IXGBE: Set the SW prio_tc values at initialization to the HW setting.
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/pm_runtime.h>
39
40 #include "e1000.h"
41
42 enum { NETDEV_STATS, E1000_STATS };
43
44 struct e1000_stats {
45         char stat_string[ETH_GSTRING_LEN];
46         int type;
47         int sizeof_stat;
48         int stat_offset;
49 };
50
51 #define E1000_STAT(str, m) { \
52                 .stat_string = str, \
53                 .type = E1000_STATS, \
54                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55                 .stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
57                 .stat_string = str, \
58                 .type = NETDEV_STATS, \
59                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
61
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63         E1000_STAT("rx_packets", stats.gprc),
64         E1000_STAT("tx_packets", stats.gptc),
65         E1000_STAT("rx_bytes", stats.gorc),
66         E1000_STAT("tx_bytes", stats.gotc),
67         E1000_STAT("rx_broadcast", stats.bprc),
68         E1000_STAT("tx_broadcast", stats.bptc),
69         E1000_STAT("rx_multicast", stats.mprc),
70         E1000_STAT("tx_multicast", stats.mptc),
71         E1000_NETDEV_STAT("rx_errors", rx_errors),
72         E1000_NETDEV_STAT("tx_errors", tx_errors),
73         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74         E1000_STAT("multicast", stats.mprc),
75         E1000_STAT("collisions", stats.colc),
76         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78         E1000_STAT("rx_crc_errors", stats.crcerrs),
79         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80         E1000_STAT("rx_no_buffer_count", stats.rnbc),
81         E1000_STAT("rx_missed_errors", stats.mpc),
82         E1000_STAT("tx_aborted_errors", stats.ecol),
83         E1000_STAT("tx_carrier_errors", stats.tncrs),
84         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86         E1000_STAT("tx_window_errors", stats.latecol),
87         E1000_STAT("tx_abort_late_coll", stats.latecol),
88         E1000_STAT("tx_deferred_ok", stats.dc),
89         E1000_STAT("tx_single_coll_ok", stats.scc),
90         E1000_STAT("tx_multi_coll_ok", stats.mcc),
91         E1000_STAT("tx_timeout_count", tx_timeout_count),
92         E1000_STAT("tx_restart_queue", restart_queue),
93         E1000_STAT("rx_long_length_errors", stats.roc),
94         E1000_STAT("rx_short_length_errors", stats.ruc),
95         E1000_STAT("rx_align_errors", stats.algnerrc),
96         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100         E1000_STAT("tx_flow_control_xon", stats.xontxc),
101         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111         E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113         E1000_STAT("corr_ecc_errors", corr_errors),
114 };
115
116 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119         "Register test  (offline)", "Eeprom test    (offline)",
120         "Interrupt test (offline)", "Loopback test  (offline)",
121         "Link test   (on/offline)"
122 };
123
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125
126 static int e1000_get_settings(struct net_device *netdev,
127                               struct ethtool_cmd *ecmd)
128 {
129         struct e1000_adapter *adapter = netdev_priv(netdev);
130         struct e1000_hw *hw = &adapter->hw;
131         u32 speed;
132
133         if (hw->phy.media_type == e1000_media_type_copper) {
134                 ecmd->supported = (SUPPORTED_10baseT_Half |
135                                    SUPPORTED_10baseT_Full |
136                                    SUPPORTED_100baseT_Half |
137                                    SUPPORTED_100baseT_Full |
138                                    SUPPORTED_1000baseT_Full |
139                                    SUPPORTED_Autoneg |
140                                    SUPPORTED_TP);
141                 if (hw->phy.type == e1000_phy_ife)
142                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143                 ecmd->advertising = ADVERTISED_TP;
144
145                 if (hw->mac.autoneg == 1) {
146                         ecmd->advertising |= ADVERTISED_Autoneg;
147                         /* the e1000 autoneg seems to match ethtool nicely */
148                         ecmd->advertising |= hw->phy.autoneg_advertised;
149                 }
150
151                 ecmd->port = PORT_TP;
152                 ecmd->phy_address = hw->phy.addr;
153                 ecmd->transceiver = XCVR_INTERNAL;
154
155         } else {
156                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
157                                      SUPPORTED_FIBRE |
158                                      SUPPORTED_Autoneg);
159
160                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
161                                      ADVERTISED_FIBRE |
162                                      ADVERTISED_Autoneg);
163
164                 ecmd->port = PORT_FIBRE;
165                 ecmd->transceiver = XCVR_EXTERNAL;
166         }
167
168         speed = -1;
169         ecmd->duplex = -1;
170
171         if (netif_running(netdev)) {
172                 if (netif_carrier_ok(netdev)) {
173                         speed = adapter->link_speed;
174                         ecmd->duplex = adapter->link_duplex - 1;
175                 }
176         } else {
177                 u32 status = er32(STATUS);
178                 if (status & E1000_STATUS_LU) {
179                         if (status & E1000_STATUS_SPEED_1000)
180                                 speed = SPEED_1000;
181                         else if (status & E1000_STATUS_SPEED_100)
182                                 speed = SPEED_100;
183                         else
184                                 speed = SPEED_10;
185
186                         if (status & E1000_STATUS_FD)
187                                 ecmd->duplex = DUPLEX_FULL;
188                         else
189                                 ecmd->duplex = DUPLEX_HALF;
190                 }
191         }
192
193         ethtool_cmd_speed_set(ecmd, speed);
194         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196
197         /* MDI-X => 2; MDI =>1; Invalid =>0 */
198         if ((hw->phy.media_type == e1000_media_type_copper) &&
199             netif_carrier_ok(netdev))
200                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
201         else
202                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203
204         if (hw->phy.mdix == AUTO_ALL_MODES)
205                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206         else
207                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208
209         return 0;
210 }
211
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214         struct e1000_mac_info *mac = &adapter->hw.mac;
215
216         mac->autoneg = 0;
217
218         /* Make sure dplx is at most 1 bit and lsb of speed is not set
219          * for the switch() below to work
220          */
221         if ((spd & 1) || (dplx & ~1))
222                 goto err_inval;
223
224         /* Fiber NICs only allow 1000 gbps Full duplex */
225         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226             (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
227                 goto err_inval;
228         }
229
230         switch (spd + dplx) {
231         case SPEED_10 + DUPLEX_HALF:
232                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
233                 break;
234         case SPEED_10 + DUPLEX_FULL:
235                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
236                 break;
237         case SPEED_100 + DUPLEX_HALF:
238                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
239                 break;
240         case SPEED_100 + DUPLEX_FULL:
241                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
242                 break;
243         case SPEED_1000 + DUPLEX_FULL:
244                 mac->autoneg = 1;
245                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
246                 break;
247         case SPEED_1000 + DUPLEX_HALF:  /* not supported */
248         default:
249                 goto err_inval;
250         }
251
252         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
253         adapter->hw.phy.mdix = AUTO_ALL_MODES;
254
255         return 0;
256
257 err_inval:
258         e_err("Unsupported Speed/Duplex configuration\n");
259         return -EINVAL;
260 }
261
262 static int e1000_set_settings(struct net_device *netdev,
263                               struct ethtool_cmd *ecmd)
264 {
265         struct e1000_adapter *adapter = netdev_priv(netdev);
266         struct e1000_hw *hw = &adapter->hw;
267
268         /* When SoL/IDER sessions are active, autoneg/speed/duplex
269          * cannot be changed
270          */
271         if (hw->phy.ops.check_reset_block &&
272             hw->phy.ops.check_reset_block(hw)) {
273                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
274                 return -EINVAL;
275         }
276
277         /* MDI setting is only allowed when autoneg enabled because
278          * some hardware doesn't allow MDI setting when speed or
279          * duplex is forced.
