Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168                                      bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170                                  __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172                                   __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190         "Maximum size of packet that is copied to a new buffer on receive");
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static const struct pci_error_handlers e1000_err_handler = {
198         .error_detected = e1000_io_error_detected,
199         .slot_reset = e1000_io_slot_reset,
200         .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204         .name     = e1000_driver_name,
205         .id_table = e1000_pci_tbl,
206         .probe    = e1000_probe,
207         .remove   = e1000_remove,
208 #ifdef CONFIG_PM
209         /* Power Management Hooks */
210         .suspend  = e1000_suspend,
211         .resume   = e1000_resume,
212 #endif
213         .shutdown = e1000_shutdown,
214         .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234         struct e1000_adapter *adapter = hw->back;
235         return adapter->netdev;
236 }
237
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246         int ret;
247         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249         pr_info("%s\n", e1000_copyright);
250
251         ret = pci_register_driver(&e1000_driver);
252         if (copybreak != COPYBREAK_DEFAULT) {
253                 if (copybreak == 0)
254                         pr_info("copybreak disabled\n");
255                 else
256                         pr_info("copybreak enabled for "
257                                    "packets <= %u bytes\n", copybreak);
258         }
259         return ret;
260 }
261
262 module_init(e1000_init_module);
263
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272         pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279         struct net_device *netdev = adapter->netdev;
280         irq_handler_t handler = e1000_intr;
281         int irq_flags = IRQF_SHARED;
282         int err;
283
284         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285                           netdev);
286         if (err) {
287                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288         }
289
290         return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296
297         free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306         struct e1000_hw *hw = &adapter->hw;
307
308         ew32(IMC, ~0);
309         E1000_WRITE_FLUSH();
310         synchronize_irq(adapter->pdev->irq);
311 }
312
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320
321         ew32(IMS, IMS_ENABLE_MASK);
322         E1000_WRITE_FLUSH();
323 }
324
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327         struct e1000_hw *hw = &adapter->hw;
328         struct net_device *netdev = adapter->netdev;
329         u16 vid = hw->mng_cookie.vlan_id;
330         u16 old_vid = adapter->mng_vlan_id;
331
332         if (!e1000_vlan_used(adapter))
333                 return;
334
335         if (!test_bit(vid, adapter->active_vlans)) {
336                 if (hw->mng_cookie.status &
337                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338                         e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339                         adapter->mng_vlan_id = vid;
340                 } else {
341                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342                 }
343                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344                     (vid != old_vid) &&
345                     !test_bit(old_vid, adapter->active_vlans))
346                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347                                                old_vid);
348         } else {
349                 adapter->mng_vlan_id = vid;
350         }
351 }
352
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355         struct e1000_hw *hw = &adapter->hw;
356
357         if (adapter->en_mng_pt) {
358                 u32 manc = er32(MANC);
359
360                 /* disable hardware interception of ARP */
361                 manc &= ~(E1000_MANC_ARP_EN);
362
363                 ew32(MANC, manc);
364         }
365 }
366
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369         struct e1000_hw *hw = &adapter->hw;
370
371         if (adapter->en_mng_pt) {
372                 u32 manc = er32(MANC);
373
374                 /* re-enable hardware interception of ARP */
375                 manc |= E1000_MANC_ARP_EN;
376
377                 ew32(MANC, manc);
378         }
379 }
380
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387         struct net_device *netdev = adapter->netdev;
388         int i;
389
390         e1000_set_rx_mode(netdev);
391
392         e1000_restore_vlan(adapter);
393         e1000_init_manageability(adapter);
394
395         e1000_configure_tx(adapter);
396         e1000_setup_rctl(adapter);
397         e1000_configure_rx(adapter);
398         /* call E1000_DESC_UNUSED which always leaves
399          * at least 1 descriptor unused to make sure
400          * next_to_use != next_to_clean
401          */
402         for (i = 0; i < adapter->num_rx_queues; i++) {
403                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404                 adapter->alloc_rx_buf(adapter, ring,
405                                       E1000_DESC_UNUSED(ring));
406         }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411         struct e1000_hw *hw = &adapter->hw;
412
413         /* hardware has been reset, we need to reload some things */
414         e1000_configure(adapter);
415
416         clear_bit(__E1000_DOWN, &adapter->flags);
417
418         napi_enable(&adapter->napi);
419
420         e1000_irq_enable(adapter);
421
422         netif_wake_queue(adapter->netdev);
423
424         /* fire a link change interrupt to start the watchdog */
425         ew32(ICS, E1000_ICS_LSC);
426         return 0;
427 }
428
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439         struct e1000_hw *hw = &adapter->hw;
440         u16 mii_reg = 0;
441
442         /* Just clear the power down bit to wake the phy back up */
443         if (hw->media_type == e1000_media_type_copper) {
444                 /* according to the manual, the phy will retain its
445                  * settings across a power-down/up cycle
446                  */
447                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448                 mii_reg &= ~MII_CR_POWER_DOWN;
449                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450         }
451 }
452
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455         struct e1000_hw *hw = &adapter->hw;
456
457         /* Power down the PHY so no link is implied when interface is down *
458          * The PHY cannot be powered down if any of the following is true *
459          * (a) WoL is enabled
460          * (b) AMT is active
461          * (c) SoL/IDER session is active
462          */
463         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464            hw->media_type == e1000_media_type_copper) {
465                 u16 mii_reg = 0;
466
467                 switch (hw->mac_type) {
468                 case e1000_82540:
469                 case e1000_82545:
470                 case e1000_82545_rev_3:
471                 case e1000_82546:
472                 case e1000_ce4100:
473                 case e1000_82546_rev_3:
474                 case e1000_82541:
475                 case e1000_82541_rev_2:
476                 case e1000_82547:
477                 case e1000_82547_rev_2:
478                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
479                                 goto out;
480                         break;
481                 default:
482                         goto out;
483                 }
484                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485                 mii_reg |= MII_CR_POWER_DOWN;
486                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487                 msleep(1);
488         }
489 out:
490         return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495         set_bit(__E1000_DOWN, &adapter->flags);
496
497         cancel_delayed_work_sync(&adapter->watchdog_task);
498
499         /*
500          * Since the watchdog task can reschedule other tasks, we should cancel
501          * it first, otherwise we can run into the situation when a work is
502          * still running after the adapter has been turned down.
503          */
504
505         cancel_delayed_work_sync(&adapter->phy_info_task);
506         cancel_delayed_work_sync(&adapter->fifo_stall_task);
507
508         /* Only kill reset task if adapter is not resetting */
509         if (!test_bit(__E1000_RESETTING, &adapter->flags))
510                 cancel_work_sync(&adapter->reset_task);
511 }
512
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515         struct e1000_hw *hw = &adapter->hw;
516         struct net_device *netdev = adapter->netdev;
517         u32 rctl, tctl;
518
519
520         /* disable receives in the hardware */
521         rctl = er32(RCTL);
522         ew32(RCTL, rctl & ~E1000_RCTL_EN);
523         /* flush and sleep below */
524
525         netif_tx_disable(netdev);
526
527         /* disable transmits in the hardware */
528         tctl = er32(TCTL);
529         tctl &= ~E1000_TCTL_EN;
530         ew32(TCTL, tctl);
531         /* flush both disables and wait for them to finish */
532         E1000_WRITE_FLUSH();
533         msleep(10);
534
535         napi_disable(&adapter->napi);
536
537         e1000_irq_disable(adapter);
538
539         /* Setting DOWN must be after irq_disable to prevent
540          * a screaming interrupt.  Setting DOWN also prevents
541          * tasks from rescheduling.
542          */
543         e1000_down_and_stop(adapter);
544
545         adapter->link_speed = 0;
546         adapter->link_duplex = 0;
547         netif_carrier_off(netdev);
548
549         e1000_reset(adapter);
550         e1000_clean_all_tx_rings(adapter);
551         e1000_clean_all_rx_rings(adapter);
552 }
553
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556         WARN_ON(in_interrupt());
557         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558                 msleep(1);
559         e1000_down(adapter);
560         e1000_up(adapter);
561         clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566         struct e1000_hw *hw = &adapter->hw;
567         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568         bool legacy_pba_adjust = false;
569         u16 hwm;
570
571         /* Repartition Pba for greater than 9k mtu
572          * To take effect CTRL.RST is required.
573          */
574
575         switch (hw->mac_type) {
576         case e1000_82542_rev2_0:
577         case e1000_82542_rev2_1:
578         case e1000_82543:
579         case e1000_82544:
580         case e1000_82540:
581         case e1000_82541:
582         case e1000_82541_rev_2:
583                 legacy_pba_adjust = true;
584                 pba = E1000_PBA_48K;
585                 break;
586         case e1000_82545:
587         case e1000_82545_rev_3:
588         case e1000_82546:
589         case e1000_ce4100:
590         case e1000_82546_rev_3:
591                 pba = E1000_PBA_48K;
592                 break;
593         case e1000_82547:
594         case e1000_82547_rev_2:
595                 legacy_pba_adjust = true;
596                 pba = E1000_PBA_30K;
597                 break;
598         case e1000_undefined:
599         case e1000_num_macs:
600                 break;
601         }
602
603         if (legacy_pba_adjust) {
604                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605                         pba -= 8; /* allocate more FIFO for Tx */
606
607                 if (hw->mac_type == e1000_82547) {
608                         adapter->tx_fifo_head = 0;
609                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610                         adapter->tx_fifo_size =
611                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612                         atomic_set(&adapter->tx_fifo_stall, 0);
613                 }
614         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615                 /* adjust PBA for jumbo frames */
616                 ew32(PBA, pba);
617
618                 /* To maintain wire speed transmits, the Tx FIFO should be
619                  * large enough to accommodate two full transmit packets,
620                  * rounded up to the next 1KB and expressed in KB.  Likewise,
621                  * the Rx FIFO should be large enough to accommodate at least
622                  * one full receive packet and is similarly rounded up and
623                  * expressed in KB.
624                  */
625                 pba = er32(PBA);
626                 /* upper 16 bits has Tx packet buffer allocation size in KB */
627                 tx_space = pba >> 16;
628                 /* lower 16 bits has Rx packet buffer allocation size in KB */
629                 pba &= 0xffff;
630                 /* the Tx fifo also stores 16 bytes of information about the Tx
631                  * but don't include ethernet FCS because hardware appends it
632                  */
633                 min_tx_space = (hw->max_frame_size +
634                                 sizeof(struct e1000_tx_desc) -
635                                 ETH_FCS_LEN) * 2;
636                 min_tx_space = ALIGN(min_tx_space, 1024);
637                 min_tx_space >>= 10;
638                 /* software strips receive CRC, so leave room for it */
639                 min_rx_space = hw->max_frame_size;
640                 min_rx_space = ALIGN(min_rx_space, 1024);
641                 min_rx_space >>= 10;
642
643                 /* If current Tx allocation is less than the min Tx FIFO size,
644                  * and the min Tx FIFO size is less than the current Rx FIFO
645                  * allocation, take space away from current Rx allocation
646                  */
647                 if (tx_space < min_tx_space &&
648                     ((min_tx_space - tx_space) < pba)) {
649                         pba = pba - (min_tx_space - tx_space);
650
651                         /* PCI/PCIx hardware has PBA alignment constraints */
652                         switch (hw->mac_type) {
653                         case e1000_82545 ... e1000_82546_rev_3:
654                                 pba &= ~(E1000_PBA_8K - 1);
655                                 break;
656                         default:
657                                 break;
658                         }
659
660                         /* if short on Rx space, Rx wins and must trump Tx
661                          * adjustment or use Early Receive if available
662                          */
663                         if (pba < min_rx_space)
664                                 pba = min_rx_space;
665                 }
666         }
667
668         ew32(PBA, pba);
669
670         /* flow control settings:
671          * The high water mark must be low enough to fit one full frame
672          * (or the size used for early receive) above it in the Rx FIFO.
673          * Set it to the lower of:
674          * - 90% of the Rx FIFO size, and
675          * - the full Rx FIFO size minus the early receive size (for parts
676          *   with ERT support assuming ERT set to E1000_ERT_2048), or
677          * - the full Rx FIFO size minus one full frame
678          */
679         hwm = min(((pba << 10) * 9 / 10),
680                   ((pba << 10) - hw->max_frame_size));
681
682         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
683         hw->fc_low_water = hw->fc_high_water - 8;
684         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685         hw->fc_send_xon = 1;
686         hw->fc = hw->original_fc;
687
688         /* Allow time for pending master requests to run */
689         e1000_reset_hw(hw);
690         if (hw->mac_type >= e1000_82544)
691                 ew32(WUC, 0);
692
693         if (e1000_init_hw(hw))
694                 e_dev_err("Hardware Error\n");
695         e1000_update_mng_vlan(adapter);
696
697         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698         if (hw->mac_type >= e1000_82544 &&
699             hw->autoneg == 1 &&
700             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701                 u32 ctrl = er32(CTRL);
702                 /* clear phy power management bit if we are in gig only mode,
703                  * which if enabled will attempt negotiation to 100Mb, which
704                  * can cause a loss of link at power off or driver unload
705                  */
706                 ctrl &= ~E1000_CTRL_SWDPIN3;
707                 ew32(CTRL, ctrl);
708         }
709
710         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712
713         e1000_reset_adaptive(hw);
714         e1000_phy_get_info(hw, &adapter->phy_info);
715
716         e1000_release_manageability(adapter);
717 }
718
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722         struct net_device *netdev = adapter->netdev;
723         struct ethtool_eeprom eeprom;
724         const struct ethtool_ops *ops = netdev->ethtool_ops;
725         u8 *data;
726         int i;
727         u16 csum_old, csum_new = 0;
728
729         eeprom.len = ops->get_eeprom_len(netdev);
730         eeprom.offset = 0;
731
732         data = kmalloc(eeprom.len, GFP_KERNEL);
733         if (!data)
734                 return;
735
736         ops->get_eeprom(netdev, &eeprom, data);
737
738         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741                 csum_new += data[i] + (data[i + 1] << 8);
742         csum_new = EEPROM_SUM - csum_new;
743
744         pr_err("/*********************/\n");
745         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746         pr_err("Calculated              : 0x%04x\n", csum_new);
747
748         pr_err("Offset    Values\n");
749         pr_err("========  ======\n");
750         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752         pr_err("Include this output when contacting your support provider.\n");
753         pr_err("This is not a software error! Something bad happened to\n");
754         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755         pr_err("result in further problems, possibly loss of data,\n");
756         pr_err("corruption or system hangs!\n");
757         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758         pr_err("which is invalid and requires you to set the proper MAC\n");
759         pr_err("address manually before continuing to enable this network\n");
760         pr_err("device. Please inspect the EEPROM dump and report the\n");
761         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762         pr_err("/*********************/\n");
763
764         kfree(data);
765 }
766
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775         switch (pdev->device) {
776         case E1000_DEV_ID_82540EM:
777         case E1000_DEV_ID_82540EM_LOM:
778         case E1000_DEV_ID_82540EP:
779         case E1000_DEV_ID_82540EP_LOM:
780         case E1000_DEV_ID_82540EP_LP:
781         case E1000_DEV_ID_82541EI:
782         case E1000_DEV_ID_82541EI_MOBILE:
783         case E1000_DEV_ID_82541ER:
784         case E1000_DEV_ID_82541ER_LOM:
785         case E1000_DEV_ID_82541GI:
786         case E1000_DEV_ID_82541GI_LF:
787         case E1000_DEV_ID_82541GI_MOBILE:
788         case E1000_DEV_ID_82544EI_COPPER:
789         case E1000_DEV_ID_82544EI_FIBER:
790         case E1000_DEV_ID_82544GC_COPPER:
791         case E1000_DEV_ID_82544GC_LOM:
792         case E1000_DEV_ID_82545EM_COPPER:
793         case E1000_DEV_ID_82545EM_FIBER:
794         case E1000_DEV_ID_82546EB_COPPER:
795         case E1000_DEV_ID_82546EB_FIBER:
796         case E1000_DEV_ID_82546EB_QUAD_COPPER:
797                 return true;
798         default:
799                 return false;
800         }
801 }
802
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804         netdev_features_t features)
805 {
806         /* Since there is no support for separate Rx/Tx vlan accel
807          * enable/disable make sure Tx flag is always in same state as Rx.
