spi/topcliff-pch: Fix Kconfig dependencies
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64         struct ich8_hsfsts {
65                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
66                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
67                 u16 dael:1;     /* bit 2 Direct Access error Log */
68                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
70                 u16 reserved1:2;        /* bit 13:6 Reserved */
71                 u16 reserved2:6;        /* bit 13:6 Reserved */
72                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
73                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
74         } hsf_status;
75         u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81         struct ich8_hsflctl {
82                 u16 flcgo:1;    /* 0 Flash Cycle Go */
83                 u16 flcycle:2;  /* 2:1 Flash Cycle */
84                 u16 reserved:5; /* 7:3 Reserved  */
85                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
86                 u16 flockdn:6;  /* 15:10 Reserved */
87         } hsf_ctrl;
88         u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93         struct ich8_flracc {
94                 u32 grra:8;     /* 0:7 GbE region Read Access */
95                 u32 grwa:8;     /* 8:15 GbE region Write Access */
96                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
97                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
98         } hsf_flregacc;
99         u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104         struct ich8_pr {
105                 u32 base:13;    /* 0:12 Protected Range Base */
106                 u32 reserved1:2;        /* 13:14 Reserved */
107                 u32 rpe:1;      /* 15 Read Protection Enable */
108                 u32 limit:13;   /* 16:28 Protected Range Limit */
109                 u32 reserved2:2;        /* 29:30 Reserved */
110                 u32 wpe:1;      /* 31 Write Protection Enable */
111         } range;
112         u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119                                                 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121                                          u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123                                          u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125                                          u8 size, u16 *data);
126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
142 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
143 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
144 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
145 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
146 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
147 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
148 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
149
150 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
151 {
152         return readw(hw->flash_address + reg);
153 }
154
155 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
156 {
157         return readl(hw->flash_address + reg);
158 }
159
160 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
161 {
162         writew(val, hw->flash_address + reg);
163 }
164
165 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
166 {
167         writel(val, hw->flash_address + reg);
168 }
169
170 #define er16flash(reg)          __er16flash(hw, (reg))
171 #define er32flash(reg)          __er32flash(hw, (reg))
172 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
173 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
174
175 /**
176  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
177  *  @hw: pointer to the HW structure
178  *
179  *  Test access to the PHY registers by reading the PHY ID registers.  If
180  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
181  *  otherwise assume the read PHY ID is correct if it is valid.
182  *
183  *  Assumes the sw/fw/hw semaphore is already acquired.
184  **/
185 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
186 {
187         u16 phy_reg = 0;
188         u32 phy_id = 0;
189         s32 ret_val;
190         u16 retry_count;
191         u32 mac_reg = 0;
192
193         for (retry_count = 0; retry_count < 2; retry_count++) {
194                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
195                 if (ret_val || (phy_reg == 0xFFFF))
196                         continue;
197                 phy_id = (u32)(phy_reg << 16);
198
199                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
200                 if (ret_val || (phy_reg == 0xFFFF)) {
201                         phy_id = 0;
202                         continue;
203                 }
204                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
205                 break;
206         }
207
208         if (hw->phy.id) {
209                 if (hw->phy.id == phy_id)
210                         goto out;
211         } else if (phy_id) {
212                 hw->phy.id = phy_id;
213                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
214                 goto out;
215         }
216
217         /* In case the PHY needs to be in mdio slow mode,
218          * set slow mode and try to get the PHY id again.
219          */
220         hw->phy.ops.release(hw);
221         ret_val = e1000_set_mdio_slow_mode_hv(hw);
222         if (!ret_val)
223                 ret_val = e1000e_get_phy_id(hw);
224         hw->phy.ops.acquire(hw);
225
226         if (ret_val)
227                 return false;
228 out:
229         if (hw->mac.type == e1000_pch_lpt) {
230                 /* Unforce SMBus mode in PHY */
231                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234
235                 /* Unforce SMBus mode in MAC */
236                 mac_reg = er32(CTRL_EXT);
237                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
238                 ew32(CTRL_EXT, mac_reg);
239         }
240
241         return true;
242 }
243
244 /**
245  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
246  *  @hw: pointer to the HW structure
247  *
248  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
249  *  used to reset the PHY to a quiescent state when necessary.
250  **/
251 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
252 {
253         u32 mac_reg;
254
255         /* Set Phy Config Counter to 50msec */
256         mac_reg = er32(FEXTNVM3);
257         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
258         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
259         ew32(FEXTNVM3, mac_reg);
260
261         /* Toggle LANPHYPC Value bit */
262         mac_reg = er32(CTRL);
263         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
264         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
265         ew32(CTRL, mac_reg);
266         e1e_flush();
267         usleep_range(10, 20);
268         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
269         ew32(CTRL, mac_reg);
270         e1e_flush();
271
272         if (hw->mac.type < e1000_pch_lpt) {
273                 msleep(50);
274         } else {
275                 u16 count = 20;
276
277                 do {
278                         usleep_range(5000, 10000);
279                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
280
281                 msleep(30);
282         }
283 }
284
285 /**
286  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
287  *  @hw: pointer to the HW structure
288  *
289  *  Workarounds/flow necessary for PHY initialization during driver load
290  *  and resume paths.
291  **/
292 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
293 {
294         struct e1000_adapter *adapter = hw->adapter;
295         u32 mac_reg, fwsm = er32(FWSM);
296         s32 ret_val;
297
298         /* Gate automatic PHY configuration by hardware on managed and
299          * non-managed 82579 and newer adapters.
300          */
301         e1000_gate_hw_phy_config_ich8lan(hw, true);
302
303         /* It is not possible to be certain of the current state of ULP
304          * so forcibly disable it.
305          */
306         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
307         e1000_disable_ulp_lpt_lp(hw, true);
308
309         ret_val = hw->phy.ops.acquire(hw);
310         if (ret_val) {
311                 e_dbg("Failed to initialize PHY flow\n");
312                 goto out;
313         }
314
315         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
316          * inaccessible and resetting the PHY is not blocked, toggle the
317          * LANPHYPC Value bit to force the interconnect to PCIe mode.
318          */
319         switch (hw->mac.type) {
320         case e1000_pch_lpt:
321                 if (e1000_phy_is_accessible_pchlan(hw))
322                         break;
323
324                 /* Before toggling LANPHYPC, see if PHY is accessible by
325                  * forcing MAC to SMBus mode first.
326                  */
327                 mac_reg = er32(CTRL_EXT);
328                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
329                 ew32(CTRL_EXT, mac_reg);
330
331                 /* Wait 50 milliseconds for MAC to finish any retries
332                  * that it might be trying to perform from previous
333                  * attempts to acknowledge any phy read requests.
334                  */
335                 msleep(50);
336
337                 /* fall-through */
338         case e1000_pch2lan:
339                 if (e1000_phy_is_accessible_pchlan(hw))
340                         break;
341
342                 /* fall-through */
343         case e1000_pchlan:
344                 if ((hw->mac.type == e1000_pchlan) &&
345                     (fwsm & E1000_ICH_FWSM_FW_VALID))
346                         break;
347
348                 if (hw->phy.ops.check_reset_block(hw)) {
349                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
350                         ret_val = -E1000_ERR_PHY;
351                         break;
352                 }
353
354                 /* Toggle LANPHYPC Value bit */
355                 e1000_toggle_lanphypc_pch_lpt(hw);
356                 if (hw->mac.type >= e1000_pch_lpt) {
357                         if (e1000_phy_is_accessible_pchlan(hw))
358                                 break;
359
360                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
361                          * so ensure that the MAC is also out of SMBus mode
362                          */
363                         mac_reg = er32(CTRL_EXT);
364                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
365                         ew32(CTRL_EXT, mac_reg);
366
367                         if (e1000_phy_is_accessible_pchlan(hw))
368                                 break;
369
370                         ret_val = -E1000_ERR_PHY;
371                 }
372                 break;
373         default:
374                 break;
375         }
376
377         hw->phy.ops.release(hw);
378         if (!ret_val) {
379
380                 /* Check to see if able to reset PHY.  Print error if not */
381                 if (hw->phy.ops.check_reset_block(hw)) {
382                         e_err("Reset blocked by ME\n");
383                         goto out;
384                 }
385
386                 /* Reset the PHY before any access to it.  Doing so, ensures
387                  * that the PHY is in a known good state before we read/write
388                  * PHY registers.  The generic reset is sufficient here,
389                  * because we haven't determined the PHY type yet.
390                  */
391                 ret_val = e1000e_phy_hw_reset_generic(hw);
392                 if (ret_val)
393                         goto out;
394
395                 /* On a successful reset, possibly need to wait for the PHY
396                  * to quiesce to an accessible state before returning control
397                  * to the calling function.  If the PHY does not quiesce, then
398                  * return E1000E_BLK_PHY_RESET, as this is the condition that
399                  *  the PHY is in.
400                  */
401                 ret_val = hw->phy.ops.check_reset_block(hw);
402                 if (ret_val)
403                         e_err("ME blocked access to PHY after reset\n");
404         }
405
406 out:
407         /* Ungate automatic PHY configuration on non-managed 82579 */
408         if ((hw->mac.type == e1000_pch2lan) &&
409             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
410                 usleep_range(10000, 20000);
411                 e1000_gate_hw_phy_config_ich8lan(hw, false);
412         }
413
414         return ret_val;
415 }
416
417 /**
418  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
419  *  @hw: pointer to the HW structure
420  *
421  *  Initialize family-specific PHY parameters and function pointers.
422  **/
423 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
424 {
425         struct e1000_phy_info *phy = &hw->phy;
426         s32 ret_val;
427
428         phy->addr = 1;
429         phy->reset_delay_us = 100;
430
431         phy->ops.set_page = e1000_set_page_igp;
432         phy->ops.read_reg = e1000_read_phy_reg_hv;
433         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
434         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
435         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
436         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
437         phy->ops.write_reg = e1000_write_phy_reg_hv;
438         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
439         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
440         phy->ops.power_up = e1000_power_up_phy_copper;
441         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
442         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
443
444         phy->id = e1000_phy_unknown;
445
446         ret_val = e1000_init_phy_workarounds_pchlan(hw);
447         if (ret_val)
448                 return ret_val;
449
450         if (phy->id == e1000_phy_unknown)
451                 switch (hw->mac.type) {
452                 default:
453                         ret_val = e1000e_get_phy_id(hw);
454                         if (ret_val)
455                                 return ret_val;
456                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
457                                 break;
458                         /* fall-through */
459                 case e1000_pch2lan:
460                 case e1000_pch_lpt:
461                         /* In case the PHY needs to be in mdio slow mode,
462                          * set slow mode and try to get the PHY id again.
463                          */
464                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
465                         if (ret_val)
466                                 return ret_val;
467                         ret_val = e1000e_get_phy_id(hw);
468                         if (ret_val)
469                                 return ret_val;
470                         break;
471                 }
472         phy->type = e1000e_get_phy_type_from_id(phy->id);
473
474         switch (phy->type) {
475         case e1000_phy_82577:
476         case e1000_phy_82579:
477         case e1000_phy_i217:
478                 phy->ops.check_polarity = e1000_check_polarity_82577;
479                 phy->ops.force_speed_duplex =
480                     e1000_phy_force_speed_duplex_82577;
481                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
482                 phy->ops.get_info = e1000_get_phy_info_82577;
483                 phy->ops.commit = e1000e_phy_sw_reset;
484                 break;
485         case e1000_phy_82578:
486                 phy->ops.check_polarity = e1000_check_polarity_m88;
487                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
488                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
489                 phy->ops.get_info = e1000e_get_phy_info_m88;
490                 break;
491         default:
492                 ret_val = -E1000_ERR_PHY;
493                 break;
494         }
495
496         return ret_val;
497 }
498
499 /**
500  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
501  *  @hw: pointer to the HW structure
502  *
503  *  Initialize family-specific PHY parameters and function pointers.
504  **/
505 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
506 {
507         struct e1000_phy_info *phy = &hw->phy;
508         s32 ret_val;
509         u16 i = 0;
510
511         phy->addr = 1;
512         phy->reset_delay_us = 100;
513
514         phy->ops.power_up = e1000_power_up_phy_copper;
515         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
516
517         /* We may need to do this twice - once for IGP and if that fails,
518          * we'll set BM func pointers and try again
519          */
520         ret_val = e1000e_determine_phy_address(hw);
521         if (ret_val) {
522                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
523                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
524                 ret_val = e1000e_determine_phy_address(hw);
525                 if (ret_val) {
526                         e_dbg("Cannot determine PHY addr. Erroring out\n");
527                         return ret_val;
528                 }
529         }
530
531         phy->id = 0;
532         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
533                (i++ < 100)) {
534                 usleep_range(1000, 2000);
535                 ret_val = e1000e_get_phy_id(hw);
536                 if (ret_val)
537                         return ret_val;
538         }
539
540         /* Verify phy id */
541         switch (phy->id) {
542         case IGP03E1000_E_PHY_ID:
543                 phy->type = e1000_phy_igp_3;
544                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
545                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
546                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
547                 phy->ops.get_info = e1000e_get_phy_info_igp;
548                 phy->ops.check_polarity = e1000_check_polarity_igp;
549                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
550                 break;
551         case IFE_E_PHY_ID:
552         case IFE_PLUS_E_PHY_ID:
553         case IFE_C_E_PHY_ID:
554                 phy->type = e1000_phy_ife;
555                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
556                 phy->ops.get_info = e1000_get_phy_info_ife;
557                 phy->ops.check_polarity = e1000_check_polarity_ife;
558                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
559                 break;
560         case BME1000_E_PHY_ID:
561                 phy->type = e1000_phy_bm;
562                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
564                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
565                 phy->ops.commit = e1000e_phy_sw_reset;
566                 phy->ops.get_info = e1000e_get_phy_info_m88;
567                 phy->ops.check_polarity = e1000_check_polarity_m88;
568                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
569                 break;
570         default:
571                 return -E1000_ERR_PHY;
572                 break;
573         }
574
575         return 0;
576 }
577
578 /**
579  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
580  *  @hw: pointer to the HW structure
581  *
582  *  Initialize family-specific NVM parameters and function
583  *  pointers.
584  **/
585 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
586 {
587         struct e1000_nvm_info *nvm = &hw->nvm;
588         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
589         u32 gfpreg, sector_base_addr, sector_end_addr;
590         u16 i;
591
592         /* Can't read flash registers if the register set isn't mapped. */
593         if (!hw->flash_address) {
594                 e_dbg("ERROR: Flash registers not mapped\n");
595                 return -E1000_ERR_CONFIG;
596         }
597
598         nvm->type = e1000_nvm_flash_sw;
599
600         gfpreg = er32flash(ICH_FLASH_GFPREG);
601
602         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
603          * Add 1 to sector_end_addr since this sector is included in
604          * the overall size.
605          */
606         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
607         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
608
609         /* flash_base_addr is byte-aligned */
610         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
611
612         /* find total size of the NVM, then cut in half since the total
613          * size represents two separate NVM banks.
614          */
615         nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
616                                 << FLASH_SECTOR_ADDR_SHIFT);
617         nvm->flash_bank_size /= 2;
618         /* Adjust to word count */
619         nvm->flash_bank_size /= sizeof(u16);
620
621         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
622
623         /* Clear shadow ram */
624         for (i = 0; i < nvm->word_size; i++) {
625                 dev_spec->shadow_ram[i].modified = false;
626                 dev_spec->shadow_ram[i].value = 0xFFFF;
627         }
628
629         return 0;
630 }
631
632 /**
633  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
634  *  @hw: pointer to the HW structure
635  *
636  *  Initialize family-specific MAC parameters and function
637  *  pointers.
638  **/
639 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
640 {
641         struct e1000_mac_info *mac = &hw->mac;
642
643         /* Set media type function pointer */
644         hw->phy.media_type = e1000_media_type_copper;
645
646         /* Set mta register count */
647         mac->mta_reg_count = 32;
648         /* Set rar entry count */
649         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
650         if (mac->type == e1000_ich8lan)
651                 mac->rar_entry_count--;
652         /* FWSM register */
653         mac->has_fwsm = true;
654         /* ARC subsystem not supported */
655         mac->arc_subsystem_valid = false;
656         /* Adaptive IFS supported */
657         mac->adaptive_ifs = true;
658
659         /* LED and other operations */
660         switch (mac->type) {
661         case e1000_ich8lan:
662         case e1000_ich9lan:
663         case e1000_ich10lan:
664                 /* check management mode */
665                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
666                 /* ID LED init */
667                 mac->ops.id_led_init = e1000e_id_led_init_generic;
668                 /* blink LED */
669                 mac->ops.blink_led = e1000e_blink_led_generic;
670                 /* setup LED */
671                 mac->ops.setup_led = e1000e_setup_led_generic;
672                 /* cleanup LED */
673                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
674                 /* turn on/off LED */
675                 mac->ops.led_on = e1000_led_on_ich8lan;
676                 mac->ops.led_off = e1000_led_off_ich8lan;
677                 break;
678         case e1000_pch2lan:
679                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
680                 mac->ops.rar_set = e1000_rar_set_pch2lan;
681                 /* fall-through */
682         case e1000_pch_lpt:
683         case e1000_pchlan:
684                 /* check management mode */
685                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
686                 /* ID LED init */
687                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
688                 /* setup LED */
689                 mac->ops.setup_led = e1000_setup_led_pchlan;
690                 /* cleanup LED */
691                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
692                 /* turn on/off LED */
693                 mac->ops.led_on = e1000_led_on_pchlan;
694                 mac->ops.led_off = e1000_led_off_pchlan;
695                 break;
696         default:
697                 break;
698         }
699
700         if (mac->type == e1000_pch_lpt) {
701                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
702                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
703                 mac->ops.setup_physical_interface =
704                     e1000_setup_copper_link_pch_lpt;
705         }
706
707         /* Enable PCS Lock-loss workaround for ICH8 */
708         if (mac->type == e1000_ich8lan)
709                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
710
711         return 0;
712 }
713
714 /**
715  *  __e1000_access_emi_reg_locked - Read/write EMI register
716  *  @hw: pointer to the HW structure
717  *  @addr: EMI address to program
718  *  @data: pointer to value to read/write from/to the EMI address
719  *  @read: boolean flag to indicate read or write
720  *
721  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
722  **/
723 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
724                                          u16 *data, bool read)
725 {
726         s32 ret_val;
727
728         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
729         if (ret_val)
730                 return ret_val;
731
732         if (read)
733                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
734         else
735                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
736
737         return ret_val;
738 }
739
740 /**
741  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
742  *  @hw: pointer to the HW structure
743  *  @addr: EMI address to program
744  *  @data: value to be read from the EMI address
745  *
746  *  Assumes the SW/FW/HW Semaphore is already acquired.
