e1000e: 82574/82583 TimeSync errata for SYSTIM read
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
81         /* General Registers */
82         {E1000_CTRL, "CTRL"},
83         {E1000_STATUS, "STATUS"},
84         {E1000_CTRL_EXT, "CTRL_EXT"},
85
86         /* Interrupt Registers */
87         {E1000_ICR, "ICR"},
88
89         /* Rx Registers */
90         {E1000_RCTL, "RCTL"},
91         {E1000_RDLEN(0), "RDLEN"},
92         {E1000_RDH(0), "RDH"},
93         {E1000_RDT(0), "RDT"},
94         {E1000_RDTR, "RDTR"},
95         {E1000_RXDCTL(0), "RXDCTL"},
96         {E1000_ERT, "ERT"},
97         {E1000_RDBAL(0), "RDBAL"},
98         {E1000_RDBAH(0), "RDBAH"},
99         {E1000_RDFH, "RDFH"},
100         {E1000_RDFT, "RDFT"},
101         {E1000_RDFHS, "RDFHS"},
102         {E1000_RDFTS, "RDFTS"},
103         {E1000_RDFPC, "RDFPC"},
104
105         /* Tx Registers */
106         {E1000_TCTL, "TCTL"},
107         {E1000_TDBAL(0), "TDBAL"},
108         {E1000_TDBAH(0), "TDBAH"},
109         {E1000_TDLEN(0), "TDLEN"},
110         {E1000_TDH(0), "TDH"},
111         {E1000_TDT(0), "TDT"},
112         {E1000_TIDV, "TIDV"},
113         {E1000_TXDCTL(0), "TXDCTL"},
114         {E1000_TADV, "TADV"},
115         {E1000_TARC(0), "TARC"},
116         {E1000_TDFH, "TDFH"},
117         {E1000_TDFT, "TDFT"},
118         {E1000_TDFHS, "TDFHS"},
119         {E1000_TDFTS, "TDFTS"},
120         {E1000_TDFPC, "TDFPC"},
121
122         /* List Terminator */
123         {0, NULL}
124 };
125
126 /**
127  * e1000_regdump - register printout routine
128  * @hw: pointer to the HW structure
129  * @reginfo: pointer to the register info table
130  **/
131 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
132 {
133         int n = 0;
134         char rname[16];
135         u32 regs[8];
136
137         switch (reginfo->ofs) {
138         case E1000_RXDCTL(0):
139                 for (n = 0; n < 2; n++)
140                         regs[n] = __er32(hw, E1000_RXDCTL(n));
141                 break;
142         case E1000_TXDCTL(0):
143                 for (n = 0; n < 2; n++)
144                         regs[n] = __er32(hw, E1000_TXDCTL(n));
145                 break;
146         case E1000_TARC(0):
147                 for (n = 0; n < 2; n++)
148                         regs[n] = __er32(hw, E1000_TARC(n));
149                 break;
150         default:
151                 pr_info("%-15s %08x\n",
152                         reginfo->name, __er32(hw, reginfo->ofs));
153                 return;
154         }
155
156         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
157         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
158 }
159
160 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
161                                  struct e1000_buffer *bi)
162 {
163         int i;
164         struct e1000_ps_page *ps_page;
165
166         for (i = 0; i < adapter->rx_ps_pages; i++) {
167                 ps_page = &bi->ps_pages[i];
168
169                 if (ps_page->page) {
170                         pr_info("packet dump for ps_page %d:\n", i);
171                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
172                                        16, 1, page_address(ps_page->page),
173                                        PAGE_SIZE, true);
174                 }
175         }
176 }
177
178 /**
179  * e1000e_dump - Print registers, Tx-ring and Rx-ring
180  * @adapter: board private structure
181  **/
182 static void e1000e_dump(struct e1000_adapter *adapter)
183 {
184         struct net_device *netdev = adapter->netdev;
185         struct e1000_hw *hw = &adapter->hw;
186         struct e1000_reg_info *reginfo;
187         struct e1000_ring *tx_ring = adapter->tx_ring;
188         struct e1000_tx_desc *tx_desc;
189         struct my_u0 {
190                 __le64 a;
191                 __le64 b;
192         } *u0;
193         struct e1000_buffer *buffer_info;
194         struct e1000_ring *rx_ring = adapter->rx_ring;
195         union e1000_rx_desc_packet_split *rx_desc_ps;
196         union e1000_rx_desc_extended *rx_desc;
197         struct my_u1 {
198                 __le64 a;
199                 __le64 b;
200                 __le64 c;
201                 __le64 d;
202         } *u1;
203         u32 staterr;
204         int i = 0;
205
206         if (!netif_msg_hw(adapter))
207                 return;
208
209         /* Print netdevice Info */
210         if (netdev) {
211                 dev_info(&adapter->pdev->dev, "Net device Info\n");
212                 pr_info("Device Name     state            trans_start      last_rx\n");
213                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
214                         netdev->state, netdev->trans_start, netdev->last_rx);
215         }
216
217         /* Print Registers */
218         dev_info(&adapter->pdev->dev, "Register Dump\n");
219         pr_info(" Register Name   Value\n");
220         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
221              reginfo->name; reginfo++) {
222                 e1000_regdump(hw, reginfo);
223         }
224
225         /* Print Tx Ring Summary */
226         if (!netdev || !netif_running(netdev))
227                 return;
228
229         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