280          */
281         if (ecmd->eth_tp_mdix_ctrl) {
282                 if (hw->phy.media_type != e1000_media_type_copper)
283                         return -EOPNOTSUPP;
284
285                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
286                     (ecmd->autoneg != AUTONEG_ENABLE)) {
287                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
288                         return -EINVAL;
289                 }
290         }
291
292         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293                 usleep_range(1000, 2000);
294
295         if (ecmd->autoneg == AUTONEG_ENABLE) {
296                 hw->mac.autoneg = 1;
297                 if (hw->phy.media_type == e1000_media_type_fiber)
298                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299                             ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300                 else
301                         hw->phy.autoneg_advertised = ecmd->advertising |
302                             ADVERTISED_TP | ADVERTISED_Autoneg;
303                 ecmd->advertising = hw->phy.autoneg_advertised;
304                 if (adapter->fc_autoneg)
305                         hw->fc.requested_mode = e1000_fc_default;
306         } else {
307                 u32 speed = ethtool_cmd_speed(ecmd);
308                 /* calling this overrides forced MDI setting */
309                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
310                         clear_bit(__E1000_RESETTING, &adapter->state);
311                         return -EINVAL;
312                 }
313         }
314
315         /* MDI-X => 2; MDI => 1; Auto => 3 */
316         if (ecmd->eth_tp_mdix_ctrl) {
317                 /* fix up the value for auto (3 => 0) as zero is mapped
318                  * internally to auto
319                  */
320                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321                         hw->phy.mdix = AUTO_ALL_MODES;
322                 else
323                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
324         }
325
326         /* reset the link */
327         if (netif_running(adapter->netdev)) {
328                 e1000e_down(adapter);
329                 e1000e_up(adapter);
330         } else {
331                 e1000e_reset(adapter);
332         }
333
334         clear_bit(__E1000_RESETTING, &adapter->state);
335         return 0;
336 }
337
338 static void e1000_get_pauseparam(struct net_device *netdev,
339                                  struct ethtool_pauseparam *pause)
340 {
341         struct e1000_adapter *adapter = netdev_priv(netdev);
342         struct e1000_hw *hw = &adapter->hw;
343
344         pause->autoneg =
345             (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
346
347         if (hw->fc.current_mode == e1000_fc_rx_pause) {
348                 pause->rx_pause = 1;
349         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
350                 pause->tx_pause = 1;
351         } else if (hw->fc.current_mode == e1000_fc_full) {
352                 pause->rx_pause = 1;
353                 pause->tx_pause = 1;
354         }
355 }
356
357 static int e1000_set_pauseparam(struct net_device *netdev,
358                                 struct ethtool_pauseparam *pause)
359 {
360         struct e1000_adapter *adapter = netdev_priv(netdev);
361         struct e1000_hw *hw = &adapter->hw;
362         int retval = 0;
363
364         adapter->fc_autoneg = pause->autoneg;
365
366         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
367                 usleep_range(1000, 2000);
368
369         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
370                 hw->fc.requested_mode = e1000_fc_default;
371                 if (netif_running(adapter->netdev)) {
372                         e1000e_down(adapter);
373                         e1000e_up(adapter);
374                 } else {
375                         e1000e_reset(adapter);
376                 }
377         } else {
378                 if (pause->rx_pause && pause->tx_pause)
379                         hw->fc.requested_mode = e1000_fc_full;
380                 else if (pause->rx_pause && !pause->tx_pause)
381                         hw->fc.requested_mode = e1000_fc_rx_pause;
382                 else if (!pause->rx_pause && pause->tx_pause)
383                         hw->fc.requested_mode = e1000_fc_tx_pause;
384                 else if (!pause->rx_pause && !pause->tx_pause)
385                         hw->fc.requested_mode = e1000_fc_none;
386
387                 hw->fc.current_mode = hw->fc.requested_mode;
388
389                 if (hw->phy.media_type == e1000_media_type_fiber) {
390                         retval = hw->mac.ops.setup_link(hw);
391                         /* implicit goto out */
392                 } else {
393                         retval = e1000e_force_mac_fc(hw);
394                         if (retval)
395                                 goto out;
396                         e1000e_set_fc_watermarks(hw);
397                 }
398         }
399
400 out:
401         clear_bit(__E1000_RESETTING, &adapter->state);
402         return retval;
403 }
404
405 static u32 e1000_get_msglevel(struct net_device *netdev)
406 {
407         struct e1000_adapter *adapter = netdev_priv(netdev);
408         return adapter->msg_enable;
409 }
410
411 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
412 {
413         struct e1000_adapter *adapter = netdev_priv(netdev);
414         adapter->msg_enable = data;
415 }
416
417 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
418 {
419 #define E1000_REGS_LEN 32       /* overestimate */
420         return E1000_REGS_LEN * sizeof(u32);
421 }
422
423 static void e1000_get_regs(struct net_device *netdev,
424                            struct ethtool_regs *regs, void *p)
425 {
426         struct e1000_adapter *adapter = netdev_priv(netdev);
427         struct e1000_hw *hw = &adapter->hw;
428         u32 *regs_buff = p;
429         u16 phy_data;
430
431         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
432
433         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
434             adapter->pdev->device;
435
436         regs_buff[0] = er32(CTRL);
437         regs_buff[1] = er32(STATUS);
438
439         regs_buff[2] = er32(RCTL);
440         regs_buff[3] = er32(RDLEN(0));
441         regs_buff[4] = er32(RDH(0));
442         regs_buff[5] = er32(RDT(0));
443         regs_buff[6] = er32(RDTR);
444
445         regs_buff[7] = er32(TCTL);
446         regs_buff[8] = er32(TDLEN(0));
447         regs_buff[9] = er32(TDH(0));
448         regs_buff[10] = er32(TDT(0));
449         regs_buff[11] = er32(TIDV);
450
451         regs_buff[12] = adapter->hw.phy.type;   /* PHY type (IGP=1, M88=0) */
452
453         /* ethtool doesn't use anything past this point, so all this
454          * code is likely legacy junk for apps that may or may not exist
455          */
456         if (hw->phy.type == e1000_phy_m88) {
457                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
458                 regs_buff[13] = (u32)phy_data; /* cable length */
459                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
460                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
461                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
462                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
463                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
464                 regs_buff[18] = regs_buff[13]; /* cable polarity */
465                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
466                 regs_buff[20] = regs_buff[17]; /* polarity correction */
467                 /* phy receive errors */
468                 regs_buff[22] = adapter->phy_stats.receive_errors;
469                 regs_buff[23] = regs_buff[13]; /* mdix mode */
470         }
471         regs_buff[21] = 0;      /* was idle_errors */
472         e1e_rphy(hw, MII_STAT1000, &phy_data);
473         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
474         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
475 }
476
477 static int e1000_get_eeprom_len(struct net_device *netdev)
478 {
479         struct e1000_adapter *adapter = netdev_priv(netdev);
480         return adapter->hw.nvm.word_size * 2;
481 }
482
483 static int e1000_get_eeprom(struct net_device *netdev,
484                             struct ethtool_eeprom *eeprom, u8 *bytes)
485 {
486         struct e1000_adapter *adapter = netdev_priv(netdev);
487         struct e1000_hw *hw = &adapter->hw;
488         u16 *eeprom_buff;
489         int first_word;
490         int last_word;
491         int ret_val = 0;
492         u16 i;
493
494         if (eeprom->len == 0)
495                 return -EINVAL;
496
497         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
498
499         first_word = eeprom->offset >> 1;
500         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
501
502         eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
503                               GFP_KERNEL);
504         if (!eeprom_buff)
505                 return -ENOMEM;
506
507         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
508                 ret_val = e1000_read_nvm(hw, first_word,
509                                          last_word - first_word + 1,
510                                          eeprom_buff);
511         } else {
512                 for (i = 0; i < last_word - first_word + 1; i++) {
513                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
514                                                  &eeprom_buff[i]);
515                         if (ret_val)
516                                 break;
517                 }
518         }
519
520         if (ret_val) {
521                 /* a read error occurred, throw away the result */
522                 memset(eeprom_buff, 0xff, sizeof(u16) *
523                        (last_word - first_word + 1));
524         } else {
525                 /* Device's eeprom is always little-endian, word addressable */
526                 for (i = 0; i < last_word - first_word + 1; i++)
527                         le16_to_cpus(&eeprom_buff[i]);
528         }
529
530         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
531         kfree(eeprom_buff);
532
533         return ret_val;
534 }
535
536 static int e1000_set_eeprom(struct net_device *netdev,
537                             struct ethtool_eeprom *eeprom, u8 *bytes)
538 {
539         struct e1000_adapter *adapter = netdev_priv(netdev);
540         struct e1000_hw *hw = &adapter->hw;
541         u16 *eeprom_buff;
542         void *ptr;
543         int max_len;
544         int first_word;
