IS_ERR(fep->clk_ptp)) {
3211                 fep->clk_ptp = NULL;
3212                 fep->bufdesc_ex = false;
3213         }
3214
3215         ret = fec_enet_clk_enable(ndev, true);
3216         if (ret)
3217                 goto failed_clk;
3218
3219         fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3220         if (!IS_ERR(fep->reg_phy)) {
3221                 ret = regulator_enable(fep->reg_phy);
3222                 if (ret) {
3223                         dev_err(&pdev->dev,
3224                                 "Failed to enable phy regulator: %d\n", ret);
3225                         goto failed_regulator;
3226                 }
3227         } else {
3228                 fep->reg_phy = NULL;
3229         }
3230
3231         fec_reset_phy(pdev);
3232
3233         if (fep->bufdesc_ex)
3234                 fec_ptp_init(pdev);
3235
3236         ret = fec_enet_init(ndev);
3237         if (ret)
3238                 goto failed_init;
3239
3240         for (i = 0; i < FEC_IRQ_NUM; i++) {
3241                 irq = platform_get_irq(pdev, i);
3242                 if (irq < 0) {
3243                         if (i)
3244                                 break;
3245                         ret = irq;
3246                         goto failed_irq;
3247                 }
3248                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3249                                        0, pdev->name, ndev);
3250                 if (ret)
3251                         goto failed_irq;
3252         }
3253
3254         init_completion(&fep->mdio_done);
3255         ret = fec_enet_mii_init(pdev);
3256         if (ret)
3257                 goto failed_mii_init;
3258
3259         /* Carrier starts down, phylib will bring it up */
3260         netif_carrier_off(ndev);
3261         fec_enet_clk_enable(ndev, false);
3262         pinctrl_pm_select_sleep_state(&pdev->dev);
3263
3264         ret = register_netdev(ndev);
3265         if (ret)
3266                 goto failed_register;
3267
3268         if (fep->bufdesc_ex && fep->ptp_clock)
3269                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3270
3271         fep->rx_copybreak = COPYBREAK_DEFAULT;
3272         INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3273         return 0;
3274
3275 failed_register:
3276         fec_enet_mii_remove(fep);
3277 failed_mii_init:
3278 failed_irq:
3279 failed_init:
3280         if (fep->reg_phy)
3281                 regulator_disable(fep->reg_phy);
3282 failed_regulator:
3283         fec_enet_clk_enable(ndev, false);
3284 failed_clk:
3285 failed_phy:
3286         of_node_put(phy_node);
3287 failed_ioremap:
3288         free_netdev(ndev);
3289
3290         return ret;
3291 }
3292
3293 static int
3294 fec_drv_remove(struct platform_device *pdev)
3295 {
3296         struct net_device *ndev = platform_get_drvdata(pdev);
3297         struct fec_enet_private *fep = netdev_priv(ndev);
3298
3299         cancel_delayed_work_sync(&fep->time_keep);
3300         cancel_work_sync(&fep->tx_timeout_work);
3301         unregister_netdev(ndev);
3302         fec_enet_mii_remove(fep);
3303         if (fep->reg_phy)
3304                 regulator_disable(fep->reg_phy);
3305         if (fep->ptp_clock)
3306                 ptp_clock_unregister(fep->ptp_clock);
3307         fec_enet_clk_enable(ndev, false);
3308         of_node_put(fep->phy_node);
3309         free_netdev(ndev);
3310
3311         return 0;
3312 }
3313
3314 static int __maybe_unused fec_suspend(struct device *dev)
3315 {
3316         struct net_device *ndev = dev_get_drvdata(dev);
3317         struct fec_enet_private *fep = netdev_priv(ndev);
3318
3319         rtnl_lock();
3320         if (netif_running(ndev)) {
3321                 phy_stop(fep->phy_dev);
3322                 napi_disable(&fep->napi);
3323                 netif_tx_lock_bh(ndev);
3324                 netif_device_detach(ndev);
3325                 netif_tx_unlock_bh(ndev);
3326                 fec_stop(ndev);
3327                 fec_enet_clk_enable(ndev, false);
3328                 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3329         }
3330         rtnl_unlock();
3331
3332         if (fep->reg_phy)
3333                 regulator_disable(fep->reg_phy);
3334
3335         /* SOC supply clock to phy, when clock is disabled, phy link down
3336          * SOC control phy regulator, when regulator is disabled, phy link down
3337          */
3338         if (fep->clk_enet_out || fep->reg_phy)
3339                 fep->link = 0;
3340
3341         return 0;
3342 }
3343
3344 static int __maybe_unused fec_resume(struct device *dev)
3345 {
3346         struct net_device *ndev = dev_get_drvdata(dev);
3347         struct fec_enet_private *fep = netdev_priv(ndev);
3348         int ret;
3349
3350         if (fep->reg_phy) {
3351                 ret = regulator_enable(fep->reg_phy);
3352                 if (ret)
3353                         return ret;
3354         }
3355
3356         rtnl_lock();
3357         if (netif_running(ndev)) {
3358                 pinctrl_pm_select_default_state(&fep->pdev->dev);
3359                 ret = fec_enet_clk_enable(ndev, true);
3360                 if (ret) {
3361                         rtnl_unlock();
3362                         goto failed_clk;
3363                 }
3364                 fec_restart(ndev);
3365                 netif_tx_lock_bh(ndev);
3366                 netif_device_attach(ndev);
3367                 netif_tx_unlock_bh(ndev);
3368                 napi_enable(&fep->napi);
3369                 phy_start(fep->phy_dev);
3370         }
3371         rtnl_unlock();
3372
3373         return 0;
3374
3375 failed_clk:
3376         if (fep->reg_phy)
3377                 regulator_disable(fep->reg_phy);
3378         return ret;
3379 }
3380
3381 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3382
3383 static struct platform_driver fec_driver = {
3384         .driver = {
3385                 .name   = DRIVER_NAME,
3386                 .pm     = &fec_pm_ops,
3387                 .of_match_table = fec_dt_ids,
3388         },
3389         .id_table = fec_devtype,
3390         .probe  = fec_probe,
3391         .remove = fec_drv_remove,
3392 };
3393
3394 module_platform_driver(fec_driver);
3395
3396 MODULE_ALIAS("platform:"DRIVER_NAME);
3397 MODULE_LICENSE("GPL");