Merge tag 'firewire-updates' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
30  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
31  */
32
33 #include "e1000.h"
34
35 /* A table for the GG82563 cable length where the range is defined
36  * with a lower bound at "index" and the upper bound at
37  * "index + 5".
38  */
39 static const u16 e1000_gg82563_cable_length_table[] = {
40         0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
41 };
42
43 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
44                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
45
46 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
47 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
48 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
49 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
50 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
51 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
52 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
53 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
54                                            u16 *data);
55 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
56                                             u16 data);
57 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
58
59 /**
60  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
61  *  @hw: pointer to the HW structure
62  **/
63 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
64 {
65         struct e1000_phy_info *phy = &hw->phy;
66         s32 ret_val;
67
68         if (hw->phy.media_type != e1000_media_type_copper) {
69                 phy->type = e1000_phy_none;
70                 return 0;
71         } else {
72                 phy->ops.power_up = e1000_power_up_phy_copper;
73                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
74         }
75
76         phy->addr = 1;
77         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
78         phy->reset_delay_us = 100;
79         phy->type = e1000_phy_gg82563;
80
81         /* This can only be done after all function pointers are setup. */
82         ret_val = e1000e_get_phy_id(hw);
83
84         /* Verify phy id */
85         if (phy->id != GG82563_E_PHY_ID)
86                 return -E1000_ERR_PHY;
87
88         return ret_val;
89 }
90
91 /**
92  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
93  *  @hw: pointer to the HW structure
94  **/
95 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
96 {
97         struct e1000_nvm_info *nvm = &hw->nvm;
98         u32 eecd = er32(EECD);
99         u16 size;
100
101         nvm->opcode_bits = 8;
102         nvm->delay_usec = 1;
103         switch (nvm->override) {
104         case e1000_nvm_override_spi_large:
105                 nvm->page_size = 32;
106                 nvm->address_bits = 16;
107                 break;
108         case e1000_nvm_override_spi_small:
109                 nvm->page_size = 8;
110                 nvm->address_bits = 8;
111                 break;
112         default:
113                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
114                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
115                 break;
116         }
117
118         nvm->type = e1000_nvm_eeprom_spi;
119
120         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
121                      E1000_EECD_SIZE_EX_SHIFT);
122
123         /* Added to a constant, "size" becomes the left-shift value
124          * for setting word_size.
125          */
126         size += NVM_WORD_SIZE_BASE_SHIFT;
127
128         /* EEPROM access above 16k is unsupported */
129         if (size > 14)
130                 size = 14;
131         nvm->word_size = 1 << size;
132
133         return 0;
134 }
135
136 /**
137  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
138  *  @hw: pointer to the HW structure
139  **/
140 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
141 {
142         struct e1000_mac_info *mac = &hw->mac;
143
144         /* Set media type and media-dependent function pointers */
145         switch (hw->adapter->pdev->device) {
146         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
147                 hw->phy.media_type = e1000_media_type_internal_serdes;
148                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
149                 mac->ops.setup_physical_interface =
150                     e1000e_setup_fiber_serdes_link;
151                 break;
152         default:
153                 hw->phy.media_type = e1000_media_type_copper;
154                 mac->ops.check_for_link = e1000e_check_for_copper_link;
155                 mac->ops.setup_physical_interface =
156                     e1000_setup_copper_link_80003es2lan;
157                 break;
158         }
159
160         /* Set mta register count */
161         mac->mta_reg_count = 128;
162         /* Set rar entry count */
163         mac->rar_entry_count = E1000_RAR_ENTRIES;
164         /* FWSM register */
165         mac->has_fwsm = true;
166         /* ARC supported; valid only if manageability features are enabled. */
167         mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
168         /* Adaptive IFS not supported */
169         mac->adaptive_ifs = false;
170
171         /* set lan id for port to determine which phy lock to use */
172         hw->mac.ops.set_lan_id(hw);
173
174         return 0;
175 }
176
177 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
178 {
179         struct e1000_hw *hw = &adapter->hw;
180         s32 rc;
181
182         rc = e1000_init_mac_params_80003es2lan(hw);
183         if (rc)
184                 return rc;
185
186         rc = e1000_init_nvm_params_80003es2lan(hw);
187         if (rc)
188                 return rc;
189
190         rc = e1000_init_phy_params_80003es2lan(hw);
191         if (rc)
192                 return rc;
193
194         return 0;
195 }
196
197 /**
198  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
199  *  @hw: pointer to the HW structure
200  *
201  *  A wrapper to acquire access rights to the correct PHY.
