Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
81         /* General Registers */
82         {E1000_CTRL, "CTRL"},
83         {E1000_STATUS, "STATUS"},
84         {E1000_CTRL_EXT, "CTRL_EXT"},
85
86         /* Interrupt Registers */
87         {E1000_ICR, "ICR"},
88
89         /* Rx Registers */
90         {E1000_RCTL, "RCTL"},
91         {E1000_RDLEN(0), "RDLEN"},
92         {E1000_RDH(0), "RDH"},
93         {E1000_RDT(0), "RDT"},
94         {E1000_RDTR, "RDTR"},
95         {E1000_RXDCTL(0), "RXDCTL"},
96         {E1000_ERT, "ERT"},
97         {E1000_RDBAL(0), "RDBAL"},
98         {E1000_RDBAH(0), "RDBAH"},
99         {E1000_RDFH, "RDFH"},
100         {E1000_RDFT, "RDFT"},
101         {E1000_RDFHS, "RDFHS"},
102         {E1000_RDFTS, "RDFTS"},
103         {E1000_RDFPC, "RDFPC"},
104
105         /* Tx Registers */
106         {E1000_TCTL, "TCTL"},
107         {E1000_TDBAL(0), "TDBAL"},
108         {E1000_TDBAH(0), "TDBAH"},
109         {E1000_TDLEN(0), "TDLEN"},
110         {E1000_TDH(0), "TDH"},
111         {E1000_TDT(0), "TDT"},
112         {E1000_TIDV, "TIDV"},
113         {E1000_TXDCTL(0), "TXDCTL"},
114         {E1000_TADV, "TADV"},
115         {E1000_TARC(0), "TARC"},
116         {E1000_TDFH, "TDFH"},
117         {E1000_TDFT, "TDFT"},
118         {E1000_TDFHS, "TDFHS"},
119         {E1000_TDFTS, "TDFTS"},
120         {E1000_TDFPC, "TDFPC"},
121
122         /* List Terminator */
123         {0, NULL}
124 };
125
126 /**
127  * e1000_regdump - register printout routine
128  * @hw: pointer to the HW structure
129  * @reginfo: pointer to the register info table
130  **/
131 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
132 {
133         int n = 0;
134         char rname[16];
135         u32 regs[8];
136
137         switch (reginfo->ofs) {
138         case E1000_RXDCTL(0):
139                 for (n = 0; n < 2; n++)
140                         regs[n] = __er32(hw, E1000_RXDCTL(n));
141                 break;
142         case E1000_TXDCTL(0):
143                 for (n = 0; n < 2; n++)
144                         regs[n] = __er32(hw, E1000_TXDCTL(n));
145                 break;
146         case E1000_TARC(0):
147                 for (n = 0; n < 2; n++)
148                         regs[n] = __er32(hw, E1000_TARC(n));
149                 break;
150         default:
151                 pr_info("%-15s %08x\n",
152                         reginfo->name, __er32(hw, reginfo->ofs));
153                 return;
154         }
155
156         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
157         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
158 }
159
160 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
161                                  struct e1000_buffer *bi)
162 {
163         int i;
164         struct e1000_ps_page *ps_page;
165
166         for (i = 0; i < adapter->rx_ps_pages; i++) {
167                 ps_page = &bi->ps_pages[i];
168
169                 if (ps_page->page) {
170                         pr_info("packet dump for ps_page %d:\n", i);
171                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
172                                        16, 1, page_address(ps_page->page),
173                                        PAGE_SIZE, true);
174                 }
175         }
176 }
177
178 /**
179  * e1000e_dump - Print registers, Tx-ring and Rx-ring
180  * @adapter: board private structure
181  **/
182 static void e1000e_dump(struct e1000_adapter *adapter)
183 {
184         struct net_device *netdev = adapter->netdev;
185         struct e1000_hw *hw = &adapter->hw;
186         struct e1000_reg_info *reginfo;
187         struct e1000_ring *tx_ring = adapter->tx_ring;
188         struct e1000_tx_desc *tx_desc;
189         struct my_u0 {
190                 __le64 a;
191                 __le64 b;
192         } *u0;
193         struct e1000_buffer *buffer_info;
194         struct e1000_ring *rx_ring = adapter->rx_ring;
195         union e1000_rx_desc_packet_split *rx_desc_ps;
196         union e1000_rx_desc_extended *rx_desc;
197         struct my_u1 {
198                 __le64 a;
199                 __le64 b;
200                 __le64 c;
201                 __le64 d;
202         } *u1;
203         u32 staterr;
204         int i = 0;
205
206         if (!netif_msg_hw(adapter))
207                 return;
208
209         /* Print netdevice Info */
210         if (netdev) {
211                 dev_info(&adapter->pdev->dev, "Net device Info\n");
212                 pr_info("Device Name     state            trans_start      last_rx\n");
213                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
214                         netdev->state, netdev->trans_start, netdev->last_rx);
215         }
216
217         /* Print Registers */
218         dev_info(&adapter->pdev->dev, "Register Dump\n");
219         pr_info(" Register Name   Value\n");
220         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
221              reginfo->name; reginfo++) {
222                 e1000_regdump(hw, reginfo);
223         }
224
225         /* Print Tx Ring Summary */
226         if (!netdev || !netif_running(netdev))
227                 return;
228
229         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
230         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
231         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
232         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
233                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
234                 (unsigned long long)buffer_info->dma,
235                 buffer_info->length,
236                 buffer_info->next_to_watch,
237                 (unsigned long long)buffer_info->time_stamp);
238
239         /* Print Tx Ring */
240         if (!netif_msg_tx_done(adapter))
241                 goto rx_ring_summary;
242
243         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
244
245         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
246          *
247          * Legacy Transmit Descriptor
248          *   +--------------------------------------------------------------+
249          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
250          *   +--------------------------------------------------------------+
251          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
252          *   +--------------------------------------------------------------+
253          *   63       48 47        36 35    32 31     24 23    16 15        0
254          *
255          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
256          *   63      48 47    40 39       32 31             16 15    8 7      0
257          *   +----------------------------------------------------------------+
258          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
259          *   +----------------------------------------------------------------+
260          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
261          *   +----------------------------------------------------------------+
262          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
263          *
264          * Extended Data Descriptor (DTYP=0x1)
265          *   +----------------------------------------------------------------+
266          * 0 |                     Buffer Address [63:0]                      |
267          *   +----------------------------------------------------------------+
268          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
269          *   +----------------------------------------------------------------+
270          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
271          */
272         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
273         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
274         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
275         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
276                 const char *next_desc;
277                 tx_desc = E1000_TX_DESC(*tx_ring, i);
278                 buffer_info = &tx_ring->buffer_info[i];
279                 u0 = (struct my_u0 *)tx_desc;
280                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
281                         next_desc = " NTC/U";
282                 else if (i == tx_ring->next_to_use)
283                         next_desc = " NTU";
284                 else if (i == tx_ring->next_to_clean)
285                         next_desc = " NTC";
286                 else
287                         next_desc = "";
288                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
289                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
290                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
291                         i,
292                         (unsigned long long)le64_to_cpu(u0->a),
293                         (unsigned long long)le64_to_cpu(u0->b),
294                         (unsigned long long)buffer_info->dma,
295                         buffer_info->length, buffer_info->next_to_watch,
296                         (unsigned long long)buffer_info->time_stamp,
297                         buffer_info->skb, next_desc);
298
299                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
300                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
301                                        16, 1, buffer_info->skb->data,
302                                        buffer_info->skb->len, true);
303         }
304
305         /* Print Rx Ring Summary */
306 rx_ring_summary:
307         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
308         pr_info("Queue [NTU] [NTC]\n");
309         pr_info(" %5d %5X %5X\n",
310                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
311
312         /* Print Rx Ring */
313         if (!netif_msg_rx_status(adapter))
314                 return;
315
316         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
317         switch (adapter->rx_ps_pages) {
318         case 1:
319         case 2:
320         case 3:
321                 /* [Extended] Packet Split Receive Descriptor Format
322                  *
323                  *    +-----------------------------------------------------+
324                  *  0 |                Buffer Address 0 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  *  8 |                Buffer Address 1 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 16 |                Buffer Address 2 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  * 24 |                Buffer Address 3 [63:0]              |
331                  *    +-----------------------------------------------------+
332                  */
333                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
334                 /* [Extended] Receive Descriptor (Write-Back) Format
335                  *
336                  *   63       48 47    32 31     13 12    8 7    4 3        0
337                  *   +------------------------------------------------------+
338                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
339                  *   | Checksum | Ident  |         | Queue |      |  Type   |
340                  *   +------------------------------------------------------+
341                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
342                  *   +------------------------------------------------------+
343                  *   63       48 47    32 31            20 19               0
344                  */
345                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
346                 for (i = 0; i < rx_ring->count; i++) {
347                         const char *next_desc;
348                         buffer_info = &rx_ring->buffer_info[i];
349                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
350                         u1 = (struct my_u1 *)rx_desc_ps;
351                         staterr =
352                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
353
354                         if (i == rx_ring->next_to_use)
355                                 next_desc = " NTU";
356                         else if (i == rx_ring->next_to_clean)
357                                 next_desc = " NTC";
358                         else
359                                 next_desc = "";
360
361                         if (staterr & E1000_RXD_STAT_DD) {
362                                 /* Descriptor Done */
363                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
364                                         "RWB", i,
365                                         (unsigned long long)le64_to_cpu(u1->a),
366                                         (unsigned long long)le64_to_cpu(u1->b),
367                                         (unsigned long long)le64_to_cpu(u1->c),
368                                         (unsigned long long)le64_to_cpu(u1->d),
369                                         buffer_info->skb, next_desc);
370                         } else {
371                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
372                                         "R  ", i,
373                                         (unsigned long long)le64_to_cpu(u1->a),
374                                         (unsigned long long)le64_to_cpu(u1->b),
375                                         (unsigned long long)le64_to_cpu(u1->c),
376                                         (unsigned long long)le64_to_cpu(u1->d),
377                                         (unsigned long long)buffer_info->dma,
378                                         buffer_info->skb, next_desc);
379
380                                 if (netif_msg_pktdata(adapter))
381                                         e1000e_dump_ps_pages(adapter,
382                                                              buffer_info);
383                         }
384                 }
385                 break;
386         default:
387         case 0:
388                 /* Extended Receive Descriptor (Read) Format
389                  *
390                  *   +-----------------------------------------------------+
391                  * 0 |                Buffer Address [63:0]                |
392                  *   +-----------------------------------------------------+
393                  * 8 |                      Reserved                       |
394                  *   +-----------------------------------------------------+
395                  */
396                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
397                 /* Extended Receive Descriptor (Write-Back) Format
398                  *
399                  *   63       48 47    32 31    24 23            4 3        0
400                  *   +------------------------------------------------------+
401                  *   |     RSS Hash      |        |               |         |
402                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
403                  *   | Packet   | IP     |        |               |  Type   |
404                  *   | Checksum | Ident  |        |               |         |
405                  *   +------------------------------------------------------+
406                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
407                  *   +------------------------------------------------------+
408                  *   63       48 47    32 31            20 19               0
409                  */
410                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
411
412                 for (i = 0; i < rx_ring->count; i++) {
413                         const char *next_desc;
414
415                         buffer_info = &rx_ring->buffer_info[i];
416                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
417                         u1 = (struct my_u1 *)rx_desc;
418                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
419
420                         if (i == rx_ring->next_to_use)
421                                 next_desc = " NTU";
422                         else if (i == rx_ring->next_to_clean)
423                                 next_desc = " NTC";
424                         else
425                                 next_desc = "";
426
427                         if (staterr & E1000_RXD_STAT_DD) {
428                                 /* Descriptor Done */
429                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
430                                         "RWB", i,
431                                         (unsigned long long)le64_to_cpu(u1->a),
432                                         (unsigned long long)le64_to_cpu(u1->b),
433                                         buffer_info->skb, next_desc);
434                         } else {
435                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
436                                         "R  ", i,
437                                         (unsigned long long)le64_to_cpu(u1->a),
438                                         (unsigned long long)le64_to_cpu(u1->b),
439                                         (unsigned long long)buffer_info->dma,
440                                         buffer_info->skb, next_desc);
441
442                                 if (netif_msg_pktdata(adapter) &&
443                                     buffer_info->skb)
444                                         print_hex_dump(KERN_INFO, "",
445                                                        DUMP_PREFIX_ADDRESS, 16,
446                                                        1,
447                                                        buffer_info->skb->data,
448                                                        adapter->rx_buffer_len,
449                                                        true);
450                         }
451                 }
452         }
453 }
454
455 /**
456  * e1000_desc_unused - calculate if we have unused descriptors
457  **/
458 static int e1000_desc_unused(struct e1000_ring *ring)
459 {
460         if (ring->next_to_clean > ring->next_to_use)
461                 return ring->next_to_clean - ring->next_to_use - 1;
462
463         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
464 }
465
466 /**
467  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
468  * @adapter: board private structure
469  * @hwtstamps: time stamp structure to update
470  * @systim: unsigned 64bit system time value.
471  *
472  * Convert the system time value stored in the RX/TXSTMP registers into a
473  * hwtstamp which can be used by the upper level time stamping functions.
474  *
475  * The 'systim_lock' spinlock is used to protect the consistency of the
476  * system time value. This is needed because reading the 64 bit time
477  * value involves reading two 32 bit registers. The first read latches the
478  * value.
479  **/
480 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
481                                       struct skb_shared_hwtstamps *hwtstamps,
482                                       u64 systim)
483 {
484         u64 ns;
485         unsigned long flags;
486
487         spin_lock_irqsave(&adapter->systim_lock, flags);
488         ns = timecounter_cyc2time(&adapter->tc, systim);
489         spin_unlock_irqrestore(&adapter->systim_lock, flags);
490
491         memset(hwtstamps, 0, sizeof(*hwtstamps));
492         hwtstamps->hwtstamp = ns_to_ktime(ns);
493 }
494
495 /**
496  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
497  * @adapter: board private structure
498  * @status: descriptor extended error and status field
499  * @skb: particular skb to include time stamp
500  *
501  * If the time stamp is valid, convert it into the timecounter ns value
502  * and store that result into the shhwtstamps structure which is passed
503  * up the network stack.
504  **/
505 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
506                                struct sk_buff *skb)
507 {
508         struct e1000_hw *hw = &adapter->hw;
509         u64 rxstmp;
510
511         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
512             !(status & E1000_RXDEXT_STATERR_TST) ||
513             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
514                 return;
515
516         /* The Rx time stamp registers contain the time stamp.  No other
517          * received packet will be time stamped until the Rx time stamp
518          * registers are read.  Because only one packet can be time stamped
519          * at a time, the register values must belong to this packet and
520          * therefore none of the other additional attributes need to be
521          * compared.
522          */
523         rxstmp = (u64)er32(RXSTMPL);
524         rxstmp |= (u64)er32(RXSTMPH) << 32;
525         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
526
527         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
528 }
529
530 /**
531  * e1000_receive_skb - helper function to handle Rx indications
532  * @adapter: board private structure
533  * @staterr: descriptor extended error and status field as written by hardware
534  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
535  * @skb: pointer to sk_buff to be indicated to stack
536  **/
537 static void e1000_receive_skb(struct e1000_adapter *adapter,
538                               struct net_device *netdev, struct sk_buff *skb,
539                               u32 staterr, __le16 vlan)
540 {
541         u16 tag = le16_to_cpu(vlan);
542
543         e1000e_rx_hwtstamp(adapter, staterr, skb);
544
545         skb->protocol = eth_type_trans(skb, netdev);
546
547         if (staterr & E1000_RXD_STAT_VP)
548                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
549
550         napi_gro_receive(&adapter->napi, skb);
551 }
552
553 /**
554  * e1000_rx_checksum - Receive Checksum Offload
555  * @adapter: board private structure
556  * @status_err: receive descriptor status and error fields
557  * @csum: receive descriptor csum field
558  * @sk_buff: socket buffer with received data
559  **/
560 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
561                               struct sk_buff *skb)
562 {
563         u16 status = (u16)status_err;
564         u8 errors = (u8)(status_err >> 24);
565
566         skb_checksum_none_assert(skb);
567
568         /* Rx checksum disabled */
569         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
570                 return;
571
572         /* Ignore Checksum bit is set */
573         if (status & E1000_RXD_STAT_IXSM)
574                 return;
575
576         /* TCP/UDP checksum error bit or IP checksum error bit is set */
577         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
578                 /* let the stack verify checksum errors */
579                 adapter->hw_csum_err++;
580                 return;
581         }
582
583         /* TCP/UDP Checksum has not been calculated */
584         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
585                 return;
586
587         /* It must be a TCP or UDP packet with a valid checksum */
588         skb->ip_summed = CHECKSUM_UNNECESSARY;
589         adapter->hw_csum_good++;
590 }
591
592 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
593 {
594         struct e1000_adapter *adapter = rx_ring->adapter;
595         struct e1000_hw *hw = &adapter->hw;
596         s32 ret_val = __ew32_prepare(hw);
597
598         writel(i, rx_ring->tail);
599
600         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
601                 u32 rctl = er32(RCTL);
602
603                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
604                 e_err("ME firmware caused invalid RDT - resetting\n");
605                 schedule_work(&adapter->reset_task);
606         }
607 }
608
609 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
610 {
611         struct e1000_adapter *adapter = tx_ring->adapter;
612         struct e1000_hw *hw = &adapter->hw;
613         s32 ret_val = __ew32_prepare(hw);
614
615         writel(i, tx_ring->tail);
616
617         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
618                 u32 tctl = er32(TCTL);
619
620                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
621                 e_err("ME firmware caused invalid TDT - resetting\n");
622                 schedule_work(&adapter->reset_task);
623         }
624 }
625
626 /**
627  * e1000_alloc_rx_buffers - Replace used receive buffers
628  * @rx_ring: Rx descriptor ring
629  **/
630 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
631                                    int cleaned_count, gfp_t gfp)
632 {
633         struct e1000_adapter *adapter = rx_ring->adapter;
634         struct net_device *netdev = adapter->netdev;
635         struct pci_dev *pdev = adapter->pdev;
636         union e1000_rx_desc_extended *rx_desc;
637         struct e1000_buffer *buffer_info;
638         struct sk_buff *skb;
639         unsigned int i;
640         unsigned int bufsz = adapter->rx_buffer_len;
641
642         i = rx_ring->next_to_use;
643         buffer_info = &rx_ring->buffer_info[i];
644
645         while (cleaned_count--) {
646                 skb = buffer_info->skb;
647                 if (skb) {
648                         skb_trim(skb, 0);
649                         goto map_skb;
650                 }
651
652                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
653                 if (!skb) {
654                         /* Better luck next round */
655                         adapter->alloc_rx_buff_failed++;
656                         break;
657                 }
658
659                 buffer_info->skb = skb;
660 map_skb:
661                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
662                                                   adapter->rx_buffer_len,
663                                                   DMA_FROM_DEVICE);
664                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
665                         dev_err(&pdev->dev, "Rx DMA map failed\n");
666                         adapter->rx_dma_failed++;
667                         break;
668                 }
669
670                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
671                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
672
673                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
674                         /* Force memory writes to complete before letting h/w
675                          * know there are new descriptors to fetch.  (Only
676                          * applicable for weak-ordered memory model archs,
677                          * such as IA-64).
678                          */
679                         wmb();
680                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
681                                 e1000e_update_rdt_wa(rx_ring, i);
682                         else
683                                 writel(i, rx_ring->tail);
684                 }
685                 i++;
686                 if (i == rx_ring->count)
687                         i = 0;
688                 buffer_info = &rx_ring->buffer_info[i];
689         }
690
691         rx_ring->next_to_use = i;
692 }
693
694 /**
695  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
696  * @rx_ring: Rx descriptor ring
697  **/
698 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
699                                       int cleaned_count, gfp_t gfp)
700 {
701         struct e1000_adapter *adapter = rx_ring->adapter;
702         struct net_device *netdev = adapter->netdev;
703         struct pci_dev *pdev = adapter->pdev;
704         union e1000_rx_desc_packet_split *rx_desc;
705         struct e1000_buffer *buffer_info;
706         struct e1000_ps_page *ps_page;
707         struct sk_buff *skb;
708         unsigned int i, j;
709
710         i = rx_ring->next_to_use;
711         buffer_info = &rx_ring->buffer_info[i];
712
713         while (cleaned_count--) {
714                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
715
716                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
717                         ps_page = &buffer_info->ps_pages[j];
718                         if (j >= adapter->rx_ps_pages) {
719                                 /* all unused desc entries get hw null ptr */
720                                 rx_desc->read.buffer_addr[j + 1] =
721                                     ~cpu_to_le64(0);
722                                 continue;
723                         }
724                         if (!ps_page->page) {
725                                 ps_page->page = alloc_page(gfp);
726                                 if (!ps_page->page) {
727                                         adapter->alloc_rx_buff_failed++;
728                                         goto no_buffers;
729                                 }
730                                 ps_page->dma = dma_map_page(&pdev->dev,
731                                                             ps_page->page,
732                                                             0, PAGE_SIZE,
733                                                             DMA_FROM_DEVICE);
734                                 if (dma_mapping_error(&pdev->dev,
735                                                       ps_page->dma)) {
736                                         dev_err(&adapter->pdev->dev,
737                                                 "Rx DMA page map failed\n");
738                                         adapter->rx_dma_failed++;
739                                         goto no_buffers;
740                                 }
741                         }
742                         /* Refresh the desc even if buffer_addrs
743                          * didn't change because each write-back
744                          * erases this info.
745                          */
746                         rx_desc->read.buffer_addr[j + 1] =
747                             cpu_to_le64(ps_page->dma);
748                 }
749
750                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
751                                                   gfp);
752
753                 if (!skb) {
754                         adapter->alloc_rx_buff_failed++;
755                         break;
756                 }
757
758                 buffer_info->skb = skb;
759                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
760                                                   adapter->rx_ps_bsize0,
761                                                   DMA_FROM_DEVICE);
762                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
763                         dev_err(&pdev->dev, "Rx DMA map failed\n");
764                         adapter->rx_dma_failed++;
765                         /* cleanup skb */
766                         dev_kfree_skb_any(skb);
767                         buffer_info->skb = NULL;
768                         break;
769                 }
770
771                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
772
773                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
774                         /* Force memory writes to complete before letting h/w
775                          * know there are new descriptors to fetch.  (Only
776                          * applicable for weak-ordered memory model archs,
777                          * such as IA-64).
778                          */
779                         wmb();
780                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
781                                 e1000e_update_rdt_wa(rx_ring, i << 1);
782                         else
783                                 writel(i << 1, rx_ring->tail);
784                 }
785
786                 i++;
787                 if (i == rx_ring->count)
788                         i = 0;
789                 buffer_info = &rx_ring->buffer_info[i];
790         }
791
792 no_buffers:
793         rx_ring->next_to_use = i;
794 }
795
796 /**
797  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
798  * @rx_ring: Rx descriptor ring
799  * @cleaned_count: number of buffers to allocate this pass
800  **/
801
802 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
803                                          int cleaned_count, gfp_t gfp)
804 {
805         struct e1000_adapter *adapter = rx_ring->adapter;
806         struct net_device *netdev = adapter->netdev;
807         struct pci_dev *pdev = adapter->pdev;
808         union e1000_rx_desc_extended *rx_desc;
809         struct e1000_buffer *buffer_info;
810         struct sk_buff *skb;
811         unsigned int i;
812         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
813
814         i = rx_ring->next_to_use;
815         buffer_info = &rx_ring->buffer_info[i];
816
817         while (cleaned_count--) {
818                 skb = buffer_info->skb;
819                 if (skb) {
820                         skb_trim(skb, 0);
821                         goto check_page;
822                 }
823
824                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
825                 if (unlikely(!skb)) {
826                         /* Better luck next round */
827                         adapter->alloc_rx_buff_failed++;
828                         break;
829                 }
830
831                 buffer_info->skb = skb;
832 check_page:
833                 /* allocate a new page if necessary */
834                 if (!buffer_info->page) {
835                         buffer_info->page = alloc_page(gfp);
836                         if (unlikely(!buffer_info->page)) {
837                                 adapter->alloc_rx_buff_failed++;
838                                 break;
839                         }
840                 }
841
842                 if (!buffer_info->dma) {
843                         buffer_info->dma = dma_map_page(&pdev->dev,
844                                                         buffer_info->page, 0,
845                                                         PAGE_SIZE,
846                                                         DMA_FROM_DEVICE);
847                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
848                                 adapter->alloc_rx_buff_failed++;
849                                 break;
850                         }
851                 }
852
853                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
854                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
855
856                 if (unlikely(++i == rx_ring->count))
857                         i = 0;
858                 buffer_info = &rx_ring->buffer_info[i];
859         }
860
861         if (likely(rx_ring->next_to_use != i)) {
862                 rx_ring->next_to_use = i;
863                 if (unlikely(i-- == 0))
864                         i = (rx_ring->count - 1);
865
866                 /* Force memory writes to complete before letting h/w
867                  * know there are new descriptors to fetch.  (Only
868                  * applicable for weak-ordered memory model archs,
869                  * such as IA-64).