747  **/
748 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
749 {
750         return __e1000_access_emi_reg_locked(hw, addr, data, true);
751 }
752
753 /**
754  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: value to be written to the EMI address
758  *
759  *  Assumes the SW/FW/HW Semaphore is already acquired.
760  **/
761 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
762 {
763         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
764 }
765
766 /**
767  *  e1000_set_eee_pchlan - Enable/disable EEE support
768  *  @hw: pointer to the HW structure
769  *
770  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
771  *  the link and the EEE capabilities of the link partner.  The LPI Control
772  *  register bits will remain set only if/when link is up.
773  *
774  *  EEE LPI must not be asserted earlier than one second after link is up.
775  *  On 82579, EEE LPI should not be enabled until such time otherwise there
776  *  can be link issues with some switches.  Other devices can have EEE LPI
777  *  enabled immediately upon link up since they have a timer in hardware which
778  *  prevents LPI from being asserted too early.
779  **/
780 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
781 {
782         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
783         s32 ret_val;
784         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
785
786         switch (hw->phy.type) {
787         case e1000_phy_82579:
788                 lpa = I82579_EEE_LP_ABILITY;
789                 pcs_status = I82579_EEE_PCS_STATUS;
790                 adv_addr = I82579_EEE_ADVERTISEMENT;
791                 break;
792         case e1000_phy_i217:
793                 lpa = I217_EEE_LP_ABILITY;
794                 pcs_status = I217_EEE_PCS_STATUS;
795                 adv_addr = I217_EEE_ADVERTISEMENT;
796                 break;
797         default:
798                 return 0;
799         }
800
801         ret_val = hw->phy.ops.acquire(hw);
802         if (ret_val)
803                 return ret_val;
804
805         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
806         if (ret_val)
807                 goto release;
808
809         /* Clear bits that enable EEE in various speeds */
810         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
811
812         /* Enable EEE if not disabled by user */
813         if (!dev_spec->eee_disable) {
814                 /* Save off link partner's EEE ability */
815                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
816                                                     &dev_spec->eee_lp_ability);
817                 if (ret_val)
818                         goto release;
819
820                 /* Read EEE advertisement */
821                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
822                 if (ret_val)
823                         goto release;
824
825                 /* Enable EEE only for speeds in which the link partner is
826                  * EEE capable and for which we advertise EEE.
827                  */
828                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
829                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
830
831                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
832                         e1e_rphy_locked(hw, MII_LPA, &data);
833                         if (data & LPA_100FULL)
834                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
835                         else
836                                 /* EEE is not supported in 100Half, so ignore
837                                  * partner's EEE in 100 ability if full-duplex
838                                  * is not advertised.
839                                  */
840                                 dev_spec->eee_lp_ability &=
841                                     ~I82579_EEE_100_SUPPORTED;
842                 }
843         }
844
845         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
846         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
847         if (ret_val)
848                 goto release;
849
850         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
851 release:
852         hw->phy.ops.release(hw);
853
854         return ret_val;
855 }
856
857 /**
858  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
859  *  @hw:   pointer to the HW structure
860  *  @link: link up bool flag
861  *
862  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
863  *  preventing further DMA write requests.  Workaround the issue by disabling
864  *  the de-assertion of the clock request when in 1Gpbs mode.
865  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
866  *  speeds in order to avoid Tx hangs.
867  **/
868 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
869 {
870         u32 fextnvm6 = er32(FEXTNVM6);
871         u32 status = er32(STATUS);
872         s32 ret_val = 0;
873         u16 reg;
874
875         if (link && (status & E1000_STATUS_SPEED_1000)) {
876                 ret_val = hw->phy.ops.acquire(hw);
877                 if (ret_val)
878                         return ret_val;
879
880                 ret_val =
881                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
882                                                 &reg);
883                 if (ret_val)
884                         goto release;
885
886                 ret_val =
887                     e1000e_write_kmrn_reg_locked(hw,
888                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
889                                                  reg &
890                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
891                 if (ret_val)
892                         goto release;
893
894                 usleep_range(10, 20);
895
896                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
897
898                 ret_val =
899                     e1000e_write_kmrn_reg_locked(hw,
900                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
901                                                  reg);
902 release:
903                 hw->phy.ops.release(hw);
904         } else {
905                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
906                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
907
908                 if (!link || ((status & E1000_STATUS_SPEED_100) &&
909                               (status & E1000_STATUS_FD)))
910                         goto update_fextnvm6;
911
912                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
913                 if (ret_val)
914                         return ret_val;
915
916                 /* Clear link status transmit timeout */
917                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
918
919                 if (status & E1000_STATUS_SPEED_100) {
920                         /* Set inband Tx timeout to 5x10us for 100Half */
921                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
922
923                         /* Do not extend the K1 entry latency for 100Half */
924                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
925                 } else {
926                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
927                         reg |= 50 <<
928                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
929
930                         /* Extend the K1 entry latency for 10 Mbps */
931                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
932                 }
933
934                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
935                 if (ret_val)
936                         return ret_val;
937
938 update_fextnvm6:
939                 ew32(FEXTNVM6, fextnvm6);
940         }
941
942         return ret_val;
943 }
944
945 /**
946  *  e1000_platform_pm_pch_lpt - Set platform power management values
947  *  @hw: pointer to the HW structure
948  *  @link: bool indicating link status
949  *
950  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
951  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
952  *  when link is up (which must not exceed the maximum latency supported
953  *  by the platform), otherwise specify there is no LTR requirement.
954  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
955  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
956  *  Capability register set, on this device LTR is set by writing the
957  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
958  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
959  *  message to the PMC.
960  **/
961 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
962 {
963         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
964             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
965         u16 lat_enc = 0;        /* latency encoded */
966
967         if (link) {
968                 u16 speed, duplex, scale = 0;
969                 u16 max_snoop, max_nosnoop;
970                 u16 max_ltr_enc;        /* max LTR latency encoded */
971                 s64 lat_ns;     /* latency (ns) */
972                 s64 value;
973                 u32 rxa;
974
975                 if (!hw->adapter->max_frame_size) {
976                         e_dbg("max_frame_size not set.\n");
977                         return -E1000_ERR_CONFIG;
978                 }
979
980                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
981                 if (!speed) {
982                         e_dbg("Speed not set.\n");
983                         return -E1000_ERR_CONFIG;
984                 }
985
986                 /* Rx Packet Buffer Allocation size (KB) */
987                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
988
989                 /* Determine the maximum latency tolerated by the device.
990                  *
991                  * Per the PCIe spec, the tolerated latencies are encoded as
992                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
993                  * a 10-bit value (0-1023) to provide a range from 1 ns to
994                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
995                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
996                  */
997                 lat_ns = ((s64)rxa * 1024 -
998                           (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
999                 if (lat_ns < 0)
1000                         lat_ns = 0;
1001                 else
1002                         do_div(lat_ns, speed);
1003
1004                 value = lat_ns;
1005                 while (value > PCI_LTR_VALUE_MASK) {
1006                         scale++;
1007                         value = DIV_ROUND_UP(value, (1 << 5));
1008                 }
1009                 if (scale > E1000_LTRV_SCALE_MAX) {
1010                         e_dbg("Invalid LTR latency scale %d\n", scale);
1011                         return -E1000_ERR_CONFIG;
1012                 }
1013                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1014
1015                 /* Determine the maximum latency tolerated by the platform */
1016                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1017                                      &max_snoop);
1018                 pci_read_config_word(hw->adapter->pdev,
1019                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1020                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1021
1022                 if (lat_enc > max_ltr_enc)
1023                         lat_enc = max_ltr_enc;
1024         }
1025
1026         /* Set Snoop and No-Snoop latencies the same */
1027         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1028         ew32(LTRV, reg);
1029
1030         return 0;
1031 }
1032
1033 /**
1034  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1035  *  @hw: pointer to the HW structure
1036  *  @to_sx: boolean indicating a system power state transition to Sx
1037  *
1038  *  When link is down, configure ULP mode to significantly reduce the power
1039  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1040  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1041  *  system, configure the ULP mode by software.
1042  */
1043 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1044 {
1045         u32 mac_reg;
1046         s32 ret_val = 0;
1047         u16 phy_reg;
1048
1049         if ((hw->mac.type < e1000_pch_lpt) ||
1050             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1051             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1052             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1053             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1054             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1055                 return 0;
1056
1057         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1058                 /* Request ME configure ULP mode in the PHY */
1059                 mac_reg = er32(H2ME);
1060                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1061                 ew32(H2ME, mac_reg);
1062
1063                 goto out;
1064         }
1065
1066         if (!to_sx) {
1067                 int i = 0;
1068
1069                 /* Poll up to 5 seconds for Cable Disconnected indication */
1070                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1071                         /* Bail if link is re-acquired */
1072                         if (er32(STATUS) & E1000_STATUS_LU)
1073                                 return -E1000_ERR_PHY;
1074
1075                         if (i++ == 100)
1076                                 break;
1077
1078                         msleep(50);
1079                 }
1080                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1081                       (er32(FEXT) &
1082                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1083         }
1084
1085         ret_val = hw->phy.ops.acquire(hw);
1086         if (ret_val)
1087                 goto out;
1088
1089         /* Force SMBus mode in PHY */
1090         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1091         if (ret_val)
1092                 goto release;
1093         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1094         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1095
1096         /* Force SMBus mode in MAC */
1097         mac_reg = er32(CTRL_EXT);
1098         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1099         ew32(CTRL_EXT, mac_reg);
1100
1101         /* Set Inband ULP Exit, Reset to SMBus mode and
1102          * Disable SMBus Release on PERST# in PHY
1103          */
1104         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1105         if (ret_val)
1106                 goto release;
1107         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1108                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1109         if (to_sx) {
1110                 if (er32(WUFC) & E1000_WUFC_LNKC)
1111                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1112
1113                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1114         } else {
1115                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1116         }
1117         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1118
1119         /* Set Disable SMBus Release on PERST# in MAC */
1120         mac_reg = er32(FEXTNVM7);
1121         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1122         ew32(FEXTNVM7, mac_reg);
1123
1124         /* Commit ULP changes in PHY by starting auto ULP configuration */
1125         phy_reg |= I218_ULP_CONFIG1_START;
1126         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1127 release:
1128         hw->phy.ops.release(hw);
1129 out:
1130         if (ret_val)
1131                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1132         else
1133                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1134
1135         return ret_val;
1136 }
1137
1138 /**
1139  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1140  *  @hw: pointer to the HW structure
1141  *  @force: boolean indicating whether or not to force disabling ULP
1142  *
1143  *  Un-configure ULP mode when link is up, the system is transitioned from
1144  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1145  *  system, poll for an indication from ME that ULP has been un-configured.
1146  *  If not on an ME enabled system, un-configure the ULP mode by software.
1147  *
1148  *  During nominal operation, this function is called when link is acquired
1149  *  to disable ULP mode (force=false); otherwise, for example when unloading
1150  *  the driver or during Sx->S0 transitions, this is called with force=true
1151  *  to forcibly disable ULP.
1152  */
1153 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1154 {
1155         s32 ret_val = 0;
1156         u32 mac_reg;
1157         u16 phy_reg;
1158         int i = 0;
1159
1160         if ((hw->mac.type < e1000_pch_lpt) ||
1161             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1162             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1163             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1164             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1165             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1166                 return 0;
1167
1168         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1169                 if (force) {
1170                         /* Request ME un-configure ULP mode in the PHY */
1171                         mac_reg = er32(H2ME);
1172                         mac_reg &= ~E1000_H2ME_ULP;
1173                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1174                         ew32(H2ME, mac_reg);
1175                 }
1176
1177                 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1178                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1179                         if (i++ == 10) {
1180                                 ret_val = -E1000_ERR_PHY;
1181                                 goto out;
1182                         }
1183
1184                         usleep_range(10000, 20000);
1185                 }
1186                 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1187
1188                 if (force) {
1189                         mac_reg = er32(H2ME);
1190                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1191                         ew32(H2ME, mac_reg);
1192                 } else {
1193                         /* Clear H2ME.ULP after ME ULP configuration */
1194                         mac_reg = er32(H2ME);
1195                         mac_reg &= ~E1000_H2ME_ULP;
1196                         ew32(H2ME, mac_reg);
1197                 }
1198
1199                 goto out;
1200         }
1201
1202         ret_val = hw->phy.ops.acquire(hw);
1203         if (ret_val)
1204                 goto out;
1205
1206         if (force)
1207                 /* Toggle LANPHYPC Value bit */
1208                 e1000_toggle_lanphypc_pch_lpt(hw);
1209
1210         /* Unforce SMBus mode in PHY */
1211         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1212         if (ret_val) {
1213                 /* The MAC might be in PCIe mode, so temporarily force to
1214                  * SMBus mode in order to access the PHY.
1215                  */
1216                 mac_reg = er32(CTRL_EXT);
1217                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1218                 ew32(CTRL_EXT, mac_reg);
1219
1220                 msleep(50);
1221
1222                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1223                                                        &phy_reg);
1224                 if (ret_val)
1225                         goto release;
1226         }
1227         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1228         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1229
1230         /* Unforce SMBus mode in MAC */
1231         mac_reg = er32(CTRL_EXT);
1232         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1233         ew32(CTRL_EXT, mac_reg);
1234
1235         /* When ULP mode was previously entered, K1 was disabled by the
1236          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1237          */
1238         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1239         if (ret_val)
1240                 goto release;
1241         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1242         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1243
1244         /* Clear ULP enabled configuration */
1245         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1246         if (ret_val)
1247                 goto release;
1248         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1249                      I218_ULP_CONFIG1_STICKY_ULP |
1250                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1251                      I218_ULP_CONFIG1_WOL_HOST |
1252                      I218_ULP_CONFIG1_INBAND_EXIT |
1253                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1254         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256         /* Commit ULP changes by starting auto ULP configuration */
1257         phy_reg |= I218_ULP_CONFIG1_START;
1258         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1259
1260         /* Clear Disable SMBus Release on PERST# in MAC */
1261         mac_reg = er32(FEXTNVM7);
1262         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1263         ew32(FEXTNVM7, mac_reg);
1264
1265 release:
1266         hw->phy.ops.release(hw);
1267         if (force) {
1268                 e1000_phy_hw_reset(hw);
1269                 msleep(50);
1270         }
1271 out:
1272         if (ret_val)
1273                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1274         else
1275                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1276
1277         return ret_val;
1278 }
1279
1280 /**
1281  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1282  *  @hw: pointer to the HW structure
1283  *
1284  *  Checks to see of the link status of the hardware has changed.  If a
1285  *  change in link status has been detected, then we read the PHY registers
1286  *  to get the current speed/duplex if link exists.
1287  **/
1288 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1289 {
1290         struct e1000_mac_info *mac = &hw->mac;
1291         s32 ret_val;
1292         bool link;
1293         u16 phy_reg;
1294
1295         /* We only want to go out to the PHY registers to see if Auto-Neg
1296          * has completed and/or if our link status has changed.  The
1297          * get_link_status flag is set upon receiving a Link Status
1298          * Change or Rx Sequence Error interrupt.
1299          */
1300         if (!mac->get_link_status)
1301                 return 0;
1302
1303         /* First we want to see if the MII Status Register reports
1304          * link.  If so, then we want to get the current speed/duplex
1305          * of the PHY.
1306          */
1307         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1308         if (ret_val)
1309                 return ret_val;
1310
1311         if (hw->mac.type == e1000_pchlan) {
1312                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1313                 if (ret_val)
1314                         return ret_val;
1315         }
1316
1317         /* When connected at 10Mbps half-duplex, 82579 parts are excessively
1318          * aggressive resulting in many collisions. To avoid this, increase
1319          * the IPG and reduce Rx latency in the PHY.
1320          */
1321         if ((hw->mac.type == e1000_pch2lan) && link) {
1322                 u32 reg;
1323                 reg = er32(STATUS);
1324                 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1325                         reg = er32(TIPG);
1326                         reg &= ~E1000_TIPG_IPGT_MASK;
1327                         reg |= 0xFF;
1328                         ew32(TIPG, reg);
1329
1330                         /* Reduce Rx latency in analog PHY */
1331                         ret_val = hw->phy.ops.acquire(hw);
1332                         if (ret_val)
1333                                 return ret_val;
1334
1335                         ret_val =
1336                             e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
1337
1338                         hw->phy.ops.release(hw);
1339
1340                         if (ret_val)
1341                                 return ret_val;
1342                 }
1343         }
1344
1345         /* Work-around I218 hang issue */
1346         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1347             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1348             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1349             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1350                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1351                 if (ret_val)
1352                         return ret_val;
1353         }
1354
1355         if (hw->mac.type == e1000_pch_lpt) {
1356                 /* Set platform power management values for
1357                  * Latency Tolerance Reporting (LTR)
1358                  */
1359                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1360                 if (ret_val)
1361                         return ret_val;
1362         }
1363
1364         /* Clear link partner's EEE ability */
1365         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1366
1367         if (!link)
1368                 return 0;       /* No link detected */
1369
1370         mac->get_link_status = false;
1371
1372         switch (hw->mac.type) {
1373         case e1000_pch2lan:
1374                 ret_val = e1000_k1_workaround_lv(hw);
1375                 if (ret_val)
1376                         return ret_val;
1377                 /* fall-thru */
1378         case e1000_pchlan:
1379                 if (hw->phy.type == e1000_phy_82578) {
1380                         ret_val = e1000_link_stall_workaround_hv(hw);
1381                         if (ret_val)
1382                                 return ret_val;
1383                 }
1384
1385                 /* Workaround for PCHx parts in half-duplex:
1386                  * Set the number of preambles removed from the packet
1387                  * when it is passed from the PHY to the MAC to prevent
1388                  * the MAC from misinterpreting the packet type.