202  **/
203 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
204 {
205         u16 mask;
206
207         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
208         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
209 }
210
211 /**
212  *  e1000_release_phy_80003es2lan - Release rights to access PHY
213  *  @hw: pointer to the HW structure
214  *
215  *  A wrapper to release access rights to the correct PHY.
216  **/
217 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
218 {
219         u16 mask;
220
221         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
222         e1000_release_swfw_sync_80003es2lan(hw, mask);
223 }
224
225 /**
226  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
227  *  @hw: pointer to the HW structure
228  *
229  *  Acquire the semaphore to access the Kumeran interface.
230  *
231  **/
232 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
233 {
234         u16 mask;
235
236         mask = E1000_SWFW_CSR_SM;
237
238         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
239 }
240
241 /**
242  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
243  *  @hw: pointer to the HW structure
244  *
245  *  Release the semaphore used to access the Kumeran interface
246  **/
247 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
248 {
249         u16 mask;
250
251         mask = E1000_SWFW_CSR_SM;
252
253         e1000_release_swfw_sync_80003es2lan(hw, mask);
254 }
255
256 /**
257  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
258  *  @hw: pointer to the HW structure
259  *
260  *  Acquire the semaphore to access the EEPROM.
261  **/
262 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
263 {
264         s32 ret_val;
265
266         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
267         if (ret_val)
268                 return ret_val;
269
270         ret_val = e1000e_acquire_nvm(hw);
271
272         if (ret_val)
273                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
274
275         return ret_val;
276 }
277
278 /**
279  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
280  *  @hw: pointer to the HW structure
281  *
282  *  Release the semaphore used to access the EEPROM.
283  **/
284 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
285 {
286         e1000e_release_nvm(hw);
287         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
288 }
289
290 /**
291  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
292  *  @hw: pointer to the HW structure
293  *  @mask: specifies which semaphore to acquire
294  *
295  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
296  *  will also specify which port we're acquiring the lock for.
297  **/
298 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
299 {
300         u32 swfw_sync;
301         u32 swmask = mask;
302         u32 fwmask = mask << 16;
303         s32 i = 0;
304         s32 timeout = 50;
305
306         while (i < timeout) {
307                 if (e1000e_get_hw_semaphore(hw))
308                         return -E1000_ERR_SWFW_SYNC;
309
310                 swfw_sync = er32(SW_FW_SYNC);
311                 if (!(swfw_sync & (fwmask | swmask)))
312                         break;
313
314                 /* Firmware currently using resource (fwmask)
315                  * or other software thread using resource (swmask)
316                  */
317                 e1000e_put_hw_semaphore(hw);
318                 mdelay(5);
319                 i++;
320         }
321
322         if (i == timeout) {
323                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
324                 return -E1000_ERR_SWFW_SYNC;
325         }
326
327         swfw_sync |= swmask;
328         ew32(SW_FW_SYNC, swfw_sync);
329
330         e1000e_put_hw_semaphore(hw);
331
332         return 0;
333 }
334
335 /**
336  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
337  *  @hw: pointer to the HW structure
338  *  @mask: specifies which semaphore to acquire
339  *
340  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
341  *  will also specify which port we're releasing the lock for.
342  **/
343 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
344 {
345         u32 swfw_sync;
346
347         while (e1000e_get_hw_semaphore(hw) != 0)
348                 ; /* Empty */
349
350         swfw_sync = er32(SW_FW_SYNC);
351         swfw_sync &= ~mask;
352         ew32(SW_FW_SYNC, swfw_sync);
353
354         e1000e_put_hw_semaphore(hw);
355 }
356
357 /**
358  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
359  *  @hw: pointer to the HW structure
360  *  @offset: offset of the register to read
361  *  @data: pointer to the data returned from the operation
362  *
363  *  Read the GG82563 PHY register.
364  **/
365 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
366                                                   u32 offset, u16 *data)
367 {
368         s32 ret_val;
369         u32 page_select;
370         u16 temp;
371
372         ret_val = e1000_acquire_phy_80003es2lan(hw);
373         if (ret_val)
374                 return ret_val;
375
376         /* Select Configuration Page */
377         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
378                 page_select = GG82563_PHY_PAGE_SELECT;
379         } else {
380                 /* Use Alternative Page Select register to access
381                  * registers 30 and 31
382                  */
383                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
384         }
385
386         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
387         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
388         if (ret_val) {
389                 e1000_release_phy_80003es2lan(hw);
390                 return ret_val;
391         }
392
393         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
394                 /* The "ready" bit in the MDIC register may be incorrectly set
395                  * before the device has completed the "Page Select" MDI
396                  * transaction.  So we wait 200us after each MDI command...