545         int last_word;
546         int ret_val = 0;
547         u16 i;
548
549         if (eeprom->len == 0)
550                 return -EOPNOTSUPP;
551
552         if (eeprom->magic !=
553             (adapter->pdev->vendor | (adapter->pdev->device << 16)))
554                 return -EFAULT;
555
556         if (adapter->flags & FLAG_READ_ONLY_NVM)
557                 return -EINVAL;
558
559         max_len = hw->nvm.word_size * 2;
560
561         first_word = eeprom->offset >> 1;
562         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
563         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
564         if (!eeprom_buff)
565                 return -ENOMEM;
566
567         ptr = (void *)eeprom_buff;
568
569         if (eeprom->offset & 1) {
570                 /* need read/modify/write of first changed EEPROM word */
571                 /* only the second byte of the word is being modified */
572                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
573                 ptr++;
574         }
575         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
576                 /* need read/modify/write of last changed EEPROM word */
577                 /* only the first byte of the word is being modified */
578                 ret_val = e1000_read_nvm(hw, last_word, 1,
579                                          &eeprom_buff[last_word - first_word]);
580
581         if (ret_val)
582                 goto out;
583
584         /* Device's eeprom is always little-endian, word addressable */
585         for (i = 0; i < last_word - first_word + 1; i++)
586                 le16_to_cpus(&eeprom_buff[i]);
587
588         memcpy(ptr, bytes, eeprom->len);
589
590         for (i = 0; i < last_word - first_word + 1; i++)
591                 cpu_to_le16s(&eeprom_buff[i]);
592
593         ret_val = e1000_write_nvm(hw, first_word,
594                                   last_word - first_word + 1, eeprom_buff);
595
596         if (ret_val)
597                 goto out;
598
599         /* Update the checksum over the first part of the EEPROM if needed
600          * and flush shadow RAM for applicable controllers
601          */
602         if ((first_word <= NVM_CHECKSUM_REG) ||
603             (hw->mac.type == e1000_82583) ||
604             (hw->mac.type == e1000_82574) ||
605             (hw->mac.type == e1000_82573))
606                 ret_val = e1000e_update_nvm_checksum(hw);
607
608 out:
609         kfree(eeprom_buff);
610         return ret_val;
611 }
612
613 static void e1000_get_drvinfo(struct net_device *netdev,
614                               struct ethtool_drvinfo *drvinfo)
615 {
616         struct e1000_adapter *adapter = netdev_priv(netdev);
617
618         strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
619         strlcpy(drvinfo->version, e1000e_driver_version,
620                 sizeof(drvinfo->version));
621
622         /* EEPROM image version # is reported as firmware version # for
623          * PCI-E controllers
624          */
625         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
626                  "%d.%d-%d",
627                  (adapter->eeprom_vers & 0xF000) >> 12,
628                  (adapter->eeprom_vers & 0x0FF0) >> 4,
629                  (adapter->eeprom_vers & 0x000F));
630
631         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
632                 sizeof(drvinfo->bus_info));
633         drvinfo->regdump_len = e1000_get_regs_len(netdev);
634         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
635 }
636
637 static void e1000_get_ringparam(struct net_device *netdev,
638                                 struct ethtool_ringparam *ring)
639 {
640         struct e1000_adapter *adapter = netdev_priv(netdev);
641
642         ring->rx_max_pending = E1000_MAX_RXD;
643         ring->tx_max_pending = E1000_MAX_TXD;
644         ring->rx_pending = adapter->rx_ring_count;
645         ring->tx_pending = adapter->tx_ring_count;
646 }
647
648 static int e1000_set_ringparam(struct net_device *netdev,
649                                struct ethtool_ringparam *ring)
650 {
651         struct e1000_adapter *adapter = netdev_priv(netdev);
652         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
653         int err = 0, size = sizeof(struct e1000_ring);
654         bool set_tx = false, set_rx = false;
655         u16 new_rx_count, new_tx_count;
656
657         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
658                 return -EINVAL;
659
660         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
661                                E1000_MAX_RXD);
662         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
663
664         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
665                                E1000_MAX_TXD);
666         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
667
668         if ((new_tx_count == adapter->tx_ring_count) &&
669             (new_rx_count == adapter->rx_ring_count))
670                 /* nothing to do */
671                 return 0;
672
673         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
674                 usleep_range(1000, 2000);
675
676         if (!netif_running(adapter->netdev)) {
677                 /* Set counts now and allocate resources during open() */
678                 adapter->tx_ring->count = new_tx_count;
679                 adapter->rx_ring->count = new_rx_count;
680                 adapter->tx_ring_count = new_tx_count;
681                 adapter->rx_ring_count = new_rx_count;
682                 goto clear_reset;
683         }
684
685         set_tx = (new_tx_count != adapter->tx_ring_count);
686         set_rx = (new_rx_count != adapter->rx_ring_count);
687
688         /* Allocate temporary storage for ring updates */
689         if (set_tx) {
690                 temp_tx = vmalloc(size);
691                 if (!temp_tx) {
692                         err = -ENOMEM;
693                         goto free_temp;
694                 }
695         }
696         if (set_rx) {
697                 temp_rx = vmalloc(size);
698                 if (!temp_rx) {
699                         err = -ENOMEM;
700                         goto free_temp;
701                 }
702         }
703
704         e1000e_down(adapter);
705
706         /* We can't just free everything and then setup again, because the
707          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
708          * structs.  First, attempt to allocate new resources...
709          */
710         if (set_tx) {
711                 memcpy(temp_tx, adapter->tx_ring, size);
712                 temp_tx->count = new_tx_count;
713                 err = e1000e_setup_tx_resources(temp_tx);
714                 if (err)
715                         goto err_setup;
716         }
717         if (set_rx) {
718                 memcpy(temp_rx, adapter->rx_ring, size);
719                 temp_rx->count = new_rx_count;
720                 err = e1000e_setup_rx_resources(temp_rx);
721                 if (err)
722                         goto err_setup_rx;
723         }
724
725         /* ...then free the old resources and copy back any new ring data */
726         if (set_tx) {
727                 e1000e_free_tx_resources(adapter->tx_ring);
728                 memcpy(adapter->tx_ring, temp_tx, size);
729                 adapter->tx_ring_count = new_tx_count;
730         }
731         if (set_rx) {
732                 e1000e_free_rx_resources(adapter->rx_ring);
733                 memcpy(adapter->rx_ring, temp_rx, size);
734                 adapter->rx_ring_count = new_rx_count;
735         }
736
737 err_setup_rx:
738         if (err && set_tx)
739                 e1000e_free_tx_resources(temp_tx);
740 err_setup:
741         e1000e_up(adapter);
742 free_temp:
743         vfree(temp_tx);
744         vfree(temp_rx);
745 clear_reset:
746         clear_bit(__E1000_RESETTING, &adapter->state);
747         return err;
748 }
749
750 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
751                              int reg, int offset, u32 mask, u32 write)
752 {
753         u32 pat, val;
754         static const u32 test[] = {
755                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
756         };
757         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
758                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
759                                       (test[pat] & write));
760                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
761                 if (val != (test[pat] & write & mask)) {
762                         e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
763                               reg + (offset << 2), val,
764                               (test[pat] & write & mask));
765                         *data = reg;
766                         return 1;
767                 }
768         }
769         return 0;
770 }
771
772 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
773                               int reg, u32 mask, u32 write)
774 {
775         u32 val;
776         __ew32(&adapter->hw, reg, write & mask);
777         val = __er32(&adapter->hw, reg);
778         if ((write & mask) != (val & mask)) {
779                 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
780                       reg, (val & mask), (write & mask));
781                 *data = reg;
782                 return 1;
783         }
784         return 0;
785 }
786
787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
788         do {                                                                   \
789                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
790                         return 1;                                              \
791         } while (0)
792 #define REG_PATTERN_TEST(reg, mask, write)                                     \
793         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
794
795 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
796         do {                                                                   \
797                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
798                         return 1;                                              \
799         } while (0)
800
801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
802 {
803         struct e1000_hw *hw = &adapter->hw;
804         struct e1000_mac_info *mac = &adapter->hw.mac;
805         u32 value;
806         u32 before;
807         u32 after;
808         u32 i;
809         u32 toggle;
810         u32 mask;
811         u32 wlock_mac = 0;
812
813         /* The status register is Read Only, so a write should fail.
814          * Some bits that get toggled are ignored.  There are several bits
815          * on newer hardware that are r/w.