870                  */
871                 wmb();
872                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
873                         e1000e_update_rdt_wa(rx_ring, i);
874                 else
875                         writel(i, rx_ring->tail);
876         }
877 }
878
879 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
880                                  struct sk_buff *skb)
881 {
882         if (netdev->features & NETIF_F_RXHASH)
883                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
884 }
885
886 /**
887  * e1000_clean_rx_irq - Send received data up the network stack
888  * @rx_ring: Rx descriptor ring
889  *
890  * the return value indicates whether actual cleaning was done, there
891  * is no guarantee that everything was cleaned
892  **/
893 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
894                                int work_to_do)
895 {
896         struct e1000_adapter *adapter = rx_ring->adapter;
897         struct net_device *netdev = adapter->netdev;
898         struct pci_dev *pdev = adapter->pdev;
899         struct e1000_hw *hw = &adapter->hw;
900         union e1000_rx_desc_extended *rx_desc, *next_rxd;
901         struct e1000_buffer *buffer_info, *next_buffer;
902         u32 length, staterr;
903         unsigned int i;
904         int cleaned_count = 0;
905         bool cleaned = false;
906         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
907
908         i = rx_ring->next_to_clean;
909         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
910         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
911         buffer_info = &rx_ring->buffer_info[i];
912
913         while (staterr & E1000_RXD_STAT_DD) {
914                 struct sk_buff *skb;
915
916                 if (*work_done >= work_to_do)
917                         break;
918                 (*work_done)++;
919                 rmb();  /* read descriptor and rx_buffer_info after status DD */
920
921                 skb = buffer_info->skb;
922                 buffer_info->skb = NULL;
923
924                 prefetch(skb->data - NET_IP_ALIGN);
925
926                 i++;
927                 if (i == rx_ring->count)
928                         i = 0;
929                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
930                 prefetch(next_rxd);
931
932                 next_buffer = &rx_ring->buffer_info[i];
933
934                 cleaned = true;
935                 cleaned_count++;
936                 dma_unmap_single(&pdev->dev, buffer_info->dma,
937                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
938                 buffer_info->dma = 0;
939
940                 length = le16_to_cpu(rx_desc->wb.upper.length);
941
942                 /* !EOP means multiple descriptors were used to store a single
943                  * packet, if that's the case we need to toss it.  In fact, we
944                  * need to toss every packet with the EOP bit clear and the
945                  * next frame that _does_ have the EOP bit set, as it is by
946                  * definition only a frame fragment
947                  */
948                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
949                         adapter->flags2 |= FLAG2_IS_DISCARDING;
950
951                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
952                         /* All receives must fit into a single buffer */
953                         e_dbg("Receive packet consumed multiple buffers\n");
954                         /* recycle */
955                         buffer_info->skb = skb;
956                         if (staterr & E1000_RXD_STAT_EOP)
957                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
958                         goto next_desc;
959                 }
960
961                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
962                              !(netdev->features & NETIF_F_RXALL))) {
963                         /* recycle */
964                         buffer_info->skb = skb;
965                         goto next_desc;
966                 }
967
968                 /* adjust length to remove Ethernet CRC */
969                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
970                         /* If configured to store CRC, don't subtract FCS,
971                          * but keep the FCS bytes out of the total_rx_bytes
972                          * counter
973                          */
974                         if (netdev->features & NETIF_F_RXFCS)
975                                 total_rx_bytes -= 4;
976                         else
977                                 length -= 4;
978                 }
979
980                 total_rx_bytes += length;
981                 total_rx_packets++;
982
983                 /* code added for copybreak, this should improve
984                  * performance for small packets with large amounts
985                  * of reassembly being done in the stack
986                  */
987                 if (length < copybreak) {
988                         struct sk_buff *new_skb =
989                             netdev_alloc_skb_ip_align(netdev, length);
990                         if (new_skb) {
991                                 skb_copy_to_linear_data_offset(new_skb,
992                                                                -NET_IP_ALIGN,
993                                                                (skb->data -
994                                                                 NET_IP_ALIGN),
995                                                                (length +
996                                                                 NET_IP_ALIGN));
997                                 /* save the skb in buffer_info as good */
998                                 buffer_info->skb = skb;
999                                 skb = new_skb;
1000                         }
1001                         /* else just continue with the old one */
1002                 }
1003                 /* end copybreak code */
1004                 skb_put(skb, length);
1005
1006                 /* Receive Checksum Offload */
1007                 e1000_rx_checksum(adapter, staterr, skb);
1008
1009                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1010
1011                 e1000_receive_skb(adapter, netdev, skb, staterr,
1012                                   rx_desc->wb.upper.vlan);
1013
1014 next_desc:
1015                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1016
1017                 /* return some buffers to hardware, one at a time is too slow */
1018                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1019                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1020                                               GFP_ATOMIC);
1021                         cleaned_count = 0;
1022                 }
1023
1024                 /* use prefetched values */
1025                 rx_desc = next_rxd;
1026                 buffer_info = next_buffer;
1027
1028                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1029         }
1030         rx_ring->next_to_clean = i;
1031
1032         cleaned_count = e1000_desc_unused(rx_ring);
1033         if (cleaned_count)
1034                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1035
1036         adapter->total_rx_bytes += total_rx_bytes;
1037         adapter->total_rx_packets += total_rx_packets;
1038         return cleaned;
1039 }
1040
1041 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1042                             struct e1000_buffer *buffer_info)
1043 {
1044         struct e1000_adapter *adapter = tx_ring->adapter;
1045
1046         if (buffer_info->dma) {
1047                 if (buffer_info->mapped_as_page)
1048                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1049                                        buffer_info->length, DMA_TO_DEVICE);
1050                 else
1051                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1052                                          buffer_info->length, DMA_TO_DEVICE);
1053                 buffer_info->dma = 0;
1054         }
1055         if (buffer_info->skb) {
1056                 dev_kfree_skb_any(buffer_info->skb);
1057                 buffer_info->skb = NULL;
1058         }
1059         buffer_info->time_stamp = 0;
1060 }
1061
1062 static void e1000_print_hw_hang(struct work_struct *work)
1063 {
1064         struct e1000_adapter *adapter = container_of(work,
1065                                                      struct e1000_adapter,
1066                                                      print_hang_task);
1067         struct net_device *netdev = adapter->netdev;
1068         struct e1000_ring *tx_ring = adapter->tx_ring;
1069         unsigned int i = tx_ring->next_to_clean;
1070         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1071         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1072         struct e1000_hw *hw = &adapter->hw;
1073         u16 phy_status, phy_1000t_status, phy_ext_status;
1074         u16 pci_status;
1075
1076         if (test_bit(__E1000_DOWN, &adapter->state))
1077                 return;
1078
1079         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1080                 /* May be block on write-back, flush and detect again
1081                  * flush pending descriptor writebacks to memory
1082                  */
1083                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1084                 /* execute the writes immediately */
1085                 e1e_flush();
1086                 /* Due to rare timing issues, write to TIDV again to ensure
1087                  * the write is successful
1088                  */
1089                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1090                 /* execute the writes immediately */
1091                 e1e_flush();
1092                 adapter->tx_hang_recheck = true;
1093                 return;
1094         }
1095         adapter->tx_hang_recheck = false;
1096
1097         if (er32(TDH(0)) == er32(TDT(0))) {
1098                 e_dbg("false hang detected, ignoring\n");
1099                 return;
1100         }
1101
1102         /* Real hang detected */
1103         netif_stop_queue(netdev);
1104
1105         e1e_rphy(hw, MII_BMSR, &phy_status);
1106         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1107         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1108
1109         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1110
1111         /* detected Hardware unit hang */
1112         e_err("Detected Hardware Unit Hang:\n"
1113               "  TDH                  <%x>\n"
1114               "  TDT                  <%x>\n"
1115               "  next_to_use          <%x>\n"
1116               "  next_to_clean        <%x>\n"
1117               "buffer_info[next_to_clean]:\n"
1118               "  time_stamp           <%lx>\n"
1119               "  next_to_watch        <%x>\n"
1120               "  jiffies              <%lx>\n"
1121               "  next_to_watch.status <%x>\n"
1122               "MAC Status             <%x>\n"
1123               "PHY Status             <%x>\n"
1124               "PHY 1000BASE-T Status  <%x>\n"
1125               "PHY Extended Status    <%x>\n"
1126               "PCI Status             <%x>\n",
1127               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1128               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1129               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1130               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1131
1132         e1000e_dump(adapter);
1133
1134         /* Suggest workaround for known h/w issue */
1135         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1136                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1137 }
1138
1139 /**
1140  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1141  * @work: pointer to work struct
1142  *
1143  * This work function polls the TSYNCTXCTL valid bit to determine when a
1144  * timestamp has been taken for the current stored skb.  The timestamp must
1145  * be for this skb because only one such packet is allowed in the queue.
1146  */
1147 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1148 {
1149         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1150                                                      tx_hwtstamp_work);
1151         struct e1000_hw *hw = &adapter->hw;
1152
1153         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1154                 struct skb_shared_hwtstamps shhwtstamps;
1155                 u64 txstmp;
1156
1157                 txstmp = er32(TXSTMPL);
1158                 txstmp |= (u64)er32(TXSTMPH) << 32;
1159
1160                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1161
1162                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1163                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1164                 adapter->tx_hwtstamp_skb = NULL;
1165         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1166                               + adapter->tx_timeout_factor * HZ)) {
1167                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1168                 adapter->tx_hwtstamp_skb = NULL;
1169                 adapter->tx_hwtstamp_timeouts++;
1170                 e_warn("clearing Tx timestamp hang");
1171         } else {
1172                 /* reschedule to check later */
1173                 schedule_work(&adapter->tx_hwtstamp_work);
1174         }
1175 }
1176
1177 /**
1178  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1179  * @tx_ring: Tx descriptor ring
1180  *
1181  * the return value indicates whether actual cleaning was done, there
1182  * is no guarantee that everything was cleaned
1183  **/
1184 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1185 {
1186         struct e1000_adapter *adapter = tx_ring->adapter;
1187         struct net_device *netdev = adapter->netdev;
1188         struct e1000_hw *hw = &adapter->hw;
1189         struct e1000_tx_desc *tx_desc, *eop_desc;
1190         struct e1000_buffer *buffer_info;
1191         unsigned int i, eop;
1192         unsigned int count = 0;
1193         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1194         unsigned int bytes_compl = 0, pkts_compl = 0;
1195
1196         i = tx_ring->next_to_clean;
1197         eop = tx_ring->buffer_info[i].next_to_watch;
1198         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1199
1200         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1201                (count < tx_ring->count)) {
1202                 bool cleaned = false;
1203
1204                 rmb();          /* read buffer_info after eop_desc */
1205                 for (; !cleaned; count++) {
1206                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1207                         buffer_info = &tx_ring->buffer_info[i];
1208                         cleaned = (i == eop);
1209
1210                         if (cleaned) {
1211                                 total_tx_packets += buffer_info->segs;
1212                                 total_tx_bytes += buffer_info->bytecount;
1213                                 if (buffer_info->skb) {
1214                                         bytes_compl += buffer_info->skb->len;
1215                                         pkts_compl++;
1216                                 }
1217                         }
1218
1219                         e1000_put_txbuf(tx_ring, buffer_info);
1220                         tx_desc->upper.data = 0;
1221
1222                         i++;
1223                         if (i == tx_ring->count)
1224                                 i = 0;
1225                 }
1226
1227                 if (i == tx_ring->next_to_use)
1228                         break;
1229                 eop = tx_ring->buffer_info[i].next_to_watch;
1230                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1231         }
1232
1233         tx_ring->next_to_clean = i;
1234
1235         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1236
1237 #define TX_WAKE_THRESHOLD 32
1238         if (count && netif_carrier_ok(netdev) &&
1239             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1240                 /* Make sure that anybody stopping the queue after this
1241                  * sees the new next_to_clean.
1242                  */
1243                 smp_mb();
1244
1245                 if (netif_queue_stopped(netdev) &&
1246                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1247                         netif_wake_queue(netdev);
1248                         ++adapter->restart_queue;
1249                 }
1250         }
1251
1252         if (adapter->detect_tx_hung) {
1253                 /* Detect a transmit hang in hardware, this serializes the
1254                  * check with the clearing of time_stamp and movement of i
1255                  */
1256                 adapter->detect_tx_hung = false;
1257                 if (tx_ring->buffer_info[i].time_stamp &&
1258                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1259                                + (adapter->tx_timeout_factor * HZ)) &&
1260                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1261                         schedule_work(&adapter->print_hang_task);
1262                 else
1263                         adapter->tx_hang_recheck = false;
1264         }
1265         adapter->total_tx_bytes += total_tx_bytes;
1266         adapter->total_tx_packets += total_tx_packets;
1267         return count < tx_ring->count;
1268 }
1269
1270 /**
1271  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1272  * @rx_ring: Rx descriptor ring
1273  *
1274  * the return value indicates whether actual cleaning was done, there
1275  * is no guarantee that everything was cleaned
1276  **/
1277 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1278                                   int work_to_do)
1279 {
1280         struct e1000_adapter *adapter = rx_ring->adapter;
1281         struct e1000_hw *hw = &adapter->hw;
1282         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1283         struct net_device *netdev = adapter->netdev;
1284         struct pci_dev *pdev = adapter->pdev;
1285         struct e1000_buffer *buffer_info, *next_buffer;
1286         struct e1000_ps_page *ps_page;
1287         struct sk_buff *skb;
1288         unsigned int i, j;
1289         u32 length, staterr;
1290         int cleaned_count = 0;
1291         bool cleaned = false;
1292         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1293
1294         i = rx_ring->next_to_clean;
1295         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1296         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1297         buffer_info = &rx_ring->buffer_info[i];
1298
1299         while (staterr & E1000_RXD_STAT_DD) {
1300                 if (*work_done >= work_to_do)
1301                         break;
1302                 (*work_done)++;
1303                 skb = buffer_info->skb;
1304                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1305
1306                 /* in the packet split case this is header only */
1307                 prefetch(skb->data - NET_IP_ALIGN);
1308
1309                 i++;
1310                 if (i == rx_ring->count)
1311                         i = 0;
1312                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1313                 prefetch(next_rxd);
1314
1315                 next_buffer = &rx_ring->buffer_info[i];
1316
1317                 cleaned = true;
1318                 cleaned_count++;
1319                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1320                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1321                 buffer_info->dma = 0;
1322
1323                 /* see !EOP comment in other Rx routine */
1324                 if (!(staterr & E1000_RXD_STAT_EOP))
1325                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1326
1327                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1328                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1329                         dev_kfree_skb_irq(skb);
1330                         if (staterr & E1000_RXD_STAT_EOP)
1331                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1332                         goto next_desc;
1333                 }
1334
1335                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1336                              !(netdev->features & NETIF_F_RXALL))) {
1337                         dev_kfree_skb_irq(skb);
1338                         goto next_desc;
1339                 }
1340
1341                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1342
1343                 if (!length) {
1344                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1345                         dev_kfree_skb_irq(skb);
1346                         goto next_desc;
1347                 }
1348
1349                 /* Good Receive */
1350                 skb_put(skb, length);
1351
1352                 {
1353                         /* this looks ugly, but it seems compiler issues make
1354                          * it more efficient than reusing j
1355                          */
1356                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1357
1358                         /* page alloc/put takes too long and effects small
1359                          * packet throughput, so unsplit small packets and
1360                          * save the alloc/put only valid in softirq (napi)
1361                          * context to call kmap_*
1362                          */
1363                         if (l1 && (l1 <= copybreak) &&
1364                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1365                                 u8 *vaddr;
1366
1367                                 ps_page = &buffer_info->ps_pages[0];
1368
1369                                 /* there is no documentation about how to call
1370                                  * kmap_atomic, so we can't hold the mapping
1371                                  * very long
1372                                  */
1373                                 dma_sync_single_for_cpu(&pdev->dev,
1374                                                         ps_page->dma,
1375                                                         PAGE_SIZE,
1376                                                         DMA_FROM_DEVICE);
1377                                 vaddr = kmap_atomic(ps_page->page);
1378                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1379                                 kunmap_atomic(vaddr);
1380                                 dma_sync_single_for_device(&pdev->dev,
1381                                                            ps_page->dma,
1382                                                            PAGE_SIZE,
1383                                                            DMA_FROM_DEVICE);
1384
1385                                 /* remove the CRC */
1386                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1387                                         if (!(netdev->features & NETIF_F_RXFCS))
1388                                                 l1 -= 4;
1389                                 }
1390
1391                                 skb_put(skb, l1);
1392                                 goto copydone;
1393                         }       /* if */
1394                 }
1395
1396                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1397                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1398                         if (!length)
1399                                 break;
1400
1401                         ps_page = &buffer_info->ps_pages[j];
1402                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1403                                        DMA_FROM_DEVICE);
1404                         ps_page->dma = 0;
1405                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1406                         ps_page->page = NULL;
1407                         skb->len += length;
1408                         skb->data_len += length;
1409                         skb->truesize += PAGE_SIZE;
1410                 }
1411
1412                 /* strip the ethernet crc, problem is we're using pages now so
1413                  * this whole operation can get a little cpu intensive
1414                  */
1415                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1416                         if (!(netdev->features & NETIF_F_RXFCS))
1417                                 pskb_trim(skb, skb->len - 4);
1418                 }
1419
1420 copydone:
1421                 total_rx_bytes += skb->len;
1422                 total_rx_packets++;
1423
1424                 e1000_rx_checksum(adapter, staterr, skb);
1425
1426                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1427
1428                 if (rx_desc->wb.upper.header_status &
1429                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1430                         adapter->rx_hdr_split++;
1431
1432                 e1000_receive_skb(adapter, netdev, skb, staterr,
1433                                   rx_desc->wb.middle.vlan);
1434
1435 next_desc:
1436                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1437                 buffer_info->skb = NULL;
1438
1439                 /* return some buffers to hardware, one at a time is too slow */
1440                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1441                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1442                                               GFP_ATOMIC);
1443                         cleaned_count = 0;
1444                 }
1445
1446                 /* use prefetched values */
1447                 rx_desc = next_rxd;
1448                 buffer_info = next_buffer;
1449
1450                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1451         }
1452         rx_ring->next_to_clean = i;
1453
1454         cleaned_count = e1000_desc_unused(rx_ring);
1455         if (cleaned_count)
1456                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1457
1458         adapter->total_rx_bytes += total_rx_bytes;
1459         adapter->total_rx_packets += total_rx_packets;
1460         return cleaned;
1461 }
1462
1463 /**
1464  * e1000_consume_page - helper function
1465  **/
1466 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1467                                u16 length)
1468 {
1469         bi->page = NULL;
1470         skb->len += length;
1471         skb->data_len += length;
1472         skb->truesize += PAGE_SIZE;
1473 }
1474
1475 /**
1476  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1477  * @adapter: board private structure
1478  *
1479  * the return value indicates whether actual cleaning was done, there
1480  * is no guarantee that everything was cleaned
1481  **/
1482 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1483                                      int work_to_do)
1484 {
1485         struct e1000_adapter *adapter = rx_ring->adapter;
1486         struct net_device *netdev = adapter->netdev;
1487         struct pci_dev *pdev = adapter->pdev;
1488         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1489         struct e1000_buffer *buffer_info, *next_buffer;
1490         u32 length, staterr;
1491         unsigned int i;
1492         int cleaned_count = 0;
1493         bool cleaned = false;
1494         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1495         struct skb_shared_info *shinfo;
1496
1497         i = rx_ring->next_to_clean;
1498         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1499         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1500         buffer_info = &rx_ring->buffer_info[i];
1501
1502         while (staterr & E1000_RXD_STAT_DD) {
1503                 struct sk_buff *skb;
1504
1505                 if (*work_done >= work_to_do)
1506                         break;
1507                 (*work_done)++;
1508                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1509
1510                 skb = buffer_info->skb;
1511                 buffer_info->skb = NULL;
1512
1513                 ++i;
1514                 if (i == rx_ring->count)
1515                         i = 0;
1516                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1517                 prefetch(next_rxd);
1518
1519                 next_buffer = &rx_ring->buffer_info[i];
1520
1521                 cleaned = true;
1522                 cleaned_count++;
1523                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1524                                DMA_FROM_DEVICE);
1525                 buffer_info->dma = 0;
1526
1527                 length = le16_to_cpu(rx_desc->wb.upper.length);
1528
1529                 /* errors is only valid for DD + EOP descriptors */
1530                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1531                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1532                               !(netdev->features & NETIF_F_RXALL)))) {
1533                         /* recycle both page and skb */
1534                         buffer_info->skb = skb;
1535                         /* an error means any chain goes out the window too */
1536                         if (rx_ring->rx_skb_top)
1537                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1538                         rx_ring->rx_skb_top = NULL;
1539                         goto next_desc;
1540                 }
1541 #define rxtop (rx_ring->rx_skb_top)
1542                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1543                         /* this descriptor is only the beginning (or middle) */
1544                         if (!rxtop) {
1545                                 /* this is the beginning of a chain */
1546                                 rxtop = skb;
1547                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1548                                                    0, length);
1549                         } else {
1550                                 /* this is the middle of a chain */
1551                                 shinfo = skb_shinfo(rxtop);
1552                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1553                                                    buffer_info->page, 0,
1554                                                    length);
1555                                 /* re-use the skb, only consumed the page */
1556                                 buffer_info->skb = skb;
1557                         }
1558                         e1000_consume_page(buffer_info, rxtop, length);
1559                         goto next_desc;
1560                 } else {
1561                         if (rxtop) {
1562                                 /* end of the chain */
1563                                 shinfo = skb_shinfo(rxtop);
1564                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1565                                                    buffer_info->page, 0,
1566                                                    length);
1567                                 /* re-use the current skb, we only consumed the
1568                                  * page
1569                                  */
1570                                 buffer_info->skb = skb;
1571                                 skb = rxtop;
1572                                 rxtop = NULL;
1573                                 e1000_consume_page(buffer_info, skb, length);
1574                         } else {
1575                                 /* no chain, got EOP, this buf is the packet
1576                                  * copybreak to save the put_page/alloc_page
1577                                  */
1578                                 if (length <= copybreak &&
1579                                     skb_tailroom(skb) >= length) {
1580                                         u8 *vaddr;
1581                                         vaddr = kmap_atomic(buffer_info->page);
1582                                         memcpy(skb_tail_pointer(skb), vaddr,
1583                                                length);
1584                                         kunmap_atomic(vaddr);
1585                                         /* re-use the page, so don't erase
1586                                          * buffer_info->page
1587                                          */
1588                                         skb_put(skb, length);
1589                                 } else {
1590                                         skb_fill_page_desc(skb, 0,
1591                                                            buffer_info->page, 0,
1592                                                            length);
1593                                         e1000_consume_page(buffer_info, skb,
1594                                                            length);
1595                                 }
1596                         }
1597                 }
1598
1599                 /* Receive Checksum Offload */
1600                 e1000_rx_checksum(adapter, staterr, skb);
1601
1602                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1603
1604                 /* probably a little skewed due to removing CRC */
1605                 total_rx_bytes += skb->len;
1606                 total_rx_packets++;
1607
1608                 /* eth type trans needs skb->data to point to something */
1609                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1610                         e_err("pskb_may_pull failed.\n");
1611                         dev_kfree_skb_irq(skb);
1612                         goto next_desc;
1613                 }
1614
1615                 e1000_receive_skb(adapter, netdev, skb, staterr,
1616                                   rx_desc->wb.upper.vlan);
1617
1618 next_desc:
1619                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1620
1621                 /* return some buffers to hardware, one at a time is too slow */
1622                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1623                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1624                                               GFP_ATOMIC);
1625                         cleaned_count = 0;
1626                 }
1627
1628                 /* use prefetched values */
1629                 rx_desc = next_rxd;
1630                 buffer_info = next_buffer;
1631
1632                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1633         }
1634         rx_ring->next_to_clean = i;
1635
1636         cleaned_count = e1000_desc_unused(rx_ring);
1637         if (cleaned_count)
1638                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1639
1640         adapter->total_rx_bytes += total_rx_bytes;
1641         adapter->total_rx_packets += total_rx_packets;
1642         return cleaned;
1643 }
1644
1645 /**
1646  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1647  * @rx_ring: Rx descriptor ring
1648  **/
1649 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1650 {
1651         struct e1000_adapter *adapter = rx_ring->adapter;
1652         struct e1000_buffer *buffer_info;
1653         struct e1000_ps_page *ps_page;
1654         struct pci_dev *pdev = adapter->pdev;
1655         unsigned int i, j;
1656
1657         /* Free all the Rx ring sk_buffs */
1658         for (i = 0; i < rx_ring->count; i++) {
1659                 buffer_info = &rx_ring->buffer_info[i];
1660                 if (buffer_info->dma) {
1661                         if (adapter->clean_rx == e1000_clean_rx_irq)
1662                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1663                                                  adapter->rx_buffer_len,
1664                                                  DMA_FROM_DEVICE);
1665                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1666                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1667                                                PAGE_SIZE, DMA_FROM_DEVICE);
1668                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1669                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1670                                                  adapter->rx_ps_bsize0,
1671                                                  DMA_FROM_DEVICE);
1672                         buffer_info->dma = 0;
1673                 }
1674
1675                 if (buffer_info->page) {
1676                         put_page(buffer_info->page);
1677                         buffer_info->page = NULL;
1678                 }
1679
1680                 if (buffer_info->skb) {
1681                         dev_kfree_skb(buffer_info->skb);
1682                         buffer_info->skb = NULL;
1683                 }
1684
1685                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1686                         ps_page = &buffer_info->ps_pages[j];
1687                         if (!ps_page->page)
1688                                 break;
1689                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1690                                        DMA_FROM_DEVICE);
1691                         ps_page->dma = 0;
1692                         put_page(ps_page->page);
1693                         ps_page->page = NULL;
1694                 }
1695         }
1696
1697         /* there also may be some cached data from a chained receive */
1698         if (rx_ring->rx_skb_top) {
1699                 dev_kfree_skb(rx_ring->rx_skb_top);
1700                 rx_ring->rx_skb_top = NULL;
1701         }
1702
1703         /* Zero out the descriptor ring */
1704         memset(rx_ring->desc, 0, rx_ring->size);
1705
1706         rx_ring->next_to_clean = 0;
1707         rx_ring->next_to_use = 0;
1708         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1709
1710         writel(0, rx_ring->head);
1711         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1712                 e1000e_update_rdt_wa(rx_ring, 0);
1713         else
1714                 writel(0, rx_ring->tail);
1715 }
1716
1717 static void e1000e_downshift_workaround(struct work_struct *work)
1718 {
1719         struct e1000_adapter *adapter = container_of(work,
1720                                                      struct e1000_adapter,
1721                                                      downshift_task);
1722
1723         if (test_bit(__E1000_DOWN, &adapter->state))
1724                 return;
1725
1726         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1727 }
1728
1729 /**
1730  * e1000_intr_msi - Interrupt Handler
1731  * @irq: interrupt number
1732  * @data: pointer to a network interface device structure
1733  **/
1734 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1735 {
1736         struct net_device *netdev = data;
1737         struct e1000_adapter *adapter = netdev_priv(netdev);
1738         struct e1000_hw *hw = &adapter->hw;
1739         u32 icr = er32(ICR);
1740
1741         /* read ICR disables interrupts using IAM */
1742         if (icr & E1000_ICR_LSC) {
1743                 hw->mac.get_link_status = true;
1744                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1745                  * disconnect (LSC) before accessing any PHY registers
1746                  */
1747                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1748                     (!(er32(STATUS) & E1000_STATUS_LU)))
1749                         schedule_work(&adapter->downshift_task);
1750
1751                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1752                  * link down event; disable receives here in the ISR and reset
1753                  * adapter in watchdog
1754                  */
1755                 if (netif_carrier_ok(netdev) &&
1756                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1757                         /* disable receives */
1758                         u32 rctl = er32(RCTL);
1759
1760                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1761                         adapter->flags |= FLAG_RESTART_NOW;
1762                 }
1763                 /* guard against interrupt when we're going down */
1764                 if (!test_bit(__E1000_DOWN, &adapter->state))
1765                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1766         }
1767
1768         /* Reset on uncorrectable ECC error */
1769         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1770                 u32 pbeccsts = er32(PBECCSTS);
1771
1772                 adapter->corr_errors +=
1773                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1774                 adapter->uncorr_errors +=
1775                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1776                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1777
1778                 /* Do the reset outside of interrupt context */
1779                 schedule_work(&adapter->reset_task);
1780
1781                 /* return immediately since reset is imminent */
1782                 return IRQ_HANDLED;
1783         }
1784
1785         if (napi_schedule_prep(&adapter->napi)) {
1786                 adapter->total_tx_bytes = 0;
1787                 adapter->total_tx_packets = 0;
1788                 adapter->total_rx_bytes = 0;
1789                 adapter->total_rx_packets = 0;
1790                 __napi_schedule(&adapter->napi);
1791         }
1792
1793         return IRQ_HANDLED;
1794 }
1795
1796 /**
1797  * e1000_intr - Interrupt Handler
1798  * @irq: interrupt number
1799  * @data: pointer to a network interface device structure
1800  **/
1801 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1802 {
1803         struct net_device *netdev = data;
1804         struct e1000_adapter *adapter = netdev_priv(netdev);
1805         struct e1000_hw *hw = &adapter->hw;
1806         u32 rctl, icr = er32(ICR);
1807
1808         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1809                 return IRQ_NONE;        /* Not our interrupt */
1810
1811         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1812          * not set, then the adapter didn't send an interrupt
1813          */
1814         if (!(icr & E1000_ICR_INT_ASSERTED))
1815                 return IRQ_NONE;
1816
1817         /* Interrupt Auto-Mask...upon reading ICR,
1818          * interrupts are masked.  No need for the
1819          * IMC write
1820          */
1821
1822         if (icr & E1000_ICR_LSC) {
1823                 hw->mac.get_link_status = true;
1824                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1825                  * disconnect (LSC) before accessing any PHY registers
1826                  */
1827                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1828                     (!(er32(STATUS) & E1000_STATUS_LU)))
1829                         schedule_work(&adapter->downshift_task);
1830
1831                 /* 80003ES2LAN workaround--
1832                  * For packet buffer work-around on link down event;
1833                  * disable receives here in the ISR and
1834                  * reset adapter in watchdog
1835                  */
1836                 if (netif_carrier_ok(netdev) &&
1837                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1838                         /* disable receives */
1839                         rctl = er32(RCTL);
1840                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1841                         adapter->flags |= FLAG_RESTART_NOW;
1842                 }
1843                 /* guard against interrupt when we're going down */
1844                 if (!test_bit(__E1000_DOWN, &adapter->state))
1845                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1846         }
1847
1848         /* Reset on uncorrectable ECC error */
1849         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1850                 u32 pbeccsts = er32(PBECCSTS);
1851
1852                 adapter->corr_errors +=
1853                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1854                 adapter->uncorr_errors +=
1855                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1856                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1857
1858                 /* Do the reset outside of interrupt context */
1859                 schedule_work(&adapter->reset_task);
1860
1861                 /* return immediately since reset is imminent */
1862                 return IRQ_HANDLED;
1863         }
1864
1865         if (napi_schedule_prep(&adapter->napi)) {
1866                 adapter->total_tx_bytes = 0;
1867                 adapter->total_tx_packets = 0;
1868                 adapter->total_rx_bytes = 0;
1869                 adapter->total_rx_packets = 0;
1870                 __napi_schedule(&adapter->napi);
1871         }
1872
1873         return IRQ_HANDLED;
1874 }
1875
1876 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1877 {
1878         struct net_device *netdev = data;
1879         struct e1000_adapter *adapter = netdev_priv(netdev);
1880         struct e1000_hw *hw = &adapter->hw;
1881         u32 icr = er32(ICR);
1882
1883         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1884                 if (!test_bit(__E1000_DOWN, &adapter->state))
1885                         ew32(IMS, E1000_IMS_OTHER);
1886                 return IRQ_NONE;
1887         }
1888
1889         if (icr & adapter->eiac_mask)
1890                 ew32(ICS, (icr & adapter->eiac_mask));
1891
1892         if (icr & E1000_ICR_OTHER) {
1893                 if (!(icr & E1000_ICR_LSC))
1894                         goto no_link_interrupt;
1895                 hw->mac.get_link_status = true;
1896                 /* guard against interrupt when we're going down */
1897                 if (!test_bit(__E1000_DOWN, &adapter->state))
1898                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1899         }
1900
1901 no_link_interrupt:
1902         if (!test_bit(__E1000_DOWN, &adapter->state))
1903                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1904
1905         return IRQ_HANDLED;
1906 }
1907
1908 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1909 {
1910         struct net_device *netdev = data;
1911         struct e1000_adapter *adapter = netdev_priv(netdev);
1912         struct e1000_hw *hw = &adapter->hw;
1913         struct e1000_ring *tx_ring = adapter->tx_ring;
1914
1915         adapter->total_tx_bytes = 0;
1916         adapter->total_tx_packets = 0;
1917
1918         if (!e1000_clean_tx_irq(tx_ring))
1919                 /* Ring was not completely cleaned, so fire another interrupt */
1920                 ew32(ICS, tx_ring->ims_val);
1921
1922         return IRQ_HANDLED;
1923 }
1924
1925 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1926 {
1927         struct net_device *netdev = data;
1928         struct e1000_adapter *adapter = netdev_priv(netdev);
1929         struct e1000_ring *rx_ring = adapter->rx_ring;
1930
1931         /* Write the ITR value calculated at the end of the
1932          * previous interrupt.