808          */
809         if (features & NETIF_F_HW_VLAN_CTAG_RX)
810                 features |= NETIF_F_HW_VLAN_CTAG_TX;
811         else
812                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813
814         return features;
815 }
816
817 static int e1000_set_features(struct net_device *netdev,
818         netdev_features_t features)
819 {
820         struct e1000_adapter *adapter = netdev_priv(netdev);
821         netdev_features_t changed = features ^ netdev->features;
822
823         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824                 e1000_vlan_mode(netdev, features);
825
826         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827                 return 0;
828
829         netdev->features = features;
830         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832         if (netif_running(netdev))
833                 e1000_reinit_locked(adapter);
834         else
835                 e1000_reset(adapter);
836
837         return 0;
838 }
839
840 static const struct net_device_ops e1000_netdev_ops = {
841         .ndo_open               = e1000_open,
842         .ndo_stop               = e1000_close,
843         .ndo_start_xmit         = e1000_xmit_frame,
844         .ndo_get_stats          = e1000_get_stats,
845         .ndo_set_rx_mode        = e1000_set_rx_mode,
846         .ndo_set_mac_address    = e1000_set_mac,
847         .ndo_tx_timeout         = e1000_tx_timeout,
848         .ndo_change_mtu         = e1000_change_mtu,
849         .ndo_do_ioctl           = e1000_ioctl,
850         .ndo_validate_addr      = eth_validate_addr,
851         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
852         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854         .ndo_poll_controller    = e1000_netpoll,
855 #endif
856         .ndo_fix_features       = e1000_fix_features,
857         .ndo_set_features       = e1000_set_features,
858 };
859
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872                                 struct e1000_hw *hw)
873 {
874         struct pci_dev *pdev = adapter->pdev;
875
876         /* PCI config space info */
877         hw->vendor_id = pdev->vendor;
878         hw->device_id = pdev->device;
879         hw->subsystem_vendor_id = pdev->subsystem_vendor;
880         hw->subsystem_id = pdev->subsystem_device;
881         hw->revision_id = pdev->revision;
882
883         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885         hw->max_frame_size = adapter->netdev->mtu +
886                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889         /* identify the MAC */
890         if (e1000_set_mac_type(hw)) {
891                 e_err(probe, "Unknown MAC Type\n");
892                 return -EIO;
893         }
894
895         switch (hw->mac_type) {
896         default:
897                 break;
898         case e1000_82541:
899         case e1000_82547:
900         case e1000_82541_rev_2:
901         case e1000_82547_rev_2:
902                 hw->phy_init_script = 1;
903                 break;
904         }
905
906         e1000_set_media_type(hw);
907         e1000_get_bus_info(hw);
908
909         hw->wait_autoneg_complete = false;
910         hw->tbi_compatibility_en = true;
911         hw->adaptive_ifs = true;
912
913         /* Copper options */
914
915         if (hw->media_type == e1000_media_type_copper) {
916                 hw->mdix = AUTO_ALL_MODES;
917                 hw->disable_polarity_correction = false;
918                 hw->master_slave = E1000_MASTER_SLAVE;
919         }
920
921         return 0;
922 }
923
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937         struct net_device *netdev;
938         struct e1000_adapter *adapter;
939         struct e1000_hw *hw;
940
941         static int cards_found = 0;
942         static int global_quad_port_a = 0; /* global ksp3 port a indication */
943         int i, err, pci_using_dac;
944         u16 eeprom_data = 0;
945         u16 tmp = 0;
946         u16 eeprom_apme_mask = E1000_EEPROM_APME;
947         int bars, need_ioport;
948
949         /* do not allocate ioport bars when not needed */
950         need_ioport = e1000_is_need_ioport(pdev);
951         if (need_ioport) {
952                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953                 err = pci_enable_device(pdev);
954         } else {
955                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
956                 err = pci_enable_device_mem(pdev);
957         }
958         if (err)
959                 return err;
960
961         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962         if (err)
963                 goto err_pci_reg;
964
965         pci_set_master(pdev);
966         err = pci_save_state(pdev);
967         if (err)
968                 goto err_alloc_etherdev;
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         /* make ready for any if (hw->...) below */
1005         err = e1000_init_hw_struct(adapter, hw);
1006         if (err)
1007                 goto err_sw_init;
1008
1009         /* there is a workaround being applied below that limits
1010          * 64-bit DMA addresses to 64-bit hardware.  There are some
1011          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012          */
1013         pci_using_dac = 0;
1014         if ((hw->bus_type == e1000_bus_type_pcix) &&
1015             !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016                 pci_using_dac = 1;
1017         } else {
1018                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019                 if (err) {
1020                         pr_err("No usable DMA config, aborting\n");
1021                         goto err_dma;
1022                 }
1023         }
1024
1025         netdev->netdev_ops = &e1000_netdev_ops;
1026         e1000_set_ethtool_ops(netdev);
1027         netdev->watchdog_timeo = 5 * HZ;
1028         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032         adapter->bd_number = cards_found;
1033
1034         /* setup the private structure */
1035
1036         err = e1000_sw_init(adapter);
1037         if (err)
1038                 goto err_sw_init;
1039
1040         err = -EIO;
1041         if (hw->mac_type == e1000_ce4100) {
1042                 hw->ce4100_gbe_mdio_base_virt =
1043                                         ioremap(pci_resource_start(pdev, BAR_1),
1044                                                 pci_resource_len(pdev, BAR_1));
1045
1046                 if (!hw->ce4100_gbe_mdio_base_virt)
1047                         goto err_mdio_ioremap;
1048         }
1049
1050         if (hw->mac_type >= e1000_82543) {
1051                 netdev->hw_features = NETIF_F_SG |
1052                                    NETIF_F_HW_CSUM |
1053                                    NETIF_F_HW_VLAN_CTAG_RX;
1054                 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055                                    NETIF_F_HW_VLAN_CTAG_FILTER;
1056         }
1057
1058         if ((hw->mac_type >= e1000_82544) &&
1059            (hw->mac_type != e1000_82547))
1060                 netdev->hw_features |= NETIF_F_TSO;
1061
1062         netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064         netdev->features |= netdev->hw_features;
1065         netdev->hw_features |= (NETIF_F_RXCSUM |
1066                                 NETIF_F_RXALL |
1067                                 NETIF_F_RXFCS);
1068
1069         if (pci_using_dac) {
1070                 netdev->features |= NETIF_F_HIGHDMA;
1071                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072         }
1073
1074         netdev->vlan_features |= (NETIF_F_TSO |
1075                                   NETIF_F_HW_CSUM |
1076                                   NETIF_F_SG);
1077
1078         netdev->priv_flags |= IFF_UNICAST_FLT;
1079
1080         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082         /* initialize eeprom parameters */
1083         if (e1000_init_eeprom_params(hw)) {
1084                 e_err(probe, "EEPROM initialization failed\n");
1085                 goto err_eeprom;
1086         }
1087
1088         /* before reading the EEPROM, reset the controller to
1089          * put the device in a known good starting state
1090          */
1091
1092         e1000_reset_hw(hw);
1093
1094         /* make sure the EEPROM is good */
1095         if (e1000_validate_eeprom_checksum(hw) < 0) {
1096                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097                 e1000_dump_eeprom(adapter);
1098                 /* set MAC address to all zeroes to invalidate and temporary
1099                  * disable this device for the user. This blocks regular
1100                  * traffic while still permitting ethtool ioctls from reaching
1101                  * the hardware as well as allowing the user to run the
1102                  * interface after manually setting a hw addr using
1103                  * `ip set address`
1104                  */
1105                 memset(hw->mac_addr, 0, netdev->addr_len);
1106         } else {
1107                 /* copy the MAC address out of the EEPROM */
1108                 if (e1000_read_mac_addr(hw))
1109                         e_err(probe, "EEPROM Read Error\n");
1110         }
1111         /* don't block initalization here due to bad MAC address */
1112         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114         if (!is_valid_ether_addr(netdev->dev_addr))
1115                 e_err(probe, "Invalid MAC Address\n");
1116
1117
1118         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120                           e1000_82547_tx_fifo_stall_task);
1121         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124         e1000_check_options(adapter);
1125
1126         /* Initial Wake on LAN setting
1127          * If APM wake is enabled in the EEPROM,
1128          * enable the ACPI Magic Packet filter
1129          */
1130
1131         switch (hw->mac_type) {
1132         case e1000_82542_rev2_0:
1133         case e1000_82542_rev2_1:
1134         case e1000_82543:
1135                 break;
1136         case e1000_82544:
1137                 e1000_read_eeprom(hw,
1138                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140                 break;
1141         case e1000_82546:
1142         case e1000_82546_rev_3:
1143                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144                         e1000_read_eeprom(hw,
1145                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146                         break;
1147                 }
1148                 /* Fall Through */
1149         default:
1150                 e1000_read_eeprom(hw,
1151                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152                 break;
1153         }
1154         if (eeprom_data & eeprom_apme_mask)
1155                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157         /* now that we have the eeprom settings, apply the special cases
1158          * where the eeprom may be wrong or the board simply won't support
1159          * wake on lan on a particular port
1160          */
1161         switch (pdev->device) {
1162         case E1000_DEV_ID_82546GB_PCIE:
1163                 adapter->eeprom_wol = 0;
1164                 break;
1165         case E1000_DEV_ID_82546EB_FIBER:
1166         case E1000_DEV_ID_82546GB_FIBER:
1167                 /* Wake events only supported on port A for dual fiber
1168                  * regardless of eeprom setting
1169                  */
1170                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171                         adapter->eeprom_wol = 0;
1172                 break;
1173         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174                 /* if quad port adapter, disable WoL on all but port A */
1175                 if (global_quad_port_a != 0)
1176                         adapter->eeprom_wol = 0;
1177                 else
1178                         adapter->quad_port_a = true;
1179                 /* Reset for multiple quad port adapters */
1180                 if (++global_quad_port_a == 4)
1181                         global_quad_port_a = 0;
1182                 break;
1183         }
1184
1185         /* initialize the wol settings based on the eeprom settings */
1186         adapter->wol = adapter->eeprom_wol;
1187         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189         /* Auto detect PHY address */
1190         if (hw->mac_type == e1000_ce4100) {
1191                 for (i = 0; i < 32; i++) {
1192                         hw->phy_addr = i;
1193                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194                         if (tmp == 0 || tmp == 0xFF) {
1195                                 if (i == 31)
1196                                         goto err_eeprom;
1197                                 continue;
1198                         } else
1199                                 break;
1200                 }
1201         }
1202
1203         /* reset the hardware with the new settings */
1204         e1000_reset(adapter);
1205
1206         strcpy(netdev->name, "eth%d");
1207         err = register_netdev(netdev);
1208         if (err)
1209                 goto err_register;
1210
1211         e1000_vlan_filter_on_off(adapter, false);
1212
1213         /* print bus type/speed/width info */
1214         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221                netdev->dev_addr);
1222
1223         /* carrier off reporting is important to ethtool even BEFORE open */
1224         netif_carrier_off(netdev);
1225
1226         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228         cards_found++;
1229         return 0;
1230
1231 err_register:
1232 err_eeprom:
1233         e1000_phy_hw_reset(hw);
1234
1235         if (hw->flash_address)
1236                 iounmap(hw->flash_address);
1237         kfree(adapter->tx_ring);
1238         kfree(adapter->rx_ring);
1239 err_dma:
1240 err_sw_init:
1241 err_mdio_ioremap:
1242         iounmap(hw->ce4100_gbe_mdio_base_virt);
1243         iounmap(hw->hw_addr);
1244 err_ioremap:
1245         free_netdev(netdev);
1246 err_alloc_etherdev:
1247         pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249         pci_disable_device(pdev);
1250         return err;
1251 }
1252
1253 /**
1254  * e1000_remove - Device Removal Routine
1255  * @pdev: PCI device information struct
1256  *
1257  * e1000_remove is called by the PCI subsystem to alert the driver
1258  * that it should release a PCI device.  The could be caused by a
1259  * Hot-Plug event, or because the driver is going to be removed from
1260  * memory.
1261  **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264         struct net_device *netdev = pci_get_drvdata(pdev);
1265         struct e1000_adapter *adapter = netdev_priv(netdev);
1266         struct e1000_hw *hw = &adapter->hw;
1267
1268         e1000_down_and_stop(adapter);
1269         e1000_release_manageability(adapter);
1270
1271         unregister_netdev(netdev);
1272
1273         e1000_phy_hw_reset(hw);
1274
1275         kfree(adapter->tx_ring);
1276         kfree(adapter->rx_ring);
1277
1278         if (hw->mac_type == e1000_ce4100)
1279                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1280         iounmap(hw->hw_addr);
1281         if (hw->flash_address)
1282                 iounmap(hw->flash_address);
1283         pci_release_selected_regions(pdev, adapter->bars);
1284
1285         free_netdev(netdev);
1286
1287         pci_disable_device(pdev);
1288 }
1289
1290 /**
1291  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292  * @adapter: board private structure to initialize
1293  *
1294  * e1000_sw_init initializes the Adapter private data structure.
1295  * e1000_init_hw_struct MUST be called before this function
1296  **/
1297 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 {
1299         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301         adapter->num_tx_queues = 1;
1302         adapter->num_rx_queues = 1;
1303
1304         if (e1000_alloc_queues(adapter)) {
1305                 e_err(probe, "Unable to allocate memory for queues\n");
1306                 return -ENOMEM;
1307         }
1308
1309         /* Explicitly disable IRQ since the NIC can be in any state. */
1310         e1000_irq_disable(adapter);
1311
1312         spin_lock_init(&adapter->stats_lock);
1313
1314         set_bit(__E1000_DOWN, &adapter->flags);
1315
1316         return 0;
1317 }
1318
1319 /**
1320  * e1000_alloc_queues - Allocate memory for all rings
1321  * @adapter: board private structure to initialize
1322  *
1323  * We allocate one ring per queue at run-time since we don't know the
1324  * number of queues at compile-time.
1325  **/
1326 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 {
1328         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330         if (!adapter->tx_ring)
1331                 return -ENOMEM;
1332
1333         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335         if (!adapter->rx_ring) {
1336                 kfree(adapter->tx_ring);
1337                 return -ENOMEM;
1338         }
1339
1340         return E1000_SUCCESS;
1341 }
1342
1343 /**
1344  * e1000_open - Called when a network interface is made active
1345  * @netdev: network interface device structure
1346  *
1347  * Returns 0 on success, negative value on failure
1348  *
1349  * The open entry point is called when a network interface is made
1350  * active by the system (IFF_UP).  At this point all resources needed
1351  * for transmit and receive operations are allocated, the interrupt
1352  * handler is registered with the OS, the watchdog task is started,
1353  * and the stack is notified that the interface is ready.
1354  **/
1355 static int e1000_open(struct net_device *netdev)
1356 {
1357         struct e1000_adapter *adapter = netdev_priv(netdev);
1358         struct e1000_hw *hw = &adapter->hw;
1359         int err;
1360
1361         /* disallow open during test */
1362         if (test_bit(__E1000_TESTING, &adapter->flags))
1363                 return -EBUSY;
1364
1365         netif_carrier_off(netdev);
1366
1367         /* allocate transmit descriptors */
1368         err = e1000_setup_all_tx_resources(adapter);
1369         if (err)
1370                 goto err_setup_tx;
1371
1372         /* allocate receive descriptors */
1373         err = e1000_setup_all_rx_resources(adapter);
1374         if (err)
1375                 goto err_setup_rx;
1376
1377         e1000_power_up_phy(adapter);
1378
1379         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380         if ((hw->mng_cookie.status &
1381                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382                 e1000_update_mng_vlan(adapter);
1383         }
1384
1385         /* before we allocate an interrupt, we must be ready to handle it.
1386          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387          * as soon as we call pci_request_irq, so we have to setup our
1388          * clean_rx handler before we do so.
1389          */
1390         e1000_configure(adapter);
1391
1392         err = e1000_request_irq(adapter);
1393         if (err)
1394                 goto err_req_irq;
1395
1396         /* From here on the code is the same as e1000_up() */
1397         clear_bit(__E1000_DOWN, &adapter->flags);
1398
1399         napi_enable(&adapter->napi);
1400
1401         e1000_irq_enable(adapter);
1402
1403         netif_start_queue(netdev);
1404
1405         /* fire a link status change interrupt to start the watchdog */
1406         ew32(ICS, E1000_ICS_LSC);
1407
1408         return E1000_SUCCESS;
1409
1410 err_req_irq:
1411         e1000_power_down_phy(adapter);
1412         e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414         e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416         e1000_reset(adapter);
1417
1418         return err;
1419 }
1420
1421 /**
1422  * e1000_close - Disables a network interface
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0, this is not allowed to fail
1426  *
1427  * The close entry point is called when an interface is de-activated
1428  * by the OS.  The hardware is still under the drivers control, but
1429  * needs to be disabled.  A global MAC reset is issued to stop the
1430  * hardware, and all transmit and receive resources are freed.
1431  **/
1432 static int e1000_close(struct net_device *netdev)
1433 {
1434         struct e1000_adapter *adapter = netdev_priv(netdev);
1435         struct e1000_hw *hw = &adapter->hw;
1436         int count = E1000_CHECK_RESET_COUNT;
1437
1438         while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439                 usleep_range(10000, 20000);
1440
1441         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442         e1000_down(adapter);
1443         e1000_power_down_phy(adapter);
1444         e1000_free_irq(adapter);
1445
1446         e1000_free_all_tx_resources(adapter);
1447         e1000_free_all_rx_resources(adapter);
1448
1449         /* kill manageability vlan ID if supported, but not if a vlan with
1450          * the same ID is registered on the host OS (let 8021q kill it)
1451          */
1452         if ((hw->mng_cookie.status &
1453              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456                                        adapter->mng_vlan_id);
1457         }
1458
1459         return 0;
1460 }
1461
1462 /**
1463  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464  * @adapter: address of board private structure
1465  * @start: address of beginning of memory
1466  * @len: length of memory
1467  **/
1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469                                   unsigned long len)
1470 {
1471         struct e1000_hw *hw = &adapter->hw;
1472         unsigned long begin = (unsigned long)start;
1473         unsigned long end = begin + len;
1474
1475         /* First rev 82545 and 82546 need to not allow any memory
1476          * write location to cross 64k boundary due to errata 23
1477          */
1478         if (hw->mac_type == e1000_82545 ||
1479             hw->mac_type == e1000_ce4100 ||
1480             hw->mac_type == e1000_82546) {
1481                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482         }
1483
1484         return true;
1485 }
1486
1487 /**
1488  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489  * @adapter: board private structure
1490  * @txdr:    tx descriptor ring (for a specific queue) to setup
1491  *
1492  * Return 0 on success, negative on failure
1493  **/
1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495                                     struct e1000_tx_ring *txdr)
1496 {
1497         struct pci_dev *pdev = adapter->pdev;
1498         int size;
1499
1500         size = sizeof(struct e1000_buffer) * txdr->count;
1501         txdr->buffer_info = vzalloc(size);
1502         if (!txdr->buffer_info)
1503                 return -ENOMEM;
1504
1505         /* round up to nearest 4K */
1506
1507         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508         txdr->size = ALIGN(txdr->size, 4096);
1509
1510         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511                                         GFP_KERNEL);
1512         if (!txdr->desc) {
1513 setup_tx_desc_die:
1514                 vfree(txdr->buffer_info);
1515                 return -ENOMEM;
1516         }
1517
1518         /* Fix for errata 23, can't cross 64kB boundary */
1519         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520                 void *olddesc = txdr->desc;
1521                 dma_addr_t olddma = txdr->dma;
1522                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523                       txdr->size, txdr->desc);
1524                 /* Try again, without freeing the previous */
1525                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526                                                 &txdr->dma, GFP_KERNEL);
1527                 /* Failed allocation, critical failure */
1528                 if (!txdr->desc) {
1529                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530                                           olddma);
1531                         goto setup_tx_desc_die;
1532                 }
1533
1534                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535                         /* give up */
1536                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537                                           txdr->dma);
1538                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539                                           olddma);
1540                         e_err(probe, "Unable to allocate aligned memory "
1541                               "for the transmit descriptor ring\n");
1542                         vfree(txdr->buffer_info);
1543                         return -ENOMEM;
1544                 } else {
1545                         /* Free old allocation, new allocation was successful */
1546                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                           olddma);
1548                 }
1549         }
1550         memset(txdr->desc, 0, txdr->size);
1551
1552         txdr->next_to_use = 0;
1553         txdr->next_to_clean = 0;
1554
1555         return 0;
1556 }
1557
1558 /**
1559  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560  *                                (Descriptors) for all queues
1561  * @adapter: board private structure
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566 {
1567         int i, err = 0;
1568
1569         for (i = 0; i < adapter->num_tx_queues; i++) {
1570                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571                 if (err) {
1572                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573                         for (i-- ; i >= 0; i--)
1574                                 e1000_free_tx_resources(adapter,
1575                                                         &adapter->tx_ring[i]);
1576                         break;
1577                 }
1578         }
1579
1580         return err;
1581 }
1582
1583 /**
1584  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585  * @adapter: board private structure
1586  *
1587  * Configure the Tx unit of the MAC after a reset.