816          */
817         switch (mac->type) {
818         case e1000_82571:
819         case e1000_82572:
820         case e1000_80003es2lan:
821                 toggle = 0x7FFFF3FF;
822                 break;
823         default:
824                 toggle = 0x7FFFF033;
825                 break;
826         }
827
828         before = er32(STATUS);
829         value = (er32(STATUS) & toggle);
830         ew32(STATUS, toggle);
831         after = er32(STATUS) & toggle;
832         if (value != after) {
833                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
834                       after, value);
835                 *data = 1;
836                 return 1;
837         }
838         /* restore previous status */
839         ew32(STATUS, before);
840
841         if (!(adapter->flags & FLAG_IS_ICH)) {
842                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
843                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
844                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
845                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
846         }
847
848         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
849         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
850         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
851         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
852         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
853         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
854         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
855         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
856         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
857         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
858
859         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
860
861         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
862         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
863         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
864
865         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
866         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
867         if (!(adapter->flags & FLAG_IS_ICH))
868                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
869         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
870         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
871         mask = 0x8003FFFF;
872         switch (mac->type) {
873         case e1000_ich10lan:
874         case e1000_pchlan:
875         case e1000_pch2lan:
876         case e1000_pch_lpt:
877                 mask |= (1 << 18);
878                 break;
879         default:
880                 break;
881         }
882
883         if (mac->type == e1000_pch_lpt)
884                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
885                     E1000_FWSM_WLOCK_MAC_SHIFT;
886
887         for (i = 0; i < mac->rar_entry_count; i++) {
888                 if (mac->type == e1000_pch_lpt) {
889                         /* Cannot test write-protected SHRAL[n] registers */
890                         if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
891                                 continue;
892
893                         /* SHRAH[9] different than the others */
894                         if (i == 10)
895                                 mask |= (1 << 30);
896                         else
897                                 mask &= ~(1 << 30);
898                 }
899
900                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
901                                        0xFFFFFFFF);
902         }
903
904         for (i = 0; i < mac->mta_reg_count; i++)
905                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
906
907         *data = 0;
908
909         return 0;
910 }
911
912 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
913 {
914         u16 temp;
915         u16 checksum = 0;
916         u16 i;
917
918         *data = 0;
919         /* Read and add up the contents of the EEPROM */
920         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
921                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
922                         *data = 1;
923                         return *data;
924                 }
925                 checksum += temp;
926         }
927
928         /* If Checksum is not Correct return error else test passed */
929         if ((checksum != (u16)NVM_SUM) && !(*data))
930                 *data = 2;
931
932         return *data;
933 }
934
935 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
936 {
937         struct net_device *netdev = (struct net_device *)data;
938         struct e1000_adapter *adapter = netdev_priv(netdev);
939         struct e1000_hw *hw = &adapter->hw;
940
941         adapter->test_icr |= er32(ICR);
942
943         return IRQ_HANDLED;
944 }
945
946 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
947 {
948         struct net_device *netdev = adapter->netdev;
949         struct e1000_hw *hw = &adapter->hw;
950         u32 mask;
951         u32 shared_int = 1;
952         u32 irq = adapter->pdev->irq;
953         int i;
954         int ret_val = 0;
955         int int_mode = E1000E_INT_MODE_LEGACY;
956
957         *data = 0;
958
959         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
960         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
961                 int_mode = adapter->int_mode;
962                 e1000e_reset_interrupt_capability(adapter);
963                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
964                 e1000e_set_interrupt_capability(adapter);
965         }
966         /* Hook up test interrupt handler just for this test */
967         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
968                          netdev)) {
969                 shared_int = 0;
970         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
971                                netdev)) {
972                 *data = 1;
973                 ret_val = -1;
974                 goto out;
975         }
976         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
977
978         /* Disable all the interrupts */
979         ew32(IMC, 0xFFFFFFFF);
980         e1e_flush();
981         usleep_range(10000, 20000);
982
983         /* Test each interrupt */
984         for (i = 0; i < 10; i++) {
985                 /* Interrupt to test */
986                 mask = 1 << i;
987
988                 if (adapter->flags & FLAG_IS_ICH) {
989                         switch (mask) {
990                         case E1000_ICR_RXSEQ:
991                                 continue;
992                         case 0x00000100:
993                                 if (adapter->hw.mac.type == e1000_ich8lan ||
994                                     adapter->hw.mac.type == e1000_ich9lan)
995                                         continue;
996                                 break;
997                         default:
998                                 break;
999                         }
1000                 }
1001
1002                 if (!shared_int) {
1003                         /* Disable the interrupt to be reported in
1004                          * the cause register and then force the same
1005                          * interrupt and see if one gets posted.  If
1006                          * an interrupt was posted to the bus, the
1007                          * test failed.
1008                          */
1009                         adapter->test_icr = 0;
1010                         ew32(IMC, mask);
1011                         ew32(ICS, mask);
1012                         e1e_flush();
1013                         usleep_range(10000, 20000);
1014
1015                         if (adapter->test_icr & mask) {
1016                                 *data = 3;
1017                                 break;
1018                         }
1019                 }
1020
1021                 /* Enable the interrupt to be reported in
1022                  * the cause register and then force the same
1023                  * interrupt and see if one gets posted.  If
1024                  * an interrupt was not posted to the bus, the
1025                  * test failed.
1026                  */
1027                 adapter->test_icr = 0;
1028                 ew32(IMS, mask);
1029                 ew32(ICS, mask);
1030                 e1e_flush();
1031                 usleep_range(10000, 20000);
1032
1033                 if (!(adapter->test_icr & mask)) {
1034                         *data = 4;
1035                         break;
1036                 }
1037
1038                 if (!shared_int) {
1039                         /* Disable the other interrupts to be reported in
1040                          * the cause register and then force the other
1041                          * interrupts and see if any get posted.  If
1042                          * an interrupt was posted to the bus, the
1043                          * test failed.
1044                          */
1045                         adapter->test_icr = 0;
1046                         ew32(IMC, ~mask & 0x00007FFF);
1047                         ew32(ICS, ~mask & 0x00007FFF);
1048                         e1e_flush();
1049                         usleep_range(10000, 20000);
1050
1051                         if (adapter->test_icr) {
1052                                 *data = 5;
1053                                 break;
1054                         }
1055                 }
1056         }
1057
1058         /* Disable all the interrupts */
1059         ew32(IMC, 0xFFFFFFFF);
1060         e1e_flush();
1061         usleep_range(10000, 20000);
1062
1063         /* Unhook test interrupt handler */
1064         free_irq(irq, netdev);
1065
1066 out:
1067         if (int_mode == E1000E_INT_MODE_MSIX) {
1068                 e1000e_reset_interrupt_capability(adapter);
1069                 adapter->int_mode = int_mode;
1070                 e1000e_set_interrupt_capability(adapter);
1071         }
1072
1073         return ret_val;
1074 }
1075
1076 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1077 {
1078         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1079         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1080         struct pci_dev *pdev = adapter->pdev;
1081         struct e1000_buffer *buffer_info;
1082         int i;
1083
1084         if (tx_ring->desc && tx_ring->buffer_info) {
1085                 for (i = 0; i < tx_ring->count; i++) {
1086                         buffer_info = &tx_ring->buffer_info[i];
1087
1088                         if (buffer_info->dma)
1089                                 dma_unmap_single(&pdev->dev,
1090                                                  buffer_info->dma,
1091                                                  buffer_info->length,
1092                                                  DMA_TO_DEVICE);
1093                         if (buffer_info->skb)
1094                                 dev_kfree_skb(buffer_info->skb);
1095                 }
1096         }
1097
1098         if (rx_ring->desc && rx_ring->buffer_info) {
1099                 for (i = 0; i < rx_ring->count; i++) {
1100                         buffer_info = &rx_ring->buffer_info[i];
1101
1102                         if (buffer_info->dma)
1103                                 dma_unmap_single(&pdev->dev,
1104                                                  buffer_info->dma,
1105                                                  2048, DMA_FROM_DEVICE);
1106                         if (buffer_info->skb)
1107                                 dev_kfree_skb(buffer_info->skb);
1108                 }
1109         }
1110
1111         if (tx_ring->desc) {
1112                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1113                                   tx_ring->dma);
1114                 tx_ring->desc = NULL;
1115         }