1933          */
1934         if (rx_ring->set_itr) {
1935                 writel(1000000000 / (rx_ring->itr_val * 256),
1936                        rx_ring->itr_register);
1937                 rx_ring->set_itr = 0;
1938         }
1939
1940         if (napi_schedule_prep(&adapter->napi)) {
1941                 adapter->total_rx_bytes = 0;
1942                 adapter->total_rx_packets = 0;
1943                 __napi_schedule(&adapter->napi);
1944         }
1945         return IRQ_HANDLED;
1946 }
1947
1948 /**
1949  * e1000_configure_msix - Configure MSI-X hardware
1950  *
1951  * e1000_configure_msix sets up the hardware to properly
1952  * generate MSI-X interrupts.
1953  **/
1954 static void e1000_configure_msix(struct e1000_adapter *adapter)
1955 {
1956         struct e1000_hw *hw = &adapter->hw;
1957         struct e1000_ring *rx_ring = adapter->rx_ring;
1958         struct e1000_ring *tx_ring = adapter->tx_ring;
1959         int vector = 0;
1960         u32 ctrl_ext, ivar = 0;
1961
1962         adapter->eiac_mask = 0;
1963
1964         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1965         if (hw->mac.type == e1000_82574) {
1966                 u32 rfctl = er32(RFCTL);
1967
1968                 rfctl |= E1000_RFCTL_ACK_DIS;
1969                 ew32(RFCTL, rfctl);
1970         }
1971
1972         /* Configure Rx vector */
1973         rx_ring->ims_val = E1000_IMS_RXQ0;
1974         adapter->eiac_mask |= rx_ring->ims_val;
1975         if (rx_ring->itr_val)
1976                 writel(1000000000 / (rx_ring->itr_val * 256),
1977                        rx_ring->itr_register);
1978         else
1979                 writel(1, rx_ring->itr_register);
1980         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1981
1982         /* Configure Tx vector */
1983         tx_ring->ims_val = E1000_IMS_TXQ0;
1984         vector++;
1985         if (tx_ring->itr_val)
1986                 writel(1000000000 / (tx_ring->itr_val * 256),
1987                        tx_ring->itr_register);
1988         else
1989                 writel(1, tx_ring->itr_register);
1990         adapter->eiac_mask |= tx_ring->ims_val;
1991         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1992
1993         /* set vector for Other Causes, e.g. link changes */
1994         vector++;
1995         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1996         if (rx_ring->itr_val)
1997                 writel(1000000000 / (rx_ring->itr_val * 256),
1998                        hw->hw_addr + E1000_EITR_82574(vector));
1999         else
2000                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2001
2002         /* Cause Tx interrupts on every write back */
2003         ivar |= (1 << 31);
2004
2005         ew32(IVAR, ivar);
2006
2007         /* enable MSI-X PBA support */
2008         ctrl_ext = er32(CTRL_EXT);
2009         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2010
2011         /* Auto-Mask Other interrupts upon ICR read */
2012         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2013         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2014         ew32(CTRL_EXT, ctrl_ext);
2015         e1e_flush();
2016 }
2017
2018 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2019 {
2020         if (adapter->msix_entries) {
2021                 pci_disable_msix(adapter->pdev);
2022                 kfree(adapter->msix_entries);
2023                 adapter->msix_entries = NULL;
2024         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2025                 pci_disable_msi(adapter->pdev);
2026                 adapter->flags &= ~FLAG_MSI_ENABLED;
2027         }
2028 }
2029
2030 /**
2031  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2032  *
2033  * Attempt to configure interrupts using the best available
2034  * capabilities of the hardware and kernel.
2035  **/
2036 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2037 {
2038         int err;
2039         int i;
2040
2041         switch (adapter->int_mode) {
2042         case E1000E_INT_MODE_MSIX:
2043                 if (adapter->flags & FLAG_HAS_MSIX) {
2044                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2045                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2046                                                         sizeof(struct
2047                                                                msix_entry),
2048                                                         GFP_KERNEL);
2049                         if (adapter->msix_entries) {
2050                                 struct e1000_adapter *a = adapter;
2051
2052                                 for (i = 0; i < adapter->num_vectors; i++)
2053                                         adapter->msix_entries[i].entry = i;
2054
2055                                 err = pci_enable_msix_range(a->pdev,
2056                                                             a->msix_entries,
2057                                                             a->num_vectors,
2058                                                             a->num_vectors);
2059                                 if (err > 0)
2060                                         return;
2061                         }
2062                         /* MSI-X failed, so fall through and try MSI */
2063                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2064                         e1000e_reset_interrupt_capability(adapter);
2065                 }
2066                 adapter->int_mode = E1000E_INT_MODE_MSI;
2067                 /* Fall through */
2068         case E1000E_INT_MODE_MSI:
2069                 if (!pci_enable_msi(adapter->pdev)) {
2070                         adapter->flags |= FLAG_MSI_ENABLED;
2071                 } else {
2072                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2073                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2074                 }
2075                 /* Fall through */
2076         case E1000E_INT_MODE_LEGACY:
2077                 /* Don't do anything; this is the system default */
2078                 break;
2079         }
2080
2081         /* store the number of vectors being used */
2082         adapter->num_vectors = 1;
2083 }
2084
2085 /**
2086  * e1000_request_msix - Initialize MSI-X interrupts
2087  *
2088  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2089  * kernel.
2090  **/
2091 static int e1000_request_msix(struct e1000_adapter *adapter)
2092 {
2093         struct net_device *netdev = adapter->netdev;
2094         int err = 0, vector = 0;
2095
2096         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2097                 snprintf(adapter->rx_ring->name,
2098                          sizeof(adapter->rx_ring->name) - 1,
2099                          "%s-rx-0", netdev->name);
2100         else
2101                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2102         err = request_irq(adapter->msix_entries[vector].vector,
2103                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2104                           netdev);
2105         if (err)
2106                 return err;
2107         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2108             E1000_EITR_82574(vector);
2109         adapter->rx_ring->itr_val = adapter->itr;
2110         vector++;
2111
2112         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2113                 snprintf(adapter->tx_ring->name,
2114                          sizeof(adapter->tx_ring->name) - 1,
2115                          "%s-tx-0", netdev->name);
2116         else
2117                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2118         err = request_irq(adapter->msix_entries[vector].vector,
2119                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2120                           netdev);
2121         if (err)
2122                 return err;
2123         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2124             E1000_EITR_82574(vector);
2125         adapter->tx_ring->itr_val = adapter->itr;
2126         vector++;
2127
2128         err = request_irq(adapter->msix_entries[vector].vector,
2129                           e1000_msix_other, 0, netdev->name, netdev);
2130         if (err)
2131                 return err;
2132
2133         e1000_configure_msix(adapter);
2134
2135         return 0;
2136 }
2137
2138 /**
2139  * e1000_request_irq - initialize interrupts
2140  *
2141  * Attempts to configure interrupts using the best available
2142  * capabilities of the hardware and kernel.
2143  **/
2144 static int e1000_request_irq(struct e1000_adapter *adapter)
2145 {
2146         struct net_device *netdev = adapter->netdev;
2147         int err;
2148
2149         if (adapter->msix_entries) {
2150                 err = e1000_request_msix(adapter);
2151                 if (!err)
2152                         return err;
2153                 /* fall back to MSI */
2154                 e1000e_reset_interrupt_capability(adapter);
2155                 adapter->int_mode = E1000E_INT_MODE_MSI;
2156                 e1000e_set_interrupt_capability(adapter);
2157         }
2158         if (adapter->flags & FLAG_MSI_ENABLED) {
2159                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2160                                   netdev->name, netdev);
2161                 if (!err)
2162                         return err;
2163
2164                 /* fall back to legacy interrupt */
2165                 e1000e_reset_interrupt_capability(adapter);
2166                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2167         }
2168
2169         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2170                           netdev->name, netdev);
2171         if (err)
2172                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2173
2174         return err;
2175 }
2176
2177 static void e1000_free_irq(struct e1000_adapter *adapter)
2178 {
2179         struct net_device *netdev = adapter->netdev;
2180
2181         if (adapter->msix_entries) {
2182                 int vector = 0;
2183
2184                 free_irq(adapter->msix_entries[vector].vector, netdev);
2185                 vector++;
2186
2187                 free_irq(adapter->msix_entries[vector].vector, netdev);
2188                 vector++;
2189
2190                 /* Other Causes interrupt vector */
2191                 free_irq(adapter->msix_entries[vector].vector, netdev);
2192                 return;
2193         }
2194
2195         free_irq(adapter->pdev->irq, netdev);
2196 }
2197
2198 /**
2199  * e1000_irq_disable - Mask off interrupt generation on the NIC
2200  **/
2201 static void e1000_irq_disable(struct e1000_adapter *adapter)
2202 {
2203         struct e1000_hw *hw = &adapter->hw;
2204
2205         ew32(IMC, ~0);
2206         if (adapter->msix_entries)
2207                 ew32(EIAC_82574, 0);
2208         e1e_flush();
2209
2210         if (adapter->msix_entries) {
2211                 int i;
2212
2213                 for (i = 0; i < adapter->num_vectors; i++)
2214                         synchronize_irq(adapter->msix_entries[i].vector);
2215         } else {
2216                 synchronize_irq(adapter->pdev->irq);
2217         }
2218 }
2219
2220 /**
2221  * e1000_irq_enable - Enable default interrupt generation settings
2222  **/
2223 static void e1000_irq_enable(struct e1000_adapter *adapter)
2224 {
2225         struct e1000_hw *hw = &adapter->hw;
2226
2227         if (adapter->msix_entries) {
2228                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2229                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2230         } else if (hw->mac.type == e1000_pch_lpt) {
2231                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2232         } else {
2233                 ew32(IMS, IMS_ENABLE_MASK);
2234         }
2235         e1e_flush();
2236 }
2237
2238 /**
2239  * e1000e_get_hw_control - get control of the h/w from f/w
2240  * @adapter: address of board private structure
2241  *
2242  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2243  * For ASF and Pass Through versions of f/w this means that
2244  * the driver is loaded. For AMT version (only with 82573)
2245  * of the f/w this means that the network i/f is open.
2246  **/
2247 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2248 {
2249         struct e1000_hw *hw = &adapter->hw;
2250         u32 ctrl_ext;
2251         u32 swsm;
2252
2253         /* Let firmware know the driver has taken over */
2254         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2255                 swsm = er32(SWSM);
2256                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2257         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2258                 ctrl_ext = er32(CTRL_EXT);
2259                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2260         }
2261 }
2262
2263 /**
2264  * e1000e_release_hw_control - release control of the h/w to f/w
2265  * @adapter: address of board private structure
2266  *
2267  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2268  * For ASF and Pass Through versions of f/w this means that the
2269  * driver is no longer loaded. For AMT version (only with 82573) i
2270  * of the f/w this means that the network i/f is closed.
2271  *
2272  **/
2273 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2274 {
2275         struct e1000_hw *hw = &adapter->hw;
2276         u32 ctrl_ext;
2277         u32 swsm;
2278
2279         /* Let firmware taken over control of h/w */
2280         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2281                 swsm = er32(SWSM);
2282                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2283         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2284                 ctrl_ext = er32(CTRL_EXT);
2285                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2286         }
2287 }
2288
2289 /**
2290  * e1000_alloc_ring_dma - allocate memory for a ring structure
2291  **/
2292 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2293                                 struct e1000_ring *ring)
2294 {
2295         struct pci_dev *pdev = adapter->pdev;
2296
2297         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2298                                         GFP_KERNEL);
2299         if (!ring->desc)
2300                 return -ENOMEM;
2301
2302         return 0;
2303 }
2304
2305 /**
2306  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2307  * @tx_ring: Tx descriptor ring
2308  *
2309  * Return 0 on success, negative on failure
2310  **/
2311 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2312 {
2313         struct e1000_adapter *adapter = tx_ring->adapter;
2314         int err = -ENOMEM, size;
2315
2316         size = sizeof(struct e1000_buffer) * tx_ring->count;
2317         tx_ring->buffer_info = vzalloc(size);
2318         if (!tx_ring->buffer_info)
2319                 goto err;
2320
2321         /* round up to nearest 4K */
2322         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2323         tx_ring->size = ALIGN(tx_ring->size, 4096);
2324
2325         err = e1000_alloc_ring_dma(adapter, tx_ring);
2326         if (err)
2327                 goto err;
2328
2329         tx_ring->next_to_use = 0;
2330         tx_ring->next_to_clean = 0;
2331
2332         return 0;
2333 err:
2334         vfree(tx_ring->buffer_info);
2335         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2336         return err;
2337 }
2338
2339 /**
2340  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2341  * @rx_ring: Rx descriptor ring
2342  *
2343  * Returns 0 on success, negative on failure
2344  **/
2345 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2346 {
2347         struct e1000_adapter *adapter = rx_ring->adapter;
2348         struct e1000_buffer *buffer_info;
2349         int i, size, desc_len, err = -ENOMEM;
2350
2351         size = sizeof(struct e1000_buffer) * rx_ring->count;
2352         rx_ring->buffer_info = vzalloc(size);
2353         if (!rx_ring->buffer_info)
2354                 goto err;
2355
2356         for (i = 0; i < rx_ring->count; i++) {
2357                 buffer_info = &rx_ring->buffer_info[i];
2358                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2359                                                 sizeof(struct e1000_ps_page),
2360                                                 GFP_KERNEL);
2361                 if (!buffer_info->ps_pages)
2362                         goto err_pages;
2363         }
2364
2365         desc_len = sizeof(union e1000_rx_desc_packet_split);
2366
2367         /* Round up to nearest 4K */
2368         rx_ring->size = rx_ring->count * desc_len;
2369         rx_ring->size = ALIGN(rx_ring->size, 4096);
2370
2371         err = e1000_alloc_ring_dma(adapter, rx_ring);
2372         if (err)
2373                 goto err_pages;
2374
2375         rx_ring->next_to_clean = 0;
2376         rx_ring->next_to_use = 0;
2377         rx_ring->rx_skb_top = NULL;
2378
2379         return 0;
2380
2381 err_pages:
2382         for (i = 0; i < rx_ring->count; i++) {
2383                 buffer_info = &rx_ring->buffer_info[i];
2384                 kfree(buffer_info->ps_pages);
2385         }
2386 err:
2387         vfree(rx_ring->buffer_info);
2388         e_err("Unable to allocate memory for the receive descriptor ring\n");
2389         return err;
2390 }
2391
2392 /**
2393  * e1000_clean_tx_ring - Free Tx Buffers
2394  * @tx_ring: Tx descriptor ring
2395  **/
2396 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2397 {
2398         struct e1000_adapter *adapter = tx_ring->adapter;
2399         struct e1000_buffer *buffer_info;
2400         unsigned long size;
2401         unsigned int i;
2402
2403         for (i = 0; i < tx_ring->count; i++) {
2404                 buffer_info = &tx_ring->buffer_info[i];
2405                 e1000_put_txbuf(tx_ring, buffer_info);
2406         }
2407
2408         netdev_reset_queue(adapter->netdev);
2409         size = sizeof(struct e1000_buffer) * tx_ring->count;
2410         memset(tx_ring->buffer_info, 0, size);
2411
2412         memset(tx_ring->desc, 0, tx_ring->size);
2413
2414         tx_ring->next_to_use = 0;
2415         tx_ring->next_to_clean = 0;
2416
2417         writel(0, tx_ring->head);
2418         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2419                 e1000e_update_tdt_wa(tx_ring, 0);
2420         else
2421                 writel(0, tx_ring->tail);
2422 }
2423
2424 /**
2425  * e1000e_free_tx_resources - Free Tx Resources per Queue
2426  * @tx_ring: Tx descriptor ring
2427  *
2428  * Free all transmit software resources
2429  **/
2430 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2431 {
2432         struct e1000_adapter *adapter = tx_ring->adapter;
2433         struct pci_dev *pdev = adapter->pdev;
2434
2435         e1000_clean_tx_ring(tx_ring);
2436
2437         vfree(tx_ring->buffer_info);
2438         tx_ring->buffer_info = NULL;
2439
2440         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2441                           tx_ring->dma);
2442         tx_ring->desc = NULL;
2443 }
2444
2445 /**
2446  * e1000e_free_rx_resources - Free Rx Resources
2447  * @rx_ring: Rx descriptor ring
2448  *
2449  * Free all receive software resources
2450  **/
2451 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2452 {
2453         struct e1000_adapter *adapter = rx_ring->adapter;
2454         struct pci_dev *pdev = adapter->pdev;
2455         int i;
2456
2457         e1000_clean_rx_ring(rx_ring);
2458
2459         for (i = 0; i < rx_ring->count; i++)
2460                 kfree(rx_ring->buffer_info[i].ps_pages);
2461
2462         vfree(rx_ring->buffer_info);
2463         rx_ring->buffer_info = NULL;
2464
2465         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2466                           rx_ring->dma);
2467         rx_ring->desc = NULL;
2468 }
2469
2470 /**
2471  * e1000_update_itr - update the dynamic ITR value based on statistics
2472  * @adapter: pointer to adapter
2473  * @itr_setting: current adapter->itr
2474  * @packets: the number of packets during this measurement interval
2475  * @bytes: the number of bytes during this measurement interval
2476  *
2477  *      Stores a new ITR value based on packets and byte
2478  *      counts during the last interrupt.  The advantage of per interrupt
2479  *      computation is faster updates and more accurate ITR for the current
2480  *      traffic pattern.  Constants in this function were computed
2481  *      based on theoretical maximum wire speed and thresholds were set based
2482  *      on testing data as well as attempting to minimize response time
2483  *      while increasing bulk throughput.  This functionality is controlled
2484  *      by the InterruptThrottleRate module parameter.
2485  **/
2486 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2487 {
2488         unsigned int retval = itr_setting;
2489
2490         if (packets == 0)
2491                 return itr_setting;
2492
2493         switch (itr_setting) {
2494         case lowest_latency:
2495                 /* handle TSO and jumbo frames */
2496                 if (bytes / packets > 8000)
2497                         retval = bulk_latency;
2498                 else if ((packets < 5) && (bytes > 512))
2499                         retval = low_latency;
2500                 break;
2501         case low_latency:       /* 50 usec aka 20000 ints/s */
2502                 if (bytes > 10000) {
2503                         /* this if handles the TSO accounting */
2504                         if (bytes / packets > 8000)
2505                                 retval = bulk_latency;
2506                         else if ((packets < 10) || ((bytes / packets) > 1200))
2507                                 retval = bulk_latency;
2508                         else if ((packets > 35))
2509                                 retval = lowest_latency;
2510                 } else if (bytes / packets > 2000) {
2511                         retval = bulk_latency;
2512                 } else if (packets <= 2 && bytes < 512) {
2513                         retval = lowest_latency;
2514                 }
2515                 break;
2516         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2517                 if (bytes > 25000) {
2518                         if (packets > 35)
2519                                 retval = low_latency;
2520                 } else if (bytes < 6000) {
2521                         retval = low_latency;
2522                 }
2523                 break;
2524         }
2525
2526         return retval;
2527 }
2528
2529 static void e1000_set_itr(struct e1000_adapter *adapter)
2530 {
2531         u16 current_itr;
2532         u32 new_itr = adapter->itr;
2533
2534         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2535         if (adapter->link_speed != SPEED_1000) {
2536                 current_itr = 0;
2537                 new_itr = 4000;
2538                 goto set_itr_now;
2539         }
2540
2541         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2542                 new_itr = 0;
2543                 goto set_itr_now;
2544         }
2545
2546         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2547                                            adapter->total_tx_packets,
2548                                            adapter->total_tx_bytes);
2549         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2550         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2551                 adapter->tx_itr = low_latency;
2552
2553         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2554                                            adapter->total_rx_packets,
2555                                            adapter->total_rx_bytes);
2556         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2557         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2558                 adapter->rx_itr = low_latency;
2559
2560         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2561
2562         /* counts and packets in update_itr are dependent on these numbers */
2563         switch (current_itr) {
2564         case lowest_latency:
2565                 new_itr = 70000;
2566                 break;
2567         case low_latency:
2568                 new_itr = 20000;        /* aka hwitr = ~200 */
2569                 break;
2570         case bulk_latency:
2571                 new_itr = 4000;
2572                 break;
2573         default:
2574                 break;
2575         }
2576
2577 set_itr_now:
2578         if (new_itr != adapter->itr) {
2579                 /* this attempts to bias the interrupt rate towards Bulk
2580                  * by adding intermediate steps when interrupt rate is
2581                  * increasing
2582                  */
2583                 new_itr = new_itr > adapter->itr ?
2584                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2585                 adapter->itr = new_itr;
2586                 adapter->rx_ring->itr_val = new_itr;
2587                 if (adapter->msix_entries)
2588                         adapter->rx_ring->set_itr = 1;
2589                 else
2590                         e1000e_write_itr(adapter, new_itr);
2591         }
2592 }
2593
2594 /**
2595  * e1000e_write_itr - write the ITR value to the appropriate registers
2596  * @adapter: address of board private structure
2597  * @itr: new ITR value to program
2598  *
2599  * e1000e_write_itr determines if the adapter is in MSI-X mode
2600  * and, if so, writes the EITR registers with the ITR value.
2601  * Otherwise, it writes the ITR value into the ITR register.