397                  */
398                 usleep_range(200, 400);
399
400                 /* ...and verify the command was successful. */
401                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
402
403                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
404                         e1000_release_phy_80003es2lan(hw);
405                         return -E1000_ERR_PHY;
406                 }
407
408                 usleep_range(200, 400);
409
410                 ret_val = e1000e_read_phy_reg_mdic(hw,
411                                                    MAX_PHY_REG_ADDRESS & offset,
412                                                    data);
413
414                 usleep_range(200, 400);
415         } else {
416                 ret_val = e1000e_read_phy_reg_mdic(hw,
417                                                    MAX_PHY_REG_ADDRESS & offset,
418                                                    data);
419         }
420
421         e1000_release_phy_80003es2lan(hw);
422
423         return ret_val;
424 }
425
426 /**
427  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
428  *  @hw: pointer to the HW structure
429  *  @offset: offset of the register to read
430  *  @data: value to write to the register
431  *
432  *  Write to the GG82563 PHY register.
433  **/
434 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
435                                                    u32 offset, u16 data)
436 {
437         s32 ret_val;
438         u32 page_select;
439         u16 temp;
440
441         ret_val = e1000_acquire_phy_80003es2lan(hw);
442         if (ret_val)
443                 return ret_val;
444
445         /* Select Configuration Page */
446         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
447                 page_select = GG82563_PHY_PAGE_SELECT;
448         } else {
449                 /* Use Alternative Page Select register to access
450                  * registers 30 and 31
451                  */
452                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
453         }
454
455         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
456         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
457         if (ret_val) {
458                 e1000_release_phy_80003es2lan(hw);
459                 return ret_val;
460         }
461
462         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
463                 /* The "ready" bit in the MDIC register may be incorrectly set
464                  * before the device has completed the "Page Select" MDI
465                  * transaction.  So we wait 200us after each MDI command...
466                  */
467                 usleep_range(200, 400);
468
469                 /* ...and verify the command was successful. */
470                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
471
472                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
473                         e1000_release_phy_80003es2lan(hw);
474                         return -E1000_ERR_PHY;
475                 }
476
477                 usleep_range(200, 400);
478
479                 ret_val = e1000e_write_phy_reg_mdic(hw,
480                                                     MAX_PHY_REG_ADDRESS &
481                                                     offset, data);
482
483                 usleep_range(200, 400);
484         } else {
485                 ret_val = e1000e_write_phy_reg_mdic(hw,
486                                                     MAX_PHY_REG_ADDRESS &
487                                                     offset, data);
488         }
489
490         e1000_release_phy_80003es2lan(hw);
491
492         return ret_val;
493 }
494
495 /**
496  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
497  *  @hw: pointer to the HW structure
498  *  @offset: offset of the register to read
499  *  @words: number of words to write
500  *  @data: buffer of data to write to the NVM
501  *
502  *  Write "words" of data to the ESB2 NVM.
503  **/
504 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
505                                        u16 words, u16 *data)
506 {
507         return e1000e_write_nvm_spi(hw, offset, words, data);
508 }
509
510 /**
511  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
512  *  @hw: pointer to the HW structure
513  *
514  *  Wait a specific amount of time for manageability processes to complete.
515  *  This is a function pointer entry point called by the phy module.
516  **/
517 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
518 {
519         s32 timeout = PHY_CFG_TIMEOUT;
520         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
521
522         if (hw->bus.func == 1)
523                 mask = E1000_NVM_CFG_DONE_PORT_1;
524
525         while (timeout) {
526                 if (er32(EEMNGCTL) & mask)
527                         break;
528                 usleep_range(1000, 2000);
529                 timeout--;
530         }
531         if (!timeout) {
532                 e_dbg("MNG configuration cycle has not completed.\n");
533                 return -E1000_ERR_RESET;
534         }
535
536         return 0;
537 }
538
539 /**
540  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
541  *  @hw: pointer to the HW structure
542  *
543  *  Force the speed and duplex settings onto the PHY.  This is a
544  *  function pointer entry point called by the phy module.
545  **/
546 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
547 {
548         s32 ret_val;
549         u16 phy_data;
550         bool link;
551
552         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
553          * forced whenever speed and duplex are forced.
554          */
555         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
556         if (ret_val)
557                 return ret_val;
558
559         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
560         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
561         if (ret_val)
562                 return ret_val;
563
564         e_dbg("GG82563 PSCR: %X\n", phy_data);
565
566         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
567         if (ret_val)
568                 return ret_val;
569
570         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
571
572         /* Reset the phy to commit changes. */
573         phy_data |= BMCR_RESET;
574
575         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
576         if (ret_val)
577                 return ret_val;
578
579         udelay(1);
580
581         if (hw->phy.autoneg_wait_to_complete) {
582                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
583
584                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
585                                                       100000, &link);
586                 if (ret_val)
587                         return ret_val;
588
589                 if (!link) {
590                         /* We didn't get link.