1116         if (rx_ring->desc) {
1117                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1118                                   rx_ring->dma);
1119                 rx_ring->desc = NULL;
1120         }
1121
1122         kfree(tx_ring->buffer_info);
1123         tx_ring->buffer_info = NULL;
1124         kfree(rx_ring->buffer_info);
1125         rx_ring->buffer_info = NULL;
1126 }
1127
1128 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1129 {
1130         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1131         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1132         struct pci_dev *pdev = adapter->pdev;
1133         struct e1000_hw *hw = &adapter->hw;
1134         u32 rctl;
1135         int i;
1136         int ret_val;
1137
1138         /* Setup Tx descriptor ring and Tx buffers */
1139
1140         if (!tx_ring->count)
1141                 tx_ring->count = E1000_DEFAULT_TXD;
1142
1143         tx_ring->buffer_info = kcalloc(tx_ring->count,
1144                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1145         if (!tx_ring->buffer_info) {
1146                 ret_val = 1;
1147                 goto err_nomem;
1148         }
1149
1150         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1151         tx_ring->size = ALIGN(tx_ring->size, 4096);
1152         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1153                                            &tx_ring->dma, GFP_KERNEL);
1154         if (!tx_ring->desc) {
1155                 ret_val = 2;
1156                 goto err_nomem;
1157         }
1158         tx_ring->next_to_use = 0;
1159         tx_ring->next_to_clean = 0;
1160
1161         ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1162         ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1163         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1164         ew32(TDH(0), 0);
1165         ew32(TDT(0), 0);
1166         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1167              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1168              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1169
1170         for (i = 0; i < tx_ring->count; i++) {
1171                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1172                 struct sk_buff *skb;
1173                 unsigned int skb_size = 1024;
1174
1175                 skb = alloc_skb(skb_size, GFP_KERNEL);
1176                 if (!skb) {
1177                         ret_val = 3;
1178                         goto err_nomem;
1179                 }
1180                 skb_put(skb, skb_size);
1181                 tx_ring->buffer_info[i].skb = skb;
1182                 tx_ring->buffer_info[i].length = skb->len;
1183                 tx_ring->buffer_info[i].dma =
1184                     dma_map_single(&pdev->dev, skb->data, skb->len,
1185                                    DMA_TO_DEVICE);
1186                 if (dma_mapping_error(&pdev->dev,
1187                                       tx_ring->buffer_info[i].dma)) {
1188                         ret_val = 4;
1189                         goto err_nomem;
1190                 }
1191                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1192                 tx_desc->lower.data = cpu_to_le32(skb->len);
1193                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1194                                                    E1000_TXD_CMD_IFCS |
1195                                                    E1000_TXD_CMD_RS);
1196                 tx_desc->upper.data = 0;
1197         }
1198
1199         /* Setup Rx descriptor ring and Rx buffers */
1200
1201         if (!rx_ring->count)
1202                 rx_ring->count = E1000_DEFAULT_RXD;
1203
1204         rx_ring->buffer_info = kcalloc(rx_ring->count,
1205                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1206         if (!rx_ring->buffer_info) {
1207                 ret_val = 5;
1208                 goto err_nomem;
1209         }
1210
1211         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1212         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1213                                            &rx_ring->dma, GFP_KERNEL);
1214         if (!rx_ring->desc) {
1215                 ret_val = 6;
1216                 goto err_nomem;
1217         }
1218         rx_ring->next_to_use = 0;
1219         rx_ring->next_to_clean = 0;
1220
1221         rctl = er32(RCTL);
1222         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1223                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1224         ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1225         ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1226         ew32(RDLEN(0), rx_ring->size);
1227         ew32(RDH(0), 0);
1228         ew32(RDT(0), 0);
1229         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1230             E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1231             E1000_RCTL_SBP | E1000_RCTL_SECRC |
1232             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1233             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1234         ew32(RCTL, rctl);
1235
1236         for (i = 0; i < rx_ring->count; i++) {
1237                 union e1000_rx_desc_extended *rx_desc;
1238                 struct sk_buff *skb;
1239
1240                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1241                 if (!skb) {
1242                         ret_val = 7;
1243                         goto err_nomem;
1244                 }
1245                 skb_reserve(skb, NET_IP_ALIGN);
1246                 rx_ring->buffer_info[i].skb = skb;
1247                 rx_ring->buffer_info[i].dma =
1248                     dma_map_single(&pdev->dev, skb->data, 2048,
1249                                    DMA_FROM_DEVICE);
1250                 if (dma_mapping_error(&pdev->dev,
1251                                       rx_ring->buffer_info[i].dma)) {
1252                         ret_val = 8;
1253                         goto err_nomem;
1254                 }
1255                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1256                 rx_desc->read.buffer_addr =
1257                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1258                 memset(skb->data, 0x00, skb->len);
1259         }
1260
1261         return 0;
1262
1263 err_nomem:
1264         e1000_free_desc_rings(adapter);
1265         return ret_val;
1266 }
1267
1268 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1269 {
1270         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1271         e1e_wphy(&adapter->hw, 29, 0x001F);
1272         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1273         e1e_wphy(&adapter->hw, 29, 0x001A);
1274         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1275 }
1276
1277 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1278 {
1279         struct e1000_hw *hw = &adapter->hw;
1280         u32 ctrl_reg = 0;
1281         u16 phy_reg = 0;
1282         s32 ret_val = 0;
1283
1284         hw->mac.autoneg = 0;
1285
1286         if (hw->phy.type == e1000_phy_ife) {
1287                 /* force 100, set loopback */
1288                 e1e_wphy(hw, MII_BMCR, 0x6100);
1289
1290                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1291                 ctrl_reg = er32(CTRL);
1292                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1293                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1294                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1295                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1296                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1297
1298                 ew32(CTRL, ctrl_reg);
1299                 e1e_flush();
1300                 usleep_range(500, 1000);
1301
1302                 return 0;
1303         }
1304
1305         /* Specific PHY configuration for loopback */
1306         switch (hw->phy.type) {
1307         case e1000_phy_m88:
1308                 /* Auto-MDI/MDIX Off */
1309                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1310                 /* reset to update Auto-MDI/MDIX */
1311                 e1e_wphy(hw, MII_BMCR, 0x9140);
1312                 /* autoneg off */
1313                 e1e_wphy(hw, MII_BMCR, 0x8140);
1314                 break;
1315         case e1000_phy_gg82563:
1316                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1317                 break;
1318         case e1000_phy_bm:
1319                 /* Set Default MAC Interface speed to 1GB */
1320                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1321                 phy_reg &= ~0x0007;
1322                 phy_reg |= 0x006;
1323                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1324                 /* Assert SW reset for above settings to take effect */
1325                 hw->phy.ops.commit(hw);
1326                 usleep_range(1000, 2000);
1327                 /* Force Full Duplex */
1328                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1329                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1330                 /* Set Link Up (in force link) */
1331                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1332                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1333                 /* Force Link */
1334                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1335                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1336                 /* Set Early Link Enable */
1337                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1338                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1339                 break;
1340         case e1000_phy_82577:
1341         case e1000_phy_82578:
1342                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1343                 ret_val = hw->phy.ops.acquire(hw);
1344                 if (ret_val) {
1345                         e_err("Cannot setup 1Gbps loopback.\n");
1346                         return ret_val;
1347                 }
1348                 e1000_configure_k1_ich8lan(hw, false);
1349                 hw->phy.ops.release(hw);
1350                 break;
1351         case e1000_phy_82579:
1352                 /* Disable PHY energy detect power down */
1353                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1354                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1355                 /* Disable full chip energy detect */
1356                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1357                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1358                 /* Enable loopback on the PHY */
1359                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1360                 break;
1361         default:
1362                 break;
1363         }
1364
1365         /* force 1000, set loopback */
1366         e1e_wphy(hw, MII_BMCR, 0x4140);
1367         msleep(250);
1368
1369         /* Now set up the MAC to the same speed/duplex as the PHY. */
1370         ctrl_reg = er32(CTRL);
1371         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1372         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1373                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1374                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1375                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1376
1377         if (adapter->flags & FLAG_IS_ICH)
1378                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1379
1380         if (hw->phy.media_type == e1000_media_type_copper &&
1381             hw->phy.type == e1000_phy_m88) {
1382                 ctrl_reg |= E1000_CTRL_ILOS;    /* Invert Loss of Signal */
1383         } else {
1384                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1385                  * detected.