2602  **/
2603 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2604 {
2605         struct e1000_hw *hw = &adapter->hw;
2606         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2607
2608         if (adapter->msix_entries) {
2609                 int vector;
2610
2611                 for (vector = 0; vector < adapter->num_vectors; vector++)
2612                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2613         } else {
2614                 ew32(ITR, new_itr);
2615         }
2616 }
2617
2618 /**
2619  * e1000_alloc_queues - Allocate memory for all rings
2620  * @adapter: board private structure to initialize
2621  **/
2622 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2623 {
2624         int size = sizeof(struct e1000_ring);
2625
2626         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2627         if (!adapter->tx_ring)
2628                 goto err;
2629         adapter->tx_ring->count = adapter->tx_ring_count;
2630         adapter->tx_ring->adapter = adapter;
2631
2632         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2633         if (!adapter->rx_ring)
2634                 goto err;
2635         adapter->rx_ring->count = adapter->rx_ring_count;
2636         adapter->rx_ring->adapter = adapter;
2637
2638         return 0;
2639 err:
2640         e_err("Unable to allocate memory for queues\n");
2641         kfree(adapter->rx_ring);
2642         kfree(adapter->tx_ring);
2643         return -ENOMEM;
2644 }
2645
2646 /**
2647  * e1000e_poll - NAPI Rx polling callback
2648  * @napi: struct associated with this polling callback
2649  * @weight: number of packets driver is allowed to process this poll
2650  **/
2651 static int e1000e_poll(struct napi_struct *napi, int weight)
2652 {
2653         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2654                                                      napi);
2655         struct e1000_hw *hw = &adapter->hw;
2656         struct net_device *poll_dev = adapter->netdev;
2657         int tx_cleaned = 1, work_done = 0;
2658
2659         adapter = netdev_priv(poll_dev);
2660
2661         if (!adapter->msix_entries ||
2662             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2663                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2664
2665         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2666
2667         if (!tx_cleaned)
2668                 work_done = weight;
2669
2670         /* If weight not fully consumed, exit the polling mode */
2671         if (work_done < weight) {
2672                 if (adapter->itr_setting & 3)
2673                         e1000_set_itr(adapter);
2674                 napi_complete(napi);
2675                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2676                         if (adapter->msix_entries)
2677                                 ew32(IMS, adapter->rx_ring->ims_val);
2678                         else
2679                                 e1000_irq_enable(adapter);
2680                 }
2681         }
2682
2683         return work_done;
2684 }
2685
2686 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2687                                  __always_unused __be16 proto, u16 vid)
2688 {
2689         struct e1000_adapter *adapter = netdev_priv(netdev);
2690         struct e1000_hw *hw = &adapter->hw;
2691         u32 vfta, index;
2692
2693         /* don't update vlan cookie if already programmed */
2694         if ((adapter->hw.mng_cookie.status &
2695              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2696             (vid == adapter->mng_vlan_id))
2697                 return 0;
2698
2699         /* add VID to filter table */
2700         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2701                 index = (vid >> 5) & 0x7F;
2702                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2703                 vfta |= (1 << (vid & 0x1F));
2704                 hw->mac.ops.write_vfta(hw, index, vfta);
2705         }
2706
2707         set_bit(vid, adapter->active_vlans);
2708
2709         return 0;
2710 }
2711
2712 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2713                                   __always_unused __be16 proto, u16 vid)
2714 {
2715         struct e1000_adapter *adapter = netdev_priv(netdev);
2716         struct e1000_hw *hw = &adapter->hw;
2717         u32 vfta, index;
2718
2719         if ((adapter->hw.mng_cookie.status &
2720              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2721             (vid == adapter->mng_vlan_id)) {
2722                 /* release control to f/w */
2723                 e1000e_release_hw_control(adapter);
2724                 return 0;
2725         }
2726
2727         /* remove VID from filter table */
2728         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2729                 index = (vid >> 5) & 0x7F;
2730                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2731                 vfta &= ~(1 << (vid & 0x1F));
2732                 hw->mac.ops.write_vfta(hw, index, vfta);
2733         }
2734
2735         clear_bit(vid, adapter->active_vlans);
2736
2737         return 0;
2738 }
2739
2740 /**
2741  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2742  * @adapter: board private structure to initialize
2743  **/
2744 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2745 {
2746         struct net_device *netdev = adapter->netdev;
2747         struct e1000_hw *hw = &adapter->hw;
2748         u32 rctl;
2749
2750         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2751                 /* disable VLAN receive filtering */
2752                 rctl = er32(RCTL);
2753                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2754                 ew32(RCTL, rctl);
2755
2756                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2757                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2758                                                adapter->mng_vlan_id);
2759                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2760                 }
2761         }
2762 }
2763
2764 /**
2765  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2766  * @adapter: board private structure to initialize
2767  **/
2768 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2769 {
2770         struct e1000_hw *hw = &adapter->hw;
2771         u32 rctl;
2772
2773         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2774                 /* enable VLAN receive filtering */
2775                 rctl = er32(RCTL);
2776                 rctl |= E1000_RCTL_VFE;
2777                 rctl &= ~E1000_RCTL_CFIEN;
2778                 ew32(RCTL, rctl);
2779         }
2780 }
2781
2782 /**
2783  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2784  * @adapter: board private structure to initialize
2785  **/
2786 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2787 {
2788         struct e1000_hw *hw = &adapter->hw;
2789         u32 ctrl;
2790
2791         /* disable VLAN tag insert/strip */
2792         ctrl = er32(CTRL);
2793         ctrl &= ~E1000_CTRL_VME;
2794         ew32(CTRL, ctrl);
2795 }
2796
2797 /**
2798  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2799  * @adapter: board private structure to initialize
2800  **/
2801 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2802 {
2803         struct e1000_hw *hw = &adapter->hw;
2804         u32 ctrl;
2805
2806         /* enable VLAN tag insert/strip */
2807         ctrl = er32(CTRL);
2808         ctrl |= E1000_CTRL_VME;
2809         ew32(CTRL, ctrl);
2810 }
2811
2812 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2813 {
2814         struct net_device *netdev = adapter->netdev;
2815         u16 vid = adapter->hw.mng_cookie.vlan_id;
2816         u16 old_vid = adapter->mng_vlan_id;
2817
2818         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2819                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2820                 adapter->mng_vlan_id = vid;
2821         }
2822
2823         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2824                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2825 }
2826
2827 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2828 {
2829         u16 vid;
2830
2831         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2832
2833         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2834             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2835 }
2836
2837 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2838 {
2839         struct e1000_hw *hw = &adapter->hw;
2840         u32 manc, manc2h, mdef, i, j;
2841
2842         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2843                 return;
2844
2845         manc = er32(MANC);
2846
2847         /* enable receiving management packets to the host. this will probably
2848          * generate destination unreachable messages from the host OS, but
2849          * the packets will be handled on SMBUS
2850          */
2851         manc |= E1000_MANC_EN_MNG2HOST;
2852         manc2h = er32(MANC2H);
2853
2854         switch (hw->mac.type) {
2855         default:
2856                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2857                 break;
2858         case e1000_82574:
2859         case e1000_82583:
2860                 /* Check if IPMI pass-through decision filter already exists;
2861                  * if so, enable it.
2862                  */
2863                 for (i = 0, j = 0; i < 8; i++) {
2864                         mdef = er32(MDEF(i));
2865
2866                         /* Ignore filters with anything other than IPMI ports */
2867                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2868                                 continue;
2869
2870                         /* Enable this decision filter in MANC2H */
2871                         if (mdef)
2872                                 manc2h |= (1 << i);
2873
2874                         j |= mdef;
2875                 }
2876
2877                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2878                         break;
2879
2880                 /* Create new decision filter in an empty filter */
2881                 for (i = 0, j = 0; i < 8; i++)
2882                         if (er32(MDEF(i)) == 0) {
2883                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2884                                                E1000_MDEF_PORT_664));
2885                                 manc2h |= (1 << 1);
2886                                 j++;
2887                                 break;
2888                         }
2889
2890                 if (!j)
2891                         e_warn("Unable to create IPMI pass-through filter\n");
2892                 break;
2893         }
2894
2895         ew32(MANC2H, manc2h);
2896         ew32(MANC, manc);
2897 }
2898
2899 /**
2900  * e1000_configure_tx - Configure Transmit Unit after Reset
2901  * @adapter: board private structure
2902  *
2903  * Configure the Tx unit of the MAC after a reset.
2904  **/
2905 static void e1000_configure_tx(struct e1000_adapter *adapter)
2906 {
2907         struct e1000_hw *hw = &adapter->hw;
2908         struct e1000_ring *tx_ring = adapter->tx_ring;
2909         u64 tdba;
2910         u32 tdlen, tctl, tarc;
2911
2912         /* Setup the HW Tx Head and Tail descriptor pointers */
2913         tdba = tx_ring->dma;
2914         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2915         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2916         ew32(TDBAH(0), (tdba >> 32));
2917         ew32(TDLEN(0), tdlen);
2918         ew32(TDH(0), 0);
2919         ew32(TDT(0), 0);
2920         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2921         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2922
2923         /* Set the Tx Interrupt Delay register */
2924         ew32(TIDV, adapter->tx_int_delay);
2925         /* Tx irq moderation */
2926         ew32(TADV, adapter->tx_abs_int_delay);
2927
2928         if (adapter->flags2 & FLAG2_DMA_BURST) {
2929                 u32 txdctl = er32(TXDCTL(0));
2930
2931                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2932                             E1000_TXDCTL_WTHRESH);
2933                 /* set up some performance related parameters to encourage the
2934                  * hardware to use the bus more efficiently in bursts, depends
2935                  * on the tx_int_delay to be enabled,
2936                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2937                  * hthresh = 1 ==> prefetch when one or more available
2938                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2939                  * BEWARE: this seems to work but should be considered first if
2940                  * there are Tx hangs or other Tx related bugs
2941                  */
2942                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2943                 ew32(TXDCTL(0), txdctl);
2944         }
2945         /* erratum work around: set txdctl the same for both queues */
2946         ew32(TXDCTL(1), er32(TXDCTL(0)));
2947
2948         /* Program the Transmit Control Register */
2949         tctl = er32(TCTL);
2950         tctl &= ~E1000_TCTL_CT;
2951         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2952                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2953
2954         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2955                 tarc = er32(TARC(0));
2956                 /* set the speed mode bit, we'll clear it if we're not at
2957                  * gigabit link later
2958                  */
2959 #define SPEED_MODE_BIT (1 << 21)
2960                 tarc |= SPEED_MODE_BIT;
2961                 ew32(TARC(0), tarc);
2962         }
2963
2964         /* errata: program both queues to unweighted RR */
2965         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2966                 tarc = er32(TARC(0));
2967                 tarc |= 1;
2968                 ew32(TARC(0), tarc);
2969                 tarc = er32(TARC(1));
2970                 tarc |= 1;
2971                 ew32(TARC(1), tarc);
2972         }
2973
2974         /* Setup Transmit Descriptor Settings for eop descriptor */
2975         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2976
2977         /* only set IDE if we are delaying interrupts using the timers */
2978         if (adapter->tx_int_delay)
2979                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2980
2981         /* enable Report Status bit */
2982         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2983
2984         ew32(TCTL, tctl);
2985
2986         hw->mac.ops.config_collision_dist(hw);
2987 }
2988
2989 /**
2990  * e1000_setup_rctl - configure the receive control registers
2991  * @adapter: Board private structure
2992  **/
2993 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2994                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2995 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2996 {
2997         struct e1000_hw *hw = &adapter->hw;
2998         u32 rctl, rfctl;
2999         u32 pages = 0;
3000
3001         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3002          * If jumbo frames not set, program related MAC/PHY registers
3003          * to h/w defaults
3004          */
3005         if (hw->mac.type >= e1000_pch2lan) {
3006                 s32 ret_val;
3007
3008                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3009                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3010                 else
3011                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3012
3013                 if (ret_val)
3014                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3015         }
3016
3017         /* Program MC offset vector base */
3018         rctl = er32(RCTL);
3019         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3020         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3021             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3022             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3023
3024         /* Do not Store bad packets */
3025         rctl &= ~E1000_RCTL_SBP;
3026
3027         /* Enable Long Packet receive */
3028         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3029                 rctl &= ~E1000_RCTL_LPE;
3030         else
3031                 rctl |= E1000_RCTL_LPE;
3032
3033         /* Some systems expect that the CRC is included in SMBUS traffic. The
3034          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3035          * host memory when this is enabled
3036          */
3037         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3038                 rctl |= E1000_RCTL_SECRC;
3039
3040         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3041         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3042                 u16 phy_data;
3043
3044                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3045                 phy_data &= 0xfff8;
3046                 phy_data |= (1 << 2);
3047                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3048
3049                 e1e_rphy(hw, 22, &phy_data);
3050                 phy_data &= 0x0fff;
3051                 phy_data |= (1 << 14);
3052                 e1e_wphy(hw, 0x10, 0x2823);
3053                 e1e_wphy(hw, 0x11, 0x0003);
3054                 e1e_wphy(hw, 22, phy_data);
3055         }
3056
3057         /* Setup buffer sizes */
3058         rctl &= ~E1000_RCTL_SZ_4096;
3059         rctl |= E1000_RCTL_BSEX;
3060         switch (adapter->rx_buffer_len) {
3061         case 2048:
3062         default:
3063                 rctl |= E1000_RCTL_SZ_2048;
3064                 rctl &= ~E1000_RCTL_BSEX;
3065                 break;
3066         case 4096:
3067                 rctl |= E1000_RCTL_SZ_4096;
3068                 break;
3069         case 8192:
3070                 rctl |= E1000_RCTL_SZ_8192;
3071                 break;
3072         case 16384:
3073                 rctl |= E1000_RCTL_SZ_16384;
3074                 break;
3075         }
3076
3077         /* Enable Extended Status in all Receive Descriptors */
3078         rfctl = er32(RFCTL);
3079         rfctl |= E1000_RFCTL_EXTEN;
3080         ew32(RFCTL, rfctl);
3081
3082         /* 82571 and greater support packet-split where the protocol
3083          * header is placed in skb->data and the packet data is
3084          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3085          * In the case of a non-split, skb->data is linearly filled,
3086          * followed by the page buffers.  Therefore, skb->data is
3087          * sized to hold the largest protocol header.
3088          *
3089          * allocations using alloc_page take too long for regular MTU
3090          * so only enable packet split for jumbo frames
3091          *
3092          * Using pages when the page size is greater than 16k wastes
3093          * a lot of memory, since we allocate 3 pages at all times
3094          * per packet.
3095          */
3096         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3097         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3098                 adapter->rx_ps_pages = pages;
3099         else
3100                 adapter->rx_ps_pages = 0;
3101
3102         if (adapter->rx_ps_pages) {
3103                 u32 psrctl = 0;
3104
3105                 /* Enable Packet split descriptors */
3106                 rctl |= E1000_RCTL_DTYP_PS;
3107
3108                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3109
3110                 switch (adapter->rx_ps_pages) {
3111                 case 3:
3112                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3113                         /* fall-through */
3114                 case 2:
3115                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3116                         /* fall-through */
3117                 case 1:
3118                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3119                         break;
3120                 }
3121
3122                 ew32(PSRCTL, psrctl);
3123         }
3124
3125         /* This is useful for sniffing bad packets. */
3126         if (adapter->netdev->features & NETIF_F_RXALL) {
3127                 /* UPE and MPE will be handled by normal PROMISC logic
3128                  * in e1000e_set_rx_mode
3129                  */
3130                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3131                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3132                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3133
3134                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3135                           E1000_RCTL_DPF |      /* Allow filtered pause */
3136                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3137                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3138                  * and that breaks VLANs.
3139                  */
3140         }
3141
3142         ew32(RCTL, rctl);
3143         /* just started the receive unit, no need to restart */
3144         adapter->flags &= ~FLAG_RESTART_NOW;
3145 }
3146
3147 /**
3148  * e1000_configure_rx - Configure Receive Unit after Reset
3149  * @adapter: board private structure
3150  *
3151  * Configure the Rx unit of the MAC after a reset.
3152  **/
3153 static void e1000_configure_rx(struct e1000_adapter *adapter)
3154 {
3155         struct e1000_hw *hw = &adapter->hw;
3156         struct e1000_ring *rx_ring = adapter->rx_ring;
3157         u64 rdba;
3158         u32 rdlen, rctl, rxcsum, ctrl_ext;
3159
3160         if (adapter->rx_ps_pages) {
3161                 /* this is a 32 byte descriptor */
3162                 rdlen = rx_ring->count *
3163                     sizeof(union e1000_rx_desc_packet_split);
3164                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3165                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3166         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3167                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3168                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3169                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3170         } else {
3171                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3172                 adapter->clean_rx = e1000_clean_rx_irq;
3173                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3174         }
3175
3176         /* disable receives while setting up the descriptors */
3177         rctl = er32(RCTL);
3178         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3179                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3180         e1e_flush();
3181         usleep_range(10000, 20000);
3182
3183         if (adapter->flags2 & FLAG2_DMA_BURST) {
3184                 /* set the writeback threshold (only takes effect if the RDTR
3185                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3186                  * enable prefetching of 0x20 Rx descriptors
3187                  * granularity = 01
3188                  * wthresh = 04,
3189                  * hthresh = 04,
3190                  * pthresh = 0x20
3191                  */
3192                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3193                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3194
3195                 /* override the delay timers for enabling bursting, only if
3196                  * the value was not set by the user via module options
3197                  */
3198                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3199                         adapter->rx_int_delay = BURST_RDTR;
3200                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3201                         adapter->rx_abs_int_delay = BURST_RADV;
3202         }
3203
3204         /* set the Receive Delay Timer Register */
3205         ew32(RDTR, adapter->rx_int_delay);
3206
3207         /* irq moderation */
3208         ew32(RADV, adapter->rx_abs_int_delay);
3209         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3210                 e1000e_write_itr(adapter, adapter->itr);
3211
3212         ctrl_ext = er32(CTRL_EXT);
3213         /* Auto-Mask interrupts upon ICR access */
3214         ctrl_ext |= E1000_CTRL_EXT_IAME;
3215         ew32(IAM, 0xffffffff);
3216         ew32(CTRL_EXT, ctrl_ext);
3217         e1e_flush();
3218
3219         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3220          * the Base and Length of the Rx Descriptor Ring
3221          */
3222         rdba = rx_ring->dma;
3223         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3224         ew32(RDBAH(0), (rdba >> 32));
3225         ew32(RDLEN(0), rdlen);
3226         ew32(RDH(0), 0);
3227         ew32(RDT(0), 0);
3228         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3229         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3230
3231         /* Enable Receive Checksum Offload for TCP and UDP */
3232         rxcsum = er32(RXCSUM);
3233         if (adapter->netdev->features & NETIF_F_RXCSUM)
3234                 rxcsum |= E1000_RXCSUM_TUOFL;
3235         else
3236                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3237         ew32(RXCSUM, rxcsum);
3238
3239         /* With jumbo frames, excessive C-state transition latencies result
3240          * in dropped transactions.
3241          */
3242         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3243                 u32 lat =
3244                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3245                      adapter->max_frame_size) * 8 / 1000;
3246
3247                 if (adapter->flags & FLAG_IS_ICH) {
3248                         u32 rxdctl = er32(RXDCTL(0));
3249
3250                         ew32(RXDCTL(0), rxdctl | 0x3);
3251                 }
3252
3253                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3254         } else {
3255                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3256                                       PM_QOS_DEFAULT_VALUE);
3257         }
3258
3259         /* Enable Receives */
3260         ew32(RCTL, rctl);
3261 }
3262
3263 /**
3264  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3265  * @netdev: network interface device structure
3266  *
3267  * Writes multicast address list to the MTA hash table.
3268  * Returns: -ENOMEM on failure
3269  *                0 on no addresses written
3270  *                X on writing X addresses to MTA
3271  */
3272 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3273 {
3274         struct e1000_adapter *adapter = netdev_priv(netdev);
3275         struct e1000_hw *hw = &adapter->hw;
3276         struct netdev_hw_addr *ha;
3277         u8 *mta_list;
3278         int i;
3279
3280         if (netdev_mc_empty(netdev)) {
3281                 /* nothing to program, so clear mc list */
3282                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3283                 return 0;
3284         }
3285
3286         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3287         if (!mta_list)
3288                 return -ENOMEM;
3289
3290         /* update_mc_addr_list expects a packed array of only addresses. */
3291         i = 0;
3292         netdev_for_each_mc_addr(ha, netdev)
3293             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3294
3295         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3296         kfree(mta_list);
3297
3298         return netdev_mc_count(netdev);
3299 }
3300
3301 /**
3302  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3303  * @netdev: network interface device structure
3304  *
3305  * Writes unicast address list to the RAR table.
3306  * Returns: -ENOMEM on failure/insufficient address space
3307  *                0 on no addresses written
3308  *                X on writing X addresses to the RAR table
3309  **/
3310 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3311 {
3312         struct e1000_adapter *adapter = netdev_priv(netdev);
3313         struct e1000_hw *hw = &adapter->hw;
3314         unsigned int rar_entries = hw->mac.rar_entry_count;
3315         int count = 0;
3316
3317         /* save a rar entry for our hardware address */
3318         rar_entries--;
3319
3320         /* save a rar entry for the LAA workaround */
3321         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3322                 rar_entries--;
3323
3324         /* return ENOMEM indicating insufficient memory for addresses */
3325         if (netdev_uc_count(netdev) > rar_entries)
3326                 return -ENOMEM;
3327
3328         if (!netdev_uc_empty(netdev) && rar_entries) {
3329                 struct netdev_hw_addr *ha;
3330
3331                 /* write the addresses in reverse order to avoid write
3332                  * combining
3333                  */
3334                 netdev_for_each_uc_addr(ha, netdev) {
3335                         if (!rar_entries)
3336                                 break;
3337                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3338                         count++;
3339                 }
3340         }
3341
3342         /* zero out the remaining RAR entries not used above */
3343         for (; rar_entries > 0; rar_entries--) {
3344                 ew32(RAH(rar_entries), 0);
3345                 ew32(RAL(rar_entries), 0);
3346         }
3347         e1e_flush();
3348
3349         return count;
3350 }
3351
3352 /**
3353  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3354  * @netdev: network interface device structure
3355  *
3356  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3357  * address list or the network interface flags are updated.  This routine is
3358  * responsible for configuring the hardware for proper unicast, multicast,
3359  * promiscuous mode, and all-multi behavior.
3360  **/
3361 static void e1000e_set_rx_mode(struct net_device *netdev)
3362 {
3363         struct e1000_adapter *adapter = netdev_priv(netdev);
3364         struct e1000_hw *hw = &adapter->hw;
3365         u32 rctl;
3366
3367         if (pm_runtime_suspended(netdev->dev.parent))
3368                 return;
3369
3370         /* Check for Promiscuous and All Multicast modes */
3371         rctl = er32(RCTL);
3372
3373         /* clear the affected bits */
3374         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3375
3376         if (netdev->flags & IFF_PROMISC) {
3377                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3378                 /* Do not hardware filter VLANs in promisc mode */
3379                 e1000e_vlan_filter_disable(adapter);
3380         } else {
3381                 int count;
3382
3383                 if (netdev->flags & IFF_ALLMULTI) {
3384                         rctl |= E1000_RCTL_MPE;
3385                 } else {
3386                         /* Write addresses to the MTA, if the attempt fails
3387                          * then we should just turn on promiscuous mode so
3388                          * that we can at least receive multicast traffic
3389                          */
3390                         count = e1000e_write_mc_addr_list(netdev);
3391                         if (count < 0)
3392                                 rctl |= E1000_RCTL_MPE;
3393                 }
3394                 e1000e_vlan_filter_enable(adapter);
3395                 /* Write addresses to available RAR registers, if there is not
3396                  * sufficient space to store all the addresses then enable
3397                  * unicast promiscuous mode
3398                  */
3399                 count = e1000e_write_uc_addr_list(netdev);
3400                 if (count < 0)
3401                         rctl |= E1000_RCTL_UPE;
3402         }
3403
3404         ew32(RCTL, rctl);
3405
3406         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3407                 e1000e_vlan_strip_enable(adapter);
3408         else
3409                 e1000e_vlan_strip_disable(adapter);
3410 }
3411
3412 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3413 {
3414         struct e1000_hw *hw = &adapter->hw;
3415         u32 mrqc, rxcsum;
3416         int i;
3417         static const u32 rsskey[10] = {
3418                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3419                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3420         };
3421
3422         /* Fill out hash function seed */
3423         for (i = 0; i < 10; i++)
3424                 ew32(RSSRK(i), rsskey[i]);
3425
3426         /* Direct all traffic to queue 0 */
3427         for (i = 0; i < 32; i++)
3428                 ew32(RETA(i), 0);
3429
3430         /* Disable raw packet checksumming so that RSS hash is placed in
3431          * descriptor on writeback.
3432          */
3433         rxcsum = er32(RXCSUM);
3434         rxcsum |= E1000_RXCSUM_PCSD;
3435
3436         ew32(RXCSUM, rxcsum);
3437
3438         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3439                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3440                 E1000_MRQC_RSS_FIELD_IPV6 |
3441                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3442                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3443
3444         ew32(MRQC, mrqc);
3445 }
3446
3447 /**
3448  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3449  * @adapter: board private structure
3450  * @timinca: pointer to returned time increment attributes
3451  *
3452  * Get attributes for incrementing the System Time Register SYSTIML/H at
3453  * the default base frequency, and set the cyclecounter shift value.
3454  **/
3455 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3456 {
3457         struct e1000_hw *hw = &adapter->hw;
3458         u32 incvalue, incperiod, shift;
3459
3460         /* Make sure clock is enabled on I217 before checking the frequency */
3461         if ((hw->mac.type == e1000_pch_lpt) &&
3462             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3463             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3464                 u32 fextnvm7 = er32(FEXTNVM7);
3465
3466                 if (!(fextnvm7 & (1 << 0))) {
3467                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3468                         e1e_flush();
3469                 }
3470         }
3471
3472         switch (hw->mac.type) {
3473         case e1000_pch2lan:
3474         case e1000_pch_lpt:
3475                 /* On I217, the clock frequency is 25MHz or 96MHz as
3476                  * indicated by the System Clock Frequency Indication
3477                  */
3478                 if ((hw->mac.type != e1000_pch_lpt) ||
3479                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3480                         /* Stable 96MHz frequency */
3481                         incperiod = INCPERIOD_96MHz;
3482                         incvalue = INCVALUE_96MHz;
3483                         shift = INCVALUE_SHIFT_96MHz;
3484                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3485                         break;
3486                 }
3487                 /* fall-through */
3488         case e1000_82574:
3489         case e1000_82583:
3490                 /* Stable 25MHz frequency */
3491                 incperiod = INCPERIOD_25MHz;
3492                 incvalue = INCVALUE_25MHz;
3493                 shift = INCVALUE_SHIFT_25MHz;
3494                 adapter->cc.shift = shift;
3495                 break;
3496         default:
3497                 return -EINVAL;
3498         }
3499
3500         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3501                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3502
3503         return 0;
3504 }
3505
3506 /**
3507  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3508  * @adapter: board private structure
3509  *
3510  * Outgoing time stamping can be enabled and disabled. Play nice and
3511  * disable it when requested, although it shouldn't cause any overhead
3512  * when no packet needs it. At most one packet in the queue may be
3513  * marked for time stamping, otherwise it would be impossible to tell
3514  * for sure to which packet the hardware time stamp belongs.
3515  *
3516  * Incoming time stamping has to be configured via the hardware filters.
3517  * Not all combinations are supported, in particular event type has to be
3518  * specified. Matching the kind of event packet is not supported, with the
3519  * exception of "all V2 events regardless of level 2 or 4".
3520  **/
3521 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3522                                   struct hwtstamp_config *config)
3523 {
3524         struct e1000_hw *hw = &adapter->hw;
3525         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3526         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3527         u32 rxmtrl = 0;
3528         u16 rxudp = 0;
3529         bool is_l4 = false;
3530         bool is_l2 = false;
3531         u32 regval;
3532         s32 ret_val;
3533
3534         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3535                 return -EINVAL;
3536
3537         /* flags reserved for future extensions - must be zero */
3538         if (config->flags)
3539                 return -EINVAL;
3540
3541         switch (config->tx_type) {
3542         case HWTSTAMP_TX_OFF:
3543                 tsync_tx_ctl = 0;
3544                 break;
3545         case HWTSTAMP_TX_ON:
3546                 break;
3547         default:
3548                 return -ERANGE;
3549         }
3550
3551         switch (config->rx_filter) {
3552         case HWTSTAMP_FILTER_NONE:
3553                 tsync_rx_ctl = 0;
3554                 break;
3555         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3556                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3557                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3558                 is_l4 = true;
3559                 break;
3560         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3561                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3562                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3563                 is_l4 = true;
3564                 break;
3565         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3566                 /* Also time stamps V2 L2 Path Delay Request/Response */
3567                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3568                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3569                 is_l2 = true;
3570                 break;
3571         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3572                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3573                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3574                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3575                 is_l2 = true;
3576                 break;
3577         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3578                 /* Hardware cannot filter just V2 L4 Sync messages;
3579                  * fall-through to V2 (both L2 and L4) Sync.
3580                  */
3581         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3582                 /* Also time stamps V2 Path Delay Request/Response. */
3583                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3584                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3585                 is_l2 = true;
3586                 is_l4 = true;
3587                 break;
3588         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3589                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3590                  * fall-through to V2 (both L2 and L4) Delay Request.
3591                  */
3592         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3593                 /* Also time stamps V2 Path Delay Request/Response. */
3594                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3595                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3596                 is_l2 = true;
3597                 is_l4 = true;
3598                 break;
3599         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3600         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3601                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3602                  * fall-through to all V2 (both L2 and L4) Events.
3603                  */
3604         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3605                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3606                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3607                 is_l2 = true;
3608                 is_l4 = true;
3609                 break;
3610         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3611                 /* For V1, the hardware can only filter Sync messages or
3612                  * Delay Request messages but not both so fall-through to
3613                  * time stamp all packets.