1588  **/
1589 static void e1000_configure_tx(struct e1000_adapter *adapter)
1590 {
1591         u64 tdba;
1592         struct e1000_hw *hw = &adapter->hw;
1593         u32 tdlen, tctl, tipg;
1594         u32 ipgr1, ipgr2;
1595
1596         /* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598         switch (adapter->num_tx_queues) {
1599         case 1:
1600         default:
1601                 tdba = adapter->tx_ring[0].dma;
1602                 tdlen = adapter->tx_ring[0].count *
1603                         sizeof(struct e1000_tx_desc);
1604                 ew32(TDLEN, tdlen);
1605                 ew32(TDBAH, (tdba >> 32));
1606                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607                 ew32(TDT, 0);
1608                 ew32(TDH, 0);
1609                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610                                            E1000_TDH : E1000_82542_TDH);
1611                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612                                            E1000_TDT : E1000_82542_TDT);
1613                 break;
1614         }
1615
1616         /* Set the default values for the Tx Inter Packet Gap timer */
1617         if ((hw->media_type == e1000_media_type_fiber ||
1618              hw->media_type == e1000_media_type_internal_serdes))
1619                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620         else
1621                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623         switch (hw->mac_type) {
1624         case e1000_82542_rev2_0:
1625         case e1000_82542_rev2_1:
1626                 tipg = DEFAULT_82542_TIPG_IPGT;
1627                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629                 break;
1630         default:
1631                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633                 break;
1634         }
1635         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637         ew32(TIPG, tipg);
1638
1639         /* Set the Tx Interrupt Delay register */
1640
1641         ew32(TIDV, adapter->tx_int_delay);
1642         if (hw->mac_type >= e1000_82540)
1643                 ew32(TADV, adapter->tx_abs_int_delay);
1644
1645         /* Program the Transmit Control Register */
1646
1647         tctl = er32(TCTL);
1648         tctl &= ~E1000_TCTL_CT;
1649         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652         e1000_config_collision_dist(hw);
1653
1654         /* Setup Transmit Descriptor Settings for eop descriptor */
1655         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657         /* only set IDE if we are delaying interrupts using the timers */
1658         if (adapter->tx_int_delay)
1659                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661         if (hw->mac_type < e1000_82543)
1662                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663         else
1664                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666         /* Cache if we're 82544 running in PCI-X because we'll
1667          * need this to apply a workaround later in the send path.
1668          */
1669         if (hw->mac_type == e1000_82544 &&
1670             hw->bus_type == e1000_bus_type_pcix)
1671                 adapter->pcix_82544 = true;
1672
1673         ew32(TCTL, tctl);
1674
1675 }
1676
1677 /**
1678  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679  * @adapter: board private structure
1680  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681  *
1682  * Returns 0 on success, negative on failure
1683  **/
1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685                                     struct e1000_rx_ring *rxdr)
1686 {
1687         struct pci_dev *pdev = adapter->pdev;
1688         int size, desc_len;
1689
1690         size = sizeof(struct e1000_buffer) * rxdr->count;
1691         rxdr->buffer_info = vzalloc(size);
1692         if (!rxdr->buffer_info)
1693                 return -ENOMEM;
1694
1695         desc_len = sizeof(struct e1000_rx_desc);
1696
1697         /* Round up to nearest 4K */
1698
1699         rxdr->size = rxdr->count * desc_len;
1700         rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703                                         GFP_KERNEL);
1704         if (!rxdr->desc) {
1705 setup_rx_desc_die:
1706                 vfree(rxdr->buffer_info);
1707                 return -ENOMEM;
1708         }
1709
1710         /* Fix for errata 23, can't cross 64kB boundary */
1711         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712                 void *olddesc = rxdr->desc;
1713                 dma_addr_t olddma = rxdr->dma;
1714                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715                       rxdr->size, rxdr->desc);
1716                 /* Try again, without freeing the previous */
1717                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718                                                 &rxdr->dma, GFP_KERNEL);
1719                 /* Failed allocation, critical failure */
1720                 if (!rxdr->desc) {
1721                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722                                           olddma);
1723                         goto setup_rx_desc_die;
1724                 }
1725
1726                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727                         /* give up */
1728                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729                                           rxdr->dma);
1730                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731                                           olddma);
1732                         e_err(probe, "Unable to allocate aligned memory for "
1733                               "the Rx descriptor ring\n");
1734                         goto setup_rx_desc_die;
1735                 } else {
1736                         /* Free old allocation, new allocation was successful */
1737                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738                                           olddma);
1739                 }
1740         }
1741         memset(rxdr->desc, 0, rxdr->size);
1742
1743         rxdr->next_to_clean = 0;
1744         rxdr->next_to_use = 0;
1745         rxdr->rx_skb_top = NULL;
1746
1747         return 0;
1748 }
1749
1750 /**
1751  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752  *                                (Descriptors) for all queues
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758 {
1759         int i, err = 0;
1760
1761         for (i = 0; i < adapter->num_rx_queues; i++) {
1762                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763                 if (err) {
1764                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765                         for (i-- ; i >= 0; i--)
1766                                 e1000_free_rx_resources(adapter,
1767                                                         &adapter->rx_ring[i]);
1768                         break;
1769                 }
1770         }
1771
1772         return err;
1773 }
1774
1775 /**
1776  * e1000_setup_rctl - configure the receive control registers
1777  * @adapter: Board private structure
1778  **/
1779 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780 {
1781         struct e1000_hw *hw = &adapter->hw;
1782         u32 rctl;
1783
1784         rctl = er32(RCTL);
1785
1786         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789                 E1000_RCTL_RDMTS_HALF |
1790                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792         if (hw->tbi_compatibility_on == 1)
1793                 rctl |= E1000_RCTL_SBP;
1794         else
1795                 rctl &= ~E1000_RCTL_SBP;
1796
1797         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798                 rctl &= ~E1000_RCTL_LPE;
1799         else
1800                 rctl |= E1000_RCTL_LPE;
1801
1802         /* Setup buffer sizes */
1803         rctl &= ~E1000_RCTL_SZ_4096;
1804         rctl |= E1000_RCTL_BSEX;
1805         switch (adapter->rx_buffer_len) {
1806                 case E1000_RXBUFFER_2048:
1807                 default:
1808                         rctl |= E1000_RCTL_SZ_2048;
1809                         rctl &= ~E1000_RCTL_BSEX;
1810                         break;
1811                 case E1000_RXBUFFER_4096:
1812                         rctl |= E1000_RCTL_SZ_4096;
1813                         break;
1814                 case E1000_RXBUFFER_8192:
1815                         rctl |= E1000_RCTL_SZ_8192;
1816                         break;
1817                 case E1000_RXBUFFER_16384:
1818                         rctl |= E1000_RCTL_SZ_16384;
1819                         break;
1820         }
1821
1822         /* This is useful for sniffing bad packets. */
1823         if (adapter->netdev->features & NETIF_F_RXALL) {
1824                 /* UPE and MPE will be handled by normal PROMISC logic
1825                  * in e1000e_set_rx_mode
1826                  */
1827                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832                           E1000_RCTL_DPF | /* Allow filtered pause */
1833                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835                  * and that breaks VLANs.
1836                  */
1837         }
1838
1839         ew32(RCTL, rctl);
1840 }
1841
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850         u64 rdba;
1851         struct e1000_hw *hw = &adapter->hw;
1852         u32 rdlen, rctl, rxcsum;
1853
1854         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855                 rdlen = adapter->rx_ring[0].count *
1856                         sizeof(struct e1000_rx_desc);
1857                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859         } else {
1860                 rdlen = adapter->rx_ring[0].count *
1861                         sizeof(struct e1000_rx_desc);
1862                 adapter->clean_rx = e1000_clean_rx_irq;
1863                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864         }
1865
1866         /* disable receives while setting up the descriptors */
1867         rctl = er32(RCTL);
1868         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870         /* set the Receive Delay Timer Register */
1871         ew32(RDTR, adapter->rx_int_delay);
1872
1873         if (hw->mac_type >= e1000_82540) {
1874                 ew32(RADV, adapter->rx_abs_int_delay);
1875                 if (adapter->itr_setting != 0)
1876                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1877         }
1878
1879         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1880          * the Base and Length of the Rx Descriptor Ring
1881          */
1882         switch (adapter->num_rx_queues) {
1883         case 1:
1884         default:
1885                 rdba = adapter->rx_ring[0].dma;
1886                 ew32(RDLEN, rdlen);
1887                 ew32(RDBAH, (rdba >> 32));
1888                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889                 ew32(RDT, 0);
1890                 ew32(RDH, 0);
1891                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892                                            E1000_RDH : E1000_82542_RDH);
1893                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894                                            E1000_RDT : E1000_82542_RDT);
1895                 break;
1896         }
1897
1898         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899         if (hw->mac_type >= e1000_82543) {
1900                 rxcsum = er32(RXCSUM);
1901                 if (adapter->rx_csum)
1902                         rxcsum |= E1000_RXCSUM_TUOFL;
1903                 else
1904                         /* don't need to clear IPPCSE as it defaults to 0 */
1905                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1906                 ew32(RXCSUM, rxcsum);
1907         }
1908
1909         /* Enable Receives */
1910         ew32(RCTL, rctl | E1000_RCTL_EN);
1911 }
1912
1913 /**
1914  * e1000_free_tx_resources - Free Tx Resources per Queue
1915  * @adapter: board private structure
1916  * @tx_ring: Tx descriptor ring for a specific queue
1917  *
1918  * Free all transmit software resources
1919  **/
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921                                     struct e1000_tx_ring *tx_ring)
1922 {
1923         struct pci_dev *pdev = adapter->pdev;
1924
1925         e1000_clean_tx_ring(adapter, tx_ring);
1926
1927         vfree(tx_ring->buffer_info);
1928         tx_ring->buffer_info = NULL;
1929
1930         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931                           tx_ring->dma);
1932
1933         tx_ring->desc = NULL;
1934 }
1935
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944         int i;
1945
1946         for (i = 0; i < adapter->num_tx_queues; i++)
1947                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949
1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951                                              struct e1000_buffer *buffer_info)
1952 {
1953         if (buffer_info->dma) {
1954                 if (buffer_info->mapped_as_page)
1955                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956                                        buffer_info->length, DMA_TO_DEVICE);
1957                 else
1958                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959                                          buffer_info->length,
1960                                          DMA_TO_DEVICE);
1961                 buffer_info->dma = 0;
1962         }
1963         if (buffer_info->skb) {
1964                 dev_kfree_skb_any(buffer_info->skb);
1965                 buffer_info->skb = NULL;
1966         }
1967         buffer_info->time_stamp = 0;
1968         /* buffer_info must be completely set up in the transmit path */
1969 }
1970
1971 /**
1972  * e1000_clean_tx_ring - Free Tx Buffers
1973  * @adapter: board private structure
1974  * @tx_ring: ring to be cleaned
1975  **/
1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977                                 struct e1000_tx_ring *tx_ring)
1978 {
1979         struct e1000_hw *hw = &adapter->hw;
1980         struct e1000_buffer *buffer_info;
1981         unsigned long size;
1982         unsigned int i;
1983
1984         /* Free all the Tx ring sk_buffs */
1985
1986         for (i = 0; i < tx_ring->count; i++) {
1987                 buffer_info = &tx_ring->buffer_info[i];
1988                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989         }
1990
1991         netdev_reset_queue(adapter->netdev);
1992         size = sizeof(struct e1000_buffer) * tx_ring->count;
1993         memset(tx_ring->buffer_info, 0, size);
1994
1995         /* Zero out the descriptor ring */
1996
1997         memset(tx_ring->desc, 0, tx_ring->size);
1998
1999         tx_ring->next_to_use = 0;
2000         tx_ring->next_to_clean = 0;
2001         tx_ring->last_tx_tso = false;
2002
2003         writel(0, hw->hw_addr + tx_ring->tdh);
2004         writel(0, hw->hw_addr + tx_ring->tdt);
2005 }
2006
2007 /**
2008  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009  * @adapter: board private structure
2010  **/
2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012 {
2013         int i;
2014
2015         for (i = 0; i < adapter->num_tx_queues; i++)
2016                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017 }
2018
2019 /**
2020  * e1000_free_rx_resources - Free Rx Resources
2021  * @adapter: board private structure
2022  * @rx_ring: ring to clean the resources from
2023  *
2024  * Free all receive software resources
2025  **/
2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027                                     struct e1000_rx_ring *rx_ring)
2028 {
2029         struct pci_dev *pdev = adapter->pdev;
2030
2031         e1000_clean_rx_ring(adapter, rx_ring);
2032
2033         vfree(rx_ring->buffer_info);
2034         rx_ring->buffer_info = NULL;
2035
2036         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037                           rx_ring->dma);
2038
2039         rx_ring->desc = NULL;
2040 }
2041
2042 /**
2043  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044  * @adapter: board private structure
2045  *
2046  * Free all receive software resources
2047  **/
2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049 {
2050         int i;
2051
2052         for (i = 0; i < adapter->num_rx_queues; i++)
2053                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054 }
2055
2056 /**
2057  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058  * @adapter: board private structure
2059  * @rx_ring: ring to free buffers from
2060  **/
2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062                                 struct e1000_rx_ring *rx_ring)
2063 {
2064         struct e1000_hw *hw = &adapter->hw;
2065         struct e1000_buffer *buffer_info;
2066         struct pci_dev *pdev = adapter->pdev;
2067         unsigned long size;
2068         unsigned int i;
2069
2070         /* Free all the Rx ring sk_buffs */
2071         for (i = 0; i < rx_ring->count; i++) {
2072                 buffer_info = &rx_ring->buffer_info[i];
2073                 if (buffer_info->dma &&
2074                     adapter->clean_rx == e1000_clean_rx_irq) {
2075                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2076                                          buffer_info->length,
2077                                          DMA_FROM_DEVICE);
2078                 } else if (buffer_info->dma &&
2079                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2081                                        buffer_info->length,
2082                                        DMA_FROM_DEVICE);
2083                 }
2084
2085                 buffer_info->dma = 0;
2086                 if (buffer_info->page) {
2087                         put_page(buffer_info->page);
2088                         buffer_info->page = NULL;
2089                 }
2090                 if (buffer_info->skb) {
2091                         dev_kfree_skb(buffer_info->skb);
2092                         buffer_info->skb = NULL;
2093                 }
2094         }
2095
2096         /* there also may be some cached data from a chained receive */
2097         if (rx_ring->rx_skb_top) {
2098                 dev_kfree_skb(rx_ring->rx_skb_top);
2099                 rx_ring->rx_skb_top = NULL;
2100         }
2101
2102         size = sizeof(struct e1000_buffer) * rx_ring->count;
2103         memset(rx_ring->buffer_info, 0, size);
2104
2105         /* Zero out the descriptor ring */
2106         memset(rx_ring->desc, 0, rx_ring->size);
2107
2108         rx_ring->next_to_clean = 0;
2109         rx_ring->next_to_use = 0;
2110
2111         writel(0, hw->hw_addr + rx_ring->rdh);
2112         writel(0, hw->hw_addr + rx_ring->rdt);
2113 }
2114
2115 /**
2116  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117  * @adapter: board private structure
2118  **/
2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120 {
2121         int i;
2122
2123         for (i = 0; i < adapter->num_rx_queues; i++)
2124                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125 }
2126
2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128  * and memory write and invalidate disabled for certain operations
2129  */
2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131 {
2132         struct e1000_hw *hw = &adapter->hw;
2133         struct net_device *netdev = adapter->netdev;
2134         u32 rctl;
2135
2136         e1000_pci_clear_mwi(hw);
2137
2138         rctl = er32(RCTL);
2139         rctl |= E1000_RCTL_RST;
2140         ew32(RCTL, rctl);
2141         E1000_WRITE_FLUSH();
2142         mdelay(5);
2143
2144         if (netif_running(netdev))
2145                 e1000_clean_all_rx_rings(adapter);
2146 }
2147
2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149 {
2150         struct e1000_hw *hw = &adapter->hw;
2151         struct net_device *netdev = adapter->netdev;
2152         u32 rctl;
2153
2154         rctl = er32(RCTL);
2155         rctl &= ~E1000_RCTL_RST;
2156         ew32(RCTL, rctl);
2157         E1000_WRITE_FLUSH();
2158         mdelay(5);
2159
2160         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161                 e1000_pci_set_mwi(hw);
2162
2163         if (netif_running(netdev)) {
2164                 /* No need to loop, because 82542 supports only 1 queue */
2165                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166                 e1000_configure_rx(adapter);
2167                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168         }
2169 }
2170
2171 /**
2172  * e1000_set_mac - Change the Ethernet Address of the NIC
2173  * @netdev: network interface device structure
2174  * @p: pointer to an address structure
2175  *
2176  * Returns 0 on success, negative on failure
2177  **/
2178 static int e1000_set_mac(struct net_device *netdev, void *p)
2179 {
2180         struct e1000_adapter *adapter = netdev_priv(netdev);
2181         struct e1000_hw *hw = &adapter->hw;
2182         struct sockaddr *addr = p;
2183
2184         if (!is_valid_ether_addr(addr->sa_data))
2185                 return -EADDRNOTAVAIL;
2186
2187         /* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189         if (hw->mac_type == e1000_82542_rev2_0)
2190                 e1000_enter_82542_rst(adapter);
2191
2192         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195         e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197         if (hw->mac_type == e1000_82542_rev2_0)
2198                 e1000_leave_82542_rst(adapter);
2199
2200         return 0;
2201 }
2202
2203 /**
2204  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205  * @netdev: network interface device structure
2206  *
2207  * The set_rx_mode entry point is called whenever the unicast or multicast
2208  * address lists or the network interface flags are updated. This routine is
2209  * responsible for configuring the hardware for proper unicast, multicast,
2210  * promiscuous mode, and all-multi behavior.
2211  **/
2212 static void e1000_set_rx_mode(struct net_device *netdev)
2213 {
2214         struct e1000_adapter *adapter = netdev_priv(netdev);
2215         struct e1000_hw *hw = &adapter->hw;
2216         struct netdev_hw_addr *ha;
2217         bool use_uc = false;
2218         u32 rctl;
2219         u32 hash_value;
2220         int i, rar_entries = E1000_RAR_ENTRIES;
2221         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224         if (!mcarray)
2225                 return;
2226
2227         /* Check for Promiscuous and All Multicast modes */
2228
2229         rctl = er32(RCTL);
2230
2231         if (netdev->flags & IFF_PROMISC) {
2232                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233                 rctl &= ~E1000_RCTL_VFE;
2234         } else {
2235                 if (netdev->flags & IFF_ALLMULTI)
2236                         rctl |= E1000_RCTL_MPE;
2237                 else
2238                         rctl &= ~E1000_RCTL_MPE;
2239                 /* Enable VLAN filter if there is a VLAN */
2240                 if (e1000_vlan_used(adapter))
2241                         rctl |= E1000_RCTL_VFE;
2242         }
2243
2244         if (netdev_uc_count(netdev) > rar_entries - 1) {
2245                 rctl |= E1000_RCTL_UPE;
2246         } else if (!(netdev->flags & IFF_PROMISC)) {
2247                 rctl &= ~E1000_RCTL_UPE;
2248                 use_uc = true;
2249         }
2250
2251         ew32(RCTL, rctl);
2252
2253         /* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255         if (hw->mac_type == e1000_82542_rev2_0)
2256                 e1000_enter_82542_rst(adapter);
2257
2258         /* load the first 14 addresses into the exact filters 1-14. Unicast
2259          * addresses take precedence to avoid disabling unicast filtering
2260          * when possible.