1386                  */
1387                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1388                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1389         }
1390
1391         ew32(CTRL, ctrl_reg);
1392
1393         /* Disable the receiver on the PHY so when a cable is plugged in, the
1394          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1395          */
1396         if (hw->phy.type == e1000_phy_m88)
1397                 e1000_phy_disable_receiver(adapter);
1398
1399         usleep_range(500, 1000);
1400
1401         return 0;
1402 }
1403
1404 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1405 {
1406         struct e1000_hw *hw = &adapter->hw;
1407         u32 ctrl = er32(CTRL);
1408         int link;
1409
1410         /* special requirements for 82571/82572 fiber adapters */
1411
1412         /* jump through hoops to make sure link is up because serdes
1413          * link is hardwired up
1414          */
1415         ctrl |= E1000_CTRL_SLU;
1416         ew32(CTRL, ctrl);
1417
1418         /* disable autoneg */
1419         ctrl = er32(TXCW);
1420         ctrl &= ~(1 << 31);
1421         ew32(TXCW, ctrl);
1422
1423         link = (er32(STATUS) & E1000_STATUS_LU);
1424
1425         if (!link) {
1426                 /* set invert loss of signal */
1427                 ctrl = er32(CTRL);
1428                 ctrl |= E1000_CTRL_ILOS;
1429                 ew32(CTRL, ctrl);
1430         }
1431
1432         /* special write to serdes control register to enable SerDes analog
1433          * loopback
1434          */
1435         ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1436         e1e_flush();
1437         usleep_range(10000, 20000);
1438
1439         return 0;
1440 }
1441
1442 /* only call this for fiber/serdes connections to es2lan */
1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1444 {
1445         struct e1000_hw *hw = &adapter->hw;
1446         u32 ctrlext = er32(CTRL_EXT);
1447         u32 ctrl = er32(CTRL);
1448
1449         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1450          * on mac_type 80003es2lan)
1451          */
1452         adapter->tx_fifo_head = ctrlext;
1453
1454         /* clear the serdes mode bits, putting the device into mac loopback */
1455         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1456         ew32(CTRL_EXT, ctrlext);
1457
1458         /* force speed to 1000/FD, link up */
1459         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1460         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1461                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1462         ew32(CTRL, ctrl);
1463
1464         /* set mac loopback */
1465         ctrl = er32(RCTL);
1466         ctrl |= E1000_RCTL_LBM_MAC;
1467         ew32(RCTL, ctrl);
1468
1469         /* set testing mode parameters (no need to reset later) */
1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1472         ew32(KMRNCTRLSTA,
1473              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1474
1475         return 0;
1476 }
1477
1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1479 {
1480         struct e1000_hw *hw = &adapter->hw;
1481         u32 rctl;
1482
1483         if (hw->phy.media_type == e1000_media_type_fiber ||
1484             hw->phy.media_type == e1000_media_type_internal_serdes) {
1485                 switch (hw->mac.type) {
1486                 case e1000_80003es2lan:
1487                         return e1000_set_es2lan_mac_loopback(adapter);
1488                         break;
1489                 case e1000_82571:
1490                 case e1000_82572:
1491                         return e1000_set_82571_fiber_loopback(adapter);
1492                         break;
1493                 default:
1494                         rctl = er32(RCTL);
1495                         rctl |= E1000_RCTL_LBM_TCVR;
1496                         ew32(RCTL, rctl);
1497                         return 0;
1498                 }
1499         } else if (hw->phy.media_type == e1000_media_type_copper) {
1500                 return e1000_integrated_phy_loopback(adapter);
1501         }
1502
1503         return 7;
1504 }
1505
1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1507 {
1508         struct e1000_hw *hw = &adapter->hw;
1509         u32 rctl;
1510         u16 phy_reg;
1511
1512         rctl = er32(RCTL);
1513         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1514         ew32(RCTL, rctl);
1515
1516         switch (hw->mac.type) {
1517         case e1000_80003es2lan:
1518                 if (hw->phy.media_type == e1000_media_type_fiber ||
1519                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1520                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1521                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1522                         adapter->tx_fifo_head = 0;
1523                 }
1524                 /* fall through */
1525         case e1000_82571:
1526         case e1000_82572:
1527                 if (hw->phy.media_type == e1000_media_type_fiber ||
1528                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1529                         ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1530                         e1e_flush();
1531                         usleep_range(10000, 20000);
1532                         break;
1533                 }
1534                 /* Fall Through */
1535         default:
1536                 hw->mac.autoneg = 1;
1537                 if (hw->phy.type == e1000_phy_gg82563)
1538                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1539                 e1e_rphy(hw, MII_BMCR, &phy_reg);
1540                 if (phy_reg & BMCR_LOOPBACK) {
1541                         phy_reg &= ~BMCR_LOOPBACK;
1542                         e1e_wphy(hw, MII_BMCR, phy_reg);
1543                         if (hw->phy.ops.commit)
1544                                 hw->phy.ops.commit(hw);
1545                 }
1546                 break;
1547         }
1548 }
1549
1550 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1551                                       unsigned int frame_size)
1552 {
1553         memset(skb->data, 0xFF, frame_size);
1554         frame_size &= ~1;
1555         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1556         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1557         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1558 }
1559
1560 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1561                                     unsigned int frame_size)
1562 {
1563         frame_size &= ~1;
1564         if (*(skb->data + 3) == 0xFF)
1565                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1566                     (*(skb->data + frame_size / 2 + 12) == 0xAF))
1567                         return 0;
1568         return 13;
1569 }
1570
1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1572 {
1573         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1574         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1575         struct pci_dev *pdev = adapter->pdev;
1576         struct e1000_hw *hw = &adapter->hw;
1577         struct e1000_buffer *buffer_info;
1578         int i, j, k, l;
1579         int lc;
1580         int good_cnt;
1581         int ret_val = 0;
1582         unsigned long time;
1583
1584         ew32(RDT(0), rx_ring->count - 1);
1585
1586         /* Calculate the loop count based on the largest descriptor ring
1587          * The idea is to wrap the largest ring a number of times using 64
1588          * send/receive pairs during each loop
1589          */
1590
1591         if (rx_ring->count <= tx_ring->count)
1592                 lc = ((tx_ring->count / 64) * 2) + 1;
1593         else
1594                 lc = ((rx_ring->count / 64) * 2) + 1;
1595
1596         k = 0;
1597         l = 0;
1598         /* loop count loop */
1599         for (j = 0; j <= lc; j++) {
1600                 /* send the packets */
1601                 for (i = 0; i < 64; i++) {
1602                         buffer_info = &tx_ring->buffer_info[k];
1603
1604                         e1000_create_lbtest_frame(buffer_info->skb, 1024);
1605                         dma_sync_single_for_device(&pdev->dev,
1606                                                    buffer_info->dma,
1607                                                    buffer_info->length,
1608                                                    DMA_TO_DEVICE);
1609                         k++;
1610                         if (k == tx_ring->count)
1611                                 k = 0;
1612                 }
1613                 ew32(TDT(0), k);
1614                 e1e_flush();
1615                 msleep(200);
1616                 time = jiffies; /* set the start time for the receive */
1617                 good_cnt = 0;
1618                 /* receive the sent packets */
1619                 do {
1620                         buffer_info = &rx_ring->buffer_info[l];
1621
1622                         dma_sync_single_for_cpu(&pdev->dev,
1623                                                 buffer_info->dma, 2048,
1624                                                 DMA_FROM_DEVICE);
1625
1626                         ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1627                                                            1024);
1628                         if (!ret_val)
1629                                 good_cnt++;
1630                         l++;
1631                         if (l == rx_ring->count)
1632                                 l = 0;
1633                         /* time + 20 msecs (200 msecs on 2.4) is more than
1634                          * enough time to complete the receives, if it's
1635                          * exceeded, break and error off
1636                          */
1637                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1638                 if (good_cnt != 64) {
1639                         ret_val = 13;   /* ret_val is the same as mis-compare */
1640                         break;
1641                 }
1642                 if (jiffies >= (time + 20)) {
1643                         ret_val = 14;   /* error code for time out error */
1644                         break;
1645                 }
1646         }
1647         return ret_val;
1648 }
1649
1650 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1651 {
1652         struct e1000_hw *hw = &adapter->hw;
1653
1654         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1655         if (hw->phy.ops.check_reset_block &&
1656             hw->phy.ops.check_reset_block(hw)) {
1657                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1658                 *data = 0;
1659                 goto out;
1660         }
1661
1662         *data = e1000_setup_desc_rings(adapter);
1663         if (*data)
1664                 goto out;
1665
1666         *data = e1000_setup_loopback_test(adapter);
1667         if (*data)
1668                 goto err_loopback;
1669
1670         *data = e1000_run_loopback_test(adapter);
1671         e1000_loopback_cleanup(adapter);
1672
1673 err_loopback:
1674         e1000_free_desc_rings(adapter);
1675 out:
1676         return *data;
1677 }
1678
1679 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1680 {
1681         struct e1000_hw *hw = &adapter->hw;
1682
1683         *data = 0;
1684         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1685                 int i = 0;
1686                 hw->mac.serdes_has_link = false;
1687
1688                 /* On some blade server designs, link establishment
1689                  * could take as long as 2-3 minutes
1690                  */
1691                 do {
1692                         hw->mac.ops.check_for_link(hw);
1693                         if (hw->mac.serdes_has_link)
1694                                 return *data;
1695                         msleep(20);
1696                 } while (i++ < 3750);
1697
1698                 *data = 1;
1699         } else {
1700                 hw->mac.ops.check_for_link(hw);
1701                 if (hw->mac.autoneg)
1702                         /* On some Phy/switch combinations, link establishment
1703                          * can take a few seconds more than expected.