3614                  */
3615         case HWTSTAMP_FILTER_ALL:
3616                 is_l2 = true;
3617                 is_l4 = true;
3618                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3619                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3620                 break;
3621         default:
3622                 return -ERANGE;
3623         }
3624
3625         adapter->hwtstamp_config = *config;
3626
3627         /* enable/disable Tx h/w time stamping */
3628         regval = er32(TSYNCTXCTL);
3629         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3630         regval |= tsync_tx_ctl;
3631         ew32(TSYNCTXCTL, regval);
3632         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3633             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3634                 e_err("Timesync Tx Control register not set as expected\n");
3635                 return -EAGAIN;
3636         }
3637
3638         /* enable/disable Rx h/w time stamping */
3639         regval = er32(TSYNCRXCTL);
3640         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3641         regval |= tsync_rx_ctl;
3642         ew32(TSYNCRXCTL, regval);
3643         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3644                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3645             (regval & (E1000_TSYNCRXCTL_ENABLED |
3646                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3647                 e_err("Timesync Rx Control register not set as expected\n");
3648                 return -EAGAIN;
3649         }
3650
3651         /* L2: define ethertype filter for time stamped packets */
3652         if (is_l2)
3653                 rxmtrl |= ETH_P_1588;
3654
3655         /* define which PTP packets get time stamped */
3656         ew32(RXMTRL, rxmtrl);
3657
3658         /* Filter by destination port */
3659         if (is_l4) {
3660                 rxudp = PTP_EV_PORT;
3661                 cpu_to_be16s(&rxudp);
3662         }
3663         ew32(RXUDP, rxudp);
3664
3665         e1e_flush();
3666
3667         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3668         er32(RXSTMPH);
3669         er32(TXSTMPH);
3670
3671         /* Get and set the System Time Register SYSTIM base frequency */
3672         ret_val = e1000e_get_base_timinca(adapter, &regval);
3673         if (ret_val)
3674                 return ret_val;
3675         ew32(TIMINCA, regval);
3676
3677         /* reset the ns time counter */
3678         timecounter_init(&adapter->tc, &adapter->cc,
3679                          ktime_to_ns(ktime_get_real()));
3680
3681         return 0;
3682 }
3683
3684 /**
3685  * e1000_configure - configure the hardware for Rx and Tx
3686  * @adapter: private board structure
3687  **/
3688 static void e1000_configure(struct e1000_adapter *adapter)
3689 {
3690         struct e1000_ring *rx_ring = adapter->rx_ring;
3691
3692         e1000e_set_rx_mode(adapter->netdev);
3693
3694         e1000_restore_vlan(adapter);
3695         e1000_init_manageability_pt(adapter);
3696
3697         e1000_configure_tx(adapter);
3698
3699         if (adapter->netdev->features & NETIF_F_RXHASH)
3700                 e1000e_setup_rss_hash(adapter);
3701         e1000_setup_rctl(adapter);
3702         e1000_configure_rx(adapter);
3703         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3704 }
3705
3706 /**
3707  * e1000e_power_up_phy - restore link in case the phy was powered down
3708  * @adapter: address of board private structure
3709  *
3710  * The phy may be powered down to save power and turn off link when the
3711  * driver is unloaded and wake on lan is not enabled (among others)
3712  * *** this routine MUST be followed by a call to e1000e_reset ***
3713  **/
3714 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3715 {
3716         if (adapter->hw.phy.ops.power_up)
3717                 adapter->hw.phy.ops.power_up(&adapter->hw);
3718
3719         adapter->hw.mac.ops.setup_link(&adapter->hw);
3720 }
3721
3722 /**
3723  * e1000_power_down_phy - Power down the PHY
3724  *
3725  * Power down the PHY so no link is implied when interface is down.
3726  * The PHY cannot be powered down if management or WoL is active.
3727  */
3728 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3729 {
3730         if (adapter->hw.phy.ops.power_down)
3731                 adapter->hw.phy.ops.power_down(&adapter->hw);
3732 }
3733
3734 /**
3735  * e1000e_reset - bring the hardware into a known good state
3736  *
3737  * This function boots the hardware and enables some settings that
3738  * require a configuration cycle of the hardware - those cannot be
3739  * set/changed during runtime. After reset the device needs to be
3740  * properly configured for Rx, Tx etc.
3741  */
3742 void e1000e_reset(struct e1000_adapter *adapter)
3743 {
3744         struct e1000_mac_info *mac = &adapter->hw.mac;
3745         struct e1000_fc_info *fc = &adapter->hw.fc;
3746         struct e1000_hw *hw = &adapter->hw;
3747         u32 tx_space, min_tx_space, min_rx_space;
3748         u32 pba = adapter->pba;
3749         u16 hwm;
3750
3751         /* reset Packet Buffer Allocation to default */
3752         ew32(PBA, pba);
3753
3754         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3755                 /* To maintain wire speed transmits, the Tx FIFO should be
3756                  * large enough to accommodate two full transmit packets,
3757                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3758                  * the Rx FIFO should be large enough to accommodate at least
3759                  * one full receive packet and is similarly rounded up and
3760                  * expressed in KB.
3761                  */
3762                 pba = er32(PBA);
3763                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3764                 tx_space = pba >> 16;
3765                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3766                 pba &= 0xffff;
3767                 /* the Tx fifo also stores 16 bytes of information about the Tx
3768                  * but don't include ethernet FCS because hardware appends it
3769                  */
3770                 min_tx_space = (adapter->max_frame_size +
3771                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3772                 min_tx_space = ALIGN(min_tx_space, 1024);
3773                 min_tx_space >>= 10;
3774                 /* software strips receive CRC, so leave room for it */
3775                 min_rx_space = adapter->max_frame_size;
3776                 min_rx_space = ALIGN(min_rx_space, 1024);
3777                 min_rx_space >>= 10;
3778
3779                 /* If current Tx allocation is less than the min Tx FIFO size,
3780                  * and the min Tx FIFO size is less than the current Rx FIFO
3781                  * allocation, take space away from current Rx allocation
3782                  */
3783                 if ((tx_space < min_tx_space) &&
3784                     ((min_tx_space - tx_space) < pba)) {
3785                         pba -= min_tx_space - tx_space;
3786
3787                         /* if short on Rx space, Rx wins and must trump Tx
3788                          * adjustment
3789                          */
3790                         if (pba < min_rx_space)
3791                                 pba = min_rx_space;
3792                 }
3793
3794                 ew32(PBA, pba);
3795         }
3796
3797         /* flow control settings
3798          *
3799          * The high water mark must be low enough to fit one full frame
3800          * (or the size used for early receive) above it in the Rx FIFO.
3801          * Set it to the lower of:
3802          * - 90% of the Rx FIFO size, and
3803          * - the full Rx FIFO size minus one full frame
3804          */
3805         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3806                 fc->pause_time = 0xFFFF;
3807         else
3808                 fc->pause_time = E1000_FC_PAUSE_TIME;
3809         fc->send_xon = true;
3810         fc->current_mode = fc->requested_mode;
3811
3812         switch (hw->mac.type) {
3813         case e1000_ich9lan:
3814         case e1000_ich10lan:
3815                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3816                         pba = 14;
3817                         ew32(PBA, pba);
3818                         fc->high_water = 0x2800;
3819                         fc->low_water = fc->high_water - 8;
3820                         break;
3821                 }
3822                 /* fall-through */
3823         default:
3824                 hwm = min(((pba << 10) * 9 / 10),
3825                           ((pba << 10) - adapter->max_frame_size));
3826
3827                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3828                 fc->low_water = fc->high_water - 8;
3829                 break;
3830         case e1000_pchlan:
3831                 /* Workaround PCH LOM adapter hangs with certain network
3832                  * loads.  If hangs persist, try disabling Tx flow control.
3833                  */
3834                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3835                         fc->high_water = 0x3500;
3836                         fc->low_water = 0x1500;
3837                 } else {
3838                         fc->high_water = 0x5000;
3839                         fc->low_water = 0x3000;
3840                 }
3841                 fc->refresh_time = 0x1000;
3842                 break;
3843         case e1000_pch2lan:
3844         case e1000_pch_lpt:
3845                 fc->refresh_time = 0x0400;
3846
3847                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3848                         fc->high_water = 0x05C20;
3849                         fc->low_water = 0x05048;
3850                         fc->pause_time = 0x0650;
3851                         break;
3852                 }
3853
3854                 pba = 14;
3855                 ew32(PBA, pba);
3856                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3857                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3858                 break;
3859         }
3860
3861         /* Alignment of Tx data is on an arbitrary byte boundary with the
3862          * maximum size per Tx descriptor limited only to the transmit
3863          * allocation of the packet buffer minus 96 bytes with an upper
3864          * limit of 24KB due to receive synchronization limitations.
3865          */
3866         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3867                                        24 << 10);
3868
3869         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3870          * fit in receive buffer.
3871          */
3872         if (adapter->itr_setting & 0x3) {
3873                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3874                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3875                                 dev_info(&adapter->pdev->dev,
3876                                          "Interrupt Throttle Rate off\n");
3877                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3878                                 e1000e_write_itr(adapter, 0);
3879                         }
3880                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3881                         dev_info(&adapter->pdev->dev,
3882                                  "Interrupt Throttle Rate on\n");
3883                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3884                         adapter->itr = 20000;
3885                         e1000e_write_itr(adapter, adapter->itr);
3886                 }
3887         }
3888
3889         /* Allow time for pending master requests to run */
3890         mac->ops.reset_hw(hw);
3891
3892         /* For parts with AMT enabled, let the firmware know
3893          * that the network interface is in control
3894          */
3895         if (adapter->flags & FLAG_HAS_AMT)
3896                 e1000e_get_hw_control(adapter);
3897
3898         ew32(WUC, 0);
3899
3900         if (mac->ops.init_hw(hw))
3901                 e_err("Hardware Error\n");
3902
3903         e1000_update_mng_vlan(adapter);
3904
3905         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3906         ew32(VET, ETH_P_8021Q);
3907
3908         e1000e_reset_adaptive(hw);
3909
3910         /* initialize systim and reset the ns time counter */
3911         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3912
3913         /* Set EEE advertisement as appropriate */
3914         if (adapter->flags2 & FLAG2_HAS_EEE) {
3915                 s32 ret_val;
3916                 u16 adv_addr;
3917
3918                 switch (hw->phy.type) {
3919                 case e1000_phy_82579:
3920                         adv_addr = I82579_EEE_ADVERTISEMENT;
3921                         break;
3922                 case e1000_phy_i217:
3923                         adv_addr = I217_EEE_ADVERTISEMENT;
3924                         break;
3925                 default:
3926                         dev_err(&adapter->pdev->dev,
3927                                 "Invalid PHY type setting EEE advertisement\n");
3928                         return;
3929                 }
3930
3931                 ret_val = hw->phy.ops.acquire(hw);
3932                 if (ret_val) {
3933                         dev_err(&adapter->pdev->dev,
3934                                 "EEE advertisement - unable to acquire PHY\n");
3935                         return;
3936                 }
3937
3938                 e1000_write_emi_reg_locked(hw, adv_addr,
3939                                            hw->dev_spec.ich8lan.eee_disable ?
3940                                            0 : adapter->eee_advert);
3941
3942                 hw->phy.ops.release(hw);
3943         }
3944
3945         if (!netif_running(adapter->netdev) &&
3946             !test_bit(__E1000_TESTING, &adapter->state))
3947                 e1000_power_down_phy(adapter);
3948
3949         e1000_get_phy_info(hw);
3950
3951         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3952             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3953                 u16 phy_data = 0;
3954                 /* speed up time to link by disabling smart power down, ignore
3955                  * the return value of this function because there is nothing
3956                  * different we would do if it failed
3957                  */
3958                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3959                 phy_data &= ~IGP02E1000_PM_SPD;
3960                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3961         }
3962 }
3963
3964 int e1000e_up(struct e1000_adapter *adapter)
3965 {
3966         struct e1000_hw *hw = &adapter->hw;
3967
3968         /* hardware has been reset, we need to reload some things */
3969         e1000_configure(adapter);
3970
3971         clear_bit(__E1000_DOWN, &adapter->state);
3972
3973         if (adapter->msix_entries)
3974                 e1000_configure_msix(adapter);
3975         e1000_irq_enable(adapter);
3976
3977         netif_start_queue(adapter->netdev);
3978
3979         /* fire a link change interrupt to start the watchdog */
3980         if (adapter->msix_entries)
3981                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3982         else
3983                 ew32(ICS, E1000_ICS_LSC);
3984
3985         return 0;
3986 }
3987
3988 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3989 {
3990         struct e1000_hw *hw = &adapter->hw;
3991
3992         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3993                 return;
3994
3995         /* flush pending descriptor writebacks to memory */
3996         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3997         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3998
3999         /* execute the writes immediately */
4000         e1e_flush();
4001
4002         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4003          * write is successful
4004          */
4005         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4006         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4007
4008         /* execute the writes immediately */
4009         e1e_flush();
4010 }
4011
4012 static void e1000e_update_stats(struct e1000_adapter *adapter);
4013
4014 /**
4015  * e1000e_down - quiesce the device and optionally reset the hardware
4016  * @adapter: board private structure
4017  * @reset: boolean flag to reset the hardware or not
4018  */
4019 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4020 {
4021         struct net_device *netdev = adapter->netdev;
4022         struct e1000_hw *hw = &adapter->hw;
4023         u32 tctl, rctl;
4024
4025         /* signal that we're down so the interrupt handler does not
4026          * reschedule our watchdog timer
4027          */
4028         set_bit(__E1000_DOWN, &adapter->state);
4029
4030         /* disable receives in the hardware */
4031         rctl = er32(RCTL);
4032         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4033                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4034         /* flush and sleep below */
4035
4036         netif_stop_queue(netdev);
4037
4038         /* disable transmits in the hardware */
4039         tctl = er32(TCTL);
4040         tctl &= ~E1000_TCTL_EN;
4041         ew32(TCTL, tctl);
4042
4043         /* flush both disables and wait for them to finish */
4044         e1e_flush();
4045         usleep_range(10000, 20000);
4046
4047         e1000_irq_disable(adapter);
4048
4049         napi_synchronize(&adapter->napi);
4050
4051         del_timer_sync(&adapter->watchdog_timer);
4052         del_timer_sync(&adapter->phy_info_timer);
4053
4054         netif_carrier_off(netdev);
4055
4056         spin_lock(&adapter->stats64_lock);
4057         e1000e_update_stats(adapter);
4058         spin_unlock(&adapter->stats64_lock);
4059
4060         e1000e_flush_descriptors(adapter);
4061         e1000_clean_tx_ring(adapter->tx_ring);
4062         e1000_clean_rx_ring(adapter->rx_ring);
4063
4064         adapter->link_speed = 0;
4065         adapter->link_duplex = 0;
4066
4067         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4068         if ((hw->mac.type >= e1000_pch2lan) &&
4069             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4070             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4071                 e_dbg("failed to disable jumbo frame workaround mode\n");
4072
4073         if (reset && !pci_channel_offline(adapter->pdev))
4074                 e1000e_reset(adapter);
4075 }
4076
4077 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4078 {
4079         might_sleep();
4080         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4081                 usleep_range(1000, 2000);
4082         e1000e_down(adapter, true);
4083         e1000e_up(adapter);
4084         clear_bit(__E1000_RESETTING, &adapter->state);
4085 }
4086
4087 /**
4088  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4089  * @cc: cyclecounter structure
4090  **/
4091 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4092 {
4093         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4094                                                      cc);
4095         struct e1000_hw *hw = &adapter->hw;
4096         cycle_t systim;
4097
4098         /* latch SYSTIMH on read of SYSTIML */
4099         systim = (cycle_t)er32(SYSTIML);
4100         systim |= (cycle_t)er32(SYSTIMH) << 32;
4101
4102         return systim;
4103 }
4104
4105 /**
4106  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4107  * @adapter: board private structure to initialize
4108  *
4109  * e1000_sw_init initializes the Adapter private data structure.
4110  * Fields are initialized based on PCI device information and
4111  * OS network device settings (MTU size).
4112  **/
4113 static int e1000_sw_init(struct e1000_adapter *adapter)
4114 {
4115         struct net_device *netdev = adapter->netdev;
4116
4117         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4118         adapter->rx_ps_bsize0 = 128;
4119         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4120         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4121         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4122         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4123
4124         spin_lock_init(&adapter->stats64_lock);
4125
4126         e1000e_set_interrupt_capability(adapter);
4127
4128         if (e1000_alloc_queues(adapter))
4129                 return -ENOMEM;
4130
4131         /* Setup hardware time stamping cyclecounter */
4132         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4133                 adapter->cc.read = e1000e_cyclecounter_read;
4134                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4135                 adapter->cc.mult = 1;
4136                 /* cc.shift set in e1000e_get_base_tininca() */
4137
4138                 spin_lock_init(&adapter->systim_lock);
4139                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4140         }
4141
4142         /* Explicitly disable IRQ since the NIC can be in any state. */
4143         e1000_irq_disable(adapter);
4144
4145         set_bit(__E1000_DOWN, &adapter->state);
4146         return 0;
4147 }
4148
4149 /**
4150  * e1000_intr_msi_test - Interrupt Handler
4151  * @irq: interrupt number
4152  * @data: pointer to a network interface device structure
4153  **/
4154 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4155 {
4156         struct net_device *netdev = data;
4157         struct e1000_adapter *adapter = netdev_priv(netdev);
4158         struct e1000_hw *hw = &adapter->hw;
4159         u32 icr = er32(ICR);
4160
4161         e_dbg("icr is %08X\n", icr);
4162         if (icr & E1000_ICR_RXSEQ) {
4163                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4164                 /* Force memory writes to complete before acknowledging the
4165                  * interrupt is handled.
4166                  */
4167                 wmb();
4168         }
4169
4170         return IRQ_HANDLED;
4171 }
4172
4173 /**
4174  * e1000_test_msi_interrupt - Returns 0 for successful test
4175  * @adapter: board private struct
4176  *
4177  * code flow taken from tg3.c
4178  **/
4179 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4180 {
4181         struct net_device *netdev = adapter->netdev;
4182         struct e1000_hw *hw = &adapter->hw;
4183         int err;
4184
4185         /* poll_enable hasn't been called yet, so don't need disable */
4186         /* clear any pending events */
4187         er32(ICR);
4188
4189         /* free the real vector and request a test handler */
4190         e1000_free_irq(adapter);
4191         e1000e_reset_interrupt_capability(adapter);
4192
4193         /* Assume that the test fails, if it succeeds then the test
4194          * MSI irq handler will unset this flag
4195          */
4196         adapter->flags |= FLAG_MSI_TEST_FAILED;
4197
4198         err = pci_enable_msi(adapter->pdev);
4199         if (err)
4200                 goto msi_test_failed;
4201
4202         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4203                           netdev->name, netdev);
4204         if (err) {
4205                 pci_disable_msi(adapter->pdev);
4206                 goto msi_test_failed;
4207         }
4208
4209         /* Force memory writes to complete before enabling and firing an
4210          * interrupt.
4211          */
4212         wmb();
4213
4214         e1000_irq_enable(adapter);
4215
4216         /* fire an unusual interrupt on the test handler */
4217         ew32(ICS, E1000_ICS_RXSEQ);
4218         e1e_flush();
4219         msleep(100);
4220
4221         e1000_irq_disable(adapter);
4222
4223         rmb();                  /* read flags after interrupt has been fired */
4224
4225         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4226                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4227                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4228         } else {
4229                 e_dbg("MSI interrupt test succeeded!\n");
4230         }
4231
4232         free_irq(adapter->pdev->irq, netdev);
4233         pci_disable_msi(adapter->pdev);
4234
4235 msi_test_failed:
4236         e1000e_set_interrupt_capability(adapter);
4237         return e1000_request_irq(adapter);
4238 }
4239
4240 /**
4241  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4242  * @adapter: board private struct
4243  *
4244  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4245  **/
4246 static int e1000_test_msi(struct e1000_adapter *adapter)
4247 {
4248         int err;
4249         u16 pci_cmd;
4250
4251         if (!(adapter->flags & FLAG_MSI_ENABLED))
4252                 return 0;
4253
4254         /* disable SERR in case the MSI write causes a master abort */
4255         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4256         if (pci_cmd & PCI_COMMAND_SERR)
4257                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4258                                       pci_cmd & ~PCI_COMMAND_SERR);
4259
4260         err = e1000_test_msi_interrupt(adapter);
4261
4262         /* re-enable SERR */
4263         if (pci_cmd & PCI_COMMAND_SERR) {
4264                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4265                 pci_cmd |= PCI_COMMAND_SERR;
4266                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4267         }
4268
4269         return err;
4270 }
4271
4272 /**
4273  * e1000_open - Called when a network interface is made active
4274  * @netdev: network interface device structure
4275  *
4276  * Returns 0 on success, negative value on failure
4277  *
4278  * The open entry point is called when a network interface is made
4279  * active by the system (IFF_UP).  At this point all resources needed
4280  * for transmit and receive operations are allocated, the interrupt
4281  * handler is registered with the OS, the watchdog timer is started,
4282  * and the stack is notified that the interface is ready.
4283  **/
4284 static int e1000_open(struct net_device *netdev)
4285 {
4286         struct e1000_adapter *adapter = netdev_priv(netdev);
4287         struct e1000_hw *hw = &adapter->hw;
4288         struct pci_dev *pdev = adapter->pdev;
4289         int err;
4290
4291         /* disallow open during test */
4292         if (test_bit(__E1000_TESTING, &adapter->state))
4293                 return -EBUSY;
4294
4295         pm_runtime_get_sync(&pdev->dev);
4296
4297         netif_carrier_off(netdev);
4298
4299         /* allocate transmit descriptors */
4300         err = e1000e_setup_tx_resources(adapter->tx_ring);
4301         if (err)
4302                 goto err_setup_tx;
4303
4304         /* allocate receive descriptors */
4305         err = e1000e_setup_rx_resources(adapter->rx_ring);
4306         if (err)
4307                 goto err_setup_rx;
4308
4309         /* If AMT is enabled, let the firmware know that the network
4310          * interface is now open and reset the part to a known state.
4311          */
4312         if (adapter->flags & FLAG_HAS_AMT) {
4313                 e1000e_get_hw_control(adapter);
4314                 e1000e_reset(adapter);
4315         }
4316
4317         e1000e_power_up_phy(adapter);
4318
4319         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4320         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4321                 e1000_update_mng_vlan(adapter);
4322
4323         /* DMA latency requirement to workaround jumbo issue */
4324         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4325                            PM_QOS_DEFAULT_VALUE);
4326
4327         /* before we allocate an interrupt, we must be ready to handle it.
4328          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4329          * as soon as we call pci_request_irq, so we have to setup our
4330          * clean_rx handler before we do so.
4331          */
4332         e1000_configure(adapter);
4333
4334         err = e1000_request_irq(adapter);
4335         if (err)
4336                 goto err_req_irq;
4337
4338         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4339          * ignore e1000e MSI messages, which means we need to test our MSI
4340          * interrupt now
4341          */
4342         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4343                 err = e1000_test_msi(adapter);
4344                 if (err) {
4345                         e_err("Interrupt allocation failed\n");
4346                         goto err_req_irq;
4347                 }
4348         }
4349
4350         /* From here on the code is the same as e1000e_up() */
4351         clear_bit(__E1000_DOWN, &adapter->state);
4352
4353         napi_enable(&adapter->napi);
4354
4355         e1000_irq_enable(adapter);
4356
4357         adapter->tx_hang_recheck = false;
4358         netif_start_queue(netdev);
4359
4360         hw->mac.get_link_status = true;
4361         pm_runtime_put(&pdev->dev);
4362
4363         /* fire a link status change interrupt to start the watchdog */
4364         if (adapter->msix_entries)
4365                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4366         else
4367                 ew32(ICS, E1000_ICS_LSC);
4368
4369         return 0;
4370
4371 err_req_irq:
4372         e1000e_release_hw_control(adapter);
4373         e1000_power_down_phy(adapter);
4374         e1000e_free_rx_resources(adapter->rx_ring);
4375 err_setup_rx:
4376         e1000e_free_tx_resources(adapter->tx_ring);
4377 err_setup_tx:
4378         e1000e_reset(adapter);
4379         pm_runtime_put_sync(&pdev->dev);
4380
4381         return err;
4382 }
4383
4384 /**
4385  * e1000_close - Disables a network interface
4386  * @netdev: network interface device structure
4387  *
4388  * Returns 0, this is not allowed to fail
4389  *
4390  * The close entry point is called when an interface is de-activated
4391  * by the OS.  The hardware is still under the drivers control, but
4392  * needs to be disabled.  A global MAC reset is issued to stop the
4393  * hardware, and all transmit and receive resources are freed.
4394  **/
4395 static int e1000_close(struct net_device *netdev)
4396 {
4397         struct e1000_adapter *adapter = netdev_priv(netdev);
4398         struct pci_dev *pdev = adapter->pdev;
4399         int count = E1000_CHECK_RESET_COUNT;
4400
4401         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4402                 usleep_range(10000, 20000);
4403
4404         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4405
4406         pm_runtime_get_sync(&pdev->dev);
4407
4408         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4409                 e1000e_down(adapter, true);
4410                 e1000_free_irq(adapter);
4411
4412                 /* Link status message must follow this format */
4413                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4414         }
4415
4416         napi_disable(&adapter->napi);
4417
4418         e1000e_free_tx_resources(adapter->tx_ring);
4419         e1000e_free_rx_resources(adapter->rx_ring);
4420
4421         /* kill manageability vlan ID if supported, but not if a vlan with
4422          * the same ID is registered on the host OS (let 8021q kill it)
4423          */
4424         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4425                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4426                                        adapter->mng_vlan_id);
4427
4428         /* If AMT is enabled, let the firmware know that the network
4429          * interface is now closed
4430          */
4431         if ((adapter->flags & FLAG_HAS_AMT) &&
4432             !test_bit(__E1000_TESTING, &adapter->state))
4433                 e1000e_release_hw_control(adapter);
4434
4435         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4436
4437         pm_runtime_put_sync(&pdev->dev);
4438
4439         return 0;
4440 }
4441
4442 /**
4443  * e1000_set_mac - Change the Ethernet Address of the NIC
4444  * @netdev: network interface device structure
4445  * @p: pointer to an address structure
4446  *
4447  * Returns 0 on success, negative on failure
4448  **/
4449 static int e1000_set_mac(struct net_device *netdev, void *p)
4450 {
4451         struct e1000_adapter *adapter = netdev_priv(netdev);
4452         struct e1000_hw *hw = &adapter->hw;
4453         struct sockaddr *addr = p;
4454
4455         if (!is_valid_ether_addr(addr->sa_data))
4456                 return -EADDRNOTAVAIL;
4457
4458         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4459         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4460
4461         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4462
4463         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4464                 /* activate the work around */
4465                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4466
4467                 /* Hold a copy of the LAA in RAR[14] This is done so that
4468                  * between the time RAR[0] gets clobbered  and the time it
4469                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4470                  * of the RARs and no incoming packets directed to this port
4471                  * are dropped. Eventually the LAA will be in RAR[0] and
4472                  * RAR[14]
4473                  */
4474                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4475                                     adapter->hw.mac.rar_entry_count - 1);
4476         }
4477
4478         return 0;
4479 }
4480
4481 /**
4482  * e1000e_update_phy_task - work thread to update phy
4483  * @work: pointer to our work struct
4484  *
4485  * this worker thread exists because we must acquire a
4486  * semaphore to read the phy, which we could msleep while
4487  * waiting for it, and we can't msleep in a timer.
4488  **/
4489 static void e1000e_update_phy_task(struct work_struct *work)
4490 {
4491         struct e1000_adapter *adapter = container_of(work,
4492                                                      struct e1000_adapter,
4493                                                      update_phy_task);
4494         struct e1000_hw *hw = &adapter->hw;
4495
4496         if (test_bit(__E1000_DOWN, &adapter->state))
4497                 return;
4498
4499         e1000_get_phy_info(hw);
4500
4501         /* Enable EEE on 82579 after link up */
4502         if (hw->phy.type == e1000_phy_82579)
4503                 e1000_set_eee_pchlan(hw);
4504 }
4505
4506 /**
4507  * e1000_update_phy_info - timre call-back to update PHY info
4508  * @data: pointer to adapter cast into an unsigned long
4509  *
4510  * Need to wait a few seconds after link up to get diagnostic information from
4511  * the phy
4512  **/
4513 static void e1000_update_phy_info(unsigned long data)
4514 {
4515         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4516
4517         if (test_bit(__E1000_DOWN, &adapter->state))
4518                 return;
4519
4520         schedule_work(&adapter->update_phy_task);
4521 }
4522
4523 /**
4524  * e1000e_update_phy_stats - Update the PHY statistics counters
4525  * @adapter: board private structure
4526  *
4527  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4528  **/
4529 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4530 {
4531         struct e1000_hw *hw = &adapter->hw;
4532         s32 ret_val;
4533         u16 phy_data;
4534
4535         ret_val = hw->phy.ops.acquire(hw);
4536         if (ret_val)
4537                 return;
4538
4539         /* A page set is expensive so check if already on desired page.