591                          * Reset the DSP and cross our fingers.
592                          */
593                         ret_val = e1000e_phy_reset_dsp(hw);
594                         if (ret_val)
595                                 return ret_val;
596                 }
597
598                 /* Try once more */
599                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
600                                                       100000, &link);
601                 if (ret_val)
602                         return ret_val;
603         }
604
605         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
606         if (ret_val)
607                 return ret_val;
608
609         /* Resetting the phy means we need to verify the TX_CLK corresponds
610          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
611          */
612         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
613         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
614                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
615         else
616                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
617
618         /* In addition, we must re-enable CRS on Tx for both half and full
619          * duplex.
620          */
621         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
622         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
623
624         return ret_val;
625 }
626
627 /**
628  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
629  *  @hw: pointer to the HW structure
630  *
631  *  Find the approximate cable length as measured by the GG82563 PHY.
632  *  This is a function pointer entry point called by the phy module.
633  **/
634 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
635 {
636         struct e1000_phy_info *phy = &hw->phy;
637         s32 ret_val;
638         u16 phy_data, index;
639
640         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
641         if (ret_val)
642                 return ret_val;
643
644         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
645
646         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
647                 return -E1000_ERR_PHY;
648
649         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
650         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
651
652         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
653
654         return 0;
655 }
656
657 /**
658  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
659  *  @hw: pointer to the HW structure
660  *  @speed: pointer to speed buffer
661  *  @duplex: pointer to duplex buffer
662  *
663  *  Retrieve the current speed and duplex configuration.
664  **/
665 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
666                                               u16 *duplex)
667 {
668         s32 ret_val;
669
670         if (hw->phy.media_type == e1000_media_type_copper) {
671                 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
672                 hw->phy.ops.cfg_on_link_up(hw);
673         } else {
674                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
675                                                                    speed,
676                                                                    duplex);
677         }
678
679         return ret_val;
680 }
681
682 /**
683  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
684  *  @hw: pointer to the HW structure
685  *
686  *  Perform a global reset to the ESB2 controller.
687  **/
688 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
689 {
690         u32 ctrl;
691         s32 ret_val;
692         u16 kum_reg_data;
693
694         /* Prevent the PCI-E bus from sticking if there is no TLP connection
695          * on the last TLP read/write transaction when MAC is reset.
696          */
697         ret_val = e1000e_disable_pcie_master(hw);
698         if (ret_val)
699                 e_dbg("PCI-E Master disable polling has failed.\n");
700
701         e_dbg("Masking off all interrupts\n");
702         ew32(IMC, 0xffffffff);
703
704         ew32(RCTL, 0);
705         ew32(TCTL, E1000_TCTL_PSP);
706         e1e_flush();
707
708         usleep_range(10000, 20000);
709
710         ctrl = er32(CTRL);
711
712         ret_val = e1000_acquire_phy_80003es2lan(hw);
713         if (ret_val)
714                 return ret_val;
715
716         e_dbg("Issuing a global reset to MAC\n");
717         ew32(CTRL, ctrl | E1000_CTRL_RST);
718         e1000_release_phy_80003es2lan(hw);
719
720         /* Disable IBIST slave mode (far-end loopback) */
721         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
722                                         &kum_reg_data);
723         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
724         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
725                                          kum_reg_data);
726
727         ret_val = e1000e_get_auto_rd_done(hw);
728         if (ret_val)
729                 /* We don't want to continue accessing MAC registers. */
730                 return ret_val;
731
732         /* Clear any pending interrupt events. */
733         ew32(IMC, 0xffffffff);
734         er32(ICR);
735
736         return e1000_check_alt_mac_addr_generic(hw);
737 }
738
739 /**
740  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
741  *  @hw: pointer to the HW structure
742  *
743  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
744  **/
745 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
746 {
747         struct e1000_mac_info *mac = &hw->mac;
748         u32 reg_data;
749         s32 ret_val;
750         u16 kum_reg_data;
751         u16 i;
752
753         e1000_initialize_hw_bits_80003es2lan(hw);
754
755         /* Initialize identification LED */
756         ret_val = mac->ops.id_led_init(hw);
757         /* An error is not fatal and we should not stop init due to this */
758         if (ret_val)
759                 e_dbg("Error initializing identification LED\n");
760
761         /* Disabling VLAN filtering */
762         e_dbg("Initializing the IEEE VLAN\n");
763         mac->ops.clear_vfta(hw);
764
765         /* Setup the receive address. */
766         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
767
768         /* Zero out the Multicast HASH table */
769         e_dbg("Zeroing the MTA\n");
770         for (i = 0; i < mac->mta_reg_count; i++)
771                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
772
773         /* Setup link and flow control */
774         ret_val = mac->ops.setup_link(hw);
775         if (ret_val)
776                 return ret_val;
777
778         /* Disable IBIST slave mode (far-end loopback) */
779         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
780                                         &kum_reg_data);
781         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
782         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
783                                          kum_reg_data);
784
785         /* Set the transmit descriptor write-back policy */
786         reg_data = er32(TXDCTL(0));
787         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
788                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
789         ew32(TXDCTL(0), reg_data);
790
791         /* ...for both queues. */
792         reg_data = er32(TXDCTL(1));