1704                          */
1705                         msleep_interruptible(5000);
1706
1707                 if (!(er32(STATUS) & E1000_STATUS_LU))
1708                         *data = 1;
1709         }
1710         return *data;
1711 }
1712
1713 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1714                                  int sset)
1715 {
1716         switch (sset) {
1717         case ETH_SS_TEST:
1718                 return E1000_TEST_LEN;
1719         case ETH_SS_STATS:
1720                 return E1000_STATS_LEN;
1721         default:
1722                 return -EOPNOTSUPP;
1723         }
1724 }
1725
1726 static void e1000_diag_test(struct net_device *netdev,
1727                             struct ethtool_test *eth_test, u64 *data)
1728 {
1729         struct e1000_adapter *adapter = netdev_priv(netdev);
1730         u16 autoneg_advertised;
1731         u8 forced_speed_duplex;
1732         u8 autoneg;
1733         bool if_running = netif_running(netdev);
1734
1735         set_bit(__E1000_TESTING, &adapter->state);
1736
1737         if (!if_running) {
1738                 /* Get control of and reset hardware */
1739                 if (adapter->flags & FLAG_HAS_AMT)
1740                         e1000e_get_hw_control(adapter);
1741
1742                 e1000e_power_up_phy(adapter);
1743
1744                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1745                 e1000e_reset(adapter);
1746                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1747         }
1748
1749         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1750                 /* Offline tests */
1751
1752                 /* save speed, duplex, autoneg settings */
1753                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1754                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1755                 autoneg = adapter->hw.mac.autoneg;
1756
1757                 e_info("offline testing starting\n");
1758
1759                 if (if_running)
1760                         /* indicate we're in test mode */
1761                         dev_close(netdev);
1762
1763                 if (e1000_reg_test(adapter, &data[0]))
1764                         eth_test->flags |= ETH_TEST_FL_FAILED;
1765
1766                 e1000e_reset(adapter);
1767                 if (e1000_eeprom_test(adapter, &data[1]))
1768                         eth_test->flags |= ETH_TEST_FL_FAILED;
1769
1770                 e1000e_reset(adapter);
1771                 if (e1000_intr_test(adapter, &data[2]))
1772                         eth_test->flags |= ETH_TEST_FL_FAILED;
1773
1774                 e1000e_reset(adapter);
1775                 if (e1000_loopback_test(adapter, &data[3]))
1776                         eth_test->flags |= ETH_TEST_FL_FAILED;
1777
1778                 /* force this routine to wait until autoneg complete/timeout */
1779                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1780                 e1000e_reset(adapter);
1781                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1782
1783                 if (e1000_link_test(adapter, &data[4]))
1784                         eth_test->flags |= ETH_TEST_FL_FAILED;
1785
1786                 /* restore speed, duplex, autoneg settings */
1787                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1788                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1789                 adapter->hw.mac.autoneg = autoneg;
1790                 e1000e_reset(adapter);
1791
1792                 clear_bit(__E1000_TESTING, &adapter->state);
1793                 if (if_running)
1794                         dev_open(netdev);
1795         } else {
1796                 /* Online tests */
1797
1798                 e_info("online testing starting\n");
1799
1800                 /* register, eeprom, intr and loopback tests not run online */
1801                 data[0] = 0;
1802                 data[1] = 0;
1803                 data[2] = 0;
1804                 data[3] = 0;
1805
1806                 if (e1000_link_test(adapter, &data[4]))
1807                         eth_test->flags |= ETH_TEST_FL_FAILED;
1808
1809                 clear_bit(__E1000_TESTING, &adapter->state);
1810         }
1811
1812         if (!if_running) {
1813                 e1000e_reset(adapter);
1814
1815                 if (adapter->flags & FLAG_HAS_AMT)
1816                         e1000e_release_hw_control(adapter);
1817         }
1818
1819         msleep_interruptible(4 * 1000);
1820 }
1821
1822 static void e1000_get_wol(struct net_device *netdev,
1823                           struct ethtool_wolinfo *wol)
1824 {
1825         struct e1000_adapter *adapter = netdev_priv(netdev);
1826
1827         wol->supported = 0;
1828         wol->wolopts = 0;
1829
1830         if (!(adapter->flags & FLAG_HAS_WOL) ||
1831             !device_can_wakeup(&adapter->pdev->dev))
1832                 return;
1833
1834         wol->supported = WAKE_UCAST | WAKE_MCAST |
1835             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1836
1837         /* apply any specific unsupported masks here */
1838         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1839                 wol->supported &= ~WAKE_UCAST;
1840
1841                 if (adapter->wol & E1000_WUFC_EX)
1842                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1843         }
1844
1845         if (adapter->wol & E1000_WUFC_EX)
1846                 wol->wolopts |= WAKE_UCAST;
1847         if (adapter->wol & E1000_WUFC_MC)
1848                 wol->wolopts |= WAKE_MCAST;
1849         if (adapter->wol & E1000_WUFC_BC)
1850                 wol->wolopts |= WAKE_BCAST;
1851         if (adapter->wol & E1000_WUFC_MAG)
1852                 wol->wolopts |= WAKE_MAGIC;
1853         if (adapter->wol & E1000_WUFC_LNKC)
1854                 wol->wolopts |= WAKE_PHY;
1855 }
1856
1857 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1858 {
1859         struct e1000_adapter *adapter = netdev_priv(netdev);
1860
1861         if (!(adapter->flags & FLAG_HAS_WOL) ||
1862             !device_can_wakeup(&adapter->pdev->dev) ||
1863             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1864                               WAKE_MAGIC | WAKE_PHY)))
1865                 return -EOPNOTSUPP;
1866
1867         /* these settings will always override what we currently have */
1868         adapter->wol = 0;
1869
1870         if (wol->wolopts & WAKE_UCAST)
1871                 adapter->wol |= E1000_WUFC_EX;
1872         if (wol->wolopts & WAKE_MCAST)
1873                 adapter->wol |= E1000_WUFC_MC;
1874         if (wol->wolopts & WAKE_BCAST)
1875                 adapter->wol |= E1000_WUFC_BC;
1876         if (wol->wolopts & WAKE_MAGIC)
1877                 adapter->wol |= E1000_WUFC_MAG;
1878         if (wol->wolopts & WAKE_PHY)
1879                 adapter->wol |= E1000_WUFC_LNKC;
1880
1881         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1882
1883         return 0;
1884 }
1885
1886 static int e1000_set_phys_id(struct net_device *netdev,
1887                              enum ethtool_phys_id_state state)
1888 {
1889         struct e1000_adapter *adapter = netdev_priv(netdev);
1890         struct e1000_hw *hw = &adapter->hw;
1891
1892         switch (state) {
1893         case ETHTOOL_ID_ACTIVE:
1894                 if (!hw->mac.ops.blink_led)
1895                         return 2;       /* cycle on/off twice per second */
1896
1897                 hw->mac.ops.blink_led(hw);
1898                 break;
1899
1900         case ETHTOOL_ID_INACTIVE:
1901                 if (hw->phy.type == e1000_phy_ife)
1902                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1903                 hw->mac.ops.led_off(hw);
1904                 hw->mac.ops.cleanup_led(hw);
1905                 break;
1906
1907         case ETHTOOL_ID_ON:
1908                 hw->mac.ops.led_on(hw);
1909                 break;
1910
1911         case ETHTOOL_ID_OFF:
1912                 hw->mac.ops.led_off(hw);
1913                 break;
1914         }
1915         return 0;
1916 }
1917
1918 static int e1000_get_coalesce(struct net_device *netdev,
1919                               struct ethtool_coalesce *ec)
1920 {
1921         struct e1000_adapter *adapter = netdev_priv(netdev);
1922
1923         if (adapter->itr_setting <= 4)
1924                 ec->rx_coalesce_usecs = adapter->itr_setting;
1925         else
1926                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1927
1928         return 0;
1929 }
1930
1931 static int e1000_set_coalesce(struct net_device *netdev,
1932                               struct ethtool_coalesce *ec)
1933 {
1934         struct e1000_adapter *adapter = netdev_priv(netdev);
1935
1936         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1937             ((ec->rx_coalesce_usecs > 4) &&
1938              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1939             (ec->rx_coalesce_usecs == 2))
1940                 return -EINVAL;
1941
1942         if (ec->rx_coalesce_usecs == 4) {
1943                 adapter->itr_setting = 4;
1944                 adapter->itr = adapter->itr_setting;
1945         } else if (ec->rx_coalesce_usecs <= 3) {
1946                 adapter->itr = 20000;
1947                 adapter->itr_setting = ec->rx_coalesce_usecs;
1948         } else {
1949                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1950                 adapter->itr_setting = adapter->itr & ~3;
1951         }
1952
1953         if (adapter->itr_setting != 0)
1954                 e1000e_write_itr(adapter, adapter->itr);
1955         else
1956                 e1000e_write_itr(adapter, 0);
1957
1958         return 0;
1959 }
1960
1961 static int e1000_nway_reset(struct net_device *netdev)
1962 {
1963         struct e1000_adapter *adapter = netdev_priv(netdev);
1964
1965         if (!netif_running(netdev))
1966                 return -EAGAIN;
1967
1968         if (!adapter->hw.mac.autoneg)
1969                 return -EINVAL;
1970
1971         e1000e_reinit_locked(adapter);
1972
1973         return 0;
1974 }
1975
1976 static void e1000_get_ethtool_stats(struct net_device *netdev,
1977                                     struct ethtool_stats __always_unused *stats,
1978                                     u64 *data)
1979 {
1980         struct e1000_adapter *adapter = netdev_priv(netdev);
1981         struct rtnl_link_stats64 net_stats;
1982         int i;
1983         char *p = NULL;
1984
1985         e1000e_get_stats64(netdev, &net_stats);
1986         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1987                 switch (e1000_gstrings_stats[i].type) {
1988                 case NETDEV_STATS:
1989                         p = (char *)&net_stats +
1990                             e1000_gstrings_stats[i].stat_offset;
1991                         break;
1992                 case E1000_STATS:
1993                         p = (char *)adapter +