1389                  */
1390                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1391                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1392
1393                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1394                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1395
1396                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1397                 break;
1398         default:
1399                 break;
1400         }
1401
1402         /* Check if there was DownShift, must be checked
1403          * immediately after link-up
1404          */
1405         e1000e_check_downshift(hw);
1406
1407         /* Enable/Disable EEE after link up */
1408         if (hw->phy.type > e1000_phy_82579) {
1409                 ret_val = e1000_set_eee_pchlan(hw);
1410                 if (ret_val)
1411                         return ret_val;
1412         }
1413
1414         /* If we are forcing speed/duplex, then we simply return since
1415          * we have already determined whether we have link or not.
1416          */
1417         if (!mac->autoneg)
1418                 return -E1000_ERR_CONFIG;
1419
1420         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1421          * of MAC speed/duplex configuration.  So we only need to
1422          * configure Collision Distance in the MAC.
1423          */
1424         mac->ops.config_collision_dist(hw);
1425
1426         /* Configure Flow Control now that Auto-Neg has completed.
1427          * First, we need to restore the desired flow control
1428          * settings because we may have had to re-autoneg with a
1429          * different link partner.
1430          */
1431         ret_val = e1000e_config_fc_after_link_up(hw);
1432         if (ret_val)
1433                 e_dbg("Error configuring flow control\n");
1434
1435         return ret_val;
1436 }
1437
1438 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1439 {
1440         struct e1000_hw *hw = &adapter->hw;
1441         s32 rc;
1442
1443         rc = e1000_init_mac_params_ich8lan(hw);
1444         if (rc)
1445                 return rc;
1446
1447         rc = e1000_init_nvm_params_ich8lan(hw);
1448         if (rc)
1449                 return rc;
1450
1451         switch (hw->mac.type) {
1452         case e1000_ich8lan:
1453         case e1000_ich9lan:
1454         case e1000_ich10lan:
1455                 rc = e1000_init_phy_params_ich8lan(hw);
1456                 break;
1457         case e1000_pchlan:
1458         case e1000_pch2lan:
1459         case e1000_pch_lpt:
1460                 rc = e1000_init_phy_params_pchlan(hw);
1461                 break;
1462         default:
1463                 break;
1464         }
1465         if (rc)
1466                 return rc;
1467
1468         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1469          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1470          */
1471         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1472             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1473              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1474                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1475                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1476
1477                 hw->mac.ops.blink_led = NULL;
1478         }
1479
1480         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1481             (adapter->hw.phy.type != e1000_phy_ife))
1482                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1483
1484         /* Enable workaround for 82579 w/ ME enabled */
1485         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1486             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1487                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1488
1489         return 0;
1490 }
1491
1492 static DEFINE_MUTEX(nvm_mutex);
1493
1494 /**
1495  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1496  *  @hw: pointer to the HW structure
1497  *
1498  *  Acquires the mutex for performing NVM operations.
1499  **/
1500 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1501 {
1502         mutex_lock(&nvm_mutex);
1503
1504         return 0;
1505 }
1506
1507 /**
1508  *  e1000_release_nvm_ich8lan - Release NVM mutex
1509  *  @hw: pointer to the HW structure
1510  *
1511  *  Releases the mutex used while performing NVM operations.
1512  **/
1513 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1514 {
1515         mutex_unlock(&nvm_mutex);
1516 }
1517
1518 /**
1519  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1520  *  @hw: pointer to the HW structure
1521  *
1522  *  Acquires the software control flag for performing PHY and select
1523  *  MAC CSR accesses.
1524  **/
1525 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1526 {
1527         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1528         s32 ret_val = 0;
1529
1530         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1531                              &hw->adapter->state)) {
1532                 e_dbg("contention for Phy access\n");
1533                 return -E1000_ERR_PHY;
1534         }
1535
1536         while (timeout) {
1537                 extcnf_ctrl = er32(EXTCNF_CTRL);
1538                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1539                         break;
1540
1541                 mdelay(1);
1542                 timeout--;
1543         }
1544
1545         if (!timeout) {
1546                 e_dbg("SW has already locked the resource.\n");
1547                 ret_val = -E1000_ERR_CONFIG;
1548                 goto out;
1549         }
1550
1551         timeout = SW_FLAG_TIMEOUT;
1552
1553         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1554         ew32(EXTCNF_CTRL, extcnf_ctrl);
1555
1556         while (timeout) {
1557                 extcnf_ctrl = er32(EXTCNF_CTRL);
1558                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1559                         break;
1560
1561                 mdelay(1);
1562                 timeout--;
1563         }
1564
1565         if (!timeout) {
1566                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1567                       er32(FWSM), extcnf_ctrl);
1568                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1569                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1570                 ret_val = -E1000_ERR_CONFIG;
1571                 goto out;
1572         }
1573
1574 out:
1575         if (ret_val)
1576                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1577
1578         return ret_val;
1579 }
1580
1581 /**
1582  *  e1000_release_swflag_ich8lan - Release software control flag
1583  *  @hw: pointer to the HW structure
1584  *
1585  *  Releases the software control flag for performing PHY and select
1586  *  MAC CSR accesses.
1587  **/
1588 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1589 {
1590         u32 extcnf_ctrl;
1591
1592         extcnf_ctrl = er32(EXTCNF_CTRL);
1593
1594         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1595                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1596                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1597         } else {
1598                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1599         }
1600
1601         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1602 }
1603
1604 /**
1605  *  e1000_check_mng_mode_ich8lan - Checks management mode
1606  *  @hw: pointer to the HW structure
1607  *
1608  *  This checks if the adapter has any manageability enabled.
1609  *  This is a function pointer entry point only called by read/write
1610  *  routines for the PHY and NVM parts.
1611  **/
1612 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1613 {
1614         u32 fwsm;
1615
1616         fwsm = er32(FWSM);
1617         return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1618                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1619                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1620 }
1621
1622 /**
1623  *  e1000_check_mng_mode_pchlan - Checks management mode
1624  *  @hw: pointer to the HW structure
1625  *
1626  *  This checks if the adapter has iAMT enabled.
1627  *  This is a function pointer entry point only called by read/write
1628  *  routines for the PHY and NVM parts.
1629  **/
1630 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1631 {
1632         u32 fwsm;
1633
1634         fwsm = er32(FWSM);
1635         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1636             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1637 }
1638
1639 /**
1640  *  e1000_rar_set_pch2lan - Set receive address register
1641  *  @hw: pointer to the HW structure
1642  *  @addr: pointer to the receive address
1643  *  @index: receive address array register
1644  *
1645  *  Sets the receive address array register at index to the address passed
1646  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1647  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1648  *  Use SHRA[0-3] in place of those reserved for ME.
1649  **/
1650 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1651 {
1652         u32 rar_low, rar_high;
1653
1654         /* HW expects these in little endian so we reverse the byte order
1655          * from network order (big endian) to little endian
1656          */
1657         rar_low = ((u32)addr[0] |
1658                    ((u32)addr[1] << 8) |
1659                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1660
1661         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1662
1663         /* If MAC address zero, no need to set the AV bit */
1664         if (rar_low || rar_high)
1665                 rar_high |= E1000_RAH_AV;
1666
1667         if (index == 0) {
1668                 ew32(RAL(index), rar_low);
1669                 e1e_flush();
1670                 ew32(RAH(index), rar_high);
1671                 e1e_flush();
1672                 return;
1673         }
1674
1675         /* RAR[1-6] are owned by manageability.  Skip those and program the
1676          * next address into the SHRA register array.
1677          */
1678         if (index < (u32)(hw->mac.rar_entry_count)) {
1679                 s32 ret_val;
1680
1681                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1682                 if (ret_val)
1683                         goto out;
1684
1685                 ew32(SHRAL(index - 1), rar_low);
1686                 e1e_flush();
1687                 ew32(SHRAH(index - 1), rar_high);
1688                 e1e_flush();
1689
1690                 e1000_release_swflag_ich8lan(hw);
1691
1692                 /* verify the register updates */
1693                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1694                     (er32(SHRAH(index - 1)) == rar_high))
1695                         return;
1696
1697                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1698                       (index - 1), er32(FWSM));
1699         }
1700
1701 out:
1702         e_dbg("Failed to write receive address at index %d\n", index);
1703 }
1704
1705 /**
1706  *  e1000_rar_set_pch_lpt - Set receive address registers
1707  *  @hw: pointer to the HW structure
1708  *  @addr: pointer to the receive address
1709  *  @index: receive address array register
1710  *
1711  *  Sets the receive address register array at index to the address passed
1712  *  in by addr. For LPT, RAR[0] is the base address register that is to
1713  *  contain the MAC address. SHRA[0-10] are the shared receive address
1714  *  registers that are shared between the Host and manageability engine (ME).
1715  **/
1716 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1717 {
1718         u32 rar_low, rar_high;
1719         u32 wlock_mac;
1720
1721         /* HW expects these in little endian so we reverse the byte order
1722          * from network order (big endian) to little endian
1723          */
1724         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1725                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1726
1727         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1728
1729         /* If MAC address zero, no need to set the AV bit */
1730         if (rar_low || rar_high)
1731                 rar_high |= E1000_RAH_AV;
1732
1733         if (index == 0) {
1734                 ew32(RAL(index), rar_low);
1735                 e1e_flush();
1736                 ew32(RAH(index), rar_high);
1737                 e1e_flush();
1738                 return;
1739         }
1740
1741         /* The manageability engine (ME) can lock certain SHRAR registers that
1742          * it is using - those registers are unavailable for use.
1743          */
1744         if (index < hw->mac.rar_entry_count) {
1745                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1746                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1747
1748                 /* Check if all SHRAR registers are locked */
1749                 if (wlock_mac == 1)
1750                         goto out;
1751
1752                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1753                         s32 ret_val;
1754
1755                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1756
1757                         if (ret_val)
1758                                 goto out;
1759
1760                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1761                         e1e_flush();
1762                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1763                         e1e_flush();
1764
1765                         e1000_release_swflag_ich8lan(hw);
1766
1767                         /* verify the register updates */
1768                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1769                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1770                                 return;
1771                 }
1772         }
1773
1774 out:
1775         e_dbg("Failed to write receive address at index %d\n", index);
1776 }
1777
1778 /**
1779  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1780  *  @hw: pointer to the HW structure
1781  *
1782  *  Checks if firmware is blocking the reset of the PHY.
1783  *  This is a function pointer entry point only called by
1784  *  reset routines.
1785  **/
1786 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1787 {
1788         bool blocked = false;
1789         int i = 0;
1790
1791         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1792                (i++ < 10))
1793                 usleep_range(10000, 20000);
1794         return blocked ? E1000_BLK_PHY_RESET : 0;
1795 }
1796
1797 /**
1798  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1799  *  @hw: pointer to the HW structure
1800  *
1801  *  Assumes semaphore already acquired.
1802  *
1803  **/
1804 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1805 {
1806         u16 phy_data;
1807         u32 strap = er32(STRAP);
1808         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1809             E1000_STRAP_SMT_FREQ_SHIFT;
1810         s32 ret_val;
1811
1812         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1813
1814         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1815         if (ret_val)
1816                 return ret_val;
1817
1818         phy_data &= ~HV_SMB_ADDR_MASK;
1819         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1820         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1821
1822         if (hw->phy.type == e1000_phy_i217) {
1823                 /* Restore SMBus frequency */
1824                 if (freq--) {
1825                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1826                         phy_data |= (freq & (1 << 0)) <<
1827                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1828                         phy_data |= (freq & (1 << 1)) <<
1829                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1830                 } else {
1831                         e_dbg("Unsupported SMB frequency in PHY\n");
1832                 }
1833         }
1834
1835         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1836 }
1837
1838 /**
1839  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1840  *  @hw:   pointer to the HW structure
1841  *
1842  *  SW should configure the LCD from the NVM extended configuration region
1843  *  as a workaround for certain parts.
1844  **/
1845 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1846 {
1847         struct e1000_phy_info *phy = &hw->phy;
1848         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1849         s32 ret_val = 0;
1850         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1851
1852         /* Initialize the PHY from the NVM on ICH platforms.  This
1853          * is needed due to an issue where the NVM configuration is
1854          * not properly autoloaded after power transitions.
1855          * Therefore, after each PHY reset, we will load the
1856          * configuration data out of the NVM manually.
1857          */
1858         switch (hw->mac.type) {
1859         case e1000_ich8lan:
1860                 if (phy->type != e1000_phy_igp_3)
1861                         return ret_val;
1862
1863                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1864                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1865                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1866                         break;
1867                 }
1868                 /* Fall-thru */
1869         case e1000_pchlan:
1870         case e1000_pch2lan:
1871         case e1000_pch_lpt:
1872                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1873                 break;
1874         default:
1875                 return ret_val;
1876         }
1877
1878         ret_val = hw->phy.ops.acquire(hw);
1879         if (ret_val)
1880                 return ret_val;
1881
1882         data = er32(FEXTNVM);
1883         if (!(data & sw_cfg_mask))
1884                 goto release;
1885
1886         /* Make sure HW does not configure LCD from PHY
1887          * extended configuration before SW configuration
1888          */
1889         data = er32(EXTCNF_CTRL);
1890         if ((hw->mac.type < e1000_pch2lan) &&
1891             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1892                 goto release;
1893
1894         cnf_size = er32(EXTCNF_SIZE);
1895         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1896         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1897         if (!cnf_size)
1898                 goto release;
1899
1900         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1901         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1902
1903         if (((hw->mac.type == e1000_pchlan) &&
1904              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1905             (hw->mac.type > e1000_pchlan)) {
1906                 /* HW configures the SMBus address and LEDs when the
1907                  * OEM and LCD Write Enable bits are set in the NVM.
1908                  * When both NVM bits are cleared, SW will configure
1909                  * them instead.
1910                  */
1911                 ret_val = e1000_write_smbus_addr(hw);
1912                 if (ret_val)
1913                         goto release;
1914
1915                 data = er32(LEDCTL);
1916                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1917                                                         (u16)data);
1918                 if (ret_val)
1919                         goto release;
1920         }
1921
1922         /* Configure LCD from extended configuration region. */
1923
1924         /* cnf_base_addr is in DWORD */
1925         word_addr = (u16)(cnf_base_addr << 1);
1926
1927         for (i = 0; i < cnf_size; i++) {
1928                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1929                 if (ret_val)
1930                         goto release;
1931
1932                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1933                                          1, &reg_addr);
1934                 if (ret_val)
1935                         goto release;
1936
1937                 /* Save off the PHY page for future writes. */
1938                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1939                         phy_page = reg_data;
1940                         continue;
1941                 }
1942
1943                 reg_addr &= PHY_REG_MASK;
1944                 reg_addr |= phy_page;
1945
1946                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1947                 if (ret_val)
1948                         goto release;
1949         }
1950
1951 release:
1952         hw->phy.ops.release(hw);
1953         return ret_val;
1954 }
1955
1956 /**
1957  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1958  *  @hw:   pointer to the HW structure
1959  *  @link: link up bool flag
1960  *
1961  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1962  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1963  *  If link is down, the function will restore the default K1 setting located
1964  *  in the NVM.
1965  **/
1966 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1967 {
1968         s32 ret_val = 0;
1969         u16 status_reg = 0;
1970         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1971
1972         if (hw->mac.type != e1000_pchlan)
1973                 return 0;
1974
1975         /* Wrap the whole flow with the sw flag */
1976         ret_val = hw->phy.ops.acquire(hw);
1977         if (ret_val)
1978                 return ret_val;
1979
1980         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1981         if (link) {
1982                 if (hw->phy.type == e1000_phy_82578) {
1983                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1984                                                   &status_reg);
1985                         if (ret_val)
1986                                 goto release;
1987
1988                         status_reg &= (BM_CS_STATUS_LINK_UP |
1989                                        BM_CS_STATUS_RESOLVED |
1990                                        BM_CS_STATUS_SPEED_MASK);
1991
1992                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1993                                            BM_CS_STATUS_RESOLVED |
1994                                            BM_CS_STATUS_SPEED_1000))
1995                                 k1_enable = false;
1996                 }
1997
1998                 if (hw->phy.type == e1000_phy_82577) {
1999                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2000                         if (ret_val)
2001                                 goto release;
2002
2003                         status_reg &= (HV_M_STATUS_LINK_UP |
2004                                        HV_M_STATUS_AUTONEG_COMPLETE |
2005                                        HV_M_STATUS_SPEED_MASK);
2006
2007                         if (status_reg == (HV_M_STATUS_LINK_UP |
2008                                            HV_M_STATUS_AUTONEG_COMPLETE |
2009                                            HV_M_STATUS_SPEED_1000))
2010                                 k1_enable = false;
2011                 }
2012
2013                 /* Link stall fix for link up */
2014                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2015                 if (ret_val)
2016                         goto release;
2017
2018         } else {
2019                 /* Link stall fix for link down */
2020                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2021                 if (ret_val)
2022                         goto release;
2023         }
2024
2025         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2026
2027 release:
2028         hw->phy.ops.release(hw);
2029
2030         return ret_val;
2031 }
2032
2033 /**
2034  *  e1000_configure_k1_ich8lan - Configure K1 power state
2035  *  @hw: pointer to the HW structure
2036  *  @enable: K1 state to configure
2037  *
2038  *  Configure the K1 power state based on the provided parameter.
2039  *  Assumes semaphore already acquired.