793         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
794                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
795         ew32(TXDCTL(1), reg_data);
796
797         /* Enable retransmit on late collisions */
798         reg_data = er32(TCTL);
799         reg_data |= E1000_TCTL_RTLC;
800         ew32(TCTL, reg_data);
801
802         /* Configure Gigabit Carry Extend Padding */
803         reg_data = er32(TCTL_EXT);
804         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
805         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
806         ew32(TCTL_EXT, reg_data);
807
808         /* Configure Transmit Inter-Packet Gap */
809         reg_data = er32(TIPG);
810         reg_data &= ~E1000_TIPG_IPGT_MASK;
811         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
812         ew32(TIPG, reg_data);
813
814         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
815         reg_data &= ~0x00100000;
816         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
817
818         /* default to true to enable the MDIC W/A */
819         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
820
821         ret_val =
822             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
823                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
824         if (!ret_val) {
825                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
826                     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
827                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
828         }
829
830         /* Clear all of the statistics registers (clear on read).  It is
831          * important that we do this after we have tried to establish link
832          * because the symbol error count will increment wildly if there
833          * is no link.
834          */
835         e1000_clear_hw_cntrs_80003es2lan(hw);
836
837         return ret_val;
838 }
839
840 /**
841  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
842  *  @hw: pointer to the HW structure
843  *
844  *  Initializes required hardware-dependent bits needed for normal operation.
845  **/
846 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
847 {
848         u32 reg;
849
850         /* Transmit Descriptor Control 0 */
851         reg = er32(TXDCTL(0));
852         reg |= (1 << 22);
853         ew32(TXDCTL(0), reg);
854
855         /* Transmit Descriptor Control 1 */
856         reg = er32(TXDCTL(1));
857         reg |= (1 << 22);
858         ew32(TXDCTL(1), reg);
859
860         /* Transmit Arbitration Control 0 */
861         reg = er32(TARC(0));
862         reg &= ~(0xF << 27);    /* 30:27 */
863         if (hw->phy.media_type != e1000_media_type_copper)
864                 reg &= ~(1 << 20);
865         ew32(TARC(0), reg);
866
867         /* Transmit Arbitration Control 1 */
868         reg = er32(TARC(1));
869         if (er32(TCTL) & E1000_TCTL_MULR)
870                 reg &= ~(1 << 28);
871         else
872                 reg |= (1 << 28);
873         ew32(TARC(1), reg);
874
875         /* Disable IPv6 extension header parsing because some malformed
876          * IPv6 headers can hang the Rx.
877          */
878         reg = er32(RFCTL);
879         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
880         ew32(RFCTL, reg);
881 }
882
883 /**
884  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
885  *  @hw: pointer to the HW structure
886  *
887  *  Setup some GG82563 PHY registers for obtaining link
888  **/
889 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
890 {
891         struct e1000_phy_info *phy = &hw->phy;
892         s32 ret_val;
893         u32 reg;
894         u16 data;
895
896         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
897         if (ret_val)
898                 return ret_val;
899
900         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
901         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
902         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
903
904         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
905         if (ret_val)
906                 return ret_val;
907
908         /* Options:
909          *   MDI/MDI-X = 0 (default)
910          *   0 - Auto for all speeds
911          *   1 - MDI mode
912          *   2 - MDI-X mode
913          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
914          */
915         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
916         if (ret_val)
917                 return ret_val;
918
919         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
920
921         switch (phy->mdix) {
922         case 1:
923                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
924                 break;
925         case 2:
926                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
927                 break;
928         case 0:
929         default:
930                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
931                 break;
932         }
933
934         /* Options:
935          *   disable_polarity_correction = 0 (default)
936          *       Automatic Correction for Reversed Cable Polarity
937          *   0 - Disabled
938          *   1 - Enabled
939          */
940         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
941         if (phy->disable_polarity_correction)
942                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
943
944         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
945         if (ret_val)
946                 return ret_val;
947
948         /* SW Reset the PHY so all changes take effect */
949         ret_val = hw->phy.ops.commit(hw);
950         if (ret_val) {
951                 e_dbg("Error Resetting the PHY\n");
952                 return ret_val;
953         }
954
955         /* Bypass Rx and Tx FIFO's */
956         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
957         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
958                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
959         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
960         if (ret_val)
961                 return ret_val;
962
963         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
964         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
965         if (ret_val)
966                 return ret_val;
967         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
968         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
969         if (ret_val)
970                 return ret_val;
971
972         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
973         if (ret_val)
974                 return ret_val;
975
976         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
977         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
978         if (ret_val)
979                 return ret_val;
980
981         reg = er32(CTRL_EXT);
982         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
983         ew32(CTRL_EXT, reg);
984
985         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
986         if (ret_val)
987                 return ret_val;
988
989         /* Do not init these registers when the HW is in IAMT mode, since the
990          * firmware will have already initialized them.  We only initialize
991          * them if the HW is not in IAMT mode.