4540          * If not, set to the page with the PHY status registers.
4541          */
4542         hw->phy.addr = 1;
4543         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4544                                            &phy_data);
4545         if (ret_val)
4546                 goto release;
4547         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4548                 ret_val = hw->phy.ops.set_page(hw,
4549                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4550                 if (ret_val)
4551                         goto release;
4552         }
4553
4554         /* Single Collision Count */
4555         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4556         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4557         if (!ret_val)
4558                 adapter->stats.scc += phy_data;
4559
4560         /* Excessive Collision Count */
4561         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4562         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4563         if (!ret_val)
4564                 adapter->stats.ecol += phy_data;
4565
4566         /* Multiple Collision Count */
4567         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4568         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4569         if (!ret_val)
4570                 adapter->stats.mcc += phy_data;
4571
4572         /* Late Collision Count */
4573         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4574         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4575         if (!ret_val)
4576                 adapter->stats.latecol += phy_data;
4577
4578         /* Collision Count - also used for adaptive IFS */
4579         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4580         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4581         if (!ret_val)
4582                 hw->mac.collision_delta = phy_data;
4583
4584         /* Defer Count */
4585         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4586         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4587         if (!ret_val)
4588                 adapter->stats.dc += phy_data;
4589
4590         /* Transmit with no CRS */
4591         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4592         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4593         if (!ret_val)
4594                 adapter->stats.tncrs += phy_data;
4595
4596 release:
4597         hw->phy.ops.release(hw);
4598 }
4599
4600 /**
4601  * e1000e_update_stats - Update the board statistics counters
4602  * @adapter: board private structure
4603  **/
4604 static void e1000e_update_stats(struct e1000_adapter *adapter)
4605 {
4606         struct net_device *netdev = adapter->netdev;
4607         struct e1000_hw *hw = &adapter->hw;
4608         struct pci_dev *pdev = adapter->pdev;
4609
4610         /* Prevent stats update while adapter is being reset, or if the pci
4611          * connection is down.
4612          */
4613         if (adapter->link_speed == 0)
4614                 return;
4615         if (pci_channel_offline(pdev))
4616                 return;
4617
4618         adapter->stats.crcerrs += er32(CRCERRS);
4619         adapter->stats.gprc += er32(GPRC);
4620         adapter->stats.gorc += er32(GORCL);
4621         er32(GORCH);            /* Clear gorc */
4622         adapter->stats.bprc += er32(BPRC);
4623         adapter->stats.mprc += er32(MPRC);
4624         adapter->stats.roc += er32(ROC);
4625
4626         adapter->stats.mpc += er32(MPC);
4627
4628         /* Half-duplex statistics */
4629         if (adapter->link_duplex == HALF_DUPLEX) {
4630                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4631                         e1000e_update_phy_stats(adapter);
4632                 } else {
4633                         adapter->stats.scc += er32(SCC);
4634                         adapter->stats.ecol += er32(ECOL);
4635                         adapter->stats.mcc += er32(MCC);
4636                         adapter->stats.latecol += er32(LATECOL);
4637                         adapter->stats.dc += er32(DC);
4638
4639                         hw->mac.collision_delta = er32(COLC);
4640
4641                         if ((hw->mac.type != e1000_82574) &&
4642                             (hw->mac.type != e1000_82583))
4643                                 adapter->stats.tncrs += er32(TNCRS);
4644                 }
4645                 adapter->stats.colc += hw->mac.collision_delta;
4646         }
4647
4648         adapter->stats.xonrxc += er32(XONRXC);
4649         adapter->stats.xontxc += er32(XONTXC);
4650         adapter->stats.xoffrxc += er32(XOFFRXC);
4651         adapter->stats.xofftxc += er32(XOFFTXC);
4652         adapter->stats.gptc += er32(GPTC);
4653         adapter->stats.gotc += er32(GOTCL);
4654         er32(GOTCH);            /* Clear gotc */
4655         adapter->stats.rnbc += er32(RNBC);
4656         adapter->stats.ruc += er32(RUC);
4657
4658         adapter->stats.mptc += er32(MPTC);
4659         adapter->stats.bptc += er32(BPTC);
4660
4661         /* used for adaptive IFS */
4662
4663         hw->mac.tx_packet_delta = er32(TPT);
4664         adapter->stats.tpt += hw->mac.tx_packet_delta;
4665
4666         adapter->stats.algnerrc += er32(ALGNERRC);
4667         adapter->stats.rxerrc += er32(RXERRC);
4668         adapter->stats.cexterr += er32(CEXTERR);
4669         adapter->stats.tsctc += er32(TSCTC);
4670         adapter->stats.tsctfc += er32(TSCTFC);
4671
4672         /* Fill out the OS statistics structure */
4673         netdev->stats.multicast = adapter->stats.mprc;
4674         netdev->stats.collisions = adapter->stats.colc;
4675
4676         /* Rx Errors */
4677
4678         /* RLEC on some newer hardware can be incorrect so build
4679          * our own version based on RUC and ROC
4680          */
4681         netdev->stats.rx_errors = adapter->stats.rxerrc +
4682             adapter->stats.crcerrs + adapter->stats.algnerrc +
4683             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4684         netdev->stats.rx_length_errors = adapter->stats.ruc +
4685             adapter->stats.roc;
4686         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4687         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4688         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4689
4690         /* Tx Errors */
4691         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4692         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4693         netdev->stats.tx_window_errors = adapter->stats.latecol;
4694         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4695
4696         /* Tx Dropped needs to be maintained elsewhere */
4697
4698         /* Management Stats */
4699         adapter->stats.mgptc += er32(MGTPTC);
4700         adapter->stats.mgprc += er32(MGTPRC);
4701         adapter->stats.mgpdc += er32(MGTPDC);
4702
4703         /* Correctable ECC Errors */
4704         if (hw->mac.type == e1000_pch_lpt) {
4705                 u32 pbeccsts = er32(PBECCSTS);
4706
4707                 adapter->corr_errors +=
4708                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4709                 adapter->uncorr_errors +=
4710                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4711                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4712         }
4713 }
4714
4715 /**
4716  * e1000_phy_read_status - Update the PHY register status snapshot
4717  * @adapter: board private structure
4718  **/
4719 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4720 {
4721         struct e1000_hw *hw = &adapter->hw;
4722         struct e1000_phy_regs *phy = &adapter->phy_regs;
4723
4724         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4725             (er32(STATUS) & E1000_STATUS_LU) &&
4726             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4727                 int ret_val;
4728
4729                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4730                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4731                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4732                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4733                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4734                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4735                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4736                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4737                 if (ret_val)
4738                         e_warn("Error reading PHY register\n");
4739         } else {
4740                 /* Do not read PHY registers if link is not up
4741                  * Set values to typical power-on defaults
4742                  */
4743                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4744                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4745                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4746                              BMSR_ERCAP);
4747                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4748                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4749                 phy->lpa = 0;
4750                 phy->expansion = EXPANSION_ENABLENPAGE;
4751                 phy->ctrl1000 = ADVERTISE_1000FULL;
4752                 phy->stat1000 = 0;
4753                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4754         }
4755 }
4756
4757 static void e1000_print_link_info(struct e1000_adapter *adapter)
4758 {
4759         struct e1000_hw *hw = &adapter->hw;
4760         u32 ctrl = er32(CTRL);
4761
4762         /* Link status message must follow this format for user tools */
4763         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4764                 adapter->netdev->name, adapter->link_speed,
4765                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4766                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4767                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4768                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4769 }
4770
4771 static bool e1000e_has_link(struct e1000_adapter *adapter)
4772 {
4773         struct e1000_hw *hw = &adapter->hw;
4774         bool link_active = false;
4775         s32 ret_val = 0;
4776
4777         /* get_link_status is set on LSC (link status) interrupt or
4778          * Rx sequence error interrupt.  get_link_status will stay
4779          * false until the check_for_link establishes link
4780          * for copper adapters ONLY
4781          */
4782         switch (hw->phy.media_type) {
4783         case e1000_media_type_copper:
4784                 if (hw->mac.get_link_status) {
4785                         ret_val = hw->mac.ops.check_for_link(hw);
4786                         link_active = !hw->mac.get_link_status;
4787                 } else {
4788                         link_active = true;
4789                 }
4790                 break;
4791         case e1000_media_type_fiber:
4792                 ret_val = hw->mac.ops.check_for_link(hw);
4793                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4794                 break;
4795         case e1000_media_type_internal_serdes:
4796                 ret_val = hw->mac.ops.check_for_link(hw);
4797                 link_active = adapter->hw.mac.serdes_has_link;
4798                 break;
4799         default:
4800         case e1000_media_type_unknown:
4801                 break;
4802         }
4803
4804         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4805             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4806                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4807                 e_info("Gigabit has been disabled, downgrading speed\n");
4808         }
4809
4810         return link_active;
4811 }
4812
4813 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4814 {
4815         /* make sure the receive unit is started */
4816         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4817             (adapter->flags & FLAG_RESTART_NOW)) {
4818                 struct e1000_hw *hw = &adapter->hw;
4819                 u32 rctl = er32(RCTL);
4820
4821                 ew32(RCTL, rctl | E1000_RCTL_EN);
4822                 adapter->flags &= ~FLAG_RESTART_NOW;
4823         }
4824 }
4825
4826 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4827 {
4828         struct e1000_hw *hw = &adapter->hw;
4829
4830         /* With 82574 controllers, PHY needs to be checked periodically
4831          * for hung state and reset, if two calls return true
4832          */
4833         if (e1000_check_phy_82574(hw))
4834                 adapter->phy_hang_count++;
4835         else
4836                 adapter->phy_hang_count = 0;
4837
4838         if (adapter->phy_hang_count > 1) {
4839                 adapter->phy_hang_count = 0;
4840                 e_dbg("PHY appears hung - resetting\n");
4841                 schedule_work(&adapter->reset_task);
4842         }
4843 }
4844
4845 /**
4846  * e1000_watchdog - Timer Call-back
4847  * @data: pointer to adapter cast into an unsigned long
4848  **/
4849 static void e1000_watchdog(unsigned long data)
4850 {
4851         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4852
4853         /* Do the rest outside of interrupt context */
4854         schedule_work(&adapter->watchdog_task);
4855
4856         /* TODO: make this use queue_delayed_work() */
4857 }
4858
4859 static void e1000_watchdog_task(struct work_struct *work)
4860 {
4861         struct e1000_adapter *adapter = container_of(work,
4862                                                      struct e1000_adapter,
4863                                                      watchdog_task);
4864         struct net_device *netdev = adapter->netdev;
4865         struct e1000_mac_info *mac = &adapter->hw.mac;
4866         struct e1000_phy_info *phy = &adapter->hw.phy;
4867         struct e1000_ring *tx_ring = adapter->tx_ring;
4868         struct e1000_hw *hw = &adapter->hw;
4869         u32 link, tctl;
4870
4871         if (test_bit(__E1000_DOWN, &adapter->state))
4872                 return;
4873
4874         link = e1000e_has_link(adapter);
4875         if ((netif_carrier_ok(netdev)) && link) {
4876                 /* Cancel scheduled suspend requests. */
4877                 pm_runtime_resume(netdev->dev.parent);
4878
4879                 e1000e_enable_receives(adapter);
4880                 goto link_up;
4881         }
4882
4883         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4884             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4885                 e1000_update_mng_vlan(adapter);
4886
4887         if (link) {
4888                 if (!netif_carrier_ok(netdev)) {
4889                         bool txb2b = true;
4890
4891                         /* Cancel scheduled suspend requests. */
4892                         pm_runtime_resume(netdev->dev.parent);
4893
4894                         /* update snapshot of PHY registers on LSC */
4895                         e1000_phy_read_status(adapter);
4896                         mac->ops.get_link_up_info(&adapter->hw,
4897                                                   &adapter->link_speed,
4898                                                   &adapter->link_duplex);
4899                         e1000_print_link_info(adapter);
4900
4901                         /* check if SmartSpeed worked */
4902                         e1000e_check_downshift(hw);
4903                         if (phy->speed_downgraded)
4904                                 netdev_warn(netdev,
4905                                             "Link Speed was downgraded by SmartSpeed\n");
4906
4907                         /* On supported PHYs, check for duplex mismatch only
4908                          * if link has autonegotiated at 10/100 half
4909                          */
4910                         if ((hw->phy.type == e1000_phy_igp_3 ||
4911                              hw->phy.type == e1000_phy_bm) &&
4912                             hw->mac.autoneg &&
4913                             (adapter->link_speed == SPEED_10 ||
4914                              adapter->link_speed == SPEED_100) &&
4915                             (adapter->link_duplex == HALF_DUPLEX)) {
4916                                 u16 autoneg_exp;
4917
4918                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4919
4920                                 if (!(autoneg_exp & EXPANSION_NWAY))
4921                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4922                         }
4923
4924                         /* adjust timeout factor according to speed/duplex */
4925                         adapter->tx_timeout_factor = 1;
4926                         switch (adapter->link_speed) {
4927                         case SPEED_10:
4928                                 txb2b = false;
4929                                 adapter->tx_timeout_factor = 16;
4930                                 break;
4931                         case SPEED_100:
4932                                 txb2b = false;
4933                                 adapter->tx_timeout_factor = 10;
4934                                 break;
4935                         }
4936
4937                         /* workaround: re-program speed mode bit after
4938                          * link-up event
4939                          */
4940                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4941                             !txb2b) {
4942                                 u32 tarc0;
4943
4944                                 tarc0 = er32(TARC(0));
4945                                 tarc0 &= ~SPEED_MODE_BIT;
4946                                 ew32(TARC(0), tarc0);
4947                         }
4948
4949                         /* disable TSO for pcie and 10/100 speeds, to avoid
4950                          * some hardware issues
4951                          */
4952                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4953                                 switch (adapter->link_speed) {
4954                                 case SPEED_10:
4955                                 case SPEED_100:
4956                                         e_info("10/100 speed: disabling TSO\n");
4957                                         netdev->features &= ~NETIF_F_TSO;
4958                                         netdev->features &= ~NETIF_F_TSO6;
4959                                         break;
4960                                 case SPEED_1000:
4961                                         netdev->features |= NETIF_F_TSO;
4962                                         netdev->features |= NETIF_F_TSO6;
4963                                         break;
4964                                 default:
4965                                         /* oops */
4966                                         break;
4967                                 }
4968                         }
4969
4970                         /* enable transmits in the hardware, need to do this
4971                          * after setting TARC(0)
4972                          */
4973                         tctl = er32(TCTL);
4974                         tctl |= E1000_TCTL_EN;
4975                         ew32(TCTL, tctl);
4976
4977                         /* Perform any post-link-up configuration before
4978                          * reporting link up.
4979                          */
4980                         if (phy->ops.cfg_on_link_up)
4981                                 phy->ops.cfg_on_link_up(hw);
4982
4983                         netif_carrier_on(netdev);
4984
4985                         if (!test_bit(__E1000_DOWN, &adapter->state))
4986                                 mod_timer(&adapter->phy_info_timer,
4987                                           round_jiffies(jiffies + 2 * HZ));
4988                 }
4989         } else {
4990                 if (netif_carrier_ok(netdev)) {
4991                         adapter->link_speed = 0;
4992                         adapter->link_duplex = 0;
4993                         /* Link status message must follow this format */
4994                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4995                         netif_carrier_off(netdev);
4996                         if (!test_bit(__E1000_DOWN, &adapter->state))
4997                                 mod_timer(&adapter->phy_info_timer,
4998                                           round_jiffies(jiffies + 2 * HZ));
4999
5000                         /* 8000ES2LAN requires a Rx packet buffer work-around
5001                          * on link down event; reset the controller to flush
5002                          * the Rx packet buffer.
5003                          */
5004                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5005                                 adapter->flags |= FLAG_RESTART_NOW;
5006                         else
5007                                 pm_schedule_suspend(netdev->dev.parent,
5008                                                     LINK_TIMEOUT);
5009                 }
5010         }
5011
5012 link_up:
5013         spin_lock(&adapter->stats64_lock);
5014         e1000e_update_stats(adapter);
5015
5016         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5017         adapter->tpt_old = adapter->stats.tpt;
5018         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5019         adapter->colc_old = adapter->stats.colc;
5020
5021         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5022         adapter->gorc_old = adapter->stats.gorc;
5023         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5024         adapter->gotc_old = adapter->stats.gotc;
5025         spin_unlock(&adapter->stats64_lock);
5026
5027         /* If the link is lost the controller stops DMA, but
5028          * if there is queued Tx work it cannot be done.  So
5029          * reset the controller to flush the Tx packet buffers.
5030          */
5031         if (!netif_carrier_ok(netdev) &&
5032             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5033                 adapter->flags |= FLAG_RESTART_NOW;
5034
5035         /* If reset is necessary, do it outside of interrupt context. */
5036         if (adapter->flags & FLAG_RESTART_NOW) {
5037                 schedule_work(&adapter->reset_task);
5038                 /* return immediately since reset is imminent */
5039                 return;
5040         }
5041
5042         e1000e_update_adaptive(&adapter->hw);
5043
5044         /* Simple mode for Interrupt Throttle Rate (ITR) */
5045         if (adapter->itr_setting == 4) {
5046                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5047                  * Total asymmetrical Tx or Rx gets ITR=8000;
5048                  * everyone else is between 2000-8000.
5049                  */
5050                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5051                 u32 dif = (adapter->gotc > adapter->gorc ?
5052                            adapter->gotc - adapter->gorc :
5053                            adapter->gorc - adapter->gotc) / 10000;
5054                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5055
5056                 e1000e_write_itr(adapter, itr);
5057         }
5058
5059         /* Cause software interrupt to ensure Rx ring is cleaned */
5060         if (adapter->msix_entries)
5061                 ew32(ICS, adapter->rx_ring->ims_val);
5062         else
5063                 ew32(ICS, E1000_ICS_RXDMT0);
5064
5065         /* flush pending descriptors to memory before detecting Tx hang */
5066         e1000e_flush_descriptors(adapter);
5067
5068         /* Force detection of hung controller every watchdog period */
5069         adapter->detect_tx_hung = true;
5070
5071         /* With 82571 controllers, LAA may be overwritten due to controller
5072          * reset from the other port. Set the appropriate LAA in RAR[0]
5073          */
5074         if (e1000e_get_laa_state_82571(hw))
5075                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5076
5077         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5078                 e1000e_check_82574_phy_workaround(adapter);
5079
5080         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5081         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5082                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5083                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5084                         er32(RXSTMPH);
5085                         adapter->rx_hwtstamp_cleared++;
5086                 } else {
5087                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5088                 }
5089         }
5090
5091         /* Reset the timer */
5092         if (!test_bit(__E1000_DOWN, &adapter->state))
5093                 mod_timer(&adapter->watchdog_timer,
5094                           round_jiffies(jiffies + 2 * HZ));
5095 }
5096
5097 #define E1000_TX_FLAGS_CSUM             0x00000001
5098 #define E1000_TX_FLAGS_VLAN             0x00000002
5099 #define E1000_TX_FLAGS_TSO              0x00000004
5100 #define E1000_TX_FLAGS_IPV4             0x00000008
5101 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5102 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5103 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5104 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5105
5106 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5107 {
5108         struct e1000_context_desc *context_desc;
5109         struct e1000_buffer *buffer_info;
5110         unsigned int i;
5111         u32 cmd_length = 0;
5112         u16 ipcse = 0, mss;
5113         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5114         int err;
5115
5116         if (!skb_is_gso(skb))
5117                 return 0;
5118
5119         err = skb_cow_head(skb, 0);
5120         if (err < 0)
5121                 return err;
5122
5123         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5124         mss = skb_shinfo(skb)->gso_size;
5125         if (skb->protocol == htons(ETH_P_IP)) {
5126                 struct iphdr *iph = ip_hdr(skb);
5127                 iph->tot_len = 0;
5128                 iph->check = 0;
5129                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5130                                                          0, IPPROTO_TCP, 0);
5131                 cmd_length = E1000_TXD_CMD_IP;
5132                 ipcse = skb_transport_offset(skb) - 1;
5133         } else if (skb_is_gso_v6(skb)) {
5134                 ipv6_hdr(skb)->payload_len = 0;
5135                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5136                                                        &ipv6_hdr(skb)->daddr,
5137                                                        0, IPPROTO_TCP, 0);
5138                 ipcse = 0;
5139         }
5140         ipcss = skb_network_offset(skb);
5141         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5142         tucss = skb_transport_offset(skb);
5143         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5144
5145         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5146                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5147
5148         i = tx_ring->next_to_use;
5149         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5150         buffer_info = &tx_ring->buffer_info[i];
5151
5152         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5153         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5154         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5155         context_desc->upper_setup.tcp_fields.tucss = tucss;
5156         context_desc->upper_setup.tcp_fields.tucso = tucso;
5157         context_desc->upper_setup.tcp_fields.tucse = 0;
5158         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5159         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5160         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5161
5162         buffer_info->time_stamp = jiffies;
5163         buffer_info->next_to_watch = i;
5164
5165         i++;
5166         if (i == tx_ring->count)
5167                 i = 0;
5168         tx_ring->next_to_use = i;
5169
5170         return 1;
5171 }
5172
5173 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5174 {
5175         struct e1000_adapter *adapter = tx_ring->adapter;
5176         struct e1000_context_desc *context_desc;
5177         struct e1000_buffer *buffer_info;
5178         unsigned int i;
5179         u8 css;
5180         u32 cmd_len = E1000_TXD_CMD_DEXT;
5181         __be16 protocol;
5182
5183         if (skb->ip_summed != CHECKSUM_PARTIAL)
5184                 return false;
5185
5186         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5187                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5188         else
5189                 protocol = skb->protocol;
5190
5191         switch (protocol) {
5192         case cpu_to_be16(ETH_P_IP):
5193                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5194                         cmd_len |= E1000_TXD_CMD_TCP;
5195                 break;
5196         case cpu_to_be16(ETH_P_IPV6):
5197                 /* XXX not handling all IPV6 headers */
5198                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5199                         cmd_len |= E1000_TXD_CMD_TCP;
5200                 break;
5201         default:
5202                 if (unlikely(net_ratelimit()))
5203                         e_warn("checksum_partial proto=%x!\n",
5204                                be16_to_cpu(protocol));
5205                 break;
5206         }
5207
5208         css = skb_checksum_start_offset(skb);
5209
5210         i = tx_ring->next_to_use;
5211         buffer_info = &tx_ring->buffer_info[i];
5212         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5213
5214         context_desc->lower_setup.ip_config = 0;
5215         context_desc->upper_setup.tcp_fields.tucss = css;
5216         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5217         context_desc->upper_setup.tcp_fields.tucse = 0;
5218         context_desc->tcp_seg_setup.data = 0;
5219         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5220
5221         buffer_info->time_stamp = jiffies;
5222         buffer_info->next_to_watch = i;
5223
5224         i++;
5225         if (i == tx_ring->count)
5226                 i = 0;
5227         tx_ring->next_to_use = i;
5228
5229         return true;
5230 }
5231
5232 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5233                         unsigned int first, unsigned int max_per_txd,
5234                         unsigned int nr_frags)
5235 {
5236         struct e1000_adapter *adapter = tx_ring->adapter;
5237         struct pci_dev *pdev = adapter->pdev;
5238         struct e1000_buffer *buffer_info;
5239         unsigned int len = skb_headlen(skb);
5240         unsigned int offset = 0, size, count = 0, i;
5241         unsigned int f, bytecount, segs;
5242
5243         i = tx_ring->next_to_use;
5244
5245         while (len) {
5246                 buffer_info = &tx_ring->buffer_info[i];
5247                 size = min(len, max_per_txd);
5248
5249                 buffer_info->length = size;
5250                 buffer_info->time_stamp = jiffies;
5251                 buffer_info->next_to_watch = i;
5252                 buffer_info->dma = dma_map_single(&pdev->dev,
5253                                                   skb->data + offset,
5254                                                   size, DMA_TO_DEVICE);
5255                 buffer_info->mapped_as_page = false;
5256                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5257                         goto dma_error;
5258
5259                 len -= size;
5260                 offset += size;
5261                 count++;
5262
5263                 if (len) {
5264                         i++;
5265                         if (i == tx_ring->count)
5266                                 i = 0;
5267                 }
5268         }
5269
5270         for (f = 0; f < nr_frags; f++) {
5271                 const struct skb_frag_struct *frag;
5272
5273                 frag = &skb_shinfo(skb)->frags[f];
5274                 len = skb_frag_size(frag);
5275                 offset = 0;
5276
5277                 while (len) {
5278                         i++;
5279                         if (i == tx_ring->count)
5280                                 i = 0;
5281
5282                         buffer_info = &tx_ring->buffer_info[i];
5283                         size = min(len, max_per_txd);
5284
5285                         buffer_info->length = size;
5286                         buffer_info->time_stamp = jiffies;
5287                         buffer_info->next_to_watch = i;
5288                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5289                                                             offset, size,
5290                                                             DMA_TO_DEVICE);
5291                         buffer_info->mapped_as_page = true;
5292                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5293                                 goto dma_error;
5294
5295                         len -= size;
5296                         offset += size;
5297                         count++;
5298                 }
5299         }
5300
5301         segs = skb_shinfo(skb)->gso_segs ? : 1;
5302         /* multiply data chunks by size of headers */
5303         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5304
5305         tx_ring->buffer_info[i].skb = skb;
5306         tx_ring->buffer_info[i].segs = segs;
5307         tx_ring->buffer_info[i].bytecount = bytecount;
5308         tx_ring->buffer_info[first].next_to_watch = i;
5309
5310         return count;
5311
5312 dma_error:
5313         dev_err(&pdev->dev, "Tx DMA map failed\n");
5314         buffer_info->dma = 0;
5315         if (count)
5316                 count--;
5317
5318         while (count--) {
5319                 if (i == 0)
5320                         i += tx_ring->count;
5321                 i--;
5322                 buffer_info = &tx_ring->buffer_info[i];
5323                 e1000_put_txbuf(tx_ring, buffer_info);
5324         }
5325
5326         return 0;
5327 }
5328
5329 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5330 {
5331         struct e1000_adapter *adapter = tx_ring->adapter;
5332         struct e1000_tx_desc *tx_desc = NULL;
5333         struct e1000_buffer *buffer_info;
5334         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5335         unsigned int i;
5336
5337         if (tx_flags & E1000_TX_FLAGS_TSO) {
5338                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5339                     E1000_TXD_CMD_TSE;
5340                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5341
5342                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5343                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5344         }
5345
5346         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5347                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5348                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5349         }
5350
5351         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5352                 txd_lower |= E1000_TXD_CMD_VLE;
5353                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5354         }
5355
5356         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5357                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5358
5359         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5360                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5361                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5362         }
5363
5364         i = tx_ring->next_to_use;
5365
5366         do {
5367                 buffer_info = &tx_ring->buffer_info[i];
5368                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5369                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5370                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5371                                                   buffer_info->length);
5372                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5373
5374                 i++;
5375                 if (i == tx_ring->count)
5376                         i = 0;
5377         } while (--count > 0);
5378
5379         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5380
5381         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5382         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5383                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5384
5385         /* Force memory writes to complete before letting h/w
5386          * know there are new descriptors to fetch.  (Only
5387          * applicable for weak-ordered memory model archs,
5388          * such as IA-64).