2040  *
2041  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2042  **/
2043 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2044 {
2045         s32 ret_val;
2046         u32 ctrl_reg = 0;
2047         u32 ctrl_ext = 0;
2048         u32 reg = 0;
2049         u16 kmrn_reg = 0;
2050
2051         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2052                                               &kmrn_reg);
2053         if (ret_val)
2054                 return ret_val;
2055
2056         if (k1_enable)
2057                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2058         else
2059                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2060
2061         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2062                                                kmrn_reg);
2063         if (ret_val)
2064                 return ret_val;
2065
2066         usleep_range(20, 40);
2067         ctrl_ext = er32(CTRL_EXT);
2068         ctrl_reg = er32(CTRL);
2069
2070         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2071         reg |= E1000_CTRL_FRCSPD;
2072         ew32(CTRL, reg);
2073
2074         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2075         e1e_flush();
2076         usleep_range(20, 40);
2077         ew32(CTRL, ctrl_reg);
2078         ew32(CTRL_EXT, ctrl_ext);
2079         e1e_flush();
2080         usleep_range(20, 40);
2081
2082         return 0;
2083 }
2084
2085 /**
2086  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2087  *  @hw:       pointer to the HW structure
2088  *  @d0_state: boolean if entering d0 or d3 device state
2089  *
2090  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2091  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2092  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2093  **/
2094 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2095 {
2096         s32 ret_val = 0;
2097         u32 mac_reg;
2098         u16 oem_reg;
2099
2100         if (hw->mac.type < e1000_pchlan)
2101                 return ret_val;
2102
2103         ret_val = hw->phy.ops.acquire(hw);
2104         if (ret_val)
2105                 return ret_val;
2106
2107         if (hw->mac.type == e1000_pchlan) {
2108                 mac_reg = er32(EXTCNF_CTRL);
2109                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2110                         goto release;
2111         }
2112
2113         mac_reg = er32(FEXTNVM);
2114         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2115                 goto release;
2116
2117         mac_reg = er32(PHY_CTRL);
2118
2119         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2120         if (ret_val)
2121                 goto release;
2122
2123         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2124
2125         if (d0_state) {
2126                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2127                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2128
2129                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2130                         oem_reg |= HV_OEM_BITS_LPLU;
2131         } else {
2132                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2133                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2134                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2135
2136                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2137                                E1000_PHY_CTRL_NOND0A_LPLU))
2138                         oem_reg |= HV_OEM_BITS_LPLU;
2139         }
2140
2141         /* Set Restart auto-neg to activate the bits */
2142         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2143             !hw->phy.ops.check_reset_block(hw))
2144                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2145
2146         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2147
2148 release:
2149         hw->phy.ops.release(hw);
2150
2151         return ret_val;
2152 }
2153
2154 /**
2155  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2156  *  @hw:   pointer to the HW structure
2157  **/
2158 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2159 {
2160         s32 ret_val;
2161         u16 data;
2162
2163         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2164         if (ret_val)
2165                 return ret_val;
2166
2167         data |= HV_KMRN_MDIO_SLOW;
2168
2169         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2170
2171         return ret_val;
2172 }
2173
2174 /**
2175  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2176  *  done after every PHY reset.
2177  **/
2178 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2179 {
2180         s32 ret_val = 0;
2181         u16 phy_data;
2182
2183         if (hw->mac.type != e1000_pchlan)
2184                 return 0;
2185
2186         /* Set MDIO slow mode before any other MDIO access */
2187         if (hw->phy.type == e1000_phy_82577) {
2188                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2189                 if (ret_val)
2190                         return ret_val;
2191         }
2192
2193         if (((hw->phy.type == e1000_phy_82577) &&
2194              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2195             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2196                 /* Disable generation of early preamble */
2197                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2198                 if (ret_val)
2199                         return ret_val;
2200
2201                 /* Preamble tuning for SSC */
2202                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2203                 if (ret_val)
2204                         return ret_val;
2205         }
2206
2207         if (hw->phy.type == e1000_phy_82578) {
2208                 /* Return registers to default by doing a soft reset then
2209                  * writing 0x3140 to the control register.
2210                  */
2211                 if (hw->phy.revision < 2) {
2212                         e1000e_phy_sw_reset(hw);
2213                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2214                 }
2215         }
2216
2217         /* Select page 0 */
2218         ret_val = hw->phy.ops.acquire(hw);
2219         if (ret_val)
2220                 return ret_val;
2221
2222         hw->phy.addr = 1;
2223         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2224         hw->phy.ops.release(hw);
2225         if (ret_val)
2226                 return ret_val;
2227
2228         /* Configure the K1 Si workaround during phy reset assuming there is
2229          * link so that it disables K1 if link is in 1Gbps.
2230          */
2231         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2232         if (ret_val)
2233                 return ret_val;
2234
2235         /* Workaround for link disconnects on a busy hub in half duplex */
2236         ret_val = hw->phy.ops.acquire(hw);
2237         if (ret_val)
2238                 return ret_val;
2239         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2240         if (ret_val)
2241                 goto release;
2242         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2243         if (ret_val)
2244                 goto release;
2245
2246         /* set MSE higher to enable link to stay up when noise is high */
2247         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2248 release:
2249         hw->phy.ops.release(hw);
2250
2251         return ret_val;
2252 }
2253
2254 /**
2255  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2256  *  @hw:   pointer to the HW structure
2257  **/
2258 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2259 {
2260         u32 mac_reg;
2261         u16 i, phy_reg = 0;
2262         s32 ret_val;
2263
2264         ret_val = hw->phy.ops.acquire(hw);
2265         if (ret_val)
2266                 return;
2267         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2268         if (ret_val)
2269                 goto release;
2270
2271         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2272         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2273                 mac_reg = er32(RAL(i));
2274                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2275                                            (u16)(mac_reg & 0xFFFF));
2276                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2277                                            (u16)((mac_reg >> 16) & 0xFFFF));
2278
2279                 mac_reg = er32(RAH(i));
2280                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2281                                            (u16)(mac_reg & 0xFFFF));
2282                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2283                                            (u16)((mac_reg & E1000_RAH_AV)
2284                                                  >> 16));
2285         }
2286
2287         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2288
2289 release:
2290         hw->phy.ops.release(hw);
2291 }
2292
2293 /**
2294  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2295  *  with 82579 PHY
2296  *  @hw: pointer to the HW structure
2297  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2298  **/
2299 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2300 {
2301         s32 ret_val = 0;
2302         u16 phy_reg, data;
2303         u32 mac_reg;
2304         u16 i;
2305
2306         if (hw->mac.type < e1000_pch2lan)
2307                 return 0;
2308
2309         /* disable Rx path while enabling/disabling workaround */
2310         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2311         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2312         if (ret_val)
2313                 return ret_val;
2314
2315         if (enable) {
2316                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2317                  * SHRAL/H) and initial CRC values to the MAC
2318                  */
2319                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2320                         u8 mac_addr[ETH_ALEN] = { 0 };
2321                         u32 addr_high, addr_low;
2322
2323                         addr_high = er32(RAH(i));
2324                         if (!(addr_high & E1000_RAH_AV))
2325                                 continue;
2326                         addr_low = er32(RAL(i));
2327                         mac_addr[0] = (addr_low & 0xFF);
2328                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2329                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2330                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2331                         mac_addr[4] = (addr_high & 0xFF);
2332                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2333
2334                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2335                 }
2336
2337                 /* Write Rx addresses to the PHY */
2338                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2339
2340                 /* Enable jumbo frame workaround in the MAC */
2341                 mac_reg = er32(FFLT_DBG);
2342                 mac_reg &= ~(1 << 14);
2343                 mac_reg |= (7 << 15);
2344                 ew32(FFLT_DBG, mac_reg);
2345
2346                 mac_reg = er32(RCTL);
2347                 mac_reg |= E1000_RCTL_SECRC;
2348                 ew32(RCTL, mac_reg);
2349
2350                 ret_val = e1000e_read_kmrn_reg(hw,
2351                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2352                                                &data);
2353                 if (ret_val)
2354                         return ret_val;
2355                 ret_val = e1000e_write_kmrn_reg(hw,
2356                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2357                                                 data | (1 << 0));
2358                 if (ret_val)
2359                         return ret_val;
2360                 ret_val = e1000e_read_kmrn_reg(hw,
2361                                                E1000_KMRNCTRLSTA_HD_CTRL,
2362                                                &data);
2363                 if (ret_val)
2364                         return ret_val;
2365                 data &= ~(0xF << 8);
2366                 data |= (0xB << 8);
2367                 ret_val = e1000e_write_kmrn_reg(hw,
2368                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2369                                                 data);
2370                 if (ret_val)
2371                         return ret_val;
2372
2373                 /* Enable jumbo frame workaround in the PHY */
2374                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2375                 data &= ~(0x7F << 5);
2376                 data |= (0x37 << 5);
2377                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2378                 if (ret_val)
2379                         return ret_val;
2380                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2381                 data &= ~(1 << 13);
2382                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2383                 if (ret_val)
2384                         return ret_val;
2385                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2386                 data &= ~(0x3FF << 2);
2387                 data |= (0x1A << 2);
2388                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2389                 if (ret_val)
2390                         return ret_val;
2391                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2392                 if (ret_val)
2393                         return ret_val;
2394                 e1e_rphy(hw, HV_PM_CTRL, &data);
2395                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2396                 if (ret_val)
2397                         return ret_val;
2398         } else {
2399                 /* Write MAC register values back to h/w defaults */
2400                 mac_reg = er32(FFLT_DBG);
2401                 mac_reg &= ~(0xF << 14);
2402                 ew32(FFLT_DBG, mac_reg);
2403
2404                 mac_reg = er32(RCTL);
2405                 mac_reg &= ~E1000_RCTL_SECRC;
2406                 ew32(RCTL, mac_reg);
2407
2408                 ret_val = e1000e_read_kmrn_reg(hw,
2409                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2410                                                &data);
2411                 if (ret_val)
2412                         return ret_val;
2413                 ret_val = e1000e_write_kmrn_reg(hw,
2414                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2415                                                 data & ~(1 << 0));
2416                 if (ret_val)
2417                         return ret_val;
2418                 ret_val = e1000e_read_kmrn_reg(hw,
2419                                                E1000_KMRNCTRLSTA_HD_CTRL,
2420                                                &data);
2421                 if (ret_val)
2422                         return ret_val;
2423                 data &= ~(0xF << 8);
2424                 data |= (0xB << 8);
2425                 ret_val = e1000e_write_kmrn_reg(hw,
2426                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2427                                                 data);
2428                 if (ret_val)
2429                         return ret_val;
2430
2431                 /* Write PHY register values back to h/w defaults */
2432                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2433                 data &= ~(0x7F << 5);
2434                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2435                 if (ret_val)
2436                         return ret_val;
2437                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2438                 data |= (1 << 13);
2439                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2440                 if (ret_val)
2441                         return ret_val;
2442                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2443                 data &= ~(0x3FF << 2);
2444                 data |= (0x8 << 2);
2445                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2446                 if (ret_val)
2447                         return ret_val;
2448                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2449                 if (ret_val)
2450                         return ret_val;
2451                 e1e_rphy(hw, HV_PM_CTRL, &data);
2452                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2453                 if (ret_val)
2454                         return ret_val;
2455         }
2456
2457         /* re-enable Rx path after enabling/disabling workaround */
2458         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2459 }
2460
2461 /**
2462  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2463  *  done after every PHY reset.
2464  **/
2465 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2466 {
2467         s32 ret_val = 0;
2468
2469         if (hw->mac.type != e1000_pch2lan)
2470                 return 0;
2471
2472         /* Set MDIO slow mode before any other MDIO access */
2473         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2474         if (ret_val)
2475                 return ret_val;
2476
2477         ret_val = hw->phy.ops.acquire(hw);
2478         if (ret_val)
2479                 return ret_val;
2480         /* set MSE higher to enable link to stay up when noise is high */
2481         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2482         if (ret_val)
2483                 goto release;
2484         /* drop link after 5 times MSE threshold was reached */
2485         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2486 release:
2487         hw->phy.ops.release(hw);
2488
2489         return ret_val;
2490 }
2491
2492 /**
2493  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2494  *  @hw:   pointer to the HW structure
2495  *
2496  *  Workaround to set the K1 beacon duration for 82579 parts
2497  **/
2498 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2499 {
2500         s32 ret_val = 0;
2501         u16 status_reg = 0;
2502         u32 mac_reg;
2503         u16 phy_reg;
2504
2505         if (hw->mac.type != e1000_pch2lan)
2506                 return 0;
2507
2508         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2509         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2510         if (ret_val)
2511                 return ret_val;
2512
2513         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2514             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2515                 mac_reg = er32(FEXTNVM4);
2516                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2517
2518                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2519                 if (ret_val)
2520                         return ret_val;
2521
2522                 if (status_reg & HV_M_STATUS_SPEED_1000) {
2523                         u16 pm_phy_reg;
2524
2525                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2526                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2527                         /* LV 1G Packet drop issue wa  */
2528                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2529                         if (ret_val)
2530                                 return ret_val;
2531                         pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2532                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2533                         if (ret_val)
2534                                 return ret_val;
2535                 } else {
2536                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2537                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2538                 }
2539                 ew32(FEXTNVM4, mac_reg);
2540                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2541         }
2542
2543         return ret_val;
2544 }
2545
2546 /**
2547  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2548  *  @hw:   pointer to the HW structure
2549  *  @gate: boolean set to true to gate, false to ungate
2550  *
2551  *  Gate/ungate the automatic PHY configuration via hardware; perform
2552  *  the configuration via software instead.
2553  **/
2554 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2555 {
2556         u32 extcnf_ctrl;
2557
2558         if (hw->mac.type < e1000_pch2lan)
2559                 return;
2560
2561         extcnf_ctrl = er32(EXTCNF_CTRL);
2562
2563         if (gate)
2564                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2565         else
2566                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2567
2568         ew32(EXTCNF_CTRL, extcnf_ctrl);
2569 }
2570
2571 /**
2572  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2573  *  @hw: pointer to the HW structure
2574  *
2575  *  Check the appropriate indication the MAC has finished configuring the
2576  *  PHY after a software reset.
2577  **/
2578 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2579 {
2580         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2581
2582         /* Wait for basic configuration completes before proceeding */
2583         do {
2584                 data = er32(STATUS);
2585                 data &= E1000_STATUS_LAN_INIT_DONE;
2586                 usleep_range(100, 200);
2587         } while ((!data) && --loop);
2588
2589         /* If basic configuration is incomplete before the above loop
2590          * count reaches 0, loading the configuration from NVM will
2591          * leave the PHY in a bad state possibly resulting in no link.
2592          */
2593         if (loop == 0)
2594                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2595
2596         /* Clear the Init Done bit for the next init event */
2597         data = er32(STATUS);
2598         data &= ~E1000_STATUS_LAN_INIT_DONE;
2599         ew32(STATUS, data);
2600 }
2601
2602 /**
2603  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2604  *  @hw: pointer to the HW structure
2605  **/
2606 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2607 {
2608         s32 ret_val = 0;
2609         u16 reg;
2610
2611         if (hw->phy.ops.check_reset_block(hw))
2612                 return 0;
2613
2614         /* Allow time for h/w to get to quiescent state after reset */
2615         usleep_range(10000, 20000);
2616
2617         /* Perform any necessary post-reset workarounds */
2618         switch (hw->mac.type) {
2619         case e1000_pchlan:
2620                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2621                 if (ret_val)
2622                         return ret_val;
2623                 break;
2624         case e1000_pch2lan:
2625                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2626                 if (ret_val)
2627                         return ret_val;
2628                 break;
2629         default:
2630                 break;
2631         }
2632
2633         /* Clear the host wakeup bit after lcd reset */
2634         if (hw->mac.type >= e1000_pchlan) {
2635                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2636                 reg &= ~BM_WUC_HOST_WU_BIT;
2637                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2638         }
2639
2640         /* Configure the LCD with the extended configuration region in NVM */
2641         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2642         if (ret_val)
2643                 return ret_val;
2644
2645         /* Configure the LCD with the OEM bits in NVM */
2646         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2647
2648         if (hw->mac.type == e1000_pch2lan) {
2649                 /* Ungate automatic PHY configuration on non-managed 82579 */
2650                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2651                         usleep_range(10000, 20000);
2652                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2653                 }
2654
2655                 /* Set EEE LPI Update Timer to 200usec */
2656                 ret_val = hw->phy.ops.acquire(hw);
2657                 if (ret_val)
2658                         return ret_val;
2659                 ret_val = e1000_write_emi_reg_locked(hw,
2660                                                      I82579_LPI_UPDATE_TIMER,
2661                                                      0x1387);
2662                 hw->phy.ops.release(hw);
2663         }
2664
2665         return ret_val;
2666 }
2667
2668 /**
2669  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2670  *  @hw: pointer to the HW structure
2671  *
2672  *  Resets the PHY
2673  *  This is a function pointer entry point called by drivers
2674  *  or other shared routines.
2675  **/
2676 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2677 {
2678         s32 ret_val = 0;
2679
2680         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2681         if ((hw->mac.type == e1000_pch2lan) &&
2682             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2683                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2684
2685         ret_val = e1000e_phy_hw_reset_generic(hw);
2686         if (ret_val)
2687                 return ret_val;
2688
2689         return e1000_post_phy_reset_ich8lan(hw);
2690 }
2691
2692 /**
2693  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2694  *  @hw: pointer to the HW structure
2695  *  @active: true to enable LPLU, false to disable
2696  *
2697  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2698  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2699  *  the phy speed. This function will manually set the LPLU bit and restart
2700  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2701  *  since it configures the same bit.
2702  **/
2703 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2704 {
2705         s32 ret_val;
2706         u16 oem_reg;
2707
2708         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2709         if (ret_val)
2710                 return ret_val;
2711
2712         if (active)
2713                 oem_reg |= HV_OEM_BITS_LPLU;
2714         else
2715                 oem_reg &= ~HV_OEM_BITS_LPLU;
2716
2717         if (!hw->phy.ops.check_reset_block(hw))
2718                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2719
2720         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2721 }
2722
2723 /**
2724  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2725  *  @hw: pointer to the HW structure
2726  *  @active: true to enable LPLU, false to disable
2727  *
2728  *  Sets the LPLU D0 state according to the active flag.  When
2729  *  activating LPLU this function also disables smart speed
2730  *  and vice versa.  LPLU will not be activated unless the
2731  *  device autonegotiation advertisement meets standards of
2732  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2733  *  This is a function pointer entry point only called by
2734  *  PHY setup routines.