992          */
993         if (!hw->mac.ops.check_mng_mode(hw)) {
994                 /* Enable Electrical Idle on the PHY */
995                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
996                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
997                 if (ret_val)
998                         return ret_val;
999
1000                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1001                 if (ret_val)
1002                         return ret_val;
1003
1004                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1005                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1006                 if (ret_val)
1007                         return ret_val;
1008         }
1009
1010         /* Workaround: Disable padding in Kumeran interface in the MAC
1011          * and in the PHY to avoid CRC errors.
1012          */
1013         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1014         if (ret_val)
1015                 return ret_val;
1016
1017         data |= GG82563_ICR_DIS_PADDING;
1018         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1019         if (ret_val)
1020                 return ret_val;
1021
1022         return 0;
1023 }
1024
1025 /**
1026  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1027  *  @hw: pointer to the HW structure
1028  *
1029  *  Essentially a wrapper for setting up all things "copper" related.
1030  *  This is a function pointer entry point called by the mac module.
1031  **/
1032 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1033 {
1034         u32 ctrl;
1035         s32 ret_val;
1036         u16 reg_data;
1037
1038         ctrl = er32(CTRL);
1039         ctrl |= E1000_CTRL_SLU;
1040         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1041         ew32(CTRL, ctrl);
1042
1043         /* Set the mac to wait the maximum time between each
1044          * iteration and increase the max iterations when
1045          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1046          */
1047         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1048                                                    0xFFFF);
1049         if (ret_val)
1050                 return ret_val;
1051         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1052                                                   &reg_data);
1053         if (ret_val)
1054                 return ret_val;
1055         reg_data |= 0x3F;
1056         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1057                                                    reg_data);
1058         if (ret_val)
1059                 return ret_val;
1060         ret_val =
1061             e1000_read_kmrn_reg_80003es2lan(hw,
1062                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1063                                             &reg_data);
1064         if (ret_val)
1065                 return ret_val;
1066         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1067         ret_val =
1068             e1000_write_kmrn_reg_80003es2lan(hw,
1069                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1070                                              reg_data);
1071         if (ret_val)
1072                 return ret_val;
1073
1074         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1075         if (ret_val)
1076                 return ret_val;
1077
1078         return e1000e_setup_copper_link(hw);
1079 }
1080
1081 /**
1082  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1083  *  @hw: pointer to the HW structure
1084  *  @duplex: current duplex setting
1085  *
1086  *  Configure the KMRN interface by applying last minute quirks for
1087  *  10/100 operation.
1088  **/
1089 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1090 {
1091         s32 ret_val = 0;
1092         u16 speed;
1093         u16 duplex;
1094
1095         if (hw->phy.media_type == e1000_media_type_copper) {
1096                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1097                                                              &duplex);
1098                 if (ret_val)
1099                         return ret_val;
1100
1101                 if (speed == SPEED_1000)
1102                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1103                 else
1104                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1105         }
1106
1107         return ret_val;
1108 }
1109
1110 /**
1111  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1112  *  @hw: pointer to the HW structure
1113  *  @duplex: current duplex setting
1114  *
1115  *  Configure the KMRN interface by applying last minute quirks for
1116  *  10/100 operation.