2261          *
2262          * RAR 0 is used for the station MAC address
2263          * if there are not 14 addresses, go ahead and clear the filters
2264          */
2265         i = 1;
2266         if (use_uc)
2267                 netdev_for_each_uc_addr(ha, netdev) {
2268                         if (i == rar_entries)
2269                                 break;
2270                         e1000_rar_set(hw, ha->addr, i++);
2271                 }
2272
2273         netdev_for_each_mc_addr(ha, netdev) {
2274                 if (i == rar_entries) {
2275                         /* load any remaining addresses into the hash table */
2276                         u32 hash_reg, hash_bit, mta;
2277                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278                         hash_reg = (hash_value >> 5) & 0x7F;
2279                         hash_bit = hash_value & 0x1F;
2280                         mta = (1 << hash_bit);
2281                         mcarray[hash_reg] |= mta;
2282                 } else {
2283                         e1000_rar_set(hw, ha->addr, i++);
2284                 }
2285         }
2286
2287         for (; i < rar_entries; i++) {
2288                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289                 E1000_WRITE_FLUSH();
2290                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291                 E1000_WRITE_FLUSH();
2292         }
2293
2294         /* write the hash table completely, write from bottom to avoid
2295          * both stupid write combining chipsets, and flushing each write
2296          */
2297         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298                 /* If we are on an 82544 has an errata where writing odd
2299                  * offsets overwrites the previous even offset, but writing
2300                  * backwards over the range solves the issue by always
2301                  * writing the odd offset first
2302                  */
2303                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304         }
2305         E1000_WRITE_FLUSH();
2306
2307         if (hw->mac_type == e1000_82542_rev2_0)
2308                 e1000_leave_82542_rst(adapter);
2309
2310         kfree(mcarray);
2311 }
2312
2313 /**
2314  * e1000_update_phy_info_task - get phy info
2315  * @work: work struct contained inside adapter struct
2316  *
2317  * Need to wait a few seconds after link up to get diagnostic information from
2318  * the phy
2319  */
2320 static void e1000_update_phy_info_task(struct work_struct *work)
2321 {
2322         struct e1000_adapter *adapter = container_of(work,
2323                                                      struct e1000_adapter,
2324                                                      phy_info_task.work);
2325
2326         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327 }
2328
2329 /**
2330  * e1000_82547_tx_fifo_stall_task - task to complete work
2331  * @work: work struct contained inside adapter struct
2332  **/
2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334 {
2335         struct e1000_adapter *adapter = container_of(work,
2336                                                      struct e1000_adapter,
2337                                                      fifo_stall_task.work);
2338         struct e1000_hw *hw = &adapter->hw;
2339         struct net_device *netdev = adapter->netdev;
2340         u32 tctl;
2341
2342         if (atomic_read(&adapter->tx_fifo_stall)) {
2343                 if ((er32(TDT) == er32(TDH)) &&
2344                    (er32(TDFT) == er32(TDFH)) &&
2345                    (er32(TDFTS) == er32(TDFHS))) {
2346                         tctl = er32(TCTL);
2347                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348                         ew32(TDFT, adapter->tx_head_addr);
2349                         ew32(TDFH, adapter->tx_head_addr);
2350                         ew32(TDFTS, adapter->tx_head_addr);
2351                         ew32(TDFHS, adapter->tx_head_addr);
2352                         ew32(TCTL, tctl);
2353                         E1000_WRITE_FLUSH();
2354
2355                         adapter->tx_fifo_head = 0;
2356                         atomic_set(&adapter->tx_fifo_stall, 0);
2357                         netif_wake_queue(netdev);
2358                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360                 }
2361         }
2362 }
2363
2364 bool e1000_has_link(struct e1000_adapter *adapter)
2365 {
2366         struct e1000_hw *hw = &adapter->hw;
2367         bool link_active = false;
2368
2369         /* get_link_status is set on LSC (link status) interrupt or rx
2370          * sequence error interrupt (except on intel ce4100).
2371          * get_link_status will stay false until the
2372          * e1000_check_for_link establishes link for copper adapters
2373          * ONLY
2374          */
2375         switch (hw->media_type) {
2376         case e1000_media_type_copper:
2377                 if (hw->mac_type == e1000_ce4100)
2378                         hw->get_link_status = 1;
2379                 if (hw->get_link_status) {
2380                         e1000_check_for_link(hw);
2381                         link_active = !hw->get_link_status;
2382                 } else {
2383                         link_active = true;
2384                 }
2385                 break;
2386         case e1000_media_type_fiber:
2387                 e1000_check_for_link(hw);
2388                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389                 break;
2390         case e1000_media_type_internal_serdes:
2391                 e1000_check_for_link(hw);
2392                 link_active = hw->serdes_has_link;
2393                 break;
2394         default:
2395                 break;
2396         }
2397
2398         return link_active;
2399 }
2400
2401 /**
2402  * e1000_watchdog - work function
2403  * @work: work struct contained inside adapter struct
2404  **/
2405 static void e1000_watchdog(struct work_struct *work)
2406 {
2407         struct e1000_adapter *adapter = container_of(work,
2408                                                      struct e1000_adapter,
2409                                                      watchdog_task.work);
2410         struct e1000_hw *hw = &adapter->hw;
2411         struct net_device *netdev = adapter->netdev;
2412         struct e1000_tx_ring *txdr = adapter->tx_ring;
2413         u32 link, tctl;
2414
2415         link = e1000_has_link(adapter);
2416         if ((netif_carrier_ok(netdev)) && link)
2417                 goto link_up;
2418
2419         if (link) {
2420                 if (!netif_carrier_ok(netdev)) {
2421                         u32 ctrl;
2422                         bool txb2b = true;
2423                         /* update snapshot of PHY registers on LSC */
2424                         e1000_get_speed_and_duplex(hw,
2425                                                    &adapter->link_speed,
2426                                                    &adapter->link_duplex);
2427
2428                         ctrl = er32(CTRL);
2429                         pr_info("%s NIC Link is Up %d Mbps %s, "
2430                                 "Flow Control: %s\n",
2431                                 netdev->name,
2432                                 adapter->link_speed,
2433                                 adapter->link_duplex == FULL_DUPLEX ?
2434                                 "Full Duplex" : "Half Duplex",
2435                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440                         /* adjust timeout factor according to speed/duplex */
2441                         adapter->tx_timeout_factor = 1;
2442                         switch (adapter->link_speed) {
2443                         case SPEED_10:
2444                                 txb2b = false;
2445                                 adapter->tx_timeout_factor = 16;
2446                                 break;
2447                         case SPEED_100:
2448                                 txb2b = false;
2449                                 /* maybe add some timeout factor ? */
2450                                 break;
2451                         }
2452
2453                         /* enable transmits in the hardware */
2454                         tctl = er32(TCTL);
2455                         tctl |= E1000_TCTL_EN;
2456                         ew32(TCTL, tctl);
2457
2458                         netif_carrier_on(netdev);
2459                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2460                                 schedule_delayed_work(&adapter->phy_info_task,
2461                                                       2 * HZ);
2462                         adapter->smartspeed = 0;
2463                 }
2464         } else {
2465                 if (netif_carrier_ok(netdev)) {
2466                         adapter->link_speed = 0;
2467                         adapter->link_duplex = 0;
2468                         pr_info("%s NIC Link is Down\n",
2469                                 netdev->name);
2470                         netif_carrier_off(netdev);
2471
2472                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2473                                 schedule_delayed_work(&adapter->phy_info_task,
2474                                                       2 * HZ);
2475                 }
2476
2477                 e1000_smartspeed(adapter);
2478         }
2479
2480 link_up:
2481         e1000_update_stats(adapter);
2482
2483         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484         adapter->tpt_old = adapter->stats.tpt;
2485         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486         adapter->colc_old = adapter->stats.colc;
2487
2488         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489         adapter->gorcl_old = adapter->stats.gorcl;
2490         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491         adapter->gotcl_old = adapter->stats.gotcl;
2492
2493         e1000_update_adaptive(hw);
2494
2495         if (!netif_carrier_ok(netdev)) {
2496                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497                         /* We've lost link, so the controller stops DMA,
2498                          * but we've got queued Tx work that's never going
2499                          * to get done, so reset controller to flush Tx.
2500                          * (Do the reset outside of interrupt context).
2501                          */
2502                         adapter->tx_timeout_count++;
2503                         schedule_work(&adapter->reset_task);
2504                         /* exit immediately since reset is imminent */
2505                         return;
2506                 }
2507         }
2508
2509         /* Simple mode for Interrupt Throttle Rate (ITR) */
2510         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2512                  * Total asymmetrical Tx or Rx gets ITR=8000;
2513                  * everyone else is between 2000-8000.
2514                  */
2515                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2517                             adapter->gotcl - adapter->gorcl :
2518                             adapter->gorcl - adapter->gotcl) / 10000;
2519                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521                 ew32(ITR, 1000000000 / (itr * 256));
2522         }
2523
2524         /* Cause software interrupt to ensure rx ring is cleaned */
2525         ew32(ICS, E1000_ICS_RXDMT0);
2526
2527         /* Force detection of hung controller every watchdog period */
2528         adapter->detect_tx_hung = true;
2529
2530         /* Reschedule the task */
2531         if (!test_bit(__E1000_DOWN, &adapter->flags))
2532                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533 }
2534
2535 enum latency_range {
2536         lowest_latency = 0,
2537         low_latency = 1,
2538         bulk_latency = 2,
2539         latency_invalid = 255
2540 };
2541
2542 /**
2543  * e1000_update_itr - update the dynamic ITR value based on statistics
2544  * @adapter: pointer to adapter
2545  * @itr_setting: current adapter->itr
2546  * @packets: the number of packets during this measurement interval
2547  * @bytes: the number of bytes during this measurement interval
2548  *
2549  *      Stores a new ITR value based on packets and byte
2550  *      counts during the last interrupt.  The advantage of per interrupt
2551  *      computation is faster updates and more accurate ITR for the current
2552  *      traffic pattern.  Constants in this function were computed
2553  *      based on theoretical maximum wire speed and thresholds were set based
2554  *      on testing data as well as attempting to minimize response time
2555  *      while increasing bulk throughput.
2556  *      this functionality is controlled by the InterruptThrottleRate module
2557  *      parameter (see e1000_param.c)
2558  **/
2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560                                      u16 itr_setting, int packets, int bytes)
2561 {
2562         unsigned int retval = itr_setting;
2563         struct e1000_hw *hw = &adapter->hw;
2564
2565         if (unlikely(hw->mac_type < e1000_82540))
2566                 goto update_itr_done;
2567
2568         if (packets == 0)
2569                 goto update_itr_done;
2570
2571         switch (itr_setting) {
2572         case lowest_latency:
2573                 /* jumbo frames get bulk treatment*/
2574                 if (bytes/packets > 8000)
2575                         retval = bulk_latency;
2576                 else if ((packets < 5) && (bytes > 512))
2577                         retval = low_latency;
2578                 break;
2579         case low_latency:  /* 50 usec aka 20000 ints/s */
2580                 if (bytes > 10000) {
2581                         /* jumbo frames need bulk latency setting */
2582                         if (bytes/packets > 8000)
2583                                 retval = bulk_latency;
2584                         else if ((packets < 10) || ((bytes/packets) > 1200))
2585                                 retval = bulk_latency;
2586                         else if ((packets > 35))
2587                                 retval = lowest_latency;
2588                 } else if (bytes/packets > 2000)
2589                         retval = bulk_latency;
2590                 else if (packets <= 2 && bytes < 512)
2591                         retval = lowest_latency;
2592                 break;
2593         case bulk_latency: /* 250 usec aka 4000 ints/s */
2594                 if (bytes > 25000) {
2595                         if (packets > 35)
2596                                 retval = low_latency;
2597                 } else if (bytes < 6000) {
2598                         retval = low_latency;
2599                 }
2600                 break;
2601         }
2602
2603 update_itr_done:
2604         return retval;
2605 }
2606
2607 static void e1000_set_itr(struct e1000_adapter *adapter)
2608 {
2609         struct e1000_hw *hw = &adapter->hw;
2610         u16 current_itr;
2611         u32 new_itr = adapter->itr;
2612
2613         if (unlikely(hw->mac_type < e1000_82540))
2614                 return;
2615
2616         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617         if (unlikely(adapter->link_speed != SPEED_1000)) {
2618                 current_itr = 0;
2619                 new_itr = 4000;
2620                 goto set_itr_now;
2621         }
2622
2623         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624                                            adapter->total_tx_packets,
2625                                            adapter->total_tx_bytes);
2626         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2627         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628                 adapter->tx_itr = low_latency;
2629
2630         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631                                            adapter->total_rx_packets,
2632                                            adapter->total_rx_bytes);
2633         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2634         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635                 adapter->rx_itr = low_latency;
2636
2637         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639         switch (current_itr) {
2640         /* counts and packets in update_itr are dependent on these numbers */
2641         case lowest_latency:
2642                 new_itr = 70000;
2643                 break;
2644         case low_latency:
2645                 new_itr = 20000; /* aka hwitr = ~200 */
2646                 break;
2647         case bulk_latency:
2648                 new_itr = 4000;
2649                 break;
2650         default:
2651                 break;
2652         }
2653
2654 set_itr_now:
2655         if (new_itr != adapter->itr) {
2656                 /* this attempts to bias the interrupt rate towards Bulk
2657                  * by adding intermediate steps when interrupt rate is
2658                  * increasing
2659                  */
2660                 new_itr = new_itr > adapter->itr ?
2661                           min(adapter->itr + (new_itr >> 2), new_itr) :
2662                           new_itr;
2663                 adapter->itr = new_itr;
2664                 ew32(ITR, 1000000000 / (new_itr * 256));
2665         }
2666 }
2667
2668 #define E1000_TX_FLAGS_CSUM             0x00000001
2669 #define E1000_TX_FLAGS_VLAN             0x00000002
2670 #define E1000_TX_FLAGS_TSO              0x00000004
2671 #define E1000_TX_FLAGS_IPV4             0x00000008
2672 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2673 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2674 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2675
2676 static int e1000_tso(struct e1000_adapter *adapter,
2677                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2678                      __be16 protocol)
2679 {
2680         struct e1000_context_desc *context_desc;
2681         struct e1000_buffer *buffer_info;
2682         unsigned int i;
2683         u32 cmd_length = 0;
2684         u16 ipcse = 0, tucse, mss;
2685         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2686
2687         if (skb_is_gso(skb)) {
2688                 int err;
2689
2690                 err = skb_cow_head(skb, 0);
2691                 if (err < 0)
2692                         return err;
2693
2694                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2695                 mss = skb_shinfo(skb)->gso_size;
2696                 if (protocol == htons(ETH_P_IP)) {
2697                         struct iphdr *iph = ip_hdr(skb);
2698                         iph->tot_len = 0;
2699                         iph->check = 0;
2700                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2701                                                                  iph->daddr, 0,
2702                                                                  IPPROTO_TCP,
2703                                                                  0);
2704                         cmd_length = E1000_TXD_CMD_IP;
2705                         ipcse = skb_transport_offset(skb) - 1;
2706                 } else if (skb_is_gso_v6(skb)) {
2707                         ipv6_hdr(skb)->payload_len = 0;
2708                         tcp_hdr(skb)->check =
2709                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2710                                                  &ipv6_hdr(skb)->daddr,
2711                                                  0, IPPROTO_TCP, 0);
2712                         ipcse = 0;
2713                 }
2714                 ipcss = skb_network_offset(skb);
2715                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2716                 tucss = skb_transport_offset(skb);
2717                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2718                 tucse = 0;
2719
2720                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2721                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2722
2723                 i = tx_ring->next_to_use;
2724                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2725                 buffer_info = &tx_ring->buffer_info[i];
2726
2727                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2728                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2729                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2730                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2731                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2732                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2733                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2734                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2735                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2736
2737                 buffer_info->time_stamp = jiffies;
2738                 buffer_info->next_to_watch = i;
2739
2740                 if (++i == tx_ring->count) i = 0;
2741                 tx_ring->next_to_use = i;
2742
2743                 return true;
2744         }
2745         return false;
2746 }
2747
2748 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2749                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2750                           __be16 protocol)
2751 {
2752         struct e1000_context_desc *context_desc;
2753         struct e1000_buffer *buffer_info;
2754         unsigned int i;
2755         u8 css;
2756         u32 cmd_len = E1000_TXD_CMD_DEXT;
2757
2758         if (skb->ip_summed != CHECKSUM_PARTIAL)
2759                 return false;
2760
2761         switch (protocol) {
2762         case cpu_to_be16(ETH_P_IP):
2763                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2764                         cmd_len |= E1000_TXD_CMD_TCP;
2765                 break;
2766         case cpu_to_be16(ETH_P_IPV6):
2767                 /* XXX not handling all IPV6 headers */
2768                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2769                         cmd_len |= E1000_TXD_CMD_TCP;
2770                 break;
2771         default:
2772                 if (unlikely(net_ratelimit()))
2773                         e_warn(drv, "checksum_partial proto=%x!\n",
2774                                skb->protocol);
2775                 break;
2776         }
2777
2778         css = skb_checksum_start_offset(skb);
2779
2780         i = tx_ring->next_to_use;
2781         buffer_info = &tx_ring->buffer_info[i];
2782         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2783
2784         context_desc->lower_setup.ip_config = 0;
2785         context_desc->upper_setup.tcp_fields.tucss = css;
2786         context_desc->upper_setup.tcp_fields.tucso =
2787                 css + skb->csum_offset;
2788         context_desc->upper_setup.tcp_fields.tucse = 0;
2789         context_desc->tcp_seg_setup.data = 0;
2790         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2791
2792         buffer_info->time_stamp = jiffies;
2793         buffer_info->next_to_watch = i;
2794
2795         if (unlikely(++i == tx_ring->count)) i = 0;
2796         tx_ring->next_to_use = i;
2797
2798         return true;
2799 }
2800
2801 #define E1000_MAX_TXD_PWR       12
2802 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2803
2804 static int e1000_tx_map(struct e1000_adapter *adapter,
2805                         struct e1000_tx_ring *tx_ring,
2806                         struct sk_buff *skb, unsigned int first,
2807                         unsigned int max_per_txd, unsigned int nr_frags,
2808                         unsigned int mss)
2809 {
2810         struct e1000_hw *hw = &adapter->hw;
2811         struct pci_dev *pdev = adapter->pdev;
2812         struct e1000_buffer *buffer_info;
2813         unsigned int len = skb_headlen(skb);
2814         unsigned int offset = 0, size, count = 0, i;
2815         unsigned int f, bytecount, segs;
2816
2817         i = tx_ring->next_to_use;
2818
2819         while (len) {
2820                 buffer_info = &tx_ring->buffer_info[i];
2821                 size = min(len, max_per_txd);
2822                 /* Workaround for Controller erratum --
2823                  * descriptor for non-tso packet in a linear SKB that follows a
2824                  * tso gets written back prematurely before the data is fully
2825                  * DMA'd to the controller
2826                  */
2827                 if (!skb->data_len && tx_ring->last_tx_tso &&
2828                     !skb_is_gso(skb)) {
2829                         tx_ring->last_tx_tso = false;
2830                         size -= 4;
2831                 }
2832
2833                 /* Workaround for premature desc write-backs
2834                  * in TSO mode.  Append 4-byte sentinel desc
2835                  */
2836                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2837                         size -= 4;
2838                 /* work-around for errata 10 and it applies
2839                  * to all controllers in PCI-X mode
2840                  * The fix is to make sure that the first descriptor of a
2841                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2842                  */
2843                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2844                                 (size > 2015) && count == 0))
2845                         size = 2015;
2846
2847                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2848                  * terminating buffers within evenly-aligned dwords.