2735  **/
2736 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2737 {
2738         struct e1000_phy_info *phy = &hw->phy;
2739         u32 phy_ctrl;
2740         s32 ret_val = 0;
2741         u16 data;
2742
2743         if (phy->type == e1000_phy_ife)
2744                 return 0;
2745
2746         phy_ctrl = er32(PHY_CTRL);
2747
2748         if (active) {
2749                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2750                 ew32(PHY_CTRL, phy_ctrl);
2751
2752                 if (phy->type != e1000_phy_igp_3)
2753                         return 0;
2754
2755                 /* Call gig speed drop workaround on LPLU before accessing
2756                  * any PHY registers
2757                  */
2758                 if (hw->mac.type == e1000_ich8lan)
2759                         e1000e_gig_downshift_workaround_ich8lan(hw);
2760
2761                 /* When LPLU is enabled, we should disable SmartSpeed */
2762                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2763                 if (ret_val)
2764                         return ret_val;
2765                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2766                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2767                 if (ret_val)
2768                         return ret_val;
2769         } else {
2770                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2771                 ew32(PHY_CTRL, phy_ctrl);
2772
2773                 if (phy->type != e1000_phy_igp_3)
2774                         return 0;
2775
2776                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2777                  * during Dx states where the power conservation is most
2778                  * important.  During driver activity we should enable
2779                  * SmartSpeed, so performance is maintained.
2780                  */
2781                 if (phy->smart_speed == e1000_smart_speed_on) {
2782                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2783                                            &data);
2784                         if (ret_val)
2785                                 return ret_val;
2786
2787                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2788                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2789                                            data);
2790                         if (ret_val)
2791                                 return ret_val;
2792                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2793                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2794                                            &data);
2795                         if (ret_val)
2796                                 return ret_val;
2797
2798                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2799                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2800                                            data);
2801                         if (ret_val)
2802                                 return ret_val;
2803                 }
2804         }
2805
2806         return 0;
2807 }
2808
2809 /**
2810  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2811  *  @hw: pointer to the HW structure
2812  *  @active: true to enable LPLU, false to disable
2813  *
2814  *  Sets the LPLU D3 state according to the active flag.  When
2815  *  activating LPLU this function also disables smart speed
2816  *  and vice versa.  LPLU will not be activated unless the
2817  *  device autonegotiation advertisement meets standards of
2818  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2819  *  This is a function pointer entry point only called by
2820  *  PHY setup routines.
2821  **/
2822 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2823 {
2824         struct e1000_phy_info *phy = &hw->phy;
2825         u32 phy_ctrl;
2826         s32 ret_val = 0;
2827         u16 data;
2828
2829         phy_ctrl = er32(PHY_CTRL);
2830
2831         if (!active) {
2832                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2833                 ew32(PHY_CTRL, phy_ctrl);
2834
2835                 if (phy->type != e1000_phy_igp_3)
2836                         return 0;
2837
2838                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2839                  * during Dx states where the power conservation is most
2840                  * important.  During driver activity we should enable
2841                  * SmartSpeed, so performance is maintained.
2842                  */
2843                 if (phy->smart_speed == e1000_smart_speed_on) {
2844                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2845                                            &data);
2846                         if (ret_val)
2847                                 return ret_val;
2848
2849                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2850                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2851                                            data);
2852                         if (ret_val)
2853                                 return ret_val;
2854                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2855                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2856                                            &data);
2857                         if (ret_val)
2858                                 return ret_val;
2859
2860                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2861                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2862                                            data);
2863                         if (ret_val)
2864                                 return ret_val;
2865                 }
2866         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2867                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2868                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2869                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2870                 ew32(PHY_CTRL, phy_ctrl);
2871
2872                 if (phy->type != e1000_phy_igp_3)
2873                         return 0;
2874
2875                 /* Call gig speed drop workaround on LPLU before accessing
2876                  * any PHY registers
2877                  */
2878                 if (hw->mac.type == e1000_ich8lan)
2879                         e1000e_gig_downshift_workaround_ich8lan(hw);
2880
2881                 /* When LPLU is enabled, we should disable SmartSpeed */
2882                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2883                 if (ret_val)
2884                         return ret_val;
2885
2886                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2887                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2888         }
2889
2890         return ret_val;
2891 }
2892
2893 /**
2894  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2895  *  @hw: pointer to the HW structure
2896  *  @bank:  pointer to the variable that returns the active bank
2897  *
2898  *  Reads signature byte from the NVM using the flash access registers.
2899  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2900  **/
2901 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2902 {
2903         u32 eecd;
2904         struct e1000_nvm_info *nvm = &hw->nvm;
2905         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2906         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2907         u8 sig_byte = 0;
2908         s32 ret_val;
2909
2910         switch (hw->mac.type) {
2911         case e1000_ich8lan:
2912         case e1000_ich9lan:
2913                 eecd = er32(EECD);
2914                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2915                     E1000_EECD_SEC1VAL_VALID_MASK) {
2916                         if (eecd & E1000_EECD_SEC1VAL)
2917                                 *bank = 1;
2918                         else
2919                                 *bank = 0;
2920
2921                         return 0;
2922                 }
2923                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2924                 /* fall-thru */
2925         default:
2926                 /* set bank to 0 in case flash read fails */
2927                 *bank = 0;
2928
2929                 /* Check bank 0 */
2930                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2931                                                         &sig_byte);
2932                 if (ret_val)
2933                         return ret_val;
2934                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2935                     E1000_ICH_NVM_SIG_VALUE) {
2936                         *bank = 0;
2937                         return 0;
2938                 }
2939
2940                 /* Check bank 1 */
2941                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2942                                                         bank1_offset,
2943                                                         &sig_byte);
2944                 if (ret_val)
2945                         return ret_val;
2946                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2947                     E1000_ICH_NVM_SIG_VALUE) {
2948                         *bank = 1;
2949                         return 0;
2950                 }
2951
2952                 e_dbg("ERROR: No valid NVM bank present\n");
2953                 return -E1000_ERR_NVM;
2954         }
2955 }
2956
2957 /**
2958  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2959  *  @hw: pointer to the HW structure
2960  *  @offset: The offset (in bytes) of the word(s) to read.
2961  *  @words: Size of data to read in words
2962  *  @data: Pointer to the word(s) to read at offset.
2963  *
2964  *  Reads a word(s) from the NVM using the flash access registers.
2965  **/
2966 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2967                                   u16 *data)
2968 {
2969         struct e1000_nvm_info *nvm = &hw->nvm;
2970         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2971         u32 act_offset;
2972         s32 ret_val = 0;
2973         u32 bank = 0;
2974         u16 i, word;
2975
2976         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2977             (words == 0)) {
2978                 e_dbg("nvm parameter(s) out of bounds\n");
2979                 ret_val = -E1000_ERR_NVM;
2980                 goto out;
2981         }
2982
2983         nvm->ops.acquire(hw);
2984
2985         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2986         if (ret_val) {
2987                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2988                 bank = 0;
2989         }
2990
2991         act_offset = (bank) ? nvm->flash_bank_size : 0;
2992         act_offset += offset;
2993
2994         ret_val = 0;
2995         for (i = 0; i < words; i++) {
2996                 if (dev_spec->shadow_ram[offset + i].modified) {
2997                         data[i] = dev_spec->shadow_ram[offset + i].value;
2998                 } else {
2999                         ret_val = e1000_read_flash_word_ich8lan(hw,
3000                                                                 act_offset + i,
3001                                                                 &word);
3002                         if (ret_val)
3003                                 break;
3004                         data[i] = word;
3005                 }
3006         }
3007
3008         nvm->ops.release(hw);
3009
3010 out:
3011         if (ret_val)
3012                 e_dbg("NVM read error: %d\n", ret_val);
3013
3014         return ret_val;
3015 }
3016
3017 /**
3018  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3019  *  @hw: pointer to the HW structure
3020  *
3021  *  This function does initial flash setup so that a new read/write/erase cycle
3022  *  can be started.
3023  **/
3024 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3025 {
3026         union ich8_hws_flash_status hsfsts;
3027         s32 ret_val = -E1000_ERR_NVM;
3028
3029         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3030
3031         /* Check if the flash descriptor is valid */
3032         if (!hsfsts.hsf_status.fldesvalid) {
3033                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3034                 return -E1000_ERR_NVM;
3035         }
3036
3037         /* Clear FCERR and DAEL in hw status by writing 1 */
3038         hsfsts.hsf_status.flcerr = 1;
3039         hsfsts.hsf_status.dael = 1;
3040
3041         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3042
3043         /* Either we should have a hardware SPI cycle in progress
3044          * bit to check against, in order to start a new cycle or
3045          * FDONE bit should be changed in the hardware so that it
3046          * is 1 after hardware reset, which can then be used as an
3047          * indication whether a cycle is in progress or has been
3048          * completed.
3049          */
3050
3051         if (!hsfsts.hsf_status.flcinprog) {
3052                 /* There is no cycle running at present,
3053                  * so we can start a cycle.
3054                  * Begin by setting Flash Cycle Done.
3055                  */
3056                 hsfsts.hsf_status.flcdone = 1;
3057                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3058                 ret_val = 0;
3059         } else {
3060                 s32 i;
3061
3062                 /* Otherwise poll for sometime so the current
3063                  * cycle has a chance to end before giving up.
3064                  */
3065                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3066                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3067                         if (!hsfsts.hsf_status.flcinprog) {
3068                                 ret_val = 0;
3069                                 break;
3070                         }
3071                         udelay(1);
3072                 }
3073                 if (!ret_val) {
3074                         /* Successful in waiting for previous cycle to timeout,
3075                          * now set the Flash Cycle Done.
3076                          */
3077                         hsfsts.hsf_status.flcdone = 1;
3078                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3079                 } else {
3080                         e_dbg("Flash controller busy, cannot get access\n");
3081                 }
3082         }
3083
3084         return ret_val;
3085 }
3086
3087 /**
3088  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3089  *  @hw: pointer to the HW structure
3090  *  @timeout: maximum time to wait for completion
3091  *
3092  *  This function starts a flash cycle and waits for its completion.
3093  **/
3094 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3095 {
3096         union ich8_hws_flash_ctrl hsflctl;
3097         union ich8_hws_flash_status hsfsts;
3098         u32 i = 0;
3099
3100         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3101         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3102         hsflctl.hsf_ctrl.flcgo = 1;
3103         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3104
3105         /* wait till FDONE bit is set to 1 */
3106         do {
3107                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3108                 if (hsfsts.hsf_status.flcdone)
3109                         break;
3110                 udelay(1);
3111         } while (i++ < timeout);
3112
3113         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3114                 return 0;
3115
3116         return -E1000_ERR_NVM;
3117 }
3118
3119 /**
3120  *  e1000_read_flash_word_ich8lan - Read word from flash
3121  *  @hw: pointer to the HW structure
3122  *  @offset: offset to data location
3123  *  @data: pointer to the location for storing the data
3124  *
3125  *  Reads the flash word at offset into data.  Offset is converted
3126  *  to bytes before read.
3127  **/
3128 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3129                                          u16 *data)
3130 {
3131         /* Must convert offset into bytes. */
3132         offset <<= 1;
3133
3134         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3135 }
3136
3137 /**
3138  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3139  *  @hw: pointer to the HW structure
3140  *  @offset: The offset of the byte to read.
3141  *  @data: Pointer to a byte to store the value read.
3142  *
3143  *  Reads a single byte from the NVM using the flash access registers.
3144  **/
3145 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3146                                          u8 *data)
3147 {
3148         s32 ret_val;
3149         u16 word = 0;
3150
3151         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3152         if (ret_val)
3153                 return ret_val;
3154
3155         *data = (u8)word;
3156
3157         return 0;
3158 }
3159
3160 /**
3161  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3162  *  @hw: pointer to the HW structure
3163  *  @offset: The offset (in bytes) of the byte or word to read.
3164  *  @size: Size of data to read, 1=byte 2=word
3165  *  @data: Pointer to the word to store the value read.
3166  *
3167  *  Reads a byte or word from the NVM using the flash access registers.
3168  **/
3169 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3170                                          u8 size, u16 *data)
3171 {
3172         union ich8_hws_flash_status hsfsts;
3173         union ich8_hws_flash_ctrl hsflctl;
3174         u32 flash_linear_addr;
3175         u32 flash_data = 0;
3176         s32 ret_val = -E1000_ERR_NVM;
3177         u8 count = 0;
3178
3179         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3180                 return -E1000_ERR_NVM;
3181
3182         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3183                              hw->nvm.flash_base_addr);
3184
3185         do {
3186                 udelay(1);
3187                 /* Steps */
3188                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3189                 if (ret_val)
3190                         break;
3191
3192                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3193                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3194                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3195                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3196                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3197
3198                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3199
3200                 ret_val =
3201                     e1000_flash_cycle_ich8lan(hw,
3202                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3203
3204                 /* Check if FCERR is set to 1, if set to 1, clear it
3205                  * and try the whole sequence a few more times, else
3206                  * read in (shift in) the Flash Data0, the order is
3207                  * least significant byte first msb to lsb
3208                  */
3209                 if (!ret_val) {
3210                         flash_data = er32flash(ICH_FLASH_FDATA0);
3211                         if (size == 1)
3212                                 *data = (u8)(flash_data & 0x000000FF);
3213                         else if (size == 2)
3214                                 *data = (u16)(flash_data & 0x0000FFFF);
3215                         break;
3216                 } else {
3217                         /* If we've gotten here, then things are probably
3218                          * completely hosed, but if the error condition is
3219                          * detected, it won't hurt to give it another try...
3220                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3221                          */
3222                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3223                         if (hsfsts.hsf_status.flcerr) {
3224                                 /* Repeat for some time before giving up. */
3225                                 continue;
3226                         } else if (!hsfsts.hsf_status.flcdone) {
3227                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3228                                 break;
3229                         }
3230                 }
3231         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3232
3233         return ret_val;
3234 }
3235
3236 /**
3237  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3238  *  @hw: pointer to the HW structure
3239  *  @offset: The offset (in bytes) of the word(s) to write.
3240  *  @words: Size of data to write in words
3241  *  @data: Pointer to the word(s) to write at offset.
3242  *
3243  *  Writes a byte or word to the NVM using the flash access registers.
3244  **/
3245 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3246                                    u16 *data)
3247 {
3248         struct e1000_nvm_info *nvm = &hw->nvm;
3249         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3250         u16 i;
3251
3252         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3253             (words == 0)) {
3254                 e_dbg("nvm parameter(s) out of bounds\n");
3255                 return -E1000_ERR_NVM;
3256         }
3257
3258         nvm->ops.acquire(hw);
3259
3260         for (i = 0; i < words; i++) {
3261                 dev_spec->shadow_ram[offset + i].modified = true;
3262                 dev_spec->shadow_ram[offset + i].value = data[i];
3263         }
3264
3265         nvm->ops.release(hw);
3266
3267         return 0;
3268 }
3269
3270 /**
3271  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3272  *  @hw: pointer to the HW structure
3273  *
3274  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3275  *  which writes the checksum to the shadow ram.  The changes in the shadow
3276  *  ram are then committed to the EEPROM by processing each bank at a time
3277  *  checking for the modified bit and writing only the pending changes.
3278  *  After a successful commit, the shadow ram is cleared and is ready for
3279  *  future writes.
3280  **/
3281 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3282 {
3283         struct e1000_nvm_info *nvm = &hw->nvm;
3284         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3285         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3286         s32 ret_val;
3287         u16 data;
3288
3289         ret_val = e1000e_update_nvm_checksum_generic(hw);
3290         if (ret_val)
3291                 goto out;
3292
3293         if (nvm->type != e1000_nvm_flash_sw)
3294                 goto out;
3295
3296         nvm->ops.acquire(hw);
3297
3298         /* We're writing to the opposite bank so if we're on bank 1,
3299          * write to bank 0 etc.  We also need to erase the segment that
3300          * is going to be written
3301          */
3302         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303         if (ret_val) {
3304                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3305                 bank = 0;
3306         }
3307
3308         if (bank == 0) {
3309                 new_bank_offset = nvm->flash_bank_size;
3310                 old_bank_offset = 0;
3311                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3312                 if (ret_val)
3313                         goto release;
3314         } else {
3315                 old_bank_offset = nvm->flash_bank_size;
3316                 new_bank_offset = 0;
3317                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3318                 if (ret_val)
3319                         goto release;
3320         }
3321
3322         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3323                 /* Determine whether to write the value stored
3324                  * in the other NVM bank or a modified value stored
3325                  * in the shadow RAM
3326                  */
3327                 if (dev_spec->shadow_ram[i].modified) {
3328                         data = dev_spec->shadow_ram[i].value;
3329                 } else {
3330                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3331                                                                 old_bank_offset,
3332                                                                 &data);
3333                         if (ret_val)
3334                                 break;
3335                 }
3336
3337                 /* If the word is 0x13, then make sure the signature bits
3338                  * (15:14) are 11b until the commit has completed.
3339                  * This will allow us to write 10b which indicates the
3340                  * signature is valid.  We want to do this after the write
3341                  * has completed so that we don't mark the segment valid
3342                  * while the write is still in progress
3343                  */
3344                 if (i == E1000_ICH_NVM_SIG_WORD)
3345                         data |= E1000_ICH_NVM_SIG_MASK;
3346
3347                 /* Convert offset to bytes. */
3348                 act_offset = (i + new_bank_offset) << 1;
3349
3350                 usleep_range(100, 200);
3351                 /* Write the bytes to the new bank. */
3352                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3353                                                                act_offset,
3354                                                                (u8)data);
3355                 if (ret_val)
3356                         break;
3357
3358                 usleep_range(100, 200);
3359                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3360                                                                act_offset + 1,
3361                                                                (u8)(data >> 8));
3362                 if (ret_val)
3363                         break;
3364         }
3365
3366         /* Don't bother writing the segment valid bits if sector
3367          * programming failed.