1117  **/
1118 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1119 {
1120         s32 ret_val;
1121         u32 tipg;
1122         u32 i = 0;
1123         u16 reg_data, reg_data2;
1124
1125         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1126         ret_val =
1127             e1000_write_kmrn_reg_80003es2lan(hw,
1128                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1129                                              reg_data);
1130         if (ret_val)
1131                 return ret_val;
1132
1133         /* Configure Transmit Inter-Packet Gap */
1134         tipg = er32(TIPG);
1135         tipg &= ~E1000_TIPG_IPGT_MASK;
1136         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1137         ew32(TIPG, tipg);
1138
1139         do {
1140                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1141                 if (ret_val)
1142                         return ret_val;
1143
1144                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1145                 if (ret_val)
1146                         return ret_val;
1147                 i++;
1148         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1149
1150         if (duplex == HALF_DUPLEX)
1151                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1152         else
1153                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1154
1155         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1156 }
1157
1158 /**
1159  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1160  *  @hw: pointer to the HW structure
1161  *
1162  *  Configure the KMRN interface by applying last minute quirks for
1163  *  gigabit operation.
1164  **/
1165 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1166 {
1167         s32 ret_val;
1168         u16 reg_data, reg_data2;
1169         u32 tipg;
1170         u32 i = 0;
1171
1172         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1173         ret_val =
1174             e1000_write_kmrn_reg_80003es2lan(hw,
1175                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1176                                              reg_data);
1177         if (ret_val)
1178                 return ret_val;
1179
1180         /* Configure Transmit Inter-Packet Gap */
1181         tipg = er32(TIPG);
1182         tipg &= ~E1000_TIPG_IPGT_MASK;
1183         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1184         ew32(TIPG, tipg);
1185
1186         do {
1187                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1188                 if (ret_val)
1189                         return ret_val;
1190
1191                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1192                 if (ret_val)
1193                         return ret_val;
1194                 i++;
1195         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1196
1197         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1198
1199         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1200 }
1201
1202 /**
1203  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1204  *  @hw: pointer to the HW structure
1205  *  @offset: register offset to be read
1206  *  @data: pointer to the read data
1207  *
1208  *  Acquire semaphore, then read the PHY register at offset
1209  *  using the kumeran interface.  The information retrieved is stored in data.
1210  *  Release the semaphore before exiting.
1211  **/
1212 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1213                                            u16 *data)
1214 {
1215         u32 kmrnctrlsta;
1216         s32 ret_val;
1217
1218         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1219         if (ret_val)
1220                 return ret_val;
1221
1222         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1223                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1224         ew32(KMRNCTRLSTA, kmrnctrlsta);
1225         e1e_flush();
1226
1227         udelay(2);
1228
1229         kmrnctrlsta = er32(KMRNCTRLSTA);
1230         *data = (u16)kmrnctrlsta;
1231
1232         e1000_release_mac_csr_80003es2lan(hw);
1233
1234         return ret_val;
1235 }
1236
1237 /**
1238  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1239  *  @hw: pointer to the HW structure
1240  *  @offset: register offset to write to
1241  *  @data: data to write at register offset
1242  *
1243  *  Acquire semaphore, then write the data to PHY register
1244  *  at the offset using the kumeran interface.  Release semaphore
1245  *  before exiting.
1246  **/
1247 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1248                                             u16 data)
1249 {
1250         u32 kmrnctrlsta;
1251         s32 ret_val;
1252
1253         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1254         if (ret_val)
1255                 return ret_val;
1256
1257         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1258                        E1000_KMRNCTRLSTA_OFFSET) | data;
1259         ew32(KMRNCTRLSTA, kmrnctrlsta);
1260         e1e_flush();
1261
1262         udelay(2);
1263
1264         e1000_release_mac_csr_80003es2lan(hw);
1265
1266         return ret_val;
1267 }
1268
1269 /**
1270  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1271  *  @hw: pointer to the HW structure
1272  **/
1273 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1274 {
1275         s32 ret_val;
1276
1277         /* If there's an alternate MAC address place it in RAR0
1278          * so that it will override the Si installed default perm
1279          * address.
1280          */
1281         ret_val = e1000_check_alt_mac_addr_generic(hw);
1282         if (ret_val)
1283                 return ret_val;
1284
1285         return e1000_read_mac_addr_generic(hw);
1286 }
1287
1288 /**
1289  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1290  * @hw: pointer to the HW structure
1291  *
1292  * In the case of a PHY power down to save power, or to turn off link during a
1293  * driver unload, or wake on lan is not enabled, remove the link.
1294  **/
1295 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1296 {
1297         /* If the management interface is not enabled, then power down */
1298         if (!(hw->mac.ops.check_mng_mode(hw) ||
1299               hw->phy.ops.check_reset_block(hw)))
1300                 e1000_power_down_phy_copper(hw);
1301 }
1302
1303 /**
1304  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1305  *  @hw: pointer to the HW structure
1306  *
1307  *  Clears the hardware counters by reading the counter registers.