2849                  */
2850                 if (unlikely(adapter->pcix_82544 &&
2851                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2852                    size > 4))
2853                         size -= 4;
2854
2855                 buffer_info->length = size;
2856                 /* set time_stamp *before* dma to help avoid a possible race */
2857                 buffer_info->time_stamp = jiffies;
2858                 buffer_info->mapped_as_page = false;
2859                 buffer_info->dma = dma_map_single(&pdev->dev,
2860                                                   skb->data + offset,
2861                                                   size, DMA_TO_DEVICE);
2862                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2863                         goto dma_error;
2864                 buffer_info->next_to_watch = i;
2865
2866                 len -= size;
2867                 offset += size;
2868                 count++;
2869                 if (len) {
2870                         i++;
2871                         if (unlikely(i == tx_ring->count))
2872                                 i = 0;
2873                 }
2874         }
2875
2876         for (f = 0; f < nr_frags; f++) {
2877                 const struct skb_frag_struct *frag;
2878
2879                 frag = &skb_shinfo(skb)->frags[f];
2880                 len = skb_frag_size(frag);
2881                 offset = 0;
2882
2883                 while (len) {
2884                         unsigned long bufend;
2885                         i++;
2886                         if (unlikely(i == tx_ring->count))
2887                                 i = 0;
2888
2889                         buffer_info = &tx_ring->buffer_info[i];
2890                         size = min(len, max_per_txd);
2891                         /* Workaround for premature desc write-backs
2892                          * in TSO mode.  Append 4-byte sentinel desc
2893                          */
2894                         if (unlikely(mss && f == (nr_frags-1) &&
2895                             size == len && size > 8))
2896                                 size -= 4;
2897                         /* Workaround for potential 82544 hang in PCI-X.
2898                          * Avoid terminating buffers within evenly-aligned
2899                          * dwords.
2900                          */
2901                         bufend = (unsigned long)
2902                                 page_to_phys(skb_frag_page(frag));
2903                         bufend += offset + size - 1;
2904                         if (unlikely(adapter->pcix_82544 &&
2905                                      !(bufend & 4) &&
2906                                      size > 4))
2907                                 size -= 4;
2908
2909                         buffer_info->length = size;
2910                         buffer_info->time_stamp = jiffies;
2911                         buffer_info->mapped_as_page = true;
2912                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2913                                                 offset, size, DMA_TO_DEVICE);
2914                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2915                                 goto dma_error;
2916                         buffer_info->next_to_watch = i;
2917
2918                         len -= size;
2919                         offset += size;
2920                         count++;
2921                 }
2922         }
2923
2924         segs = skb_shinfo(skb)->gso_segs ?: 1;
2925         /* multiply data chunks by size of headers */
2926         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2927
2928         tx_ring->buffer_info[i].skb = skb;
2929         tx_ring->buffer_info[i].segs = segs;
2930         tx_ring->buffer_info[i].bytecount = bytecount;
2931         tx_ring->buffer_info[first].next_to_watch = i;
2932
2933         return count;
2934
2935 dma_error:
2936         dev_err(&pdev->dev, "TX DMA map failed\n");
2937         buffer_info->dma = 0;
2938         if (count)
2939                 count--;
2940
2941         while (count--) {
2942                 if (i==0)
2943                         i += tx_ring->count;
2944                 i--;
2945                 buffer_info = &tx_ring->buffer_info[i];
2946                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2947         }
2948
2949         return 0;
2950 }
2951
2952 static void e1000_tx_queue(struct e1000_adapter *adapter,
2953                            struct e1000_tx_ring *tx_ring, int tx_flags,
2954                            int count)
2955 {
2956         struct e1000_hw *hw = &adapter->hw;
2957         struct e1000_tx_desc *tx_desc = NULL;
2958         struct e1000_buffer *buffer_info;
2959         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2960         unsigned int i;
2961
2962         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2963                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2964                              E1000_TXD_CMD_TSE;
2965                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2966
2967                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2968                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2969         }
2970
2971         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2972                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2973                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2974         }
2975
2976         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2977                 txd_lower |= E1000_TXD_CMD_VLE;
2978                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2979         }
2980
2981         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2982                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2983
2984         i = tx_ring->next_to_use;
2985
2986         while (count--) {
2987                 buffer_info = &tx_ring->buffer_info[i];
2988                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2989                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2990                 tx_desc->lower.data =
2991                         cpu_to_le32(txd_lower | buffer_info->length);
2992                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2993                 if (unlikely(++i == tx_ring->count)) i = 0;
2994         }
2995
2996         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2997
2998         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2999         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3000                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3001
3002         /* Force memory writes to complete before letting h/w
3003          * know there are new descriptors to fetch.  (Only
3004          * applicable for weak-ordered memory model archs,
3005          * such as IA-64).
3006          */
3007         wmb();
3008
3009         tx_ring->next_to_use = i;
3010         writel(i, hw->hw_addr + tx_ring->tdt);
3011         /* we need this if more than one processor can write to our tail
3012          * at a time, it synchronizes IO on IA64/Altix systems
3013          */
3014         mmiowb();
3015 }
3016
3017 /* 82547 workaround to avoid controller hang in half-duplex environment.
3018  * The workaround is to avoid queuing a large packet that would span
3019  * the internal Tx FIFO ring boundary by notifying the stack to resend
3020  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3021  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3022  * to the beginning of the Tx FIFO.
3023  */
3024
3025 #define E1000_FIFO_HDR                  0x10
3026 #define E1000_82547_PAD_LEN             0x3E0
3027
3028 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3029                                        struct sk_buff *skb)
3030 {
3031         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3032         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3033
3034         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3035
3036         if (adapter->link_duplex != HALF_DUPLEX)
3037                 goto no_fifo_stall_required;
3038
3039         if (atomic_read(&adapter->tx_fifo_stall))
3040                 return 1;
3041
3042         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3043                 atomic_set(&adapter->tx_fifo_stall, 1);
3044                 return 1;
3045         }
3046
3047 no_fifo_stall_required:
3048         adapter->tx_fifo_head += skb_fifo_len;
3049         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3050                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3051         return 0;
3052 }
3053
3054 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3055 {
3056         struct e1000_adapter *adapter = netdev_priv(netdev);
3057         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3058
3059         netif_stop_queue(netdev);
3060         /* Herbert's original patch had:
3061          *  smp_mb__after_netif_stop_queue();
3062          * but since that doesn't exist yet, just open code it.
3063          */
3064         smp_mb();
3065
3066         /* We need to check again in a case another CPU has just
3067          * made room available.
3068          */
3069         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3070                 return -EBUSY;
3071
3072         /* A reprieve! */
3073         netif_start_queue(netdev);
3074         ++adapter->restart_queue;
3075         return 0;
3076 }
3077
3078 static int e1000_maybe_stop_tx(struct net_device *netdev,
3079                                struct e1000_tx_ring *tx_ring, int size)
3080 {
3081         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3082                 return 0;
3083         return __e1000_maybe_stop_tx(netdev, size);
3084 }
3085
3086 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3087 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3088                                     struct net_device *netdev)
3089 {
3090         struct e1000_adapter *adapter = netdev_priv(netdev);
3091         struct e1000_hw *hw = &adapter->hw;
3092         struct e1000_tx_ring *tx_ring;
3093         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3094         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3095         unsigned int tx_flags = 0;
3096         unsigned int len = skb_headlen(skb);
3097         unsigned int nr_frags;
3098         unsigned int mss;
3099         int count = 0;
3100         int tso;
3101         unsigned int f;
3102         __be16 protocol = vlan_get_protocol(skb);
3103
3104         /* This goes back to the question of how to logically map a Tx queue
3105          * to a flow.  Right now, performance is impacted slightly negatively
3106          * if using multiple Tx queues.  If the stack breaks away from a
3107          * single qdisc implementation, we can look at this again.
3108          */
3109         tx_ring = adapter->tx_ring;
3110
3111         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3112          * packets may get corrupted during padding by HW.
3113          * To WA this issue, pad all small packets manually.
3114          */
3115         if (skb->len < ETH_ZLEN) {
3116                 if (skb_pad(skb, ETH_ZLEN - skb->len))
3117                         return NETDEV_TX_OK;
3118                 skb->len = ETH_ZLEN;
3119                 skb_set_tail_pointer(skb, ETH_ZLEN);
3120         }
3121
3122         mss = skb_shinfo(skb)->gso_size;
3123         /* The controller does a simple calculation to
3124          * make sure there is enough room in the FIFO before
3125          * initiating the DMA for each buffer.  The calc is:
3126          * 4 = ceil(buffer len/mss).  To make sure we don't
3127          * overrun the FIFO, adjust the max buffer len if mss
3128          * drops.
3129          */
3130         if (mss) {
3131                 u8 hdr_len;
3132                 max_per_txd = min(mss << 2, max_per_txd);
3133                 max_txd_pwr = fls(max_per_txd) - 1;
3134
3135                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3136                 if (skb->data_len && hdr_len == len) {
3137                         switch (hw->mac_type) {
3138                                 unsigned int pull_size;
3139                         case e1000_82544:
3140                                 /* Make sure we have room to chop off 4 bytes,
3141                                  * and that the end alignment will work out to
3142                                  * this hardware's requirements
3143                                  * NOTE: this is a TSO only workaround
3144                                  * if end byte alignment not correct move us
3145                                  * into the next dword
3146                                  */
3147                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3148                                     & 4)
3149                                         break;
3150                                 /* fall through */
3151                                 pull_size = min((unsigned int)4, skb->data_len);
3152                                 if (!__pskb_pull_tail(skb, pull_size)) {
3153                                         e_err(drv, "__pskb_pull_tail "
3154                                               "failed.\n");
3155                                         dev_kfree_skb_any(skb);
3156                                         return NETDEV_TX_OK;
3157                                 }
3158                                 len = skb_headlen(skb);
3159                                 break;
3160                         default:
3161                                 /* do nothing */
3162                                 break;
3163                         }
3164                 }
3165         }
3166
3167         /* reserve a descriptor for the offload context */
3168         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3169                 count++;
3170         count++;
3171
3172         /* Controller Erratum workaround */
3173         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3174                 count++;
3175
3176         count += TXD_USE_COUNT(len, max_txd_pwr);
3177
3178         if (adapter->pcix_82544)
3179                 count++;
3180
3181         /* work-around for errata 10 and it applies to all controllers
3182          * in PCI-X mode, so add one more descriptor to the count
3183          */
3184         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3185                         (len > 2015)))
3186                 count++;
3187
3188         nr_frags = skb_shinfo(skb)->nr_frags;
3189         for (f = 0; f < nr_frags; f++)
3190                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3191                                        max_txd_pwr);
3192         if (adapter->pcix_82544)
3193                 count += nr_frags;
3194
3195         /* need: count + 2 desc gap to keep tail from touching
3196          * head, otherwise try next time
3197          */
3198         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3199                 return NETDEV_TX_BUSY;
3200
3201         if (unlikely((hw->mac_type == e1000_82547) &&
3202                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3203                 netif_stop_queue(netdev);
3204                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3205                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3206                 return NETDEV_TX_BUSY;
3207         }
3208
3209         if (vlan_tx_tag_present(skb)) {
3210                 tx_flags |= E1000_TX_FLAGS_VLAN;
3211                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3212         }
3213
3214         first = tx_ring->next_to_use;
3215
3216         tso = e1000_tso(adapter, tx_ring, skb, protocol);
3217         if (tso < 0) {
3218                 dev_kfree_skb_any(skb);
3219                 return NETDEV_TX_OK;
3220         }
3221
3222         if (likely(tso)) {
3223                 if (likely(hw->mac_type != e1000_82544))
3224                         tx_ring->last_tx_tso = true;
3225                 tx_flags |= E1000_TX_FLAGS_TSO;
3226         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3227                 tx_flags |= E1000_TX_FLAGS_CSUM;
3228
3229         if (protocol == htons(ETH_P_IP))
3230                 tx_flags |= E1000_TX_FLAGS_IPV4;
3231
3232         if (unlikely(skb->no_fcs))
3233                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3234
3235         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3236                              nr_frags, mss);
3237
3238         if (count) {
3239                 netdev_sent_queue(netdev, skb->len);
3240                 skb_tx_timestamp(skb);
3241
3242                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3243                 /* Make sure there is space in the ring for the next send. */
3244                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3245
3246         } else {
3247                 dev_kfree_skb_any(skb);
3248                 tx_ring->buffer_info[first].time_stamp = 0;
3249                 tx_ring->next_to_use = first;
3250         }
3251
3252         return NETDEV_TX_OK;
3253 }
3254
3255 #define NUM_REGS 38 /* 1 based count */
3256 static void e1000_regdump(struct e1000_adapter *adapter)
3257 {
3258         struct e1000_hw *hw = &adapter->hw;
3259         u32 regs[NUM_REGS];
3260         u32 *regs_buff = regs;
3261         int i = 0;
3262
3263         static const char * const reg_name[] = {
3264                 "CTRL",  "STATUS",
3265                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3266                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3267                 "TIDV", "TXDCTL", "TADV", "TARC0",
3268                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3269                 "TXDCTL1", "TARC1",
3270                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3271                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3272                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3273         };
3274
3275         regs_buff[0]  = er32(CTRL);
3276         regs_buff[1]  = er32(STATUS);
3277
3278         regs_buff[2]  = er32(RCTL);
3279         regs_buff[3]  = er32(RDLEN);
3280         regs_buff[4]  = er32(RDH);
3281         regs_buff[5]  = er32(RDT);
3282         regs_buff[6]  = er32(RDTR);
3283
3284         regs_buff[7]  = er32(TCTL);
3285         regs_buff[8]  = er32(TDBAL);
3286         regs_buff[9]  = er32(TDBAH);
3287         regs_buff[10] = er32(TDLEN);
3288         regs_buff[11] = er32(TDH);
3289         regs_buff[12] = er32(TDT);
3290         regs_buff[13] = er32(TIDV);
3291         regs_buff[14] = er32(TXDCTL);
3292         regs_buff[15] = er32(TADV);
3293         regs_buff[16] = er32(TARC0);
3294
3295         regs_buff[17] = er32(TDBAL1);
3296         regs_buff[18] = er32(TDBAH1);
3297         regs_buff[19] = er32(TDLEN1);
3298         regs_buff[20] = er32(TDH1);
3299         regs_buff[21] = er32(TDT1);
3300         regs_buff[22] = er32(TXDCTL1);
3301         regs_buff[23] = er32(TARC1);
3302         regs_buff[24] = er32(CTRL_EXT);
3303         regs_buff[25] = er32(ERT);
3304         regs_buff[26] = er32(RDBAL0);
3305         regs_buff[27] = er32(RDBAH0);
3306         regs_buff[28] = er32(TDFH);
3307         regs_buff[29] = er32(TDFT);
3308         regs_buff[30] = er32(TDFHS);
3309         regs_buff[31] = er32(TDFTS);
3310         regs_buff[32] = er32(TDFPC);
3311         regs_buff[33] = er32(RDFH);
3312         regs_buff[34] = er32(RDFT);
3313         regs_buff[35] = er32(RDFHS);
3314         regs_buff[36] = er32(RDFTS);
3315         regs_buff[37] = er32(RDFPC);
3316
3317         pr_info("Register dump\n");
3318         for (i = 0; i < NUM_REGS; i++)
3319                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3320 }
3321
3322 /*
3323  * e1000_dump: Print registers, tx ring and rx ring
3324  */
3325 static void e1000_dump(struct e1000_adapter *adapter)
3326 {
3327         /* this code doesn't handle multiple rings */
3328         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3329         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3330         int i;
3331
3332         if (!netif_msg_hw(adapter))
3333                 return;
3334
3335         /* Print Registers */
3336         e1000_regdump(adapter);
3337
3338         /* transmit dump */
3339         pr_info("TX Desc ring0 dump\n");
3340
3341         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3342          *
3343          * Legacy Transmit Descriptor
3344          *   +--------------------------------------------------------------+
3345          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3346          *   +--------------------------------------------------------------+
3347          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3348          *   +--------------------------------------------------------------+
3349          *   63       48 47        36 35    32 31     24 23    16 15        0
3350          *
3351          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3352          *   63      48 47    40 39       32 31             16 15    8 7      0
3353          *   +----------------------------------------------------------------+
3354          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3355          *   +----------------------------------------------------------------+
3356          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3357          *   +----------------------------------------------------------------+
3358          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3359          *
3360          * Extended Data Descriptor (DTYP=0x1)
3361          *   +----------------------------------------------------------------+
3362          * 0 |                     Buffer Address [63:0]                      |
3363          *   +----------------------------------------------------------------+
3364          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3365          *   +----------------------------------------------------------------+
3366          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3367          */
3368         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3369         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3370
3371         if (!netif_msg_tx_done(adapter))
3372                 goto rx_ring_summary;
3373
3374         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3375                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3376                 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3377                 struct my_u { __le64 a; __le64 b; };
3378                 struct my_u *u = (struct my_u *)tx_desc;
3379                 const char *type;
3380
3381                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3382                         type = "NTC/U";
3383                 else if (i == tx_ring->next_to_use)
3384                         type = "NTU";
3385                 else if (i == tx_ring->next_to_clean)
3386                         type = "NTC";
3387                 else
3388                         type = "";
3389
3390                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3391                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3392                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3393                         (u64)buffer_info->dma, buffer_info->length,
3394                         buffer_info->next_to_watch,
3395                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3396         }
3397
3398 rx_ring_summary:
3399         /* receive dump */
3400         pr_info("\nRX Desc ring dump\n");
3401
3402         /* Legacy Receive Descriptor Format
3403          *
3404          * +-----------------------------------------------------+
3405          * |                Buffer Address [63:0]                |
3406          * +-----------------------------------------------------+
3407          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3408          * +-----------------------------------------------------+
3409          * 63       48 47    40 39      32 31         16 15      0
3410          */
3411         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3412
3413         if (!netif_msg_rx_status(adapter))
3414                 goto exit;
3415
3416         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3417                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3418                 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3419                 struct my_u { __le64 a; __le64 b; };
3420                 struct my_u *u = (struct my_u *)rx_desc;
3421                 const char *type;
3422
3423                 if (i == rx_ring->next_to_use)
3424                         type = "NTU";
3425                 else if (i == rx_ring->next_to_clean)
3426                         type = "NTC";
3427                 else
3428                         type = "";
3429
3430                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3431                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3432                         (u64)buffer_info->dma, buffer_info->skb, type);
3433         } /* for */
3434
3435         /* dump the descriptor caches */
3436         /* rx */
3437         pr_info("Rx descriptor cache in 64bit format\n");
3438         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3439                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3440                         i,
3441                         readl(adapter->hw.hw_addr + i+4),
3442                         readl(adapter->hw.hw_addr + i),
3443                         readl(adapter->hw.hw_addr + i+12),
3444                         readl(adapter->hw.hw_addr + i+8));
3445         }
3446         /* tx */
3447         pr_info("Tx descriptor cache in 64bit format\n");
3448         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3449                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3450                         i,
3451                         readl(adapter->hw.hw_addr + i+4),
3452                         readl(adapter->hw.hw_addr + i),
3453                         readl(adapter->hw.hw_addr + i+12),
3454                         readl(adapter->hw.hw_addr + i+8));
3455         }
3456 exit:
3457         return;
3458 }
3459
3460 /**
3461  * e1000_tx_timeout - Respond to a Tx Hang
3462  * @netdev: network interface device structure
3463  **/
3464 static void e1000_tx_timeout(struct net_device *netdev)
3465 {
3466         struct e1000_adapter *adapter = netdev_priv(netdev);
3467
3468         /* Do the reset outside of interrupt context */
3469         adapter->tx_timeout_count++;
3470         schedule_work(&adapter->reset_task);
3471 }
3472
3473 static void e1000_reset_task(struct work_struct *work)
3474 {
3475         struct e1000_adapter *adapter =
3476                 container_of(work, struct e1000_adapter, reset_task);
3477
3478         e_err(drv, "Reset adapter\n");
3479         e1000_reinit_locked(adapter);
3480 }
3481
3482 /**
3483  * e1000_get_stats - Get System Network Statistics
3484  * @netdev: network interface device structure
3485  *
3486  * Returns the address of the device statistics structure.