3368          */
3369         if (ret_val) {
3370                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3371                 e_dbg("Flash commit failed.\n");
3372                 goto release;
3373         }
3374
3375         /* Finally validate the new segment by setting bit 15:14
3376          * to 10b in word 0x13 , this can be done without an
3377          * erase as well since these bits are 11 to start with
3378          * and we need to change bit 14 to 0b
3379          */
3380         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3381         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3382         if (ret_val)
3383                 goto release;
3384
3385         data &= 0xBFFF;
3386         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3387                                                        act_offset * 2 + 1,
3388                                                        (u8)(data >> 8));
3389         if (ret_val)
3390                 goto release;
3391
3392         /* And invalidate the previously valid segment by setting
3393          * its signature word (0x13) high_byte to 0b. This can be
3394          * done without an erase because flash erase sets all bits
3395          * to 1's. We can write 1's to 0's without an erase
3396          */
3397         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3398         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3399         if (ret_val)
3400                 goto release;
3401
3402         /* Great!  Everything worked, we can now clear the cached entries. */
3403         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3404                 dev_spec->shadow_ram[i].modified = false;
3405                 dev_spec->shadow_ram[i].value = 0xFFFF;
3406         }
3407
3408 release:
3409         nvm->ops.release(hw);
3410
3411         /* Reload the EEPROM, or else modifications will not appear
3412          * until after the next adapter reset.
3413          */
3414         if (!ret_val) {
3415                 nvm->ops.reload(hw);
3416                 usleep_range(10000, 20000);
3417         }
3418
3419 out:
3420         if (ret_val)
3421                 e_dbg("NVM update error: %d\n", ret_val);
3422
3423         return ret_val;
3424 }
3425
3426 /**
3427  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3428  *  @hw: pointer to the HW structure
3429  *
3430  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3431  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3432  *  calculated, in which case we need to calculate the checksum and set bit 6.
3433  **/
3434 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3435 {
3436         s32 ret_val;
3437         u16 data;
3438         u16 word;
3439         u16 valid_csum_mask;
3440
3441         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3442          * the checksum needs to be fixed.  This bit is an indication that
3443          * the NVM was prepared by OEM software and did not calculate
3444          * the checksum...a likely scenario.
3445          */
3446         switch (hw->mac.type) {
3447         case e1000_pch_lpt:
3448                 word = NVM_COMPAT;
3449                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3450                 break;
3451         default:
3452                 word = NVM_FUTURE_INIT_WORD1;
3453                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3454                 break;
3455         }
3456
3457         ret_val = e1000_read_nvm(hw, word, 1, &data);
3458         if (ret_val)
3459                 return ret_val;
3460
3461         if (!(data & valid_csum_mask)) {
3462                 data |= valid_csum_mask;
3463                 ret_val = e1000_write_nvm(hw, word, 1, &data);
3464                 if (ret_val)
3465                         return ret_val;
3466                 ret_val = e1000e_update_nvm_checksum(hw);
3467                 if (ret_val)
3468                         return ret_val;
3469         }
3470
3471         return e1000e_validate_nvm_checksum_generic(hw);
3472 }
3473
3474 /**
3475  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3476  *  @hw: pointer to the HW structure
3477  *
3478  *  To prevent malicious write/erase of the NVM, set it to be read-only
3479  *  so that the hardware ignores all write/erase cycles of the NVM via
3480  *  the flash control registers.  The shadow-ram copy of the NVM will
3481  *  still be updated, however any updates to this copy will not stick
3482  *  across driver reloads.
3483  **/
3484 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3485 {
3486         struct e1000_nvm_info *nvm = &hw->nvm;
3487         union ich8_flash_protected_range pr0;
3488         union ich8_hws_flash_status hsfsts;
3489         u32 gfpreg;
3490
3491         nvm->ops.acquire(hw);
3492
3493         gfpreg = er32flash(ICH_FLASH_GFPREG);
3494
3495         /* Write-protect GbE Sector of NVM */
3496         pr0.regval = er32flash(ICH_FLASH_PR0);
3497         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3498         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3499         pr0.range.wpe = true;
3500         ew32flash(ICH_FLASH_PR0, pr0.regval);
3501
3502         /* Lock down a subset of GbE Flash Control Registers, e.g.
3503          * PR0 to prevent the write-protection from being lifted.
3504          * Once FLOCKDN is set, the registers protected by it cannot
3505          * be written until FLOCKDN is cleared by a hardware reset.
3506          */
3507         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3508         hsfsts.hsf_status.flockdn = true;
3509         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3510
3511         nvm->ops.release(hw);
3512 }
3513
3514 /**
3515  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3516  *  @hw: pointer to the HW structure
3517  *  @offset: The offset (in bytes) of the byte/word to read.
3518  *  @size: Size of data to read, 1=byte 2=word
3519  *  @data: The byte(s) to write to the NVM.
3520  *
3521  *  Writes one/two bytes to the NVM using the flash access registers.
3522  **/
3523 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3524                                           u8 size, u16 data)
3525 {
3526         union ich8_hws_flash_status hsfsts;
3527         union ich8_hws_flash_ctrl hsflctl;
3528         u32 flash_linear_addr;
3529         u32 flash_data = 0;
3530         s32 ret_val;
3531         u8 count = 0;
3532
3533         if (size < 1 || size > 2 || data > size * 0xff ||
3534             offset > ICH_FLASH_LINEAR_ADDR_MASK)
3535                 return -E1000_ERR_NVM;
3536
3537         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3538                              hw->nvm.flash_base_addr);
3539
3540         do {
3541                 udelay(1);
3542                 /* Steps */
3543                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3544                 if (ret_val)
3545                         break;
3546
3547                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3548                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3549                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3550                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3551                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3552
3553                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3554
3555                 if (size == 1)
3556                         flash_data = (u32)data & 0x00FF;
3557                 else
3558                         flash_data = (u32)data;
3559
3560                 ew32flash(ICH_FLASH_FDATA0, flash_data);
3561
3562                 /* check if FCERR is set to 1 , if set to 1, clear it
3563                  * and try the whole sequence a few more times else done
3564                  */
3565                 ret_val =
3566                     e1000_flash_cycle_ich8lan(hw,
3567                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3568                 if (!ret_val)
3569                         break;
3570
3571                 /* If we're here, then things are most likely
3572                  * completely hosed, but if the error condition
3573                  * is detected, it won't hurt to give it another
3574                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3575                  */
3576                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3577                 if (hsfsts.hsf_status.flcerr)
3578                         /* Repeat for some time before giving up. */
3579                         continue;
3580                 if (!hsfsts.hsf_status.flcdone) {
3581                         e_dbg("Timeout error - flash cycle did not complete.\n");
3582                         break;
3583                 }
3584         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3585
3586         return ret_val;
3587 }
3588
3589 /**
3590  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3591  *  @hw: pointer to the HW structure
3592  *  @offset: The index of the byte to read.
3593  *  @data: The byte to write to the NVM.
3594  *
3595  *  Writes a single byte to the NVM using the flash access registers.
3596  **/
3597 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3598                                           u8 data)
3599 {
3600         u16 word = (u16)data;
3601
3602         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3603 }
3604
3605 /**
3606  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3607  *  @hw: pointer to the HW structure
3608  *  @offset: The offset of the byte to write.
3609  *  @byte: The byte to write to the NVM.
3610  *
3611  *  Writes a single byte to the NVM using the flash access registers.
3612  *  Goes through a retry algorithm before giving up.
3613  **/
3614 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3615                                                 u32 offset, u8 byte)
3616 {
3617         s32 ret_val;
3618         u16 program_retries;
3619
3620         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3621         if (!ret_val)
3622                 return ret_val;
3623
3624         for (program_retries = 0; program_retries < 100; program_retries++) {
3625                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3626                 usleep_range(100, 200);
3627                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3628                 if (!ret_val)
3629                         break;
3630         }
3631         if (program_retries == 100)
3632                 return -E1000_ERR_NVM;
3633
3634         return 0;
3635 }
3636
3637 /**
3638  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3639  *  @hw: pointer to the HW structure
3640  *  @bank: 0 for first bank, 1 for second bank, etc.
3641  *
3642  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3643  *  bank N is 4096 * N + flash_reg_addr.
3644  **/
3645 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3646 {
3647         struct e1000_nvm_info *nvm = &hw->nvm;
3648         union ich8_hws_flash_status hsfsts;
3649         union ich8_hws_flash_ctrl hsflctl;
3650         u32 flash_linear_addr;
3651         /* bank size is in 16bit words - adjust to bytes */
3652         u32 flash_bank_size = nvm->flash_bank_size * 2;
3653         s32 ret_val;
3654         s32 count = 0;
3655         s32 j, iteration, sector_size;
3656
3657         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3658
3659         /* Determine HW Sector size: Read BERASE bits of hw flash status
3660          * register
3661          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3662          *     consecutive sectors.  The start index for the nth Hw sector
3663          *     can be calculated as = bank * 4096 + n * 256
3664          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3665          *     The start index for the nth Hw sector can be calculated
3666          *     as = bank * 4096
3667          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3668          *     (ich9 only, otherwise error condition)
3669          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3670          */
3671         switch (hsfsts.hsf_status.berasesz) {
3672         case 0:
3673                 /* Hw sector size 256 */
3674                 sector_size = ICH_FLASH_SEG_SIZE_256;
3675                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3676                 break;
3677         case 1:
3678                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3679                 iteration = 1;
3680                 break;
3681         case 2:
3682                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3683                 iteration = 1;
3684                 break;
3685         case 3:
3686                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3687                 iteration = 1;
3688                 break;
3689         default:
3690                 return -E1000_ERR_NVM;
3691         }
3692
3693         /* Start with the base address, then add the sector offset. */
3694         flash_linear_addr = hw->nvm.flash_base_addr;
3695         flash_linear_addr += (bank) ? flash_bank_size : 0;
3696
3697         for (j = 0; j < iteration; j++) {
3698                 do {
3699                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3700
3701                         /* Steps */
3702                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3703                         if (ret_val)
3704                                 return ret_val;
3705
3706                         /* Write a value 11 (block Erase) in Flash
3707                          * Cycle field in hw flash control
3708                          */
3709                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3710                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3711                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3712
3713                         /* Write the last 24 bits of an index within the
3714                          * block into Flash Linear address field in Flash
3715                          * Address.
3716                          */
3717                         flash_linear_addr += (j * sector_size);
3718                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3719
3720                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3721                         if (!ret_val)
3722                                 break;
3723
3724                         /* Check if FCERR is set to 1.  If 1,
3725                          * clear it and try the whole sequence
3726                          * a few more times else Done
3727                          */
3728                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3729                         if (hsfsts.hsf_status.flcerr)
3730                                 /* repeat for some time before giving up */
3731                                 continue;
3732                         else if (!hsfsts.hsf_status.flcdone)
3733                                 return ret_val;
3734                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3735         }
3736
3737         return 0;
3738 }
3739
3740 /**
3741  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3742  *  @hw: pointer to the HW structure
3743  *  @data: Pointer to the LED settings
3744  *
3745  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3746  *  settings is all 0's or F's, set the LED default to a valid LED default
3747  *  setting.
3748  **/
3749 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3750 {
3751         s32 ret_val;
3752
3753         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3754         if (ret_val) {
3755                 e_dbg("NVM Read Error\n");
3756                 return ret_val;
3757         }
3758
3759         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3760                 *data = ID_LED_DEFAULT_ICH8LAN;
3761
3762         return 0;
3763 }
3764
3765 /**
3766  *  e1000_id_led_init_pchlan - store LED configurations
3767  *  @hw: pointer to the HW structure
3768  *
3769  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3770  *  the PHY LED configuration register.
3771  *
3772  *  PCH also does not have an "always on" or "always off" mode which
3773  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3774  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3775  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3776  *  link based on logic in e1000_led_[on|off]_pchlan().
3777  **/
3778 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3779 {
3780         struct e1000_mac_info *mac = &hw->mac;
3781         s32 ret_val;
3782         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3783         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3784         u16 data, i, temp, shift;
3785
3786         /* Get default ID LED modes */
3787         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3788         if (ret_val)
3789                 return ret_val;
3790
3791         mac->ledctl_default = er32(LEDCTL);
3792         mac->ledctl_mode1 = mac->ledctl_default;
3793         mac->ledctl_mode2 = mac->ledctl_default;
3794
3795         for (i = 0; i < 4; i++) {
3796                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3797                 shift = (i * 5);
3798                 switch (temp) {
3799                 case ID_LED_ON1_DEF2:
3800                 case ID_LED_ON1_ON2:
3801                 case ID_LED_ON1_OFF2:
3802                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3803                         mac->ledctl_mode1 |= (ledctl_on << shift);
3804                         break;
3805                 case ID_LED_OFF1_DEF2:
3806                 case ID_LED_OFF1_ON2:
3807                 case ID_LED_OFF1_OFF2:
3808                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3809                         mac->ledctl_mode1 |= (ledctl_off << shift);
3810                         break;
3811                 default:
3812                         /* Do nothing */
3813                         break;
3814                 }
3815                 switch (temp) {
3816                 case ID_LED_DEF1_ON2:
3817                 case ID_LED_ON1_ON2:
3818                 case ID_LED_OFF1_ON2:
3819                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3820                         mac->ledctl_mode2 |= (ledctl_on << shift);
3821                         break;
3822                 case ID_LED_DEF1_OFF2:
3823                 case ID_LED_ON1_OFF2:
3824                 case ID_LED_OFF1_OFF2:
3825                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3826                         mac->ledctl_mode2 |= (ledctl_off << shift);
3827                         break;
3828                 default:
3829                         /* Do nothing */
3830                         break;
3831                 }
3832         }
3833
3834         return 0;
3835 }
3836
3837 /**
3838  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3839  *  @hw: pointer to the HW structure
3840  *
3841  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3842  *  register, so the the bus width is hard coded.
3843  **/
3844 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3845 {
3846         struct e1000_bus_info *bus = &hw->bus;
3847         s32 ret_val;
3848
3849         ret_val = e1000e_get_bus_info_pcie(hw);
3850
3851         /* ICH devices are "PCI Express"-ish.  They have
3852          * a configuration space, but do not contain
3853          * PCI Express Capability registers, so bus width
3854          * must be hardcoded.
3855          */
3856         if (bus->width == e1000_bus_width_unknown)
3857                 bus->width = e1000_bus_width_pcie_x1;
3858
3859         return ret_val;
3860 }
3861
3862 /**
3863  *  e1000_reset_hw_ich8lan - Reset the hardware
3864  *  @hw: pointer to the HW structure
3865  *
3866  *  Does a full reset of the hardware which includes a reset of the PHY and
3867  *  MAC.
3868  **/
3869 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3870 {
3871         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3872         u16 kum_cfg;
3873         u32 ctrl, reg;
3874         s32 ret_val;
3875
3876         /* Prevent the PCI-E bus from sticking if there is no TLP connection
3877          * on the last TLP read/write transaction when MAC is reset.
3878          */
3879         ret_val = e1000e_disable_pcie_master(hw);
3880         if (ret_val)
3881                 e_dbg("PCI-E Master disable polling has failed.\n");
3882
3883         e_dbg("Masking off all interrupts\n");
3884         ew32(IMC, 0xffffffff);
3885
3886         /* Disable the Transmit and Receive units.  Then delay to allow
3887          * any pending transactions to complete before we hit the MAC
3888          * with the global reset.
3889          */
3890         ew32(RCTL, 0);
3891         ew32(TCTL, E1000_TCTL_PSP);
3892         e1e_flush();
3893
3894         usleep_range(10000, 20000);
3895
3896         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3897         if (hw->mac.type == e1000_ich8lan) {
3898                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3899                 ew32(PBA, E1000_PBA_8K);
3900                 /* Set Packet Buffer Size to 16k. */
3901                 ew32(PBS, E1000_PBS_16K);
3902         }
3903
3904         if (hw->mac.type == e1000_pchlan) {
3905                 /* Save the NVM K1 bit setting */
3906                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3907                 if (ret_val)
3908                         return ret_val;
3909
3910                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3911                         dev_spec->nvm_k1_enabled = true;
3912                 else
3913                         dev_spec->nvm_k1_enabled = false;
3914         }
3915
3916         ctrl = er32(CTRL);
3917
3918         if (!hw->phy.ops.check_reset_block(hw)) {
3919                 /* Full-chip reset requires MAC and PHY reset at the same
3920                  * time to make sure the interface between MAC and the
3921                  * external PHY is reset.
3922                  */
3923                 ctrl |= E1000_CTRL_PHY_RST;
3924
3925                 /* Gate automatic PHY configuration by hardware on
3926                  * non-managed 82579
3927                  */
3928                 if ((hw->mac.type == e1000_pch2lan) &&
3929                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3930                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3931         }
3932         ret_val = e1000_acquire_swflag_ich8lan(hw);
3933         e_dbg("Issuing a global reset to ich8lan\n");
3934         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3935         /* cannot issue a flush here because it hangs the hardware */
3936         msleep(20);
3937
3938         /* Set Phy Config Counter to 50msec */
3939         if (hw->mac.type == e1000_pch2lan) {
3940                 reg = er32(FEXTNVM3);
3941                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3942                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3943                 ew32(FEXTNVM3, reg);
3944         }
3945
3946         if (!ret_val)
3947                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3948
3949         if (ctrl & E1000_CTRL_PHY_RST) {
3950                 ret_val = hw->phy.ops.get_cfg_done(hw);
3951                 if (ret_val)
3952                         return ret_val;
3953
3954                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3955                 if (ret_val)
3956                         return ret_val;
3957         }
3958
3959         /* For PCH, this write will make sure that any noise
3960          * will be detected as a CRC error and be dropped rather than show up
3961          * as a bad packet to the DMA engine.