5389          */
5390         wmb();
5391
5392         tx_ring->next_to_use = i;
5393
5394         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5395                 e1000e_update_tdt_wa(tx_ring, i);
5396         else
5397                 writel(i, tx_ring->tail);
5398
5399         /* we need this if more than one processor can write to our tail
5400          * at a time, it synchronizes IO on IA64/Altix systems
5401          */
5402         mmiowb();
5403 }
5404
5405 #define MINIMUM_DHCP_PACKET_SIZE 282
5406 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5407                                     struct sk_buff *skb)
5408 {
5409         struct e1000_hw *hw = &adapter->hw;
5410         u16 length, offset;
5411
5412         if (vlan_tx_tag_present(skb) &&
5413             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5414               (adapter->hw.mng_cookie.status &
5415                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5416                 return 0;
5417
5418         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5419                 return 0;
5420
5421         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5422                 return 0;
5423
5424         {
5425                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5426                 struct udphdr *udp;
5427
5428                 if (ip->protocol != IPPROTO_UDP)
5429                         return 0;
5430
5431                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5432                 if (ntohs(udp->dest) != 67)
5433                         return 0;
5434
5435                 offset = (u8 *)udp + 8 - skb->data;
5436                 length = skb->len - offset;
5437                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5438         }
5439
5440         return 0;
5441 }
5442
5443 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5444 {
5445         struct e1000_adapter *adapter = tx_ring->adapter;
5446
5447         netif_stop_queue(adapter->netdev);
5448         /* Herbert's original patch had:
5449          *  smp_mb__after_netif_stop_queue();
5450          * but since that doesn't exist yet, just open code it.
5451          */
5452         smp_mb();
5453
5454         /* We need to check again in a case another CPU has just
5455          * made room available.
5456          */
5457         if (e1000_desc_unused(tx_ring) < size)
5458                 return -EBUSY;
5459
5460         /* A reprieve! */
5461         netif_start_queue(adapter->netdev);
5462         ++adapter->restart_queue;
5463         return 0;
5464 }
5465
5466 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5467 {
5468         BUG_ON(size > tx_ring->count);
5469
5470         if (e1000_desc_unused(tx_ring) >= size)
5471                 return 0;
5472         return __e1000_maybe_stop_tx(tx_ring, size);
5473 }
5474
5475 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5476                                     struct net_device *netdev)
5477 {
5478         struct e1000_adapter *adapter = netdev_priv(netdev);
5479         struct e1000_ring *tx_ring = adapter->tx_ring;
5480         unsigned int first;
5481         unsigned int tx_flags = 0;
5482         unsigned int len = skb_headlen(skb);
5483         unsigned int nr_frags;
5484         unsigned int mss;
5485         int count = 0;
5486         int tso;
5487         unsigned int f;
5488
5489         if (test_bit(__E1000_DOWN, &adapter->state)) {
5490                 dev_kfree_skb_any(skb);
5491                 return NETDEV_TX_OK;
5492         }
5493
5494         if (skb->len <= 0) {
5495                 dev_kfree_skb_any(skb);
5496                 return NETDEV_TX_OK;
5497         }
5498
5499         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5500          * pad skb in order to meet this minimum size requirement
5501          */
5502         if (unlikely(skb->len < 17)) {
5503                 if (skb_pad(skb, 17 - skb->len))
5504                         return NETDEV_TX_OK;
5505                 skb->len = 17;
5506                 skb_set_tail_pointer(skb, 17);
5507         }
5508
5509         mss = skb_shinfo(skb)->gso_size;
5510         if (mss) {
5511                 u8 hdr_len;
5512
5513                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5514                  * points to just header, pull a few bytes of payload from
5515                  * frags into skb->data
5516                  */
5517                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5518                 /* we do this workaround for ES2LAN, but it is un-necessary,
5519                  * avoiding it could save a lot of cycles
5520                  */
5521                 if (skb->data_len && (hdr_len == len)) {
5522                         unsigned int pull_size;
5523
5524                         pull_size = min_t(unsigned int, 4, skb->data_len);
5525                         if (!__pskb_pull_tail(skb, pull_size)) {
5526                                 e_err("__pskb_pull_tail failed.\n");
5527                                 dev_kfree_skb_any(skb);
5528                                 return NETDEV_TX_OK;
5529                         }
5530                         len = skb_headlen(skb);
5531                 }
5532         }
5533
5534         /* reserve a descriptor for the offload context */
5535         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5536                 count++;
5537         count++;
5538
5539         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5540
5541         nr_frags = skb_shinfo(skb)->nr_frags;
5542         for (f = 0; f < nr_frags; f++)
5543                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5544                                       adapter->tx_fifo_limit);
5545
5546         if (adapter->hw.mac.tx_pkt_filtering)
5547                 e1000_transfer_dhcp_info(adapter, skb);
5548
5549         /* need: count + 2 desc gap to keep tail from touching
5550          * head, otherwise try next time
5551          */
5552         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5553                 return NETDEV_TX_BUSY;
5554
5555         if (vlan_tx_tag_present(skb)) {
5556                 tx_flags |= E1000_TX_FLAGS_VLAN;
5557                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5558         }
5559
5560         first = tx_ring->next_to_use;
5561
5562         tso = e1000_tso(tx_ring, skb);
5563         if (tso < 0) {
5564                 dev_kfree_skb_any(skb);
5565                 return NETDEV_TX_OK;
5566         }
5567
5568         if (tso)
5569                 tx_flags |= E1000_TX_FLAGS_TSO;
5570         else if (e1000_tx_csum(tx_ring, skb))
5571                 tx_flags |= E1000_TX_FLAGS_CSUM;
5572
5573         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5574          * 82571 hardware supports TSO capabilities for IPv6 as well...
5575          * no longer assume, we must.
5576          */
5577         if (skb->protocol == htons(ETH_P_IP))
5578                 tx_flags |= E1000_TX_FLAGS_IPV4;
5579
5580         if (unlikely(skb->no_fcs))
5581                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5582
5583         /* if count is 0 then mapping error has occurred */
5584         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5585                              nr_frags);
5586         if (count) {
5587                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5588                              !adapter->tx_hwtstamp_skb)) {
5589                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5590                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5591                         adapter->tx_hwtstamp_skb = skb_get(skb);
5592                         adapter->tx_hwtstamp_start = jiffies;
5593                         schedule_work(&adapter->tx_hwtstamp_work);
5594                 } else {
5595                         skb_tx_timestamp(skb);
5596                 }
5597
5598                 netdev_sent_queue(netdev, skb->len);
5599                 e1000_tx_queue(tx_ring, tx_flags, count);
5600                 /* Make sure there is space in the ring for the next send. */
5601                 e1000_maybe_stop_tx(tx_ring,
5602                                     (MAX_SKB_FRAGS *
5603                                      DIV_ROUND_UP(PAGE_SIZE,
5604                                                   adapter->tx_fifo_limit) + 2));
5605         } else {
5606                 dev_kfree_skb_any(skb);
5607                 tx_ring->buffer_info[first].time_stamp = 0;
5608                 tx_ring->next_to_use = first;
5609         }
5610
5611         return NETDEV_TX_OK;
5612 }
5613
5614 /**
5615  * e1000_tx_timeout - Respond to a Tx Hang
5616  * @netdev: network interface device structure
5617  **/
5618 static void e1000_tx_timeout(struct net_device *netdev)
5619 {
5620         struct e1000_adapter *adapter = netdev_priv(netdev);
5621
5622         /* Do the reset outside of interrupt context */
5623         adapter->tx_timeout_count++;
5624         schedule_work(&adapter->reset_task);
5625 }
5626
5627 static void e1000_reset_task(struct work_struct *work)
5628 {
5629         struct e1000_adapter *adapter;
5630         adapter = container_of(work, struct e1000_adapter, reset_task);
5631
5632         /* don't run the task if already down */
5633         if (test_bit(__E1000_DOWN, &adapter->state))
5634                 return;
5635
5636         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5637                 e1000e_dump(adapter);
5638                 e_err("Reset adapter unexpectedly\n");
5639         }
5640         e1000e_reinit_locked(adapter);
5641 }
5642
5643 /**
5644  * e1000_get_stats64 - Get System Network Statistics
5645  * @netdev: network interface device structure
5646  * @stats: rtnl_link_stats64 pointer
5647  *
5648  * Returns the address of the device statistics structure.
5649  **/
5650 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5651                                              struct rtnl_link_stats64 *stats)
5652 {
5653         struct e1000_adapter *adapter = netdev_priv(netdev);
5654
5655         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5656         spin_lock(&adapter->stats64_lock);
5657         e1000e_update_stats(adapter);
5658         /* Fill out the OS statistics structure */
5659         stats->rx_bytes = adapter->stats.gorc;
5660         stats->rx_packets = adapter->stats.gprc;
5661         stats->tx_bytes = adapter->stats.gotc;
5662         stats->tx_packets = adapter->stats.gptc;
5663         stats->multicast = adapter->stats.mprc;
5664         stats->collisions = adapter->stats.colc;
5665
5666         /* Rx Errors */
5667
5668         /* RLEC on some newer hardware can be incorrect so build
5669          * our own version based on RUC and ROC
5670          */
5671         stats->rx_errors = adapter->stats.rxerrc +
5672             adapter->stats.crcerrs + adapter->stats.algnerrc +
5673             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5674         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5675         stats->rx_crc_errors = adapter->stats.crcerrs;
5676         stats->rx_frame_errors = adapter->stats.algnerrc;
5677         stats->rx_missed_errors = adapter->stats.mpc;
5678
5679         /* Tx Errors */
5680         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5681         stats->tx_aborted_errors = adapter->stats.ecol;
5682         stats->tx_window_errors = adapter->stats.latecol;
5683         stats->tx_carrier_errors = adapter->stats.tncrs;
5684
5685         /* Tx Dropped needs to be maintained elsewhere */
5686
5687         spin_unlock(&adapter->stats64_lock);
5688         return stats;
5689 }
5690
5691 /**
5692  * e1000_change_mtu - Change the Maximum Transfer Unit
5693  * @netdev: network interface device structure
5694  * @new_mtu: new value for maximum frame size
5695  *
5696  * Returns 0 on success, negative on failure
5697  **/
5698 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5699 {
5700         struct e1000_adapter *adapter = netdev_priv(netdev);
5701         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5702
5703         /* Jumbo frame support */
5704         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5705             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5706                 e_err("Jumbo Frames not supported.\n");
5707                 return -EINVAL;
5708         }
5709
5710         /* Supported frame sizes */
5711         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5712             (max_frame > adapter->max_hw_frame_size)) {
5713                 e_err("Unsupported MTU setting\n");
5714                 return -EINVAL;
5715         }
5716
5717         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5718         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5719             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5720             (new_mtu > ETH_DATA_LEN)) {
5721                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5722                 return -EINVAL;
5723         }
5724
5725         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5726                 usleep_range(1000, 2000);
5727         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5728         adapter->max_frame_size = max_frame;
5729         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5730         netdev->mtu = new_mtu;
5731
5732         pm_runtime_get_sync(netdev->dev.parent);
5733
5734         if (netif_running(netdev))
5735                 e1000e_down(adapter, true);
5736
5737         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5738          * means we reserve 2 more, this pushes us to allocate from the next
5739          * larger slab size.
5740          * i.e. RXBUFFER_2048 --> size-4096 slab
5741          * However with the new *_jumbo_rx* routines, jumbo receives will use
5742          * fragmented skbs
5743          */
5744
5745         if (max_frame <= 2048)
5746                 adapter->rx_buffer_len = 2048;
5747         else
5748                 adapter->rx_buffer_len = 4096;
5749
5750         /* adjust allocation if LPE protects us, and we aren't using SBP */
5751         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5752             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5753                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5754                     + ETH_FCS_LEN;
5755
5756         if (netif_running(netdev))
5757                 e1000e_up(adapter);
5758         else
5759                 e1000e_reset(adapter);
5760
5761         pm_runtime_put_sync(netdev->dev.parent);
5762
5763         clear_bit(__E1000_RESETTING, &adapter->state);
5764
5765         return 0;
5766 }
5767
5768 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5769                            int cmd)
5770 {
5771         struct e1000_adapter *adapter = netdev_priv(netdev);
5772         struct mii_ioctl_data *data = if_mii(ifr);
5773
5774         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5775                 return -EOPNOTSUPP;
5776
5777         switch (cmd) {
5778         case SIOCGMIIPHY:
5779                 data->phy_id = adapter->hw.phy.addr;
5780                 break;
5781         case SIOCGMIIREG:
5782                 e1000_phy_read_status(adapter);
5783
5784                 switch (data->reg_num & 0x1F) {
5785                 case MII_BMCR:
5786                         data->val_out = adapter->phy_regs.bmcr;
5787                         break;
5788                 case MII_BMSR:
5789                         data->val_out = adapter->phy_regs.bmsr;
5790                         break;
5791                 case MII_PHYSID1:
5792                         data->val_out = (adapter->hw.phy.id >> 16);
5793                         break;
5794                 case MII_PHYSID2:
5795                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5796                         break;
5797                 case MII_ADVERTISE:
5798                         data->val_out = adapter->phy_regs.advertise;
5799                         break;
5800                 case MII_LPA:
5801                         data->val_out = adapter->phy_regs.lpa;
5802                         break;
5803                 case MII_EXPANSION:
5804                         data->val_out = adapter->phy_regs.expansion;
5805                         break;
5806                 case MII_CTRL1000:
5807                         data->val_out = adapter->phy_regs.ctrl1000;
5808                         break;
5809                 case MII_STAT1000:
5810                         data->val_out = adapter->phy_regs.stat1000;
5811                         break;
5812                 case MII_ESTATUS:
5813                         data->val_out = adapter->phy_regs.estatus;
5814                         break;
5815                 default:
5816                         return -EIO;
5817                 }
5818                 break;
5819         case SIOCSMIIREG:
5820         default:
5821                 return -EOPNOTSUPP;
5822         }
5823         return 0;
5824 }
5825
5826 /**
5827  * e1000e_hwtstamp_ioctl - control hardware time stamping
5828  * @netdev: network interface device structure
5829  * @ifreq: interface request
5830  *
5831  * Outgoing time stamping can be enabled and disabled. Play nice and
5832  * disable it when requested, although it shouldn't cause any overhead
5833  * when no packet needs it. At most one packet in the queue may be
5834  * marked for time stamping, otherwise it would be impossible to tell
5835  * for sure to which packet the hardware time stamp belongs.
5836  *
5837  * Incoming time stamping has to be configured via the hardware filters.
5838  * Not all combinations are supported, in particular event type has to be
5839  * specified. Matching the kind of event packet is not supported, with the
5840  * exception of "all V2 events regardless of level 2 or 4".
5841  **/
5842 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5843 {
5844         struct e1000_adapter *adapter = netdev_priv(netdev);
5845         struct hwtstamp_config config;
5846         int ret_val;
5847
5848         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5849                 return -EFAULT;
5850
5851         ret_val = e1000e_config_hwtstamp(adapter, &config);
5852         if (ret_val)
5853                 return ret_val;
5854
5855         switch (config.rx_filter) {
5856         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5857         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5858         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5859         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5860         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5861         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5862                 /* With V2 type filters which specify a Sync or Delay Request,
5863                  * Path Delay Request/Response messages are also time stamped
5864                  * by hardware so notify the caller the requested packets plus
5865                  * some others are time stamped.
5866                  */
5867                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5868                 break;
5869         default:
5870                 break;
5871         }
5872
5873         return copy_to_user(ifr->ifr_data, &config,
5874                             sizeof(config)) ? -EFAULT : 0;
5875 }
5876
5877 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5878 {
5879         struct e1000_adapter *adapter = netdev_priv(netdev);
5880
5881         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5882                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5883 }
5884
5885 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5886 {
5887         switch (cmd) {
5888         case SIOCGMIIPHY:
5889         case SIOCGMIIREG:
5890         case SIOCSMIIREG:
5891                 return e1000_mii_ioctl(netdev, ifr, cmd);
5892         case SIOCSHWTSTAMP:
5893                 return e1000e_hwtstamp_set(netdev, ifr);
5894         case SIOCGHWTSTAMP:
5895                 return e1000e_hwtstamp_get(netdev, ifr);
5896         default:
5897                 return -EOPNOTSUPP;
5898         }
5899 }
5900
5901 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5902 {
5903         struct e1000_hw *hw = &adapter->hw;
5904         u32 i, mac_reg, wuc;
5905         u16 phy_reg, wuc_enable;
5906         int retval;
5907
5908         /* copy MAC RARs to PHY RARs */
5909         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5910
5911         retval = hw->phy.ops.acquire(hw);
5912         if (retval) {
5913                 e_err("Could not acquire PHY\n");
5914                 return retval;
5915         }
5916
5917         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5918         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5919         if (retval)
5920                 goto release;
5921
5922         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5923         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5924                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5925                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5926                                            (u16)(mac_reg & 0xFFFF));
5927                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5928                                            (u16)((mac_reg >> 16) & 0xFFFF));
5929         }
5930
5931         /* configure PHY Rx Control register */
5932         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5933         mac_reg = er32(RCTL);
5934         if (mac_reg & E1000_RCTL_UPE)
5935                 phy_reg |= BM_RCTL_UPE;
5936         if (mac_reg & E1000_RCTL_MPE)
5937                 phy_reg |= BM_RCTL_MPE;
5938         phy_reg &= ~(BM_RCTL_MO_MASK);
5939         if (mac_reg & E1000_RCTL_MO_3)
5940                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5941                             << BM_RCTL_MO_SHIFT);
5942         if (mac_reg & E1000_RCTL_BAM)
5943                 phy_reg |= BM_RCTL_BAM;
5944         if (mac_reg & E1000_RCTL_PMCF)
5945                 phy_reg |= BM_RCTL_PMCF;
5946         mac_reg = er32(CTRL);
5947         if (mac_reg & E1000_CTRL_RFCE)
5948                 phy_reg |= BM_RCTL_RFCE;
5949         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5950
5951         wuc = E1000_WUC_PME_EN;
5952         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
5953                 wuc |= E1000_WUC_APME;
5954
5955         /* enable PHY wakeup in MAC register */
5956         ew32(WUFC, wufc);
5957         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
5958                    E1000_WUC_PME_STATUS | wuc));
5959
5960         /* configure and enable PHY wakeup in PHY registers */
5961         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5962         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
5963
5964         /* activate PHY wakeup */
5965         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5966         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5967         if (retval)
5968                 e_err("Could not set PHY Host Wakeup bit\n");
5969 release:
5970         hw->phy.ops.release(hw);
5971
5972         return retval;
5973 }
5974
5975 static int e1000e_pm_freeze(struct device *dev)
5976 {
5977         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
5978         struct e1000_adapter *adapter = netdev_priv(netdev);
5979
5980         netif_device_detach(netdev);
5981
5982         if (netif_running(netdev)) {
5983                 int count = E1000_CHECK_RESET_COUNT;
5984
5985                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5986                         usleep_range(10000, 20000);
5987
5988                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5989
5990                 /* Quiesce the device without resetting the hardware */
5991                 e1000e_down(adapter, false);
5992                 e1000_free_irq(adapter);
5993         }
5994         e1000e_reset_interrupt_capability(adapter);
5995
5996         /* Allow time for pending master requests to run */
5997         e1000e_disable_pcie_master(&adapter->hw);
5998
5999         return 0;
6000 }
6001
6002 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6003 {
6004         struct net_device *netdev = pci_get_drvdata(pdev);
6005         struct e1000_adapter *adapter = netdev_priv(netdev);
6006         struct e1000_hw *hw = &adapter->hw;
6007         u32 ctrl, ctrl_ext, rctl, status;
6008         /* Runtime suspend should only enable wakeup for link changes */
6009         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6010         int retval = 0;
6011
6012         status = er32(STATUS);
6013         if (status & E1000_STATUS_LU)
6014                 wufc &= ~E1000_WUFC_LNKC;
6015
6016         if (wufc) {
6017                 e1000_setup_rctl(adapter);
6018                 e1000e_set_rx_mode(netdev);
6019
6020                 /* turn on all-multi mode if wake on multicast is enabled */
6021                 if (wufc & E1000_WUFC_MC) {
6022                         rctl = er32(RCTL);
6023                         rctl |= E1000_RCTL_MPE;
6024                         ew32(RCTL, rctl);
6025                 }
6026
6027                 ctrl = er32(CTRL);
6028                 ctrl |= E1000_CTRL_ADVD3WUC;
6029                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6030                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6031                 ew32(CTRL, ctrl);
6032
6033                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6034                     adapter->hw.phy.media_type ==
6035                     e1000_media_type_internal_serdes) {
6036                         /* keep the laser running in D3 */
6037                         ctrl_ext = er32(CTRL_EXT);
6038                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6039                         ew32(CTRL_EXT, ctrl_ext);
6040                 }
6041
6042                 if (!runtime)
6043                         e1000e_power_up_phy(adapter);
6044
6045                 if (adapter->flags & FLAG_IS_ICH)
6046                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6047
6048                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6049                         /* enable wakeup by the PHY */
6050                         retval = e1000_init_phy_wakeup(adapter, wufc);
6051                         if (retval)
6052                                 return retval;
6053                 } else {
6054                         /* enable wakeup by the MAC */
6055                         ew32(WUFC, wufc);
6056                         ew32(WUC, E1000_WUC_PME_EN);
6057                 }
6058         } else {
6059                 ew32(WUC, 0);
6060                 ew32(WUFC, 0);
6061
6062                 e1000_power_down_phy(adapter);
6063         }
6064
6065         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6066                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6067         } else if (hw->mac.type == e1000_pch_lpt) {
6068                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6069                         /* ULP does not support wake from unicast, multicast
6070                          * or broadcast.
6071                          */
6072                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6073
6074                 if (retval)
6075                         return retval;
6076         }
6077
6078
6079         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6080          * would have already happened in close and is redundant.
6081          */
6082         e1000e_release_hw_control(adapter);
6083
6084         pci_clear_master(pdev);
6085
6086         /* The pci-e switch on some quad port adapters will report a
6087          * correctable error when the MAC transitions from D0 to D3.  To
6088          * prevent this we need to mask off the correctable errors on the
6089          * downstream port of the pci-e switch.
6090          *
6091          * We don't have the associated upstream bridge while assigning
6092          * the PCI device into guest. For example, the KVM on power is
6093          * one of the cases.
6094          */
6095         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6096                 struct pci_dev *us_dev = pdev->bus->self;
6097                 u16 devctl;
6098
6099                 if (!us_dev)
6100                         return 0;
6101
6102                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6103                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6104                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6105
6106                 pci_save_state(pdev);
6107                 pci_prepare_to_sleep(pdev);
6108
6109                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6110         }
6111
6112         return 0;
6113 }
6114
6115 /**
6116  * e1000e_disable_aspm - Disable ASPM states
6117  * @pdev: pointer to PCI device struct
6118  * @state: bit-mask of ASPM states to disable
6119  *
6120  * Some devices *must* have certain ASPM states disabled per hardware errata.
6121  **/
6122 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6123 {
6124         struct pci_dev *parent = pdev->bus->self;
6125         u16 aspm_dis_mask = 0;
6126         u16 pdev_aspmc, parent_aspmc;
6127
6128         switch (state) {
6129         case PCIE_LINK_STATE_L0S:
6130         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6131                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6132                 /* fall-through - can't have L1 without L0s */
6133         case PCIE_LINK_STATE_L1:
6134                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6135                 break;
6136         default:
6137                 return;
6138         }
6139
6140         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6141         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6142
6143         if (parent) {
6144                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6145                                           &parent_aspmc);
6146                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6147         }
6148
6149         /* Nothing to do if the ASPM states to be disabled already are */
6150         if (!(pdev_aspmc & aspm_dis_mask) &&
6151             (!parent || !(parent_aspmc & aspm_dis_mask)))
6152                 return;
6153
6154         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6155                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6156                  "L0s" : "",
6157                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6158                  "L1" : "");
6159
6160 #ifdef CONFIG_PCIEASPM
6161         pci_disable_link_state_locked(pdev, state);
6162
6163         /* Double-check ASPM control.  If not disabled by the above, the
6164          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6165          * not enabled); override by writing PCI config space directly.
6166          */
6167         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6168         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6169
6170         if (!(aspm_dis_mask & pdev_aspmc))
6171                 return;
6172 #endif
6173
6174         /* Both device and parent should have the same ASPM setting.
6175          * Disable ASPM in downstream component first and then upstream.
6176          */
6177         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6178
6179         if (parent)
6180                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6181                                            aspm_dis_mask);
6182 }
6183
6184 #ifdef CONFIG_PM
6185 static int __e1000_resume(struct pci_dev *pdev)
6186 {
6187         struct net_device *netdev = pci_get_drvdata(pdev);
6188         struct e1000_adapter *adapter = netdev_priv(netdev);
6189         struct e1000_hw *hw = &adapter->hw;
6190         u16 aspm_disable_flag = 0;
6191
6192         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6193                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6194         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6195                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6196         if (aspm_disable_flag)
6197                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6198
6199         pci_set_master(pdev);
6200
6201         if (hw->mac.type >= e1000_pch2lan)
6202                 e1000_resume_workarounds_pchlan(&adapter->hw);
6203
6204         e1000e_power_up_phy(adapter);
6205
6206         /* report the system wakeup cause from S3/S4 */
6207         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6208                 u16 phy_data;
6209
6210                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6211                 if (phy_data) {
6212                         e_info("PHY Wakeup cause - %s\n",
6213                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6214                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6215                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6216                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6217                                phy_data & E1000_WUS_LNKC ?
6218                                "Link Status Change" : "other");
6219                 }
6220                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6221         } else {
6222                 u32 wus = er32(WUS);
6223
6224                 if (wus) {
6225                         e_info("MAC Wakeup cause - %s\n",
6226                                wus & E1000_WUS_EX ? "Unicast Packet" :
6227                                wus & E1000_WUS_MC ? "Multicast Packet" :
6228                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6229                                wus & E1000_WUS_MAG ? "Magic Packet" :
6230                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6231                                "other");
6232                 }
6233                 ew32(WUS, ~0);
6234         }
6235
6236         e1000e_reset(adapter);
6237
6238         e1000_init_manageability_pt(adapter);
6239
6240         /* If the controller has AMT, do not set DRV_LOAD until the interface
6241          * is up.  For all other cases, let the f/w know that the h/w is now
6242          * under the control of the driver.