3487  * The statistics are actually updated from the watchdog.
3488  **/
3489 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3490 {
3491         /* only return the current stats */
3492         return &netdev->stats;
3493 }
3494
3495 /**
3496  * e1000_change_mtu - Change the Maximum Transfer Unit
3497  * @netdev: network interface device structure
3498  * @new_mtu: new value for maximum frame size
3499  *
3500  * Returns 0 on success, negative on failure
3501  **/
3502 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3503 {
3504         struct e1000_adapter *adapter = netdev_priv(netdev);
3505         struct e1000_hw *hw = &adapter->hw;
3506         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3507
3508         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3509             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3510                 e_err(probe, "Invalid MTU setting\n");
3511                 return -EINVAL;
3512         }
3513
3514         /* Adapter-specific max frame size limits. */
3515         switch (hw->mac_type) {
3516         case e1000_undefined ... e1000_82542_rev2_1:
3517                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3518                         e_err(probe, "Jumbo Frames not supported.\n");
3519                         return -EINVAL;
3520                 }
3521                 break;
3522         default:
3523                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3524                 break;
3525         }
3526
3527         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3528                 msleep(1);
3529         /* e1000_down has a dependency on max_frame_size */
3530         hw->max_frame_size = max_frame;
3531         if (netif_running(netdev))
3532                 e1000_down(adapter);
3533
3534         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3535          * means we reserve 2 more, this pushes us to allocate from the next
3536          * larger slab size.
3537          * i.e. RXBUFFER_2048 --> size-4096 slab
3538          * however with the new *_jumbo_rx* routines, jumbo receives will use
3539          * fragmented skbs
3540          */
3541
3542         if (max_frame <= E1000_RXBUFFER_2048)
3543                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3544         else
3545 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3546                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3547 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3548                 adapter->rx_buffer_len = PAGE_SIZE;
3549 #endif
3550
3551         /* adjust allocation if LPE protects us, and we aren't using SBP */
3552         if (!hw->tbi_compatibility_on &&
3553             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3554              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3555                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3556
3557         pr_info("%s changing MTU from %d to %d\n",
3558                 netdev->name, netdev->mtu, new_mtu);
3559         netdev->mtu = new_mtu;
3560
3561         if (netif_running(netdev))
3562                 e1000_up(adapter);
3563         else
3564                 e1000_reset(adapter);
3565
3566         clear_bit(__E1000_RESETTING, &adapter->flags);
3567
3568         return 0;
3569 }
3570
3571 /**
3572  * e1000_update_stats - Update the board statistics counters
3573  * @adapter: board private structure
3574  **/
3575 void e1000_update_stats(struct e1000_adapter *adapter)
3576 {
3577         struct net_device *netdev = adapter->netdev;
3578         struct e1000_hw *hw = &adapter->hw;
3579         struct pci_dev *pdev = adapter->pdev;
3580         unsigned long flags;
3581         u16 phy_tmp;
3582
3583 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3584
3585         /* Prevent stats update while adapter is being reset, or if the pci
3586          * connection is down.
3587          */
3588         if (adapter->link_speed == 0)
3589                 return;
3590         if (pci_channel_offline(pdev))
3591                 return;
3592
3593         spin_lock_irqsave(&adapter->stats_lock, flags);
3594
3595         /* these counters are modified from e1000_tbi_adjust_stats,
3596          * called from the interrupt context, so they must only
3597          * be written while holding adapter->stats_lock
3598          */
3599
3600         adapter->stats.crcerrs += er32(CRCERRS);
3601         adapter->stats.gprc += er32(GPRC);
3602         adapter->stats.gorcl += er32(GORCL);
3603         adapter->stats.gorch += er32(GORCH);
3604         adapter->stats.bprc += er32(BPRC);
3605         adapter->stats.mprc += er32(MPRC);
3606         adapter->stats.roc += er32(ROC);
3607
3608         adapter->stats.prc64 += er32(PRC64);
3609         adapter->stats.prc127 += er32(PRC127);
3610         adapter->stats.prc255 += er32(PRC255);
3611         adapter->stats.prc511 += er32(PRC511);
3612         adapter->stats.prc1023 += er32(PRC1023);
3613         adapter->stats.prc1522 += er32(PRC1522);
3614
3615         adapter->stats.symerrs += er32(SYMERRS);
3616         adapter->stats.mpc += er32(MPC);
3617         adapter->stats.scc += er32(SCC);
3618         adapter->stats.ecol += er32(ECOL);
3619         adapter->stats.mcc += er32(MCC);
3620         adapter->stats.latecol += er32(LATECOL);
3621         adapter->stats.dc += er32(DC);
3622         adapter->stats.sec += er32(SEC);
3623         adapter->stats.rlec += er32(RLEC);
3624         adapter->stats.xonrxc += er32(XONRXC);
3625         adapter->stats.xontxc += er32(XONTXC);
3626         adapter->stats.xoffrxc += er32(XOFFRXC);
3627         adapter->stats.xofftxc += er32(XOFFTXC);
3628         adapter->stats.fcruc += er32(FCRUC);
3629         adapter->stats.gptc += er32(GPTC);
3630         adapter->stats.gotcl += er32(GOTCL);
3631         adapter->stats.gotch += er32(GOTCH);
3632         adapter->stats.rnbc += er32(RNBC);
3633         adapter->stats.ruc += er32(RUC);
3634         adapter->stats.rfc += er32(RFC);
3635         adapter->stats.rjc += er32(RJC);
3636         adapter->stats.torl += er32(TORL);
3637         adapter->stats.torh += er32(TORH);
3638         adapter->stats.totl += er32(TOTL);
3639         adapter->stats.toth += er32(TOTH);
3640         adapter->stats.tpr += er32(TPR);
3641
3642         adapter->stats.ptc64 += er32(PTC64);
3643         adapter->stats.ptc127 += er32(PTC127);
3644         adapter->stats.ptc255 += er32(PTC255);
3645         adapter->stats.ptc511 += er32(PTC511);
3646         adapter->stats.ptc1023 += er32(PTC1023);
3647         adapter->stats.ptc1522 += er32(PTC1522);
3648
3649         adapter->stats.mptc += er32(MPTC);
3650         adapter->stats.bptc += er32(BPTC);
3651
3652         /* used for adaptive IFS */
3653
3654         hw->tx_packet_delta = er32(TPT);
3655         adapter->stats.tpt += hw->tx_packet_delta;
3656         hw->collision_delta = er32(COLC);
3657         adapter->stats.colc += hw->collision_delta;
3658
3659         if (hw->mac_type >= e1000_82543) {
3660                 adapter->stats.algnerrc += er32(ALGNERRC);
3661                 adapter->stats.rxerrc += er32(RXERRC);
3662                 adapter->stats.tncrs += er32(TNCRS);
3663                 adapter->stats.cexterr += er32(CEXTERR);
3664                 adapter->stats.tsctc += er32(TSCTC);
3665                 adapter->stats.tsctfc += er32(TSCTFC);
3666         }
3667
3668         /* Fill out the OS statistics structure */
3669         netdev->stats.multicast = adapter->stats.mprc;
3670         netdev->stats.collisions = adapter->stats.colc;
3671
3672         /* Rx Errors */
3673
3674         /* RLEC on some newer hardware can be incorrect so build
3675          * our own version based on RUC and ROC
3676          */
3677         netdev->stats.rx_errors = adapter->stats.rxerrc +
3678                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3679                 adapter->stats.ruc + adapter->stats.roc +
3680                 adapter->stats.cexterr;
3681         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3682         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3683         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3684         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3685         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3686
3687         /* Tx Errors */
3688         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3689         netdev->stats.tx_errors = adapter->stats.txerrc;
3690         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3691         netdev->stats.tx_window_errors = adapter->stats.latecol;
3692         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3693         if (hw->bad_tx_carr_stats_fd &&
3694             adapter->link_duplex == FULL_DUPLEX) {
3695                 netdev->stats.tx_carrier_errors = 0;
3696                 adapter->stats.tncrs = 0;
3697         }
3698
3699         /* Tx Dropped needs to be maintained elsewhere */
3700
3701         /* Phy Stats */
3702         if (hw->media_type == e1000_media_type_copper) {
3703                 if ((adapter->link_speed == SPEED_1000) &&
3704                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3705                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3706                         adapter->phy_stats.idle_errors += phy_tmp;
3707                 }
3708
3709                 if ((hw->mac_type <= e1000_82546) &&
3710                    (hw->phy_type == e1000_phy_m88) &&
3711                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3712                         adapter->phy_stats.receive_errors += phy_tmp;
3713         }
3714
3715         /* Management Stats */
3716         if (hw->has_smbus) {
3717                 adapter->stats.mgptc += er32(MGTPTC);
3718                 adapter->stats.mgprc += er32(MGTPRC);
3719                 adapter->stats.mgpdc += er32(MGTPDC);
3720         }
3721
3722         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3723 }
3724
3725 /**
3726  * e1000_intr - Interrupt Handler
3727  * @irq: interrupt number
3728  * @data: pointer to a network interface device structure
3729  **/
3730 static irqreturn_t e1000_intr(int irq, void *data)
3731 {
3732         struct net_device *netdev = data;
3733         struct e1000_adapter *adapter = netdev_priv(netdev);
3734         struct e1000_hw *hw = &adapter->hw;
3735         u32 icr = er32(ICR);
3736
3737         if (unlikely((!icr)))
3738                 return IRQ_NONE;  /* Not our interrupt */
3739
3740         /* we might have caused the interrupt, but the above
3741          * read cleared it, and just in case the driver is
3742          * down there is nothing to do so return handled
3743          */
3744         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3745                 return IRQ_HANDLED;
3746
3747         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3748                 hw->get_link_status = 1;
3749                 /* guard against interrupt when we're going down */
3750                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3751                         schedule_delayed_work(&adapter->watchdog_task, 1);
3752         }
3753
3754         /* disable interrupts, without the synchronize_irq bit */
3755         ew32(IMC, ~0);
3756         E1000_WRITE_FLUSH();
3757
3758         if (likely(napi_schedule_prep(&adapter->napi))) {
3759                 adapter->total_tx_bytes = 0;
3760                 adapter->total_tx_packets = 0;
3761                 adapter->total_rx_bytes = 0;
3762                 adapter->total_rx_packets = 0;
3763                 __napi_schedule(&adapter->napi);
3764         } else {
3765                 /* this really should not happen! if it does it is basically a
3766                  * bug, but not a hard error, so enable ints and continue
3767                  */
3768                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3769                         e1000_irq_enable(adapter);
3770         }
3771
3772         return IRQ_HANDLED;
3773 }
3774
3775 /**
3776  * e1000_clean - NAPI Rx polling callback
3777  * @adapter: board private structure
3778  **/
3779 static int e1000_clean(struct napi_struct *napi, int budget)
3780 {
3781         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3782                                                      napi);
3783         int tx_clean_complete = 0, work_done = 0;
3784
3785         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3786
3787         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3788
3789         if (!tx_clean_complete)
3790                 work_done = budget;
3791
3792         /* If budget not fully consumed, exit the polling mode */
3793         if (work_done < budget) {
3794                 if (likely(adapter->itr_setting & 3))
3795                         e1000_set_itr(adapter);
3796                 napi_complete(napi);
3797                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798                         e1000_irq_enable(adapter);
3799         }
3800
3801         return work_done;
3802 }
3803
3804 /**
3805  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3806  * @adapter: board private structure
3807  **/
3808 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3809                                struct e1000_tx_ring *tx_ring)
3810 {
3811         struct e1000_hw *hw = &adapter->hw;
3812         struct net_device *netdev = adapter->netdev;
3813         struct e1000_tx_desc *tx_desc, *eop_desc;
3814         struct e1000_buffer *buffer_info;
3815         unsigned int i, eop;
3816         unsigned int count = 0;
3817         unsigned int total_tx_bytes=0, total_tx_packets=0;
3818         unsigned int bytes_compl = 0, pkts_compl = 0;
3819
3820         i = tx_ring->next_to_clean;
3821         eop = tx_ring->buffer_info[i].next_to_watch;
3822         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3823
3824         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3825                (count < tx_ring->count)) {
3826                 bool cleaned = false;
3827                 rmb();  /* read buffer_info after eop_desc */
3828                 for ( ; !cleaned; count++) {
3829                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3830                         buffer_info = &tx_ring->buffer_info[i];
3831                         cleaned = (i == eop);
3832
3833                         if (cleaned) {
3834                                 total_tx_packets += buffer_info->segs;
3835                                 total_tx_bytes += buffer_info->bytecount;
3836                                 if (buffer_info->skb) {
3837                                         bytes_compl += buffer_info->skb->len;
3838                                         pkts_compl++;
3839                                 }
3840
3841                         }
3842                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3843                         tx_desc->upper.data = 0;
3844
3845                         if (unlikely(++i == tx_ring->count)) i = 0;
3846                 }
3847
3848                 eop = tx_ring->buffer_info[i].next_to_watch;
3849                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3850         }
3851
3852         tx_ring->next_to_clean = i;
3853
3854         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3855
3856 #define TX_WAKE_THRESHOLD 32
3857         if (unlikely(count && netif_carrier_ok(netdev) &&
3858                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3859                 /* Make sure that anybody stopping the queue after this
3860                  * sees the new next_to_clean.