3962          */
3963         if (hw->mac.type == e1000_pchlan)
3964                 ew32(CRC_OFFSET, 0x65656565);
3965
3966         ew32(IMC, 0xffffffff);
3967         er32(ICR);
3968
3969         reg = er32(KABGTXD);
3970         reg |= E1000_KABGTXD_BGSQLBIAS;
3971         ew32(KABGTXD, reg);
3972
3973         return 0;
3974 }
3975
3976 /**
3977  *  e1000_init_hw_ich8lan - Initialize the hardware
3978  *  @hw: pointer to the HW structure
3979  *
3980  *  Prepares the hardware for transmit and receive by doing the following:
3981  *   - initialize hardware bits
3982  *   - initialize LED identification
3983  *   - setup receive address registers
3984  *   - setup flow control
3985  *   - setup transmit descriptors
3986  *   - clear statistics
3987  **/
3988 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3989 {
3990         struct e1000_mac_info *mac = &hw->mac;
3991         u32 ctrl_ext, txdctl, snoop;
3992         s32 ret_val;
3993         u16 i;
3994
3995         e1000_initialize_hw_bits_ich8lan(hw);
3996
3997         /* Initialize identification LED */
3998         ret_val = mac->ops.id_led_init(hw);
3999         /* An error is not fatal and we should not stop init due to this */
4000         if (ret_val)
4001                 e_dbg("Error initializing identification LED\n");
4002
4003         /* Setup the receive address. */
4004         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4005
4006         /* Zero out the Multicast HASH table */
4007         e_dbg("Zeroing the MTA\n");
4008         for (i = 0; i < mac->mta_reg_count; i++)
4009                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4010
4011         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4012          * the ME.  Disable wakeup by clearing the host wakeup bit.
4013          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4014          */
4015         if (hw->phy.type == e1000_phy_82578) {
4016                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4017                 i &= ~BM_WUC_HOST_WU_BIT;
4018                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4019                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4020                 if (ret_val)
4021                         return ret_val;
4022         }
4023
4024         /* Setup link and flow control */
4025         ret_val = mac->ops.setup_link(hw);
4026
4027         /* Set the transmit descriptor write-back policy for both queues */
4028         txdctl = er32(TXDCTL(0));
4029         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4030                   E1000_TXDCTL_FULL_TX_DESC_WB);
4031         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4032                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4033         ew32(TXDCTL(0), txdctl);
4034         txdctl = er32(TXDCTL(1));
4035         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4036                   E1000_TXDCTL_FULL_TX_DESC_WB);
4037         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4038                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4039         ew32(TXDCTL(1), txdctl);
4040
4041         /* ICH8 has opposite polarity of no_snoop bits.
4042          * By default, we should use snoop behavior.
4043          */
4044         if (mac->type == e1000_ich8lan)
4045                 snoop = PCIE_ICH8_SNOOP_ALL;
4046         else
4047                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4048         e1000e_set_pcie_no_snoop(hw, snoop);
4049
4050         ctrl_ext = er32(CTRL_EXT);
4051         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4052         ew32(CTRL_EXT, ctrl_ext);
4053
4054         /* Clear all of the statistics registers (clear on read).  It is
4055          * important that we do this after we have tried to establish link
4056          * because the symbol error count will increment wildly if there
4057          * is no link.
4058          */
4059         e1000_clear_hw_cntrs_ich8lan(hw);
4060
4061         return ret_val;
4062 }
4063
4064 /**
4065  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4066  *  @hw: pointer to the HW structure
4067  *
4068  *  Sets/Clears required hardware bits necessary for correctly setting up the
4069  *  hardware for transmit and receive.
4070  **/
4071 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4072 {
4073         u32 reg;
4074
4075         /* Extended Device Control */
4076         reg = er32(CTRL_EXT);
4077         reg |= (1 << 22);
4078         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4079         if (hw->mac.type >= e1000_pchlan)
4080                 reg |= E1000_CTRL_EXT_PHYPDEN;
4081         ew32(CTRL_EXT, reg);
4082
4083         /* Transmit Descriptor Control 0 */
4084         reg = er32(TXDCTL(0));
4085         reg |= (1 << 22);
4086         ew32(TXDCTL(0), reg);
4087
4088         /* Transmit Descriptor Control 1 */
4089         reg = er32(TXDCTL(1));
4090         reg |= (1 << 22);
4091         ew32(TXDCTL(1), reg);
4092
4093         /* Transmit Arbitration Control 0 */
4094         reg = er32(TARC(0));
4095         if (hw->mac.type == e1000_ich8lan)
4096                 reg |= (1 << 28) | (1 << 29);
4097         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4098         ew32(TARC(0), reg);
4099
4100         /* Transmit Arbitration Control 1 */
4101         reg = er32(TARC(1));
4102         if (er32(TCTL) & E1000_TCTL_MULR)
4103                 reg &= ~(1 << 28);
4104         else
4105                 reg |= (1 << 28);
4106         reg |= (1 << 24) | (1 << 26) | (1 << 30);
4107         ew32(TARC(1), reg);
4108
4109         /* Device Status */
4110         if (hw->mac.type == e1000_ich8lan) {
4111                 reg = er32(STATUS);
4112                 reg &= ~(1 << 31);
4113                 ew32(STATUS, reg);
4114         }
4115
4116         /* work-around descriptor data corruption issue during nfs v2 udp
4117          * traffic, just disable the nfs filtering capability
4118          */
4119         reg = er32(RFCTL);
4120         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4121
4122         /* Disable IPv6 extension header parsing because some malformed
4123          * IPv6 headers can hang the Rx.
4124          */
4125         if (hw->mac.type == e1000_ich8lan)
4126                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4127         ew32(RFCTL, reg);
4128
4129         /* Enable ECC on Lynxpoint */
4130         if (hw->mac.type == e1000_pch_lpt) {
4131                 reg = er32(PBECCSTS);
4132                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4133                 ew32(PBECCSTS, reg);
4134
4135                 reg = er32(CTRL);
4136                 reg |= E1000_CTRL_MEHE;
4137                 ew32(CTRL, reg);
4138         }
4139 }
4140
4141 /**
4142  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4143  *  @hw: pointer to the HW structure
4144  *
4145  *  Determines which flow control settings to use, then configures flow
4146  *  control.  Calls the appropriate media-specific link configuration
4147  *  function.  Assuming the adapter has a valid link partner, a valid link
4148  *  should be established.  Assumes the hardware has previously been reset
4149  *  and the transmitter and receiver are not enabled.
4150  **/
4151 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4152 {
4153         s32 ret_val;
4154
4155         if (hw->phy.ops.check_reset_block(hw))
4156                 return 0;
4157
4158         /* ICH parts do not have a word in the NVM to determine
4159          * the default flow control setting, so we explicitly
4160          * set it to full.
4161          */
4162         if (hw->fc.requested_mode == e1000_fc_default) {
4163                 /* Workaround h/w hang when Tx flow control enabled */
4164                 if (hw->mac.type == e1000_pchlan)
4165                         hw->fc.requested_mode = e1000_fc_rx_pause;
4166                 else
4167                         hw->fc.requested_mode = e1000_fc_full;
4168         }
4169
4170         /* Save off the requested flow control mode for use later.  Depending
4171          * on the link partner's capabilities, we may or may not use this mode.
4172          */
4173         hw->fc.current_mode = hw->fc.requested_mode;
4174
4175         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4176
4177         /* Continue to configure the copper link. */
4178         ret_val = hw->mac.ops.setup_physical_interface(hw);
4179         if (ret_val)
4180                 return ret_val;
4181
4182         ew32(FCTTV, hw->fc.pause_time);
4183         if ((hw->phy.type == e1000_phy_82578) ||
4184             (hw->phy.type == e1000_phy_82579) ||
4185             (hw->phy.type == e1000_phy_i217) ||
4186             (hw->phy.type == e1000_phy_82577)) {
4187                 ew32(FCRTV_PCH, hw->fc.refresh_time);
4188
4189                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4190                                    hw->fc.pause_time);
4191                 if (ret_val)
4192                         return ret_val;
4193         }
4194
4195         return e1000e_set_fc_watermarks(hw);
4196 }
4197
4198 /**
4199  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4200  *  @hw: pointer to the HW structure
4201  *
4202  *  Configures the kumeran interface to the PHY to wait the appropriate time
4203  *  when polling the PHY, then call the generic setup_copper_link to finish
4204  *  configuring the copper link.
4205  **/
4206 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4207 {
4208         u32 ctrl;
4209         s32 ret_val;
4210         u16 reg_data;
4211
4212         ctrl = er32(CTRL);
4213         ctrl |= E1000_CTRL_SLU;
4214         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4215         ew32(CTRL, ctrl);
4216
4217         /* Set the mac to wait the maximum time between each iteration
4218          * and increase the max iterations when polling the phy;
4219          * this fixes erroneous timeouts at 10Mbps.
4220          */
4221         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4222         if (ret_val)
4223                 return ret_val;
4224         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4225                                        &reg_data);
4226         if (ret_val)
4227                 return ret_val;
4228         reg_data |= 0x3F;
4229         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4230                                         reg_data);
4231         if (ret_val)
4232                 return ret_val;
4233
4234         switch (hw->phy.type) {
4235         case e1000_phy_igp_3:
4236                 ret_val = e1000e_copper_link_setup_igp(hw);
4237                 if (ret_val)
4238                         return ret_val;
4239                 break;
4240         case e1000_phy_bm:
4241         case e1000_phy_82578:
4242                 ret_val = e1000e_copper_link_setup_m88(hw);
4243                 if (ret_val)
4244                         return ret_val;
4245                 break;
4246         case e1000_phy_82577:
4247         case e1000_phy_82579:
4248                 ret_val = e1000_copper_link_setup_82577(hw);
4249                 if (ret_val)
4250                         return ret_val;
4251                 break;
4252         case e1000_phy_ife:
4253                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4254                 if (ret_val)
4255                         return ret_val;
4256
4257                 reg_data &= ~IFE_PMC_AUTO_MDIX;
4258
4259                 switch (hw->phy.mdix) {
4260                 case 1:
4261                         reg_data &= ~IFE_PMC_FORCE_MDIX;
4262                         break;
4263                 case 2:
4264                         reg_data |= IFE_PMC_FORCE_MDIX;
4265                         break;
4266                 case 0:
4267                 default:
4268                         reg_data |= IFE_PMC_AUTO_MDIX;
4269                         break;
4270                 }
4271                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4272                 if (ret_val)
4273                         return ret_val;
4274                 break;
4275         default:
4276                 break;
4277         }
4278
4279         return e1000e_setup_copper_link(hw);
4280 }
4281
4282 /**
4283  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4284  *  @hw: pointer to the HW structure
4285  *
4286  *  Calls the PHY specific link setup function and then calls the
4287  *  generic setup_copper_link to finish configuring the link for
4288  *  Lynxpoint PCH devices
4289  **/
4290 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4291 {
4292         u32 ctrl;
4293         s32 ret_val;
4294
4295         ctrl = er32(CTRL);
4296         ctrl |= E1000_CTRL_SLU;
4297         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4298         ew32(CTRL, ctrl);
4299
4300         ret_val = e1000_copper_link_setup_82577(hw);
4301         if (ret_val)
4302                 return ret_val;
4303
4304         return e1000e_setup_copper_link(hw);
4305 }
4306
4307 /**
4308  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4309  *  @hw: pointer to the HW structure
4310  *  @speed: pointer to store current link speed
4311  *  @duplex: pointer to store the current link duplex
4312  *
4313  *  Calls the generic get_speed_and_duplex to retrieve the current link
4314  *  information and then calls the Kumeran lock loss workaround for links at
4315  *  gigabit speeds.
4316  **/
4317 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4318                                           u16 *duplex)
4319 {
4320         s32 ret_val;
4321
4322         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4323         if (ret_val)
4324                 return ret_val;
4325
4326         if ((hw->mac.type == e1000_ich8lan) &&
4327             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4328                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4329         }
4330
4331         return ret_val;
4332 }
4333
4334 /**
4335  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4336  *  @hw: pointer to the HW structure
4337  *
4338  *  Work-around for 82566 Kumeran PCS lock loss:
4339  *  On link status change (i.e. PCI reset, speed change) and link is up and
4340  *  speed is gigabit-
4341  *    0) if workaround is optionally disabled do nothing
4342  *    1) wait 1ms for Kumeran link to come up
4343  *    2) check Kumeran Diagnostic register PCS lock loss bit
4344  *    3) if not set the link is locked (all is good), otherwise...
4345  *    4) reset the PHY
4346  *    5) repeat up to 10 times
4347  *  Note: this is only called for IGP3 copper when speed is 1gb.
4348  **/
4349 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4350 {
4351         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4352         u32 phy_ctrl;
4353         s32 ret_val;
4354         u16 i, data;
4355         bool link;
4356
4357         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4358                 return 0;
4359
4360         /* Make sure link is up before proceeding.  If not just return.
4361          * Attempting this while link is negotiating fouled up link
4362          * stability
4363          */
4364         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4365         if (!link)
4366                 return 0;
4367
4368         for (i = 0; i < 10; i++) {
4369                 /* read once to clear */
4370                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4371                 if (ret_val)
4372                         return ret_val;
4373                 /* and again to get new status */
4374                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4375                 if (ret_val)
4376                         return ret_val;
4377
4378                 /* check for PCS lock */
4379                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4380                         return 0;
4381
4382                 /* Issue PHY reset */
4383                 e1000_phy_hw_reset(hw);
4384                 mdelay(5);
4385         }
4386         /* Disable GigE link negotiation */
4387         phy_ctrl = er32(PHY_CTRL);
4388         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4389                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4390         ew32(PHY_CTRL, phy_ctrl);
4391
4392         /* Call gig speed drop workaround on Gig disable before accessing
4393          * any PHY registers
4394          */
4395         e1000e_gig_downshift_workaround_ich8lan(hw);
4396
4397         /* unable to acquire PCS lock */
4398         return -E1000_ERR_PHY;
4399 }
4400
4401 /**
4402  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4403  *  @hw: pointer to the HW structure
4404  *  @state: boolean value used to set the current Kumeran workaround state
4405  *
4406  *  If ICH8, set the current Kumeran workaround state (enabled - true
4407  *  /disabled - false).
4408  **/
4409 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4410                                                   bool state)
4411 {
4412         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4413
4414         if (hw->mac.type != e1000_ich8lan) {
4415                 e_dbg("Workaround applies to ICH8 only.\n");
4416                 return;
4417         }
4418
4419         dev_spec->kmrn_lock_loss_workaround_enabled = state;
4420 }
4421
4422 /**
4423  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4424  *  @hw: pointer to the HW structure
4425  *
4426  *  Workaround for 82566 power-down on D3 entry:
4427  *    1) disable gigabit link
4428  *    2) write VR power-down enable
4429  *    3) read it back
4430  *  Continue if successful, else issue LCD reset and repeat
4431  **/
4432 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4433 {
4434         u32 reg;
4435         u16 data;
4436         u8 retry = 0;
4437
4438         if (hw->phy.type != e1000_phy_igp_3)
4439                 return;
4440
4441         /* Try the workaround twice (if needed) */
4442         do {
4443                 /* Disable link */
4444                 reg = er32(PHY_CTRL);
4445                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4446                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4447                 ew32(PHY_CTRL, reg);
4448
4449                 /* Call gig speed drop workaround on Gig disable before
4450                  * accessing any PHY registers
4451                  */
4452                 if (hw->mac.type == e1000_ich8lan)
4453                         e1000e_gig_downshift_workaround_ich8lan(hw);
4454
4455                 /* Write VR power-down enable */
4456                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4457                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4458                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4459
4460                 /* Read it back and test */
4461                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4462                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4463                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4464                         break;
4465
4466                 /* Issue PHY reset and repeat at most one more time */
4467                 reg = er32(CTRL);
4468                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4469                 retry++;
4470         } while (retry);
4471 }
4472
4473 /**
4474  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4475  *  @hw: pointer to the HW structure
4476  *
4477  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4478  *  LPLU, Gig disable, MDIC PHY reset):
4479  *    1) Set Kumeran Near-end loopback
4480  *    2) Clear Kumeran Near-end loopback
4481  *  Should only be called for ICH8[m] devices with any 1G Phy.
4482  **/
4483 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4484 {
4485         s32 ret_val;
4486         u16 reg_data;
4487
4488         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4489                 return;
4490
4491         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4492                                        &reg_data);
4493         if (ret_val)
4494                 return;
4495         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4496         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4497                                         reg_data);
4498         if (ret_val)
4499                 return;
4500         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4501         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4502 }
4503
4504 /**
4505  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4506  *  @hw: pointer to the HW structure
4507  *
4508  *  During S0 to Sx transition, it is possible the link remains at gig
4509  *  instead of negotiating to a lower speed.  Before going to Sx, set
4510  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4511  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4512  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4513  *  needs to be written.
4514  *  Parts that support (and are linked to a partner which support) EEE in
4515  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4516  *  than 10Mbps w/o EEE.
4517  **/
4518 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4519 {
4520         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4521         u32 phy_ctrl;
4522         s32 ret_val;
4523
4524         phy_ctrl = er32(PHY_CTRL);
4525         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4526
4527         if (hw->phy.type == e1000_phy_i217) {
4528                 u16 phy_reg, device_id = hw->adapter->pdev->device;
4529
4530                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4531                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4532                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4533                     (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4534                         u32 fextnvm6 = er32(FEXTNVM6);
4535
4536                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4537                 }
4538
4539                 ret_val = hw->phy.ops.acquire(hw);
4540                 if (ret_val)
4541                         goto out;
4542
4543                 if (!dev_spec->eee_disable) {
4544                         u16 eee_advert;
4545
4546                         ret_val =
4547                             e1000_read_emi_reg_locked(hw,
4548                                                       I217_EEE_ADVERTISEMENT,
4549                                                       &eee_advert);
4550                         if (ret_val)
4551                                 goto release;
4552
4553                         /* Disable LPLU if both link partners support 100BaseT
4554                          * EEE and 100Full is advertised on both ends of the
4555                          * link.