6243          */
6244         if (!(adapter->flags & FLAG_HAS_AMT))
6245                 e1000e_get_hw_control(adapter);
6246
6247         return 0;
6248 }
6249
6250 static int e1000e_pm_thaw(struct device *dev)
6251 {
6252         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6253         struct e1000_adapter *adapter = netdev_priv(netdev);
6254
6255         e1000e_set_interrupt_capability(adapter);
6256         if (netif_running(netdev)) {
6257                 u32 err = e1000_request_irq(adapter);
6258
6259                 if (err)
6260                         return err;
6261
6262                 e1000e_up(adapter);
6263         }
6264
6265         netif_device_attach(netdev);
6266
6267         return 0;
6268 }
6269
6270 #ifdef CONFIG_PM_SLEEP
6271 static int e1000e_pm_suspend(struct device *dev)
6272 {
6273         struct pci_dev *pdev = to_pci_dev(dev);
6274
6275         e1000e_pm_freeze(dev);
6276
6277         return __e1000_shutdown(pdev, false);
6278 }
6279
6280 static int e1000e_pm_resume(struct device *dev)
6281 {
6282         struct pci_dev *pdev = to_pci_dev(dev);
6283         int rc;
6284
6285         rc = __e1000_resume(pdev);
6286         if (rc)
6287                 return rc;
6288
6289         return e1000e_pm_thaw(dev);
6290 }
6291 #endif /* CONFIG_PM_SLEEP */
6292
6293 #ifdef CONFIG_PM_RUNTIME
6294 static int e1000e_pm_runtime_idle(struct device *dev)
6295 {
6296         struct pci_dev *pdev = to_pci_dev(dev);
6297         struct net_device *netdev = pci_get_drvdata(pdev);
6298         struct e1000_adapter *adapter = netdev_priv(netdev);
6299
6300         if (!e1000e_has_link(adapter))
6301                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6302
6303         return -EBUSY;
6304 }
6305
6306 static int e1000e_pm_runtime_resume(struct device *dev)
6307 {
6308         struct pci_dev *pdev = to_pci_dev(dev);
6309         struct net_device *netdev = pci_get_drvdata(pdev);
6310         struct e1000_adapter *adapter = netdev_priv(netdev);
6311         int rc;
6312
6313         rc = __e1000_resume(pdev);
6314         if (rc)
6315                 return rc;
6316
6317         if (netdev->flags & IFF_UP)
6318                 rc = e1000e_up(adapter);
6319
6320         return rc;
6321 }
6322
6323 static int e1000e_pm_runtime_suspend(struct device *dev)
6324 {
6325         struct pci_dev *pdev = to_pci_dev(dev);
6326         struct net_device *netdev = pci_get_drvdata(pdev);
6327         struct e1000_adapter *adapter = netdev_priv(netdev);
6328
6329         if (netdev->flags & IFF_UP) {
6330                 int count = E1000_CHECK_RESET_COUNT;
6331
6332                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6333                         usleep_range(10000, 20000);
6334
6335                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6336
6337                 /* Down the device without resetting the hardware */
6338                 e1000e_down(adapter, false);
6339         }
6340
6341         if (__e1000_shutdown(pdev, true)) {
6342                 e1000e_pm_runtime_resume(dev);
6343                 return -EBUSY;
6344         }
6345
6346         return 0;
6347 }
6348 #endif /* CONFIG_PM_RUNTIME */
6349 #endif /* CONFIG_PM */
6350
6351 static void e1000_shutdown(struct pci_dev *pdev)
6352 {
6353         e1000e_pm_freeze(&pdev->dev);
6354
6355         __e1000_shutdown(pdev, false);
6356 }
6357
6358 #ifdef CONFIG_NET_POLL_CONTROLLER
6359
6360 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6361 {
6362         struct net_device *netdev = data;
6363         struct e1000_adapter *adapter = netdev_priv(netdev);
6364
6365         if (adapter->msix_entries) {
6366                 int vector, msix_irq;
6367
6368                 vector = 0;
6369                 msix_irq = adapter->msix_entries[vector].vector;
6370                 disable_irq(msix_irq);
6371                 e1000_intr_msix_rx(msix_irq, netdev);
6372                 enable_irq(msix_irq);
6373
6374                 vector++;
6375                 msix_irq = adapter->msix_entries[vector].vector;
6376                 disable_irq(msix_irq);
6377                 e1000_intr_msix_tx(msix_irq, netdev);
6378                 enable_irq(msix_irq);
6379
6380                 vector++;
6381                 msix_irq = adapter->msix_entries[vector].vector;
6382                 disable_irq(msix_irq);
6383                 e1000_msix_other(msix_irq, netdev);
6384                 enable_irq(msix_irq);
6385         }
6386
6387         return IRQ_HANDLED;
6388 }
6389
6390 /**
6391  * e1000_netpoll
6392  * @netdev: network interface device structure
6393  *
6394  * Polling 'interrupt' - used by things like netconsole to send skbs
6395  * without having to re-enable interrupts. It's not called while
6396  * the interrupt routine is executing.
6397  */
6398 static void e1000_netpoll(struct net_device *netdev)
6399 {
6400         struct e1000_adapter *adapter = netdev_priv(netdev);
6401
6402         switch (adapter->int_mode) {
6403         case E1000E_INT_MODE_MSIX:
6404                 e1000_intr_msix(adapter->pdev->irq, netdev);
6405                 break;
6406         case E1000E_INT_MODE_MSI:
6407                 disable_irq(adapter->pdev->irq);
6408                 e1000_intr_msi(adapter->pdev->irq, netdev);
6409                 enable_irq(adapter->pdev->irq);
6410                 break;
6411         default:                /* E1000E_INT_MODE_LEGACY */
6412                 disable_irq(adapter->pdev->irq);
6413                 e1000_intr(adapter->pdev->irq, netdev);
6414                 enable_irq(adapter->pdev->irq);
6415                 break;
6416         }
6417 }
6418 #endif
6419
6420 /**
6421  * e1000_io_error_detected - called when PCI error is detected
6422  * @pdev: Pointer to PCI device
6423  * @state: The current pci connection state
6424  *
6425  * This function is called after a PCI bus error affecting
6426  * this device has been detected.
6427  */
6428 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6429                                                 pci_channel_state_t state)
6430 {
6431         struct net_device *netdev = pci_get_drvdata(pdev);
6432         struct e1000_adapter *adapter = netdev_priv(netdev);
6433
6434         netif_device_detach(netdev);
6435
6436         if (state == pci_channel_io_perm_failure)
6437                 return PCI_ERS_RESULT_DISCONNECT;
6438
6439         if (netif_running(netdev))
6440                 e1000e_down(adapter, true);
6441         pci_disable_device(pdev);
6442
6443         /* Request a slot slot reset. */
6444         return PCI_ERS_RESULT_NEED_RESET;
6445 }
6446
6447 /**
6448  * e1000_io_slot_reset - called after the pci bus has been reset.
6449  * @pdev: Pointer to PCI device
6450  *
6451  * Restart the card from scratch, as if from a cold-boot. Implementation
6452  * resembles the first-half of the e1000e_pm_resume routine.
6453  */
6454 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6455 {
6456         struct net_device *netdev = pci_get_drvdata(pdev);
6457         struct e1000_adapter *adapter = netdev_priv(netdev);
6458         struct e1000_hw *hw = &adapter->hw;
6459         u16 aspm_disable_flag = 0;
6460         int err;
6461         pci_ers_result_t result;
6462
6463         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6464                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6465         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6466                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6467         if (aspm_disable_flag)
6468                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6469
6470         err = pci_enable_device_mem(pdev);
6471         if (err) {
6472                 dev_err(&pdev->dev,
6473                         "Cannot re-enable PCI device after reset.\n");
6474                 result = PCI_ERS_RESULT_DISCONNECT;
6475         } else {
6476                 pdev->state_saved = true;
6477                 pci_restore_state(pdev);
6478                 pci_set_master(pdev);
6479
6480                 pci_enable_wake(pdev, PCI_D3hot, 0);
6481                 pci_enable_wake(pdev, PCI_D3cold, 0);
6482
6483                 e1000e_reset(adapter);
6484                 ew32(WUS, ~0);
6485                 result = PCI_ERS_RESULT_RECOVERED;
6486         }
6487
6488         pci_cleanup_aer_uncorrect_error_status(pdev);
6489
6490         return result;
6491 }
6492
6493 /**
6494  * e1000_io_resume - called when traffic can start flowing again.
6495  * @pdev: Pointer to PCI device
6496  *
6497  * This callback is called when the error recovery driver tells us that
6498  * its OK to resume normal operation. Implementation resembles the
6499  * second-half of the e1000e_pm_resume routine.
6500  */
6501 static void e1000_io_resume(struct pci_dev *pdev)
6502 {
6503         struct net_device *netdev = pci_get_drvdata(pdev);
6504         struct e1000_adapter *adapter = netdev_priv(netdev);
6505
6506         e1000_init_manageability_pt(adapter);
6507
6508         if (netif_running(netdev)) {
6509                 if (e1000e_up(adapter)) {
6510                         dev_err(&pdev->dev,
6511                                 "can't bring device back up after reset\n");
6512                         return;
6513                 }
6514         }
6515
6516         netif_device_attach(netdev);
6517
6518         /* If the controller has AMT, do not set DRV_LOAD until the interface
6519          * is up.  For all other cases, let the f/w know that the h/w is now
6520          * under the control of the driver.
6521          */
6522         if (!(adapter->flags & FLAG_HAS_AMT))
6523                 e1000e_get_hw_control(adapter);
6524 }
6525
6526 static void e1000_print_device_info(struct e1000_adapter *adapter)
6527 {
6528         struct e1000_hw *hw = &adapter->hw;
6529         struct net_device *netdev = adapter->netdev;
6530         u32 ret_val;
6531         u8 pba_str[E1000_PBANUM_LENGTH];
6532
6533         /* print bus type/speed/width info */
6534         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6535                /* bus width */
6536                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6537                 "Width x1"),
6538                /* MAC address */
6539                netdev->dev_addr);
6540         e_info("Intel(R) PRO/%s Network Connection\n",
6541                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6542         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6543                                                 E1000_PBANUM_LENGTH);
6544         if (ret_val)
6545                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6546         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6547                hw->mac.type, hw->phy.type, pba_str);
6548 }
6549
6550 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6551 {
6552         struct e1000_hw *hw = &adapter->hw;
6553         int ret_val;
6554         u16 buf = 0;
6555
6556         if (hw->mac.type != e1000_82573)
6557                 return;
6558
6559         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6560         le16_to_cpus(&buf);
6561         if (!ret_val && (!(buf & (1 << 0)))) {
6562                 /* Deep Smart Power Down (DSPD) */
6563                 dev_warn(&adapter->pdev->dev,
6564                          "Warning: detected DSPD enabled in EEPROM\n");
6565         }
6566 }
6567
6568 static int e1000_set_features(struct net_device *netdev,
6569                               netdev_features_t features)
6570 {
6571         struct e1000_adapter *adapter = netdev_priv(netdev);
6572         netdev_features_t changed = features ^ netdev->features;
6573
6574         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6575                 adapter->flags |= FLAG_TSO_FORCE;
6576
6577         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6578                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6579                          NETIF_F_RXALL)))
6580                 return 0;
6581
6582         if (changed & NETIF_F_RXFCS) {
6583                 if (features & NETIF_F_RXFCS) {
6584                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6585                 } else {
6586                         /* We need to take it back to defaults, which might mean
6587                          * stripping is still disabled at the adapter level.
6588                          */
6589                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6590                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6591                         else
6592                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6593                 }
6594         }
6595
6596         netdev->features = features;
6597
6598         if (netif_running(netdev))
6599                 e1000e_reinit_locked(adapter);
6600         else
6601                 e1000e_reset(adapter);
6602
6603         return 0;
6604 }
6605
6606 static const struct net_device_ops e1000e_netdev_ops = {
6607         .ndo_open               = e1000_open,
6608         .ndo_stop               = e1000_close,
6609         .ndo_start_xmit         = e1000_xmit_frame,
6610         .ndo_get_stats64        = e1000e_get_stats64,
6611         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6612         .ndo_set_mac_address    = e1000_set_mac,
6613         .ndo_change_mtu         = e1000_change_mtu,
6614         .ndo_do_ioctl           = e1000_ioctl,
6615         .ndo_tx_timeout         = e1000_tx_timeout,
6616         .ndo_validate_addr      = eth_validate_addr,
6617
6618         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6619         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6620 #ifdef CONFIG_NET_POLL_CONTROLLER
6621         .ndo_poll_controller    = e1000_netpoll,
6622 #endif
6623         .ndo_set_features = e1000_set_features,
6624 };
6625
6626 /**
6627  * e1000_probe - Device Initialization Routine
6628  * @pdev: PCI device information struct
6629  * @ent: entry in e1000_pci_tbl
6630  *
6631  * Returns 0 on success, negative on failure
6632  *
6633  * e1000_probe initializes an adapter identified by a pci_dev structure.
6634  * The OS initialization, configuring of the adapter private structure,
6635  * and a hardware reset occur.
6636  **/
6637 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6638 {
6639         struct net_device *netdev;
6640         struct e1000_adapter *adapter;
6641         struct e1000_hw *hw;
6642         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6643         resource_size_t mmio_start, mmio_len;
6644         resource_size_t flash_start, flash_len;
6645         static int cards_found;
6646         u16 aspm_disable_flag = 0;
6647         int bars, i, err, pci_using_dac;
6648         u16 eeprom_data = 0;
6649         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6650
6651         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6652                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6653         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6654                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6655         if (aspm_disable_flag)
6656                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6657
6658         err = pci_enable_device_mem(pdev);
6659         if (err)
6660                 return err;
6661
6662         pci_using_dac = 0;
6663         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6664         if (!err) {
6665                 pci_using_dac = 1;
6666         } else {
6667                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6668                 if (err) {
6669                         dev_err(&pdev->dev,
6670                                 "No usable DMA configuration, aborting\n");
6671                         goto err_dma;
6672                 }
6673         }
6674
6675         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6676         err = pci_request_selected_regions_exclusive(pdev, bars,
6677                                                      e1000e_driver_name);
6678         if (err)
6679                 goto err_pci_reg;
6680
6681         /* AER (Advanced Error Reporting) hooks */
6682         pci_enable_pcie_error_reporting(pdev);
6683
6684         pci_set_master(pdev);
6685         /* PCI config space info */
6686         err = pci_save_state(pdev);
6687         if (err)
6688                 goto err_alloc_etherdev;
6689
6690         err = -ENOMEM;
6691         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6692         if (!netdev)
6693                 goto err_alloc_etherdev;
6694
6695         SET_NETDEV_DEV(netdev, &pdev->dev);
6696
6697         netdev->irq = pdev->irq;
6698
6699         pci_set_drvdata(pdev, netdev);
6700         adapter = netdev_priv(netdev);
6701         hw = &adapter->hw;
6702         adapter->netdev = netdev;
6703         adapter->pdev = pdev;
6704         adapter->ei = ei;
6705         adapter->pba = ei->pba;
6706         adapter->flags = ei->flags;
6707         adapter->flags2 = ei->flags2;
6708         adapter->hw.adapter = adapter;
6709         adapter->hw.mac.type = ei->mac;
6710         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6711         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6712
6713         mmio_start = pci_resource_start(pdev, 0);
6714         mmio_len = pci_resource_len(pdev, 0);
6715
6716         err = -EIO;
6717         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6718         if (!adapter->hw.hw_addr)
6719                 goto err_ioremap;
6720
6721         if ((adapter->flags & FLAG_HAS_FLASH) &&
6722             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6723                 flash_start = pci_resource_start(pdev, 1);
6724                 flash_len = pci_resource_len(pdev, 1);
6725                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6726                 if (!adapter->hw.flash_address)
6727                         goto err_flashmap;
6728         }
6729
6730         /* Set default EEE advertisement */
6731         if (adapter->flags2 & FLAG2_HAS_EEE)
6732                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6733
6734         /* construct the net_device struct */
6735         netdev->netdev_ops = &e1000e_netdev_ops;
6736         e1000e_set_ethtool_ops(netdev);
6737         netdev->watchdog_timeo = 5 * HZ;
6738         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6739         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6740
6741         netdev->mem_start = mmio_start;
6742         netdev->mem_end = mmio_start + mmio_len;
6743
6744         adapter->bd_number = cards_found++;
6745
6746         e1000e_check_options(adapter);
6747
6748         /* setup adapter struct */
6749         err = e1000_sw_init(adapter);
6750         if (err)
6751                 goto err_sw_init;
6752
6753         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6754         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6755         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6756
6757         err = ei->get_variants(adapter);
6758         if (err)
6759                 goto err_hw_init;
6760
6761         if ((adapter->flags & FLAG_IS_ICH) &&
6762             (adapter->flags & FLAG_READ_ONLY_NVM))
6763                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6764
6765         hw->mac.ops.get_bus_info(&adapter->hw);
6766
6767         adapter->hw.phy.autoneg_wait_to_complete = 0;
6768
6769         /* Copper options */
6770         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6771                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6772                 adapter->hw.phy.disable_polarity_correction = 0;
6773                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6774         }
6775
6776         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6777                 dev_info(&pdev->dev,
6778                          "PHY reset is blocked due to SOL/IDER session.\n");
6779
6780         /* Set initial default active device features */
6781         netdev->features = (NETIF_F_SG |
6782                             NETIF_F_HW_VLAN_CTAG_RX |
6783                             NETIF_F_HW_VLAN_CTAG_TX |
6784                             NETIF_F_TSO |
6785                             NETIF_F_TSO6 |
6786                             NETIF_F_RXHASH |
6787                             NETIF_F_RXCSUM |
6788                             NETIF_F_HW_CSUM);
6789
6790         /* Set user-changeable features (subset of all device features) */
6791         netdev->hw_features = netdev->features;
6792         netdev->hw_features |= NETIF_F_RXFCS;
6793         netdev->priv_flags |= IFF_SUPP_NOFCS;
6794         netdev->hw_features |= NETIF_F_RXALL;
6795
6796         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6797                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6798
6799         netdev->vlan_features |= (NETIF_F_SG |
6800                                   NETIF_F_TSO |
6801                                   NETIF_F_TSO6 |
6802                                   NETIF_F_HW_CSUM);
6803
6804         netdev->priv_flags |= IFF_UNICAST_FLT;
6805
6806         if (pci_using_dac) {
6807                 netdev->features |= NETIF_F_HIGHDMA;
6808                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6809         }
6810
6811         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6812                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6813
6814         /* before reading the NVM, reset the controller to
6815          * put the device in a known good starting state
6816          */
6817         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6818
6819         /* systems with ASPM and others may see the checksum fail on the first
6820          * attempt. Let's give it a few tries
6821          */
6822         for (i = 0;; i++) {
6823                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6824                         break;
6825                 if (i == 2) {
6826                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6827                         err = -EIO;
6828                         goto err_eeprom;
6829                 }
6830         }
6831
6832         e1000_eeprom_checks(adapter);
6833
6834         /* copy the MAC address */
6835         if (e1000e_read_mac_addr(&adapter->hw))
6836                 dev_err(&pdev->dev,
6837                         "NVM Read Error while reading MAC address\n");
6838
6839         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6840
6841         if (!is_valid_ether_addr(netdev->dev_addr)) {
6842                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6843                         netdev->dev_addr);
6844                 err = -EIO;
6845                 goto err_eeprom;
6846         }
6847
6848         init_timer(&adapter->watchdog_timer);
6849         adapter->watchdog_timer.function = e1000_watchdog;
6850         adapter->watchdog_timer.data = (unsigned long)adapter;
6851
6852         init_timer(&adapter->phy_info_timer);
6853         adapter->phy_info_timer.function = e1000_update_phy_info;
6854         adapter->phy_info_timer.data = (unsigned long)adapter;
6855
6856         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6857         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6858         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6859         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6860         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6861
6862         /* Initialize link parameters. User can change them with ethtool */
6863         adapter->hw.mac.autoneg = 1;
6864         adapter->fc_autoneg = true;
6865         adapter->hw.fc.requested_mode = e1000_fc_default;
6866         adapter->hw.fc.current_mode = e1000_fc_default;
6867         adapter->hw.phy.autoneg_advertised = 0x2f;
6868
6869         /* Initial Wake on LAN setting - If APM wake is enabled in
6870          * the EEPROM, enable the ACPI Magic Packet filter
6871          */
6872         if (adapter->flags & FLAG_APME_IN_WUC) {
6873                 /* APME bit in EEPROM is mapped to WUC.APME */
6874                 eeprom_data = er32(WUC);
6875                 eeprom_apme_mask = E1000_WUC_APME;
6876                 if ((hw->mac.type > e1000_ich10lan) &&
6877                     (eeprom_data & E1000_WUC_PHY_WAKE))
6878                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6879         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6880                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6881                     (adapter->hw.bus.func == 1))
6882                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6883                                        1, &eeprom_data);
6884                 else
6885                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6886                                        1, &eeprom_data);
6887         }
6888
6889         /* fetch WoL from EEPROM */
6890         if (eeprom_data & eeprom_apme_mask)
6891                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6892
6893         /* now that we have the eeprom settings, apply the special cases
6894          * where the eeprom may be wrong or the board simply won't support
6895          * wake on lan on a particular port
6896          */
6897         if (!(adapter->flags & FLAG_HAS_WOL))
6898                 adapter->eeprom_wol = 0;
6899
6900         /* initialize the wol settings based on the eeprom settings */
6901         adapter->wol = adapter->eeprom_wol;
6902
6903         /* make sure adapter isn't asleep if manageability is enabled */
6904         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6905             (hw->mac.ops.check_mng_mode(hw)))
6906                 device_wakeup_enable(&pdev->dev);
6907
6908         /* save off EEPROM version number */
6909         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6910
6911         /* reset the hardware with the new settings */
6912         e1000e_reset(adapter);
6913
6914         /* If the controller has AMT, do not set DRV_LOAD until the interface
6915          * is up.  For all other cases, let the f/w know that the h/w is now
6916          * under the control of the driver.
6917          */
6918         if (!(adapter->flags & FLAG_HAS_AMT))
6919                 e1000e_get_hw_control(adapter);
6920
6921         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6922         err = register_netdev(netdev);
6923         if (err)
6924                 goto err_register;
6925
6926         /* carrier off reporting is important to ethtool even BEFORE open */
6927         netif_carrier_off(netdev);
6928
6929         /* init PTP hardware clock */
6930         e1000e_ptp_init(adapter);
6931
6932         e1000_print_device_info(adapter);
6933
6934         if (pci_dev_run_wake(pdev))
6935                 pm_runtime_put_noidle(&pdev->dev);
6936
6937         return 0;
6938
6939 err_register:
6940         if (!(adapter->flags & FLAG_HAS_AMT))
6941                 e1000e_release_hw_control(adapter);
6942 err_eeprom:
6943         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6944                 e1000_phy_hw_reset(&adapter->hw);
6945 err_hw_init:
6946         kfree(adapter->tx_ring);
6947         kfree(adapter->rx_ring);
6948 err_sw_init:
6949         if (adapter->hw.flash_address)
6950                 iounmap(adapter->hw.flash_address);
6951         e1000e_reset_interrupt_capability(adapter);
6952 err_flashmap:
6953         iounmap(adapter->hw.hw_addr);
6954 err_ioremap:
6955         free_netdev(netdev);
6956 err_alloc_etherdev:
6957         pci_release_selected_regions(pdev,
6958                                      pci_select_bars(pdev, IORESOURCE_MEM));
6959 err_pci_reg:
6960 err_dma:
6961         pci_disable_device(pdev);
6962         return err;
6963 }
6964
6965 /**
6966  * e1000_remove - Device Removal Routine
6967  * @pdev: PCI device information struct
6968  *
6969  * e1000_remove is called by the PCI subsystem to alert the driver
6970  * that it should release a PCI device.  The could be caused by a
6971  * Hot-Plug event, or because the driver is going to be removed from
6972  * memory.
6973  **/
6974 static void e1000_remove(struct pci_dev *pdev)
6975 {
6976         struct net_device *netdev = pci_get_drvdata(pdev);
6977         struct e1000_adapter *adapter = netdev_priv(netdev);
6978         bool down = test_bit(__E1000_DOWN, &adapter->state);
6979
6980         e1000e_ptp_remove(adapter);
6981
6982         /* The timers may be rescheduled, so explicitly disable them
6983          * from being rescheduled.
6984          */
6985         if (!down)
6986                 set_bit(__E1000_DOWN, &adapter->state);
6987         del_timer_sync(&adapter->watchdog_timer);
6988         del_timer_sync(&adapter->phy_info_timer);
6989
6990         cancel_work_sync(&adapter->reset_task);
6991         cancel_work_sync(&adapter->watchdog_task);
6992         cancel_work_sync(&adapter->downshift_task);
6993         cancel_work_sync(&adapter->update_phy_task);
6994         cancel_work_sync(&adapter->print_hang_task);
6995
6996         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6997                 cancel_work_sync(&adapter->tx_hwtstamp_work);
6998                 if (adapter->tx_hwtstamp_skb) {
6999                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7000                         adapter->tx_hwtstamp_skb = NULL;
7001                 }
7002         }
7003
7004         /* Don't lie to e1000_close() down the road. */
7005         if (!down)
7006                 clear_bit(__E1000_DOWN, &adapter->state);
7007         unregister_netdev(netdev);
7008
7009         if (pci_dev_run_wake(pdev))
7010                 pm_runtime_get_noresume(&pdev->dev);
7011
7012         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7013          * would have already happened in close and is redundant.
7014          */
7015         e1000e_release_hw_control(adapter);
7016
7017         e1000e_reset_interrupt_capability(adapter);
7018         kfree(adapter->tx_ring);
7019         kfree(adapter->rx_ring);
7020
7021         iounmap(adapter->hw.hw_addr);
7022         if (adapter->hw.flash_address)
7023                 iounmap(adapter->hw.flash_address);
7024         pci_release_selected_regions(pdev,
7025                                      pci_select_bars(pdev, IORESOURCE_MEM));
7026
7027         free_netdev(netdev);
7028
7029         /* AER disable */
7030         pci_disable_pcie_error_reporting(pdev);
7031
7032         pci_disable_device(pdev);
7033 }
7034
7035 /* PCI Error Recovery (ERS) */
7036 static const struct pci_error_handlers e1000_err_handler = {
7037         .error_detected = e1000_io_error_detected,
7038         .slot_reset = e1000_io_slot_reset,
7039         .resume = e1000_io_resume,
7040 };
7041
7042 static const struct pci_device_id e1000_pci_tbl[] = {
7043         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7044         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7045         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7046         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7047           board_82571 },
7048         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7049         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7050         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7051         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7052         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7053
7054         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7055         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7056         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7057         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7058
7059         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7060         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7061         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7062
7063         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7064         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7065         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7066
7067         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7068           board_80003es2lan },
7069         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7070           board_80003es2lan },
7071         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7072           board_80003es2lan },
7073         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7074           board_80003es2lan },
7075
7076         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7077         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7078         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7079         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7080         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7081         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7082         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7083         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7084
7085         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7086         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7090         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7093         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7094
7095         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7098
7099         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7102
7103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7107
7108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7110
7111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7114         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7115         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7116         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7117         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7118         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7119
7120         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7121 };
7122 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7123
7124 static const struct dev_pm_ops e1000_pm_ops = {
7125 #ifdef CONFIG_PM_SLEEP
7126         .suspend        = e1000e_pm_suspend,
7127         .resume         = e1000e_pm_resume,
7128         .freeze         = e1000e_pm_freeze,
7129         .thaw           = e1000e_pm_thaw,
7130         .poweroff       = e1000e_pm_suspend,
7131         .restore        = e1000e_pm_resume,
7132 #endif
7133         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7134                            e1000e_pm_runtime_idle)
7135 };
7136
7137 /* PCI Device API Driver */
7138 static struct pci_driver e1000_driver = {
7139         .name     = e1000e_driver_name,
7140         .id_table = e1000_pci_tbl,
7141         .probe    = e1000_probe,
7142         .remove   = e1000_remove,
7143         .driver   = {
7144                 .pm = &e1000_pm_ops,
7145         },
7146         .shutdown = e1000_shutdown,
7147         .err_handler = &e1000_err_handler
7148 };
7149
7150 /**
7151  * e1000_init_module - Driver Registration Routine
7152  *
7153  * e1000_init_module is the first routine called when the driver is
7154  * loaded. All it does is register with the PCI subsystem.
7155  **/
7156 static int __init e1000_init_module(void)
7157 {
7158         int ret;
7159
7160         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7161                 e1000e_driver_version);
7162         pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7163         ret = pci_register_driver(&e1000_driver);
7164
7165         return ret;
7166 }
7167 module_init(e1000_init_module);
7168
7169 /**
7170  * e1000_exit_module - Driver Exit Cleanup Routine
7171  *
7172  * e1000_exit_module is called just before the driver is removed
7173  * from memory.
7174  **/
7175 static void __exit e1000_exit_module(void)
7176 {
7177         pci_unregister_driver(&e1000_driver);
7178 }
7179 module_exit(e1000_exit_module);
7180
7181 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7182 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7183 MODULE_LICENSE("GPL");
7184 MODULE_VERSION(DRV_VERSION);
7185
7186 /* netdev.c */