3861                  */
3862                 smp_mb();
3863
3864                 if (netif_queue_stopped(netdev) &&
3865                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3866                         netif_wake_queue(netdev);
3867                         ++adapter->restart_queue;
3868                 }
3869         }
3870
3871         if (adapter->detect_tx_hung) {
3872                 /* Detect a transmit hang in hardware, this serializes the
3873                  * check with the clearing of time_stamp and movement of i
3874                  */
3875                 adapter->detect_tx_hung = false;
3876                 if (tx_ring->buffer_info[eop].time_stamp &&
3877                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3878                                (adapter->tx_timeout_factor * HZ)) &&
3879                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3880
3881                         /* detected Tx unit hang */
3882                         e_err(drv, "Detected Tx Unit Hang\n"
3883                               "  Tx Queue             <%lu>\n"
3884                               "  TDH                  <%x>\n"
3885                               "  TDT                  <%x>\n"
3886                               "  next_to_use          <%x>\n"
3887                               "  next_to_clean        <%x>\n"
3888                               "buffer_info[next_to_clean]\n"
3889                               "  time_stamp           <%lx>\n"
3890                               "  next_to_watch        <%x>\n"
3891                               "  jiffies              <%lx>\n"
3892                               "  next_to_watch.status <%x>\n",
3893                                 (unsigned long)(tx_ring - adapter->tx_ring),
3894                                 readl(hw->hw_addr + tx_ring->tdh),
3895                                 readl(hw->hw_addr + tx_ring->tdt),
3896                                 tx_ring->next_to_use,
3897                                 tx_ring->next_to_clean,
3898                                 tx_ring->buffer_info[eop].time_stamp,
3899                                 eop,
3900                                 jiffies,
3901                                 eop_desc->upper.fields.status);
3902                         e1000_dump(adapter);
3903                         netif_stop_queue(netdev);
3904                 }
3905         }
3906         adapter->total_tx_bytes += total_tx_bytes;
3907         adapter->total_tx_packets += total_tx_packets;
3908         netdev->stats.tx_bytes += total_tx_bytes;
3909         netdev->stats.tx_packets += total_tx_packets;
3910         return count < tx_ring->count;
3911 }
3912
3913 /**
3914  * e1000_rx_checksum - Receive Checksum Offload for 82543
3915  * @adapter:     board private structure
3916  * @status_err:  receive descriptor status and error fields
3917  * @csum:        receive descriptor csum field
3918  * @sk_buff:     socket buffer with received data
3919  **/
3920 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3921                               u32 csum, struct sk_buff *skb)
3922 {
3923         struct e1000_hw *hw = &adapter->hw;
3924         u16 status = (u16)status_err;
3925         u8 errors = (u8)(status_err >> 24);
3926
3927         skb_checksum_none_assert(skb);
3928
3929         /* 82543 or newer only */
3930         if (unlikely(hw->mac_type < e1000_82543)) return;
3931         /* Ignore Checksum bit is set */
3932         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3933         /* TCP/UDP checksum error bit is set */
3934         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3935                 /* let the stack verify checksum errors */
3936                 adapter->hw_csum_err++;
3937                 return;
3938         }
3939         /* TCP/UDP Checksum has not been calculated */
3940         if (!(status & E1000_RXD_STAT_TCPCS))
3941                 return;
3942
3943         /* It must be a TCP or UDP packet with a valid checksum */
3944         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3945                 /* TCP checksum is good */
3946                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3947         }
3948         adapter->hw_csum_good++;
3949 }
3950
3951 /**
3952  * e1000_consume_page - helper function
3953  **/
3954 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3955                                u16 length)
3956 {
3957         bi->page = NULL;
3958         skb->len += length;
3959         skb->data_len += length;
3960         skb->truesize += PAGE_SIZE;
3961 }
3962
3963 /**
3964  * e1000_receive_skb - helper function to handle rx indications
3965  * @adapter: board private structure
3966  * @status: descriptor status field as written by hardware
3967  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3968  * @skb: pointer to sk_buff to be indicated to stack
3969  */
3970 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3971                               __le16 vlan, struct sk_buff *skb)
3972 {
3973         skb->protocol = eth_type_trans(skb, adapter->netdev);
3974
3975         if (status & E1000_RXD_STAT_VP) {
3976                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3977
3978                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3979         }
3980         napi_gro_receive(&adapter->napi, skb);
3981 }
3982
3983 /**
3984  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3985  * @adapter: board private structure
3986  * @rx_ring: ring to clean
3987  * @work_done: amount of napi work completed this call
3988  * @work_to_do: max amount of work allowed for this call to do
3989  *
3990  * the return value indicates whether actual cleaning was done, there
3991  * is no guarantee that everything was cleaned
3992  */
3993 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3994                                      struct e1000_rx_ring *rx_ring,
3995                                      int *work_done, int work_to_do)
3996 {
3997         struct e1000_hw *hw = &adapter->hw;
3998         struct net_device *netdev = adapter->netdev;
3999         struct pci_dev *pdev = adapter->pdev;
4000         struct e1000_rx_desc *rx_desc, *next_rxd;
4001         struct e1000_buffer *buffer_info, *next_buffer;
4002         unsigned long irq_flags;
4003         u32 length;
4004         unsigned int i;
4005         int cleaned_count = 0;
4006         bool cleaned = false;
4007         unsigned int total_rx_bytes=0, total_rx_packets=0;
4008
4009         i = rx_ring->next_to_clean;
4010         rx_desc = E1000_RX_DESC(*rx_ring, i);
4011         buffer_info = &rx_ring->buffer_info[i];
4012
4013         while (rx_desc->status & E1000_RXD_STAT_DD) {
4014                 struct sk_buff *skb;
4015                 u8 status;
4016
4017                 if (*work_done >= work_to_do)
4018                         break;
4019                 (*work_done)++;
4020                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4021
4022                 status = rx_desc->status;
4023                 skb = buffer_info->skb;
4024                 buffer_info->skb = NULL;
4025
4026                 if (++i == rx_ring->count) i = 0;
4027                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4028                 prefetch(next_rxd);
4029
4030                 next_buffer = &rx_ring->buffer_info[i];
4031
4032                 cleaned = true;
4033                 cleaned_count++;
4034                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4035                                buffer_info->length, DMA_FROM_DEVICE);
4036                 buffer_info->dma = 0;
4037
4038                 length = le16_to_cpu(rx_desc->length);
4039
4040                 /* errors is only valid for DD + EOP descriptors */
4041                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4042                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4043                         u8 *mapped;
4044                         u8 last_byte;
4045
4046                         mapped = page_address(buffer_info->page);
4047                         last_byte = *(mapped + length - 1);
4048                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4049                                        last_byte)) {
4050                                 spin_lock_irqsave(&adapter->stats_lock,
4051                                                   irq_flags);
4052                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4053                                                        length, mapped);
4054                                 spin_unlock_irqrestore(&adapter->stats_lock,
4055                                                        irq_flags);
4056                                 length--;
4057                         } else {
4058                                 if (netdev->features & NETIF_F_RXALL)
4059                                         goto process_skb;
4060                                 /* recycle both page and skb */
4061                                 buffer_info->skb = skb;
4062                                 /* an error means any chain goes out the window
4063                                  * too
4064                                  */
4065                                 if (rx_ring->rx_skb_top)
4066                                         dev_kfree_skb(rx_ring->rx_skb_top);
4067                                 rx_ring->rx_skb_top = NULL;
4068                                 goto next_desc;
4069                         }
4070                 }
4071
4072 #define rxtop rx_ring->rx_skb_top
4073 process_skb:
4074                 if (!(status & E1000_RXD_STAT_EOP)) {
4075                         /* this descriptor is only the beginning (or middle) */
4076                         if (!rxtop) {
4077                                 /* this is the beginning of a chain */
4078                                 rxtop = skb;
4079                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4080                                                    0, length);
4081                         } else {
4082                                 /* this is the middle of a chain */
4083                                 skb_fill_page_desc(rxtop,
4084                                     skb_shinfo(rxtop)->nr_frags,
4085                                     buffer_info->page, 0, length);
4086                                 /* re-use the skb, only consumed the page */
4087                                 buffer_info->skb = skb;
4088                         }
4089                         e1000_consume_page(buffer_info, rxtop, length);
4090                         goto next_desc;
4091                 } else {
4092                         if (rxtop) {
4093                                 /* end of the chain */
4094                                 skb_fill_page_desc(rxtop,
4095                                     skb_shinfo(rxtop)->nr_frags,
4096                                     buffer_info->page, 0, length);
4097                                 /* re-use the current skb, we only consumed the
4098                                  * page
4099                                  */
4100                                 buffer_info->skb = skb;
4101                                 skb = rxtop;
4102                                 rxtop = NULL;
4103                                 e1000_consume_page(buffer_info, skb, length);
4104                         } else {
4105                                 /* no chain, got EOP, this buf is the packet
4106                                  * copybreak to save the put_page/alloc_page
4107                                  */
4108                                 if (length <= copybreak &&
4109                                     skb_tailroom(skb) >= length) {
4110                                         u8 *vaddr;
4111                                         vaddr = kmap_atomic(buffer_info->page);
4112                                         memcpy(skb_tail_pointer(skb), vaddr,
4113                                                length);
4114                                         kunmap_atomic(vaddr);
4115                                         /* re-use the page, so don't erase
4116                                          * buffer_info->page
4117                                          */
4118                                         skb_put(skb, length);
4119                                 } else {
4120                                         skb_fill_page_desc(skb, 0,
4121                                                            buffer_info->page, 0,
4122                                                            length);
4123                                         e1000_consume_page(buffer_info, skb,
4124                                                            length);
4125                                 }
4126                         }
4127                 }
4128
4129                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4130                 e1000_rx_checksum(adapter,
4131                                   (u32)(status) |
4132                                   ((u32)(rx_desc->errors) << 24),
4133                                   le16_to_cpu(rx_desc->csum), skb);
4134
4135                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4136                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4137                         pskb_trim(skb, skb->len - 4);
4138                 total_rx_packets++;
4139
4140                 /* eth type trans needs skb->data to point to something */
4141                 if (!pskb_may_pull(skb, ETH_HLEN)) {
4142                         e_err(drv, "pskb_may_pull failed.\n");
4143                         dev_kfree_skb(skb);
4144                         goto next_desc;
4145                 }
4146
4147                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4148
4149 next_desc:
4150                 rx_desc->status = 0;
4151
4152                 /* return some buffers to hardware, one at a time is too slow */
4153                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4154                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4155                         cleaned_count = 0;
4156                 }
4157
4158                 /* use prefetched values */
4159                 rx_desc = next_rxd;
4160                 buffer_info = next_buffer;
4161         }
4162         rx_ring->next_to_clean = i;
4163
4164         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4165         if (cleaned_count)
4166                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4167
4168         adapter->total_rx_packets += total_rx_packets;
4169         adapter->total_rx_bytes += total_rx_bytes;
4170         netdev->stats.rx_bytes += total_rx_bytes;
4171         netdev->stats.rx_packets += total_rx_packets;
4172         return cleaned;
4173 }
4174
4175 /* this should improve performance for small packets with large amounts
4176  * of reassembly being done in the stack
4177  */
4178 static void e1000_check_copybreak(struct net_device *netdev,
4179                                  struct e1000_buffer *buffer_info,
4180                                  u32 length, struct sk_buff **skb)
4181 {
4182         struct sk_buff *new_skb;
4183
4184         if (length > copybreak)
4185                 return;
4186
4187         new_skb = netdev_alloc_skb_ip_align(netdev, length);
4188         if (!new_skb)
4189                 return;
4190
4191         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4192                                        (*skb)->data - NET_IP_ALIGN,
4193                                        length + NET_IP_ALIGN);
4194         /* save the skb in buffer_info as good */
4195         buffer_info->skb = *skb;
4196         *skb = new_skb;
4197 }
4198
4199 /**
4200  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4201  * @adapter: board private structure
4202  * @rx_ring: ring to clean
4203  * @work_done: amount of napi work completed this call
4204  * @work_to_do: max amount of work allowed for this call to do
4205  */
4206 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4207                                struct e1000_rx_ring *rx_ring,
4208                                int *work_done, int work_to_do)
4209 {
4210         struct e1000_hw *hw = &adapter->hw;
4211         struct net_device *netdev = adapter->netdev;
4212         struct pci_dev *pdev = adapter->pdev;
4213         struct e1000_rx_desc *rx_desc, *next_rxd;
4214         struct e1000_buffer *buffer_info, *next_buffer;
4215         unsigned long flags;
4216         u32 length;
4217         unsigned int i;
4218         int cleaned_count = 0;
4219         bool cleaned = false;
4220         unsigned int total_rx_bytes=0, total_rx_packets=0;
4221
4222         i = rx_ring->next_to_clean;
4223         rx_desc = E1000_RX_DESC(*rx_ring, i);
4224         buffer_info = &rx_ring->buffer_info[i];
4225
4226         while (rx_desc->status & E1000_RXD_STAT_DD) {
4227                 struct sk_buff *skb;
4228                 u8 status;
4229
4230                 if (*work_done >= work_to_do)
4231                         break;
4232                 (*work_done)++;
4233                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4234
4235                 status = rx_desc->status;
4236                 skb = buffer_info->skb;
4237                 buffer_info->skb = NULL;
4238
4239                 prefetch(skb->data - NET_IP_ALIGN);
4240
4241                 if (++i == rx_ring->count) i = 0;
4242                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4243                 prefetch(next_rxd);
4244
4245                 next_buffer = &rx_ring->buffer_info[i];
4246
4247                 cleaned = true;
4248                 cleaned_count++;
4249                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4250                                  buffer_info->length, DMA_FROM_DEVICE);
4251                 buffer_info->dma = 0;
4252
4253                 length = le16_to_cpu(rx_desc->length);
4254                 /* !EOP means multiple descriptors were used to store a single
4255                  * packet, if thats the case we need to toss it.  In fact, we
4256                  * to toss every packet with the EOP bit clear and the next
4257                  * frame that _does_ have the EOP bit set, as it is by
4258                  * definition only a frame fragment
4259                  */
4260                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4261                         adapter->discarding = true;
4262
4263                 if (adapter->discarding) {
4264                         /* All receives must fit into a single buffer */
4265                         e_dbg("Receive packet consumed multiple buffers\n");
4266                         /* recycle */
4267                         buffer_info->skb = skb;
4268                         if (status & E1000_RXD_STAT_EOP)
4269                                 adapter->discarding = false;
4270                         goto next_desc;
4271                 }
4272
4273                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4274                         u8 last_byte = *(skb->data + length - 1);
4275                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4276                                        last_byte)) {
4277                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4278                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4279                                                        length, skb->data);
4280                                 spin_unlock_irqrestore(&adapter->stats_lock,
4281                                                        flags);
4282                                 length--;
4283                         } else {
4284                                 if (netdev->features & NETIF_F_RXALL)
4285                                         goto process_skb;
4286                                 /* recycle */
4287                                 buffer_info->skb = skb;
4288                                 goto next_desc;
4289                         }
4290                 }
4291
4292 process_skb:
4293                 total_rx_bytes += (length - 4); /* don't count FCS */
4294                 total_rx_packets++;
4295
4296                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4297                         /* adjust length to remove Ethernet CRC, this must be
4298                          * done after the TBI_ACCEPT workaround above
4299                          */
4300                         length -= 4;
4301
4302                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4303
4304                 skb_put(skb, length);
4305
4306                 /* Receive Checksum Offload */
4307                 e1000_rx_checksum(adapter,
4308                                   (u32)(status) |
4309                                   ((u32)(rx_desc->errors) << 24),
4310                                   le16_to_cpu(rx_desc->csum), skb);
4311
4312                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4313
4314 next_desc:
4315                 rx_desc->status = 0;
4316
4317                 /* return some buffers to hardware, one at a time is too slow */
4318                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4319                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4320                         cleaned_count = 0;
4321                 }
4322
4323                 /* use prefetched values */
4324                 rx_desc = next_rxd;
4325                 buffer_info = next_buffer;
4326         }
4327         rx_ring->next_to_clean = i;
4328
4329         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4330         if (cleaned_count)
4331                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4332
4333         adapter->total_rx_packets += total_rx_packets;
4334         adapter->total_rx_bytes += total_rx_bytes;
4335         netdev->stats.rx_bytes += total_rx_bytes;
4336         netdev->stats.rx_packets += total_rx_packets;
4337         return cleaned;
4338 }
4339
4340 /**
4341  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4342  * @adapter: address of board private structure
4343  * @rx_ring: pointer to receive ring structure
4344  * @cleaned_count: number of buffers to allocate this pass
4345  **/
4346 static void
4347 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4348                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4349 {
4350         struct net_device *netdev = adapter->netdev;
4351         struct pci_dev *pdev = adapter->pdev;
4352         struct e1000_rx_desc *rx_desc;
4353         struct e1000_buffer *buffer_info;
4354         struct sk_buff *skb;
4355         unsigned int i;
4356         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4357
4358         i = rx_ring->next_to_use;
4359         buffer_info = &rx_ring->buffer_info[i];
4360
4361         while (cleaned_count--) {
4362                 skb = buffer_info->skb;
4363                 if (skb) {
4364                         skb_trim(skb, 0);
4365                         goto check_page;
4366                 }
4367
4368                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4369                 if (unlikely(!skb)) {
4370                         /* Better luck next round */
4371                         adapter->alloc_rx_buff_failed++;
4372                         break;
4373                 }
4374
4375                 buffer_info->skb = skb;
4376                 buffer_info->length = adapter->rx_buffer_len;
4377 check_page:
4378                 /* allocate a new page if necessary */
4379                 if (!buffer_info->page) {
4380                         buffer_info->page = alloc_page(GFP_ATOMIC);
4381                         if (unlikely(!buffer_info->page)) {
4382                                 adapter->alloc_rx_buff_failed++;
4383                                 break;
4384                         }
4385                 }
4386
4387                 if (!buffer_info->dma) {
4388                         buffer_info->dma = dma_map_page(&pdev->dev,
4389                                                         buffer_info->page, 0,
4390                                                         buffer_info->length,
4391                                                         DMA_FROM_DEVICE);
4392                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4393                                 put_page(buffer_info->page);
4394                                 dev_kfree_skb(skb);
4395                                 buffer_info->page = NULL;
4396                                 buffer_info->skb = NULL;
4397                                 buffer_info->dma = 0;
4398                                 adapter->alloc_rx_buff_failed++;
4399                                 break; /* while !buffer_info->skb */
4400                         }
4401                 }
4402
4403                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4404                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4405
4406                 if (unlikely(++i == rx_ring->count))
4407                         i = 0;
4408                 buffer_info = &rx_ring->buffer_info[i];
4409         }
4410
4411         if (likely(rx_ring->next_to_use != i)) {
4412                 rx_ring->next_to_use = i;
4413                 if (unlikely(i-- == 0))
4414                         i = (rx_ring->count - 1);
4415
4416                 /* Force memory writes to complete before letting h/w
4417                  * know there are new descriptors to fetch.  (Only
4418                  * applicable for weak-ordered memory model archs,
4419                  * such as IA-64).
4420                  */
4421                 wmb();
4422                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4423         }
4424 }
4425
4426 /**
4427  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4428  * @adapter: address of board private structure
4429  **/
4430 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4431                                    struct e1000_rx_ring *rx_ring,
4432                                    int cleaned_count)
4433 {
4434         struct e1000_hw *hw = &adapter->hw;
4435         struct net_device *netdev = adapter->netdev;
4436         struct pci_dev *pdev = adapter->pdev;
4437         struct e1000_rx_desc *rx_desc;
4438         struct e1000_buffer *buffer_info;
4439         struct sk_buff *skb;
4440         unsigned int i;
4441         unsigned int bufsz = adapter->rx_buffer_len;
4442
4443         i = rx_ring->next_to_use;
4444         buffer_info = &rx_ring->buffer_info[i];
4445
4446         while (cleaned_count--) {
4447                 skb = buffer_info->skb;
4448                 if (skb) {
4449                         skb_trim(skb, 0);
4450                         goto map_skb;
4451                 }
4452
4453                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4454                 if (unlikely(!skb)) {
4455                         /* Better luck next round */
4456                         adapter->alloc_rx_buff_failed++;
4457                         break;
4458                 }
4459
4460                 /* Fix for errata 23, can't cross 64kB boundary */
4461                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4462                         struct sk_buff *oldskb = skb;
4463                         e_err(rx_err, "skb align check failed: %u bytes at "
4464                               "%p\n", bufsz, skb->data);
4465                         /* Try again, without freeing the previous */
4466                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4467                         /* Failed allocation, critical failure */
4468                         if (!skb) {
4469                                 dev_kfree_skb(oldskb);
4470                                 adapter->alloc_rx_buff_failed++;
4471                                 break;
4472                         }
4473
4474                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4475                                 /* give up */
4476                                 dev_kfree_skb(skb);
4477                                 dev_kfree_skb(oldskb);
4478                                 adapter->alloc_rx_buff_failed++;
4479                                 break; /* while !buffer_info->skb */
4480                         }
4481
4482                         /* Use new allocation */
4483                         dev_kfree_skb(oldskb);
4484                 }
4485                 buffer_info->skb = skb;
4486                 buffer_info->length = adapter->rx_buffer_len;
4487 map_skb:
4488                 buffer_info->dma = dma_map_single(&pdev->dev,
4489                                                   skb->data,
4490                                                   buffer_info->length,
4491                                                   DMA_FROM_DEVICE);
4492                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4493                         dev_kfree_skb(skb);
4494                         buffer_info->skb = NULL;
4495                         buffer_info->dma = 0;
4496                         adapter->alloc_rx_buff_failed++;
4497                         break; /* while !buffer_info->skb */
4498                 }
4499
4500                 /* XXX if it was allocated cleanly it will never map to a
4501                  * boundary crossing
4502                  */
4503
4504                 /* Fix for errata 23, can't cross 64kB boundary */
4505                 if (!e1000_check_64k_bound(adapter,
4506                                         (void *)(unsigned long)buffer_info->dma,
4507                                         adapter->rx_buffer_len)) {
4508                         e_err(rx_err, "dma align check failed: %u bytes at "
4509                               "%p\n", adapter->rx_buffer_len,
4510                               (void *)(unsigned long)buffer_info->dma);
4511                         dev_kfree_skb(skb);
4512                         buffer_info->skb = NULL;
4513
4514                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4515                                          adapter->rx_buffer_len,
4516                                          DMA_FROM_DEVICE);
4517                         buffer_info->dma = 0;
4518
4519                         adapter->alloc_rx_buff_failed++;
4520                         break; /* while !buffer_info->skb */
4521                 }
4522                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4523                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4524
4525                 if (unlikely(++i == rx_ring->count))
4526                         i = 0;
4527                 buffer_info = &rx_ring->buffer_info[i];
4528         }
4529
4530         if (likely(rx_ring->next_to_use != i)) {
4531                 rx_ring->next_to_use = i;
4532                 if (unlikely(i-- == 0))
4533                         i = (rx_ring->count - 1);
4534
4535                 /* Force memory writes to complete before letting h/w
4536                  * know there are new descriptors to fetch.  (Only
4537                  * applicable for weak-ordered memory model archs,
4538                  * such as IA-64).