4556                          */
4557                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4558                             (dev_spec->eee_lp_ability &
4559                              I82579_EEE_100_SUPPORTED) &&
4560                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4561                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4562                                               E1000_PHY_CTRL_NOND0A_LPLU);
4563                 }
4564
4565                 /* For i217 Intel Rapid Start Technology support,
4566                  * when the system is going into Sx and no manageability engine
4567                  * is present, the driver must configure proxy to reset only on
4568                  * power good.  LPI (Low Power Idle) state must also reset only
4569                  * on power good, as well as the MTA (Multicast table array).
4570                  * The SMBus release must also be disabled on LCD reset.
4571                  */
4572                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4573                         /* Enable proxy to reset only on power good. */
4574                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4575                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4576                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4577
4578                         /* Set bit enable LPI (EEE) to reset only on
4579                          * power good.
4580                          */
4581                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4582                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4583                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4584
4585                         /* Disable the SMB release on LCD reset. */
4586                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4587                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4588                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4589                 }
4590
4591                 /* Enable MTA to reset for Intel Rapid Start Technology
4592                  * Support
4593                  */
4594                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4595                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4596                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4597
4598 release:
4599                 hw->phy.ops.release(hw);
4600         }
4601 out:
4602         ew32(PHY_CTRL, phy_ctrl);
4603
4604         if (hw->mac.type == e1000_ich8lan)
4605                 e1000e_gig_downshift_workaround_ich8lan(hw);
4606
4607         if (hw->mac.type >= e1000_pchlan) {
4608                 e1000_oem_bits_config_ich8lan(hw, false);
4609
4610                 /* Reset PHY to activate OEM bits on 82577/8 */
4611                 if (hw->mac.type == e1000_pchlan)
4612                         e1000e_phy_hw_reset_generic(hw);
4613
4614                 ret_val = hw->phy.ops.acquire(hw);
4615                 if (ret_val)
4616                         return;
4617                 e1000_write_smbus_addr(hw);
4618                 hw->phy.ops.release(hw);
4619         }
4620 }
4621
4622 /**
4623  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4624  *  @hw: pointer to the HW structure
4625  *
4626  *  During Sx to S0 transitions on non-managed devices or managed devices
4627  *  on which PHY resets are not blocked, if the PHY registers cannot be
4628  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4629  *  the PHY.
4630  *  On i217, setup Intel Rapid Start Technology.
4631  **/
4632 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4633 {
4634         s32 ret_val;
4635
4636         if (hw->mac.type < e1000_pch2lan)
4637                 return;
4638
4639         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4640         if (ret_val) {
4641                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4642                 return;
4643         }
4644
4645         /* For i217 Intel Rapid Start Technology support when the system
4646          * is transitioning from Sx and no manageability engine is present
4647          * configure SMBus to restore on reset, disable proxy, and enable
4648          * the reset on MTA (Multicast table array).
4649          */
4650         if (hw->phy.type == e1000_phy_i217) {
4651                 u16 phy_reg;
4652
4653                 ret_val = hw->phy.ops.acquire(hw);
4654                 if (ret_val) {
4655                         e_dbg("Failed to setup iRST\n");
4656                         return;
4657                 }
4658
4659                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4660                         /* Restore clear on SMB if no manageability engine
4661                          * is present
4662                          */
4663                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4664                         if (ret_val)
4665                                 goto release;
4666                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4667                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4668
4669                         /* Disable Proxy */
4670                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4671                 }
4672                 /* Enable reset on MTA */
4673                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4674                 if (ret_val)
4675                         goto release;
4676                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4677                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4678 release:
4679                 if (ret_val)
4680                         e_dbg("Error %d in resume workarounds\n", ret_val);
4681                 hw->phy.ops.release(hw);
4682         }
4683 }
4684
4685 /**
4686  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4687  *  @hw: pointer to the HW structure
4688  *
4689  *  Return the LED back to the default configuration.
4690  **/
4691 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4692 {
4693         if (hw->phy.type == e1000_phy_ife)
4694                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4695
4696         ew32(LEDCTL, hw->mac.ledctl_default);
4697         return 0;
4698 }
4699
4700 /**
4701  *  e1000_led_on_ich8lan - Turn LEDs on
4702  *  @hw: pointer to the HW structure
4703  *
4704  *  Turn on the LEDs.
4705  **/
4706 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4707 {
4708         if (hw->phy.type == e1000_phy_ife)
4709                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4710                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4711
4712         ew32(LEDCTL, hw->mac.ledctl_mode2);
4713         return 0;
4714 }
4715
4716 /**
4717  *  e1000_led_off_ich8lan - Turn LEDs off
4718  *  @hw: pointer to the HW structure
4719  *
4720  *  Turn off the LEDs.
4721  **/
4722 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4723 {
4724         if (hw->phy.type == e1000_phy_ife)
4725                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4726                                 (IFE_PSCL_PROBE_MODE |
4727                                  IFE_PSCL_PROBE_LEDS_OFF));
4728
4729         ew32(LEDCTL, hw->mac.ledctl_mode1);
4730         return 0;
4731 }
4732
4733 /**
4734  *  e1000_setup_led_pchlan - Configures SW controllable LED
4735  *  @hw: pointer to the HW structure
4736  *
4737  *  This prepares the SW controllable LED for use.
4738  **/
4739 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4740 {
4741         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4742 }
4743
4744 /**
4745  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4746  *  @hw: pointer to the HW structure
4747  *
4748  *  Return the LED back to the default configuration.
4749  **/
4750 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4751 {
4752         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4753 }
4754
4755 /**
4756  *  e1000_led_on_pchlan - Turn LEDs on
4757  *  @hw: pointer to the HW structure
4758  *
4759  *  Turn on the LEDs.
4760  **/
4761 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4762 {
4763         u16 data = (u16)hw->mac.ledctl_mode2;
4764         u32 i, led;
4765
4766         /* If no link, then turn LED on by setting the invert bit
4767          * for each LED that's mode is "link_up" in ledctl_mode2.
4768          */
4769         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4770                 for (i = 0; i < 3; i++) {
4771                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4772                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4773                             E1000_LEDCTL_MODE_LINK_UP)
4774                                 continue;
4775                         if (led & E1000_PHY_LED0_IVRT)
4776                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4777                         else
4778                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4779                 }
4780         }
4781
4782         return e1e_wphy(hw, HV_LED_CONFIG, data);
4783 }
4784
4785 /**
4786  *  e1000_led_off_pchlan - Turn LEDs off
4787  *  @hw: pointer to the HW structure
4788  *
4789  *  Turn off the LEDs.
4790  **/
4791 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4792 {
4793         u16 data = (u16)hw->mac.ledctl_mode1;
4794         u32 i, led;
4795
4796         /* If no link, then turn LED off by clearing the invert bit
4797          * for each LED that's mode is "link_up" in ledctl_mode1.
4798          */
4799         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4800                 for (i = 0; i < 3; i++) {
4801                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4802                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4803                             E1000_LEDCTL_MODE_LINK_UP)
4804                                 continue;
4805                         if (led & E1000_PHY_LED0_IVRT)
4806                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4807                         else
4808                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4809                 }
4810         }
4811
4812         return e1e_wphy(hw, HV_LED_CONFIG, data);
4813 }
4814
4815 /**
4816  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4817  *  @hw: pointer to the HW structure
4818  *
4819  *  Read appropriate register for the config done bit for completion status
4820  *  and configure the PHY through s/w for EEPROM-less parts.
4821  *
4822  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4823  *  config done bit, so only an error is logged and continues.  If we were
4824  *  to return with error, EEPROM-less silicon would not be able to be reset
4825  *  or change link.
4826  **/
4827 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4828 {
4829         s32 ret_val = 0;
4830         u32 bank = 0;
4831         u32 status;
4832
4833         e1000e_get_cfg_done_generic(hw);
4834
4835         /* Wait for indication from h/w that it has completed basic config */
4836         if (hw->mac.type >= e1000_ich10lan) {
4837                 e1000_lan_init_done_ich8lan(hw);
4838         } else {
4839                 ret_val = e1000e_get_auto_rd_done(hw);
4840                 if (ret_val) {
4841                         /* When auto config read does not complete, do not
4842                          * return with an error. This can happen in situations
4843                          * where there is no eeprom and prevents getting link.
4844                          */
4845                         e_dbg("Auto Read Done did not complete\n");
4846                         ret_val = 0;
4847                 }
4848         }
4849
4850         /* Clear PHY Reset Asserted bit */
4851         status = er32(STATUS);
4852         if (status & E1000_STATUS_PHYRA)
4853                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4854         else
4855                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4856
4857         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4858         if (hw->mac.type <= e1000_ich9lan) {
4859                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4860                     (hw->phy.type == e1000_phy_igp_3)) {
4861                         e1000e_phy_init_script_igp3(hw);
4862                 }
4863         } else {
4864                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4865                         /* Maybe we should do a basic PHY config */
4866                         e_dbg("EEPROM not present\n");
4867                         ret_val = -E1000_ERR_CONFIG;
4868                 }
4869         }
4870
4871         return ret_val;
4872 }
4873
4874 /**
4875  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4876  * @hw: pointer to the HW structure
4877  *
4878  * In the case of a PHY power down to save power, or to turn off link during a
4879  * driver unload, or wake on lan is not enabled, remove the link.
4880  **/
4881 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4882 {
4883         /* If the management interface is not enabled, then power down */
4884         if (!(hw->mac.ops.check_mng_mode(hw) ||
4885               hw->phy.ops.check_reset_block(hw)))
4886                 e1000_power_down_phy_copper(hw);
4887 }
4888
4889 /**
4890  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4891  *  @hw: pointer to the HW structure
4892  *
4893  *  Clears hardware counters specific to the silicon family and calls
4894  *  clear_hw_cntrs_generic to clear all general purpose counters.
4895  **/
4896 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4897 {
4898         u16 phy_data;
4899         s32 ret_val;
4900
4901         e1000e_clear_hw_cntrs_base(hw);
4902
4903         er32(ALGNERRC);
4904         er32(RXERRC);
4905         er32(TNCRS);
4906         er32(CEXTERR);
4907         er32(TSCTC);
4908         er32(TSCTFC);
4909
4910         er32(MGTPRC);
4911         er32(MGTPDC);
4912         er32(MGTPTC);
4913
4914         er32(IAC);
4915         er32(ICRXOC);
4916
4917         /* Clear PHY statistics registers */
4918         if ((hw->phy.type == e1000_phy_82578) ||
4919             (hw->phy.type == e1000_phy_82579) ||
4920             (hw->phy.type == e1000_phy_i217) ||
4921             (hw->phy.type == e1000_phy_82577)) {
4922                 ret_val = hw->phy.ops.acquire(hw);
4923                 if (ret_val)
4924                         return;
4925                 ret_val = hw->phy.ops.set_page(hw,
4926                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4927                 if (ret_val)
4928                         goto release;
4929                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4930                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4931                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4932                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4933                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4934                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4935                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4936                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4937                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4938                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4939                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4940                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4941                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4942                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4943 release:
4944                 hw->phy.ops.release(hw);
4945         }
4946 }
4947
4948 static const struct e1000_mac_operations ich8_mac_ops = {
4949         /* check_mng_mode dependent on mac type */
4950         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4951         /* cleanup_led dependent on mac type */
4952         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4953         .get_bus_info           = e1000_get_bus_info_ich8lan,
4954         .set_lan_id             = e1000_set_lan_id_single_port,
4955         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4956         /* led_on dependent on mac type */
4957         /* led_off dependent on mac type */
4958         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4959         .reset_hw               = e1000_reset_hw_ich8lan,
4960         .init_hw                = e1000_init_hw_ich8lan,
4961         .setup_link             = e1000_setup_link_ich8lan,
4962         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
4963         /* id_led_init dependent on mac type */
4964         .config_collision_dist  = e1000e_config_collision_dist_generic,
4965         .rar_set                = e1000e_rar_set_generic,
4966 };
4967
4968 static const struct e1000_phy_operations ich8_phy_ops = {
4969         .acquire                = e1000_acquire_swflag_ich8lan,
4970         .check_reset_block      = e1000_check_reset_block_ich8lan,
4971         .commit                 = NULL,
4972         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4973         .get_cable_length       = e1000e_get_cable_length_igp_2,
4974         .read_reg               = e1000e_read_phy_reg_igp,
4975         .release                = e1000_release_swflag_ich8lan,
4976         .reset                  = e1000_phy_hw_reset_ich8lan,
4977         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4978         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4979         .write_reg              = e1000e_write_phy_reg_igp,
4980 };
4981
4982 static const struct e1000_nvm_operations ich8_nvm_ops = {
4983         .acquire                = e1000_acquire_nvm_ich8lan,
4984         .read                   = e1000_read_nvm_ich8lan,
4985         .release                = e1000_release_nvm_ich8lan,
4986         .reload                 = e1000e_reload_nvm_generic,
4987         .update                 = e1000_update_nvm_checksum_ich8lan,
4988         .valid_led_default      = e1000_valid_led_default_ich8lan,
4989         .validate               = e1000_validate_nvm_checksum_ich8lan,
4990         .write                  = e1000_write_nvm_ich8lan,
4991 };
4992
4993 const struct e1000_info e1000_ich8_info = {
4994         .mac                    = e1000_ich8lan,
4995         .flags                  = FLAG_HAS_WOL
4996                                   | FLAG_IS_ICH
4997                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4998                                   | FLAG_HAS_AMT
4999                                   | FLAG_HAS_FLASH
5000                                   | FLAG_APME_IN_WUC,
5001         .pba                    = 8,
5002         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
5003         .get_variants           = e1000_get_variants_ich8lan,
5004         .mac_ops                = &ich8_mac_ops,
5005         .phy_ops                = &ich8_phy_ops,
5006         .nvm_ops                = &ich8_nvm_ops,
5007 };
5008
5009 const struct e1000_info e1000_ich9_info = {
5010         .mac                    = e1000_ich9lan,
5011         .flags                  = FLAG_HAS_JUMBO_FRAMES
5012                                   | FLAG_IS_ICH
5013                                   | FLAG_HAS_WOL
5014                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5015                                   | FLAG_HAS_AMT
5016                                   | FLAG_HAS_FLASH
5017                                   | FLAG_APME_IN_WUC,
5018         .pba                    = 18,
5019         .max_hw_frame_size      = DEFAULT_JUMBO,
5020         .get_variants           = e1000_get_variants_ich8lan,
5021         .mac_ops                = &ich8_mac_ops,
5022         .phy_ops                = &ich8_phy_ops,
5023         .nvm_ops                = &ich8_nvm_ops,
5024 };
5025
5026 const struct e1000_info e1000_ich10_info = {
5027         .mac                    = e1000_ich10lan,
5028         .flags                  = FLAG_HAS_JUMBO_FRAMES
5029                                   | FLAG_IS_ICH
5030                                   | FLAG_HAS_WOL
5031                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5032                                   | FLAG_HAS_AMT
5033                                   | FLAG_HAS_FLASH
5034                                   | FLAG_APME_IN_WUC,
5035         .pba                    = 18,
5036         .max_hw_frame_size      = DEFAULT_JUMBO,
5037         .get_variants           = e1000_get_variants_ich8lan,
5038         .mac_ops                = &ich8_mac_ops,
5039         .phy_ops                = &ich8_phy_ops,
5040         .nvm_ops                = &ich8_nvm_ops,
5041 };
5042
5043 const struct e1000_info e1000_pch_info = {
5044         .mac                    = e1000_pchlan,
5045         .flags                  = FLAG_IS_ICH
5046                                   | FLAG_HAS_WOL
5047                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5048                                   | FLAG_HAS_AMT
5049                                   | FLAG_HAS_FLASH
5050                                   | FLAG_HAS_JUMBO_FRAMES
5051                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5052                                   | FLAG_APME_IN_WUC,
5053         .flags2                 = FLAG2_HAS_PHY_STATS,
5054         .pba                    = 26,
5055         .max_hw_frame_size      = 4096,
5056         .get_variants           = e1000_get_variants_ich8lan,
5057         .mac_ops                = &ich8_mac_ops,
5058         .phy_ops                = &ich8_phy_ops,
5059         .nvm_ops                = &ich8_nvm_ops,
5060 };
5061
5062 const struct e1000_info e1000_pch2_info = {
5063         .mac                    = e1000_pch2lan,
5064         .flags                  = FLAG_IS_ICH
5065                                   | FLAG_HAS_WOL
5066                                   | FLAG_HAS_HW_TIMESTAMP
5067                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5068                                   | FLAG_HAS_AMT
5069                                   | FLAG_HAS_FLASH
5070                                   | FLAG_HAS_JUMBO_FRAMES
5071                                   | FLAG_APME_IN_WUC,
5072         .flags2                 = FLAG2_HAS_PHY_STATS
5073                                   | FLAG2_HAS_EEE,
5074         .pba                    = 26,
5075         .max_hw_frame_size      = 9018,
5076         .get_variants           = e1000_get_variants_ich8lan,
5077         .mac_ops                = &ich8_mac_ops,
5078         .phy_ops                = &ich8_phy_ops,
5079         .nvm_ops                = &ich8_nvm_ops,
5080 };
5081
5082 const struct e1000_info e1000_pch_lpt_info = {
5083         .mac                    = e1000_pch_lpt,
5084         .flags                  = FLAG_IS_ICH
5085                                   | FLAG_HAS_WOL
5086                                   | FLAG_HAS_HW_TIMESTAMP
5087                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5088                                   | FLAG_HAS_AMT
5089                                   | FLAG_HAS_FLASH
5090                                   | FLAG_HAS_JUMBO_FRAMES
5091                                   | FLAG_APME_IN_WUC,
5092         .flags2                 = FLAG2_HAS_PHY_STATS
5093                                   | FLAG2_HAS_EEE,
5094         .pba                    = 26,
5095         .max_hw_frame_size      = 9018,
5096         .get_variants           = e1000_get_variants_ich8lan,
5097         .mac_ops                = &ich8_mac_ops,
5098         .phy_ops                = &ich8_phy_ops,
5099         .nvm_ops                = &ich8_nvm_ops,
5100 };