1308  **/
1309 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1310 {
1311         e1000e_clear_hw_cntrs_base(hw);
1312
1313         er32(PRC64);
1314         er32(PRC127);
1315         er32(PRC255);
1316         er32(PRC511);
1317         er32(PRC1023);
1318         er32(PRC1522);
1319         er32(PTC64);
1320         er32(PTC127);
1321         er32(PTC255);
1322         er32(PTC511);
1323         er32(PTC1023);
1324         er32(PTC1522);
1325
1326         er32(ALGNERRC);
1327         er32(RXERRC);
1328         er32(TNCRS);
1329         er32(CEXTERR);
1330         er32(TSCTC);
1331         er32(TSCTFC);
1332
1333         er32(MGTPRC);
1334         er32(MGTPDC);
1335         er32(MGTPTC);
1336
1337         er32(IAC);
1338         er32(ICRXOC);
1339
1340         er32(ICRXPTC);
1341         er32(ICRXATC);
1342         er32(ICTXPTC);
1343         er32(ICTXATC);
1344         er32(ICTXQEC);
1345         er32(ICTXQMTC);
1346         er32(ICRXDMTC);
1347 }
1348
1349 static const struct e1000_mac_operations es2_mac_ops = {
1350         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1351         .id_led_init            = e1000e_id_led_init_generic,
1352         .blink_led              = e1000e_blink_led_generic,
1353         .check_mng_mode         = e1000e_check_mng_mode_generic,
1354         /* check_for_link dependent on media type */
1355         .cleanup_led            = e1000e_cleanup_led_generic,
1356         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1357         .get_bus_info           = e1000e_get_bus_info_pcie,
1358         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1359         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1360         .led_on                 = e1000e_led_on_generic,
1361         .led_off                = e1000e_led_off_generic,
1362         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1363         .write_vfta             = e1000_write_vfta_generic,
1364         .clear_vfta             = e1000_clear_vfta_generic,
1365         .reset_hw               = e1000_reset_hw_80003es2lan,
1366         .init_hw                = e1000_init_hw_80003es2lan,
1367         .setup_link             = e1000e_setup_link_generic,
1368         /* setup_physical_interface dependent on media type */
1369         .setup_led              = e1000e_setup_led_generic,
1370         .config_collision_dist  = e1000e_config_collision_dist_generic,
1371         .rar_set                = e1000e_rar_set_generic,
1372 };
1373
1374 static const struct e1000_phy_operations es2_phy_ops = {
1375         .acquire                = e1000_acquire_phy_80003es2lan,
1376         .check_polarity         = e1000_check_polarity_m88,
1377         .check_reset_block      = e1000e_check_reset_block_generic,
1378         .commit                 = e1000e_phy_sw_reset,
1379         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1380         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1381         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1382         .get_info               = e1000e_get_phy_info_m88,
1383         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1384         .release                = e1000_release_phy_80003es2lan,
1385         .reset                  = e1000e_phy_hw_reset_generic,
1386         .set_d0_lplu_state      = NULL,
1387         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1388         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1389         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1390 };
1391
1392 static const struct e1000_nvm_operations es2_nvm_ops = {
1393         .acquire                = e1000_acquire_nvm_80003es2lan,
1394         .read                   = e1000e_read_nvm_eerd,
1395         .release                = e1000_release_nvm_80003es2lan,
1396         .reload                 = e1000e_reload_nvm_generic,
1397         .update                 = e1000e_update_nvm_checksum_generic,
1398         .valid_led_default      = e1000e_valid_led_default,
1399         .validate               = e1000e_validate_nvm_checksum_generic,
1400         .write                  = e1000_write_nvm_80003es2lan,
1401 };
1402
1403 const struct e1000_info e1000_es2_info = {
1404         .mac                    = e1000_80003es2lan,
1405         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1406                                   | FLAG_HAS_JUMBO_FRAMES
1407                                   | FLAG_HAS_WOL
1408                                   | FLAG_APME_IN_CTRL3
1409                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1410                                   | FLAG_RX_NEEDS_RESTART /* errata */
1411                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1412                                   | FLAG_APME_CHECK_PORT_B
1413                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1414         .flags2                 = FLAG2_DMA_BURST,
1415         .pba                    = 38,
1416         .max_hw_frame_size      = DEFAULT_JUMBO,
1417         .get_variants           = e1000_get_variants_80003es2lan,
1418         .mac_ops                = &es2_mac_ops,
1419         .phy_ops                = &es2_phy_ops,
1420         .nvm_ops                = &es2_nvm_ops,
1421 };