4539                  */
4540                 wmb();
4541                 writel(i, hw->hw_addr + rx_ring->rdt);
4542         }
4543 }
4544
4545 /**
4546  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4547  * @adapter:
4548  **/
4549 static void e1000_smartspeed(struct e1000_adapter *adapter)
4550 {
4551         struct e1000_hw *hw = &adapter->hw;
4552         u16 phy_status;
4553         u16 phy_ctrl;
4554
4555         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4556            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4557                 return;
4558
4559         if (adapter->smartspeed == 0) {
4560                 /* If Master/Slave config fault is asserted twice,
4561                  * we assume back-to-back
4562                  */
4563                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4564                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4565                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4566                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4567                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4568                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4569                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4570                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4571                                             phy_ctrl);
4572                         adapter->smartspeed++;
4573                         if (!e1000_phy_setup_autoneg(hw) &&
4574                            !e1000_read_phy_reg(hw, PHY_CTRL,
4575                                                &phy_ctrl)) {
4576                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4577                                              MII_CR_RESTART_AUTO_NEG);
4578                                 e1000_write_phy_reg(hw, PHY_CTRL,
4579                                                     phy_ctrl);
4580                         }
4581                 }
4582                 return;
4583         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4584                 /* If still no link, perhaps using 2/3 pair cable */
4585                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4586                 phy_ctrl |= CR_1000T_MS_ENABLE;
4587                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4588                 if (!e1000_phy_setup_autoneg(hw) &&
4589                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4590                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4591                                      MII_CR_RESTART_AUTO_NEG);
4592                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4593                 }
4594         }
4595         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4596         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4597                 adapter->smartspeed = 0;
4598 }
4599
4600 /**
4601  * e1000_ioctl -
4602  * @netdev:
4603  * @ifreq:
4604  * @cmd:
4605  **/
4606 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4607 {
4608         switch (cmd) {
4609         case SIOCGMIIPHY:
4610         case SIOCGMIIREG:
4611         case SIOCSMIIREG:
4612                 return e1000_mii_ioctl(netdev, ifr, cmd);
4613         default:
4614                 return -EOPNOTSUPP;
4615         }
4616 }
4617
4618 /**
4619  * e1000_mii_ioctl -
4620  * @netdev:
4621  * @ifreq:
4622  * @cmd:
4623  **/
4624 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4625                            int cmd)
4626 {
4627         struct e1000_adapter *adapter = netdev_priv(netdev);
4628         struct e1000_hw *hw = &adapter->hw;
4629         struct mii_ioctl_data *data = if_mii(ifr);
4630         int retval;
4631         u16 mii_reg;
4632         unsigned long flags;
4633
4634         if (hw->media_type != e1000_media_type_copper)
4635                 return -EOPNOTSUPP;
4636
4637         switch (cmd) {
4638         case SIOCGMIIPHY:
4639                 data->phy_id = hw->phy_addr;
4640                 break;
4641         case SIOCGMIIREG:
4642                 spin_lock_irqsave(&adapter->stats_lock, flags);
4643                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4644                                    &data->val_out)) {
4645                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4646                         return -EIO;
4647                 }
4648                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4649                 break;
4650         case SIOCSMIIREG:
4651                 if (data->reg_num & ~(0x1F))
4652                         return -EFAULT;
4653                 mii_reg = data->val_in;
4654                 spin_lock_irqsave(&adapter->stats_lock, flags);
4655                 if (e1000_write_phy_reg(hw, data->reg_num,
4656                                         mii_reg)) {
4657                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4658                         return -EIO;
4659                 }
4660                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4661                 if (hw->media_type == e1000_media_type_copper) {
4662                         switch (data->reg_num) {
4663                         case PHY_CTRL:
4664                                 if (mii_reg & MII_CR_POWER_DOWN)
4665                                         break;
4666                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4667                                         hw->autoneg = 1;
4668                                         hw->autoneg_advertised = 0x2F;
4669                                 } else {
4670                                         u32 speed;
4671                                         if (mii_reg & 0x40)
4672                                                 speed = SPEED_1000;
4673                                         else if (mii_reg & 0x2000)
4674                                                 speed = SPEED_100;
4675                                         else
4676                                                 speed = SPEED_10;
4677                                         retval = e1000_set_spd_dplx(
4678                                                 adapter, speed,
4679                                                 ((mii_reg & 0x100)
4680                                                  ? DUPLEX_FULL :
4681                                                  DUPLEX_HALF));
4682                                         if (retval)
4683                                                 return retval;
4684                                 }
4685                                 if (netif_running(adapter->netdev))
4686                                         e1000_reinit_locked(adapter);
4687                                 else
4688                                         e1000_reset(adapter);
4689                                 break;
4690                         case M88E1000_PHY_SPEC_CTRL:
4691                         case M88E1000_EXT_PHY_SPEC_CTRL:
4692                                 if (e1000_phy_reset(hw))
4693                                         return -EIO;
4694                                 break;
4695                         }
4696                 } else {
4697                         switch (data->reg_num) {
4698                         case PHY_CTRL:
4699                                 if (mii_reg & MII_CR_POWER_DOWN)
4700                                         break;
4701                                 if (netif_running(adapter->netdev))
4702                                         e1000_reinit_locked(adapter);
4703                                 else
4704                                         e1000_reset(adapter);
4705                                 break;
4706                         }
4707                 }
4708                 break;
4709         default:
4710                 return -EOPNOTSUPP;
4711         }
4712         return E1000_SUCCESS;
4713 }
4714
4715 void e1000_pci_set_mwi(struct e1000_hw *hw)
4716 {
4717         struct e1000_adapter *adapter = hw->back;
4718         int ret_val = pci_set_mwi(adapter->pdev);
4719
4720         if (ret_val)
4721                 e_err(probe, "Error in setting MWI\n");
4722 }
4723
4724 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4725 {
4726         struct e1000_adapter *adapter = hw->back;
4727
4728         pci_clear_mwi(adapter->pdev);
4729 }
4730
4731 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4732 {
4733         struct e1000_adapter *adapter = hw->back;
4734         return pcix_get_mmrbc(adapter->pdev);
4735 }
4736
4737 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4738 {
4739         struct e1000_adapter *adapter = hw->back;
4740         pcix_set_mmrbc(adapter->pdev, mmrbc);
4741 }
4742
4743 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4744 {
4745         outl(value, port);
4746 }
4747
4748 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4749 {
4750         u16 vid;
4751
4752         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4753                 return true;
4754         return false;
4755 }
4756
4757 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4758                               netdev_features_t features)
4759 {
4760         struct e1000_hw *hw = &adapter->hw;
4761         u32 ctrl;
4762
4763         ctrl = er32(CTRL);
4764         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4765                 /* enable VLAN tag insert/strip */
4766                 ctrl |= E1000_CTRL_VME;
4767         } else {
4768                 /* disable VLAN tag insert/strip */
4769                 ctrl &= ~E1000_CTRL_VME;
4770         }
4771         ew32(CTRL, ctrl);
4772 }
4773 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4774                                      bool filter_on)
4775 {
4776         struct e1000_hw *hw = &adapter->hw;
4777         u32 rctl;
4778
4779         if (!test_bit(__E1000_DOWN, &adapter->flags))
4780                 e1000_irq_disable(adapter);
4781
4782         __e1000_vlan_mode(adapter, adapter->netdev->features);
4783         if (filter_on) {
4784                 /* enable VLAN receive filtering */
4785                 rctl = er32(RCTL);
4786                 rctl &= ~E1000_RCTL_CFIEN;
4787                 if (!(adapter->netdev->flags & IFF_PROMISC))
4788                         rctl |= E1000_RCTL_VFE;
4789                 ew32(RCTL, rctl);
4790                 e1000_update_mng_vlan(adapter);
4791         } else {
4792                 /* disable VLAN receive filtering */
4793                 rctl = er32(RCTL);
4794                 rctl &= ~E1000_RCTL_VFE;
4795                 ew32(RCTL, rctl);
4796         }
4797
4798         if (!test_bit(__E1000_DOWN, &adapter->flags))
4799                 e1000_irq_enable(adapter);
4800 }
4801
4802 static void e1000_vlan_mode(struct net_device *netdev,
4803                             netdev_features_t features)
4804 {
4805         struct e1000_adapter *adapter = netdev_priv(netdev);
4806
4807         if (!test_bit(__E1000_DOWN, &adapter->flags))
4808                 e1000_irq_disable(adapter);
4809
4810         __e1000_vlan_mode(adapter, features);
4811
4812         if (!test_bit(__E1000_DOWN, &adapter->flags))
4813                 e1000_irq_enable(adapter);
4814 }
4815
4816 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4817                                  __be16 proto, u16 vid)
4818 {
4819         struct e1000_adapter *adapter = netdev_priv(netdev);
4820         struct e1000_hw *hw = &adapter->hw;
4821         u32 vfta, index;
4822
4823         if ((hw->mng_cookie.status &
4824              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4825             (vid == adapter->mng_vlan_id))
4826                 return 0;
4827
4828         if (!e1000_vlan_used(adapter))
4829                 e1000_vlan_filter_on_off(adapter, true);
4830
4831         /* add VID to filter table */
4832         index = (vid >> 5) & 0x7F;
4833         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4834         vfta |= (1 << (vid & 0x1F));
4835         e1000_write_vfta(hw, index, vfta);
4836
4837         set_bit(vid, adapter->active_vlans);
4838
4839         return 0;
4840 }
4841
4842 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4843                                   __be16 proto, u16 vid)
4844 {
4845         struct e1000_adapter *adapter = netdev_priv(netdev);
4846         struct e1000_hw *hw = &adapter->hw;
4847         u32 vfta, index;
4848
4849         if (!test_bit(__E1000_DOWN, &adapter->flags))
4850                 e1000_irq_disable(adapter);
4851         if (!test_bit(__E1000_DOWN, &adapter->flags))
4852                 e1000_irq_enable(adapter);
4853
4854         /* remove VID from filter table */
4855         index = (vid >> 5) & 0x7F;
4856         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4857         vfta &= ~(1 << (vid & 0x1F));
4858         e1000_write_vfta(hw, index, vfta);
4859
4860         clear_bit(vid, adapter->active_vlans);
4861
4862         if (!e1000_vlan_used(adapter))
4863                 e1000_vlan_filter_on_off(adapter, false);
4864
4865         return 0;
4866 }
4867
4868 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4869 {
4870         u16 vid;
4871
4872         if (!e1000_vlan_used(adapter))
4873                 return;
4874
4875         e1000_vlan_filter_on_off(adapter, true);
4876         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4877                 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4878 }
4879
4880 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4881 {
4882         struct e1000_hw *hw = &adapter->hw;
4883
4884         hw->autoneg = 0;
4885
4886         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4887          * for the switch() below to work
4888          */
4889         if ((spd & 1) || (dplx & ~1))
4890                 goto err_inval;
4891
4892         /* Fiber NICs only allow 1000 gbps Full duplex */
4893         if ((hw->media_type == e1000_media_type_fiber) &&
4894             spd != SPEED_1000 &&
4895             dplx != DUPLEX_FULL)
4896                 goto err_inval;
4897
4898         switch (spd + dplx) {
4899         case SPEED_10 + DUPLEX_HALF:
4900                 hw->forced_speed_duplex = e1000_10_half;
4901                 break;
4902         case SPEED_10 + DUPLEX_FULL:
4903                 hw->forced_speed_duplex = e1000_10_full;
4904                 break;
4905         case SPEED_100 + DUPLEX_HALF:
4906                 hw->forced_speed_duplex = e1000_100_half;
4907                 break;
4908         case SPEED_100 + DUPLEX_FULL:
4909                 hw->forced_speed_duplex = e1000_100_full;
4910                 break;
4911         case SPEED_1000 + DUPLEX_FULL:
4912                 hw->autoneg = 1;
4913                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4914                 break;
4915         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4916         default:
4917                 goto err_inval;
4918         }
4919
4920         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4921         hw->mdix = AUTO_ALL_MODES;
4922
4923         return 0;
4924
4925 err_inval:
4926         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4927         return -EINVAL;
4928 }
4929
4930 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4931 {
4932         struct net_device *netdev = pci_get_drvdata(pdev);
4933         struct e1000_adapter *adapter = netdev_priv(netdev);
4934         struct e1000_hw *hw = &adapter->hw;
4935         u32 ctrl, ctrl_ext, rctl, status;
4936         u32 wufc = adapter->wol;
4937 #ifdef CONFIG_PM
4938         int retval = 0;
4939 #endif
4940
4941         netif_device_detach(netdev);
4942
4943         if (netif_running(netdev)) {
4944                 int count = E1000_CHECK_RESET_COUNT;
4945
4946                 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4947                         usleep_range(10000, 20000);
4948
4949                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4950                 e1000_down(adapter);
4951         }
4952
4953 #ifdef CONFIG_PM
4954         retval = pci_save_state(pdev);
4955         if (retval)
4956                 return retval;
4957 #endif
4958
4959         status = er32(STATUS);
4960         if (status & E1000_STATUS_LU)
4961                 wufc &= ~E1000_WUFC_LNKC;
4962
4963         if (wufc) {
4964                 e1000_setup_rctl(adapter);
4965                 e1000_set_rx_mode(netdev);
4966
4967                 rctl = er32(RCTL);
4968
4969                 /* turn on all-multi mode if wake on multicast is enabled */
4970                 if (wufc & E1000_WUFC_MC)
4971                         rctl |= E1000_RCTL_MPE;
4972
4973                 /* enable receives in the hardware */
4974                 ew32(RCTL, rctl | E1000_RCTL_EN);
4975
4976                 if (hw->mac_type >= e1000_82540) {
4977                         ctrl = er32(CTRL);
4978                         /* advertise wake from D3Cold */
4979                         #define E1000_CTRL_ADVD3WUC 0x00100000
4980                         /* phy power management enable */
4981                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4982                         ctrl |= E1000_CTRL_ADVD3WUC |
4983                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4984                         ew32(CTRL, ctrl);
4985                 }
4986
4987                 if (hw->media_type == e1000_media_type_fiber ||
4988                     hw->media_type == e1000_media_type_internal_serdes) {
4989                         /* keep the laser running in D3 */
4990                         ctrl_ext = er32(CTRL_EXT);
4991                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4992                         ew32(CTRL_EXT, ctrl_ext);
4993                 }
4994
4995                 ew32(WUC, E1000_WUC_PME_EN);
4996                 ew32(WUFC, wufc);
4997         } else {
4998                 ew32(WUC, 0);
4999                 ew32(WUFC, 0);
5000         }
5001
5002         e1000_release_manageability(adapter);
5003
5004         *enable_wake = !!wufc;
5005
5006         /* make sure adapter isn't asleep if manageability is enabled */
5007         if (adapter->en_mng_pt)
5008                 *enable_wake = true;
5009
5010         if (netif_running(netdev))
5011                 e1000_free_irq(adapter);
5012
5013         pci_disable_device(pdev);
5014
5015         return 0;
5016 }
5017
5018 #ifdef CONFIG_PM
5019 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5020 {
5021         int retval;
5022         bool wake;
5023
5024         retval = __e1000_shutdown(pdev, &wake);
5025         if (retval)
5026                 return retval;
5027
5028         if (wake) {
5029                 pci_prepare_to_sleep(pdev);
5030         } else {
5031                 pci_wake_from_d3(pdev, false);
5032                 pci_set_power_state(pdev, PCI_D3hot);
5033         }
5034
5035         return 0;
5036 }
5037
5038 static int e1000_resume(struct pci_dev *pdev)
5039 {
5040         struct net_device *netdev = pci_get_drvdata(pdev);
5041         struct e1000_adapter *adapter = netdev_priv(netdev);
5042         struct e1000_hw *hw = &adapter->hw;
5043         u32 err;
5044
5045         pci_set_power_state(pdev, PCI_D0);
5046         pci_restore_state(pdev);
5047         pci_save_state(pdev);
5048
5049         if (adapter->need_ioport)
5050                 err = pci_enable_device(pdev);
5051         else
5052                 err = pci_enable_device_mem(pdev);
5053         if (err) {
5054                 pr_err("Cannot enable PCI device from suspend\n");
5055                 return err;
5056         }
5057         pci_set_master(pdev);
5058
5059         pci_enable_wake(pdev, PCI_D3hot, 0);
5060         pci_enable_wake(pdev, PCI_D3cold, 0);
5061
5062         if (netif_running(netdev)) {
5063                 err = e1000_request_irq(adapter);
5064                 if (err)
5065                         return err;
5066         }
5067
5068         e1000_power_up_phy(adapter);
5069         e1000_reset(adapter);
5070         ew32(WUS, ~0);
5071
5072         e1000_init_manageability(adapter);
5073
5074         if (netif_running(netdev))
5075                 e1000_up(adapter);
5076
5077         netif_device_attach(netdev);
5078
5079         return 0;
5080 }
5081 #endif
5082
5083 static void e1000_shutdown(struct pci_dev *pdev)
5084 {
5085         bool wake;
5086
5087         __e1000_shutdown(pdev, &wake);
5088
5089         if (system_state == SYSTEM_POWER_OFF) {
5090                 pci_wake_from_d3(pdev, wake);
5091                 pci_set_power_state(pdev, PCI_D3hot);
5092         }
5093 }
5094
5095 #ifdef CONFIG_NET_POLL_CONTROLLER
5096 /* Polling 'interrupt' - used by things like netconsole to send skbs
5097  * without having to re-enable interrupts. It's not called while
5098  * the interrupt routine is executing.
5099  */
5100 static void e1000_netpoll(struct net_device *netdev)
5101 {
5102         struct e1000_adapter *adapter = netdev_priv(netdev);
5103
5104         disable_irq(adapter->pdev->irq);
5105         e1000_intr(adapter->pdev->irq, netdev);
5106         enable_irq(adapter->pdev->irq);
5107 }
5108 #endif
5109
5110 /**
5111  * e1000_io_error_detected - called when PCI error is detected
5112  * @pdev: Pointer to PCI device
5113  * @state: The current pci connection state
5114  *
5115  * This function is called after a PCI bus error affecting
5116  * this device has been detected.
5117  */
5118 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5119                                                 pci_channel_state_t state)
5120 {
5121         struct net_device *netdev = pci_get_drvdata(pdev);
5122         struct e1000_adapter *adapter = netdev_priv(netdev);
5123
5124         netif_device_detach(netdev);
5125
5126         if (state == pci_channel_io_perm_failure)
5127                 return PCI_ERS_RESULT_DISCONNECT;
5128
5129         if (netif_running(netdev))
5130                 e1000_down(adapter);
5131         pci_disable_device(pdev);
5132
5133         /* Request a slot slot reset. */
5134         return PCI_ERS_RESULT_NEED_RESET;
5135 }
5136
5137 /**
5138  * e1000_io_slot_reset - called after the pci bus has been reset.
5139  * @pdev: Pointer to PCI device
5140  *
5141  * Restart the card from scratch, as if from a cold-boot. Implementation
5142  * resembles the first-half of the e1000_resume routine.
5143  */
5144 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5145 {
5146         struct net_device *netdev = pci_get_drvdata(pdev);
5147         struct e1000_adapter *adapter = netdev_priv(netdev);
5148         struct e1000_hw *hw = &adapter->hw;
5149         int err;
5150
5151         if (adapter->need_ioport)
5152                 err = pci_enable_device(pdev);
5153         else
5154                 err = pci_enable_device_mem(pdev);
5155         if (err) {
5156                 pr_err("Cannot re-enable PCI device after reset.\n");
5157                 return PCI_ERS_RESULT_DISCONNECT;
5158         }
5159         pci_set_master(pdev);
5160
5161         pci_enable_wake(pdev, PCI_D3hot, 0);
5162         pci_enable_wake(pdev, PCI_D3cold, 0);
5163
5164         e1000_reset(adapter);
5165         ew32(WUS, ~0);
5166
5167         return PCI_ERS_RESULT_RECOVERED;
5168 }
5169
5170 /**
5171  * e1000_io_resume - called when traffic can start flowing again.
5172  * @pdev: Pointer to PCI device
5173  *
5174  * This callback is called when the error recovery driver tells us that
5175  * its OK to resume normal operation. Implementation resembles the
5176  * second-half of the e1000_resume routine.
5177  */
5178 static void e1000_io_resume(struct pci_dev *pdev)
5179 {
5180         struct net_device *netdev = pci_get_drvdata(pdev);
5181         struct e1000_adapter *adapter = netdev_priv(netdev);
5182
5183         e1000_init_manageability(adapter);
5184
5185         if (netif_running(netdev)) {
5186                 if (e1000_up(adapter)) {
5187                         pr_info("can't bring device back up after reset\n");
5188                         return;
5189                 }
5190         }
5191
5192         netif_device_attach(netdev);
5193 }
5194
5195 /* e1000_main.c */