1994                             e1000_gstrings_stats[i].stat_offset;
1995                         break;
1996                 default:
1997                         data[i] = 0;
1998                         continue;
1999                 }
2000
2001                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2002                            sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2003         }
2004 }
2005
2006 static void e1000_get_strings(struct net_device __always_unused *netdev,
2007                               u32 stringset, u8 *data)
2008 {
2009         u8 *p = data;
2010         int i;
2011
2012         switch (stringset) {
2013         case ETH_SS_TEST:
2014                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2015                 break;
2016         case ETH_SS_STATS:
2017                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2018                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2019                                ETH_GSTRING_LEN);
2020                         p += ETH_GSTRING_LEN;
2021                 }
2022                 break;
2023         }
2024 }
2025
2026 static int e1000_get_rxnfc(struct net_device *netdev,
2027                            struct ethtool_rxnfc *info,
2028                            u32 __always_unused *rule_locs)
2029 {
2030         info->data = 0;
2031
2032         switch (info->cmd) {
2033         case ETHTOOL_GRXFH: {
2034                 struct e1000_adapter *adapter = netdev_priv(netdev);
2035                 struct e1000_hw *hw = &adapter->hw;
2036                 u32 mrqc = er32(MRQC);
2037
2038                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2039                         return 0;
2040
2041                 switch (info->flow_type) {
2042                 case TCP_V4_FLOW:
2043                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2044                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2045                         /* fall through */
2046                 case UDP_V4_FLOW:
2047                 case SCTP_V4_FLOW:
2048                 case AH_ESP_V4_FLOW:
2049                 case IPV4_FLOW:
2050                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2051                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2052                         break;
2053                 case TCP_V6_FLOW:
2054                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2055                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2056                         /* fall through */
2057                 case UDP_V6_FLOW:
2058                 case SCTP_V6_FLOW:
2059                 case AH_ESP_V6_FLOW:
2060                 case IPV6_FLOW:
2061                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2062                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2063                         break;
2064                 default:
2065                         break;
2066                 }
2067                 return 0;
2068         }
2069         default:
2070                 return -EOPNOTSUPP;
2071         }
2072 }
2073
2074 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2075 {
2076         struct e1000_adapter *adapter = netdev_priv(netdev);
2077         struct e1000_hw *hw = &adapter->hw;
2078         u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2079         u32 ret_val;
2080
2081         if (!(adapter->flags2 & FLAG2_HAS_EEE))
2082                 return -EOPNOTSUPP;
2083
2084         switch (hw->phy.type) {
2085         case e1000_phy_82579:
2086                 cap_addr = I82579_EEE_CAPABILITY;
2087                 lpa_addr = I82579_EEE_LP_ABILITY;
2088                 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2089                 break;
2090         case e1000_phy_i217:
2091                 cap_addr = I217_EEE_CAPABILITY;
2092                 lpa_addr = I217_EEE_LP_ABILITY;
2093                 pcs_stat_addr = I217_EEE_PCS_STATUS;
2094                 break;
2095         default:
2096                 return -EOPNOTSUPP;
2097         }
2098
2099         ret_val = hw->phy.ops.acquire(hw);
2100         if (ret_val)
2101                 return -EBUSY;
2102
2103         /* EEE Capability */
2104         ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2105         if (ret_val)
2106                 goto release;
2107         edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2108
2109         /* EEE Advertised */
2110         edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2111
2112         /* EEE Link Partner Advertised */
2113         ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2114         if (ret_val)
2115                 goto release;
2116         edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2117
2118         /* EEE PCS Status */
2119         ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2120         if (hw->phy.type == e1000_phy_82579)
2121                 phy_data <<= 8;
2122
2123 release:
2124         hw->phy.ops.release(hw);
2125         if (ret_val)
2126                 return -ENODATA;
2127
2128         /* Result of the EEE auto negotiation - there is no register that
2129          * has the status of the EEE negotiation so do a best-guess based
2130          * on whether Tx or Rx LPI indications have been received.
2131          */
2132         if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2133                 edata->eee_active = true;
2134
2135         edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2136         edata->tx_lpi_enabled = true;
2137         edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2138
2139         return 0;
2140 }
2141
2142 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2143 {
2144         struct e1000_adapter *adapter = netdev_priv(netdev);
2145         struct e1000_hw *hw = &adapter->hw;
2146         struct ethtool_eee eee_curr;
2147         s32 ret_val;
2148
2149         ret_val = e1000e_get_eee(netdev, &eee_curr);
2150         if (ret_val)
2151                 return ret_val;
2152
2153         if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2154                 e_err("Setting EEE tx-lpi is not supported\n");
2155                 return -EINVAL;
2156         }
2157
2158         if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2159                 e_err("Setting EEE Tx LPI timer is not supported\n");
2160                 return -EINVAL;
2161         }
2162
2163         if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2164                 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2165                 return -EINVAL;
2166         }
2167
2168         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2169
2170         hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2171
2172         /* reset the link */
2173         if (netif_running(netdev))
2174                 e1000e_reinit_locked(adapter);
2175         else
2176                 e1000e_reset(adapter);
2177
2178         return 0;
2179 }
2180
2181 static int e1000e_get_ts_info(struct net_device *netdev,
2182                               struct ethtool_ts_info *info)
2183 {
2184         struct e1000_adapter *adapter = netdev_priv(netdev);
2185
2186         ethtool_op_get_ts_info(netdev, info);
2187
2188         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2189                 return 0;
2190
2191         info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2192                                   SOF_TIMESTAMPING_RX_HARDWARE |
2193                                   SOF_TIMESTAMPING_RAW_HARDWARE);
2194
2195         info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2196
2197         info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2198                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2199                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2200                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2201                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2202                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2203                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2204                             (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2205                             (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2206                             (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2207                             (1 << HWTSTAMP_FILTER_ALL));
2208
2209         if (adapter->ptp_clock)
2210                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2211
2212         return 0;
2213 }
2214
2215 static int e1000e_ethtool_begin(struct net_device *netdev)
2216 {
2217         return pm_runtime_get_sync(netdev->dev.parent);
2218 }
2219
2220 static void e1000e_ethtool_complete(struct net_device *netdev)
2221 {
2222         pm_runtime_put_sync(netdev->dev.parent);
2223 }
2224
2225 static const struct ethtool_ops e1000_ethtool_ops = {
2226         .begin                  = e1000e_ethtool_begin,
2227         .complete               = e1000e_ethtool_complete,
2228         .get_settings           = e1000_get_settings,
2229         .set_settings           = e1000_set_settings,
2230         .get_drvinfo            = e1000_get_drvinfo,
2231         .get_regs_len           = e1000_get_regs_len,
2232         .get_regs               = e1000_get_regs,
2233         .get_wol                = e1000_get_wol,
2234         .set_wol                = e1000_set_wol,
2235         .get_msglevel           = e1000_get_msglevel,
2236         .set_msglevel           = e1000_set_msglevel,
2237         .nway_reset             = e1000_nway_reset,
2238         .get_link               = ethtool_op_get_link,
2239         .get_eeprom_len         = e1000_get_eeprom_len,
2240         .get_eeprom             = e1000_get_eeprom,
2241         .set_eeprom             = e1000_set_eeprom,
2242         .get_ringparam          = e1000_get_ringparam,
2243         .set_ringparam          = e1000_set_ringparam,
2244         .get_pauseparam         = e1000_get_pauseparam,
2245         .set_pauseparam         = e1000_set_pauseparam,
2246         .self_test              = e1000_diag_test,
2247         .get_strings            = e1000_get_strings,
2248         .set_phys_id            = e1000_set_phys_id,
2249         .get_ethtool_stats      = e1000_get_ethtool_stats,
2250         .get_sset_count         = e1000e_get_sset_count,
2251         .get_coalesce           = e1000_get_coalesce,
2252         .set_coalesce           = e1000_set_coalesce,
2253         .get_rxnfc              = e1000_get_rxnfc,
2254         .get_ts_info            = e1000e_get_ts_info,
2255         .get_eee                = e1000e_get_eee,
2256         .set_eee                = e1000e_set_eee,
2257 };
2258
2259 void e1000e_set_ethtool_ops(struct net_device *netdev)
2260 {
2261         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2262 }