230         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
231         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
232         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
233                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
234                 (unsigned long long)buffer_info->dma,
235                 buffer_info->length,
236                 buffer_info->next_to_watch,
237                 (unsigned long long)buffer_info->time_stamp);
238
239         /* Print Tx Ring */
240         if (!netif_msg_tx_done(adapter))
241                 goto rx_ring_summary;
242
243         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
244
245         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
246          *
247          * Legacy Transmit Descriptor
248          *   +--------------------------------------------------------------+
249          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
250          *   +--------------------------------------------------------------+
251          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
252          *   +--------------------------------------------------------------+
253          *   63       48 47        36 35    32 31     24 23    16 15        0
254          *
255          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
256          *   63      48 47    40 39       32 31             16 15    8 7      0
257          *   +----------------------------------------------------------------+
258          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
259          *   +----------------------------------------------------------------+
260          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
261          *   +----------------------------------------------------------------+
262          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
263          *
264          * Extended Data Descriptor (DTYP=0x1)
265          *   +----------------------------------------------------------------+
266          * 0 |                     Buffer Address [63:0]                      |
267          *   +----------------------------------------------------------------+
268          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
269          *   +----------------------------------------------------------------+
270          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
271          */
272         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
273         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
274         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
275         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
276                 const char *next_desc;
277                 tx_desc = E1000_TX_DESC(*tx_ring, i);
278                 buffer_info = &tx_ring->buffer_info[i];
279                 u0 = (struct my_u0 *)tx_desc;
280                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
281                         next_desc = " NTC/U";
282                 else if (i == tx_ring->next_to_use)
283                         next_desc = " NTU";
284                 else if (i == tx_ring->next_to_clean)
285                         next_desc = " NTC";
286                 else
287                         next_desc = "";
288                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
289                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
290                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
291                         i,
292                         (unsigned long long)le64_to_cpu(u0->a),
293                         (unsigned long long)le64_to_cpu(u0->b),
294                         (unsigned long long)buffer_info->dma,
295                         buffer_info->length, buffer_info->next_to_watch,
296                         (unsigned long long)buffer_info->time_stamp,
297                         buffer_info->skb, next_desc);
298
299                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
300                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
301                                        16, 1, buffer_info->skb->data,
302                                        buffer_info->skb->len, true);
303         }
304
305         /* Print Rx Ring Summary */
306 rx_ring_summary:
307         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
308         pr_info("Queue [NTU] [NTC]\n");
309         pr_info(" %5d %5X %5X\n",
310                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
311
312         /* Print Rx Ring */
313         if (!netif_msg_rx_status(adapter))
314                 return;
315
316         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
317         switch (adapter->rx_ps_pages) {
318         case 1:
319         case 2:
320         case 3:
321                 /* [Extended] Packet Split Receive Descriptor Format
322                  *
323                  *    +-----------------------------------------------------+
324                  *  0 |                Buffer Address 0 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  *  8 |                Buffer Address 1 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 16 |                Buffer Address 2 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  * 24 |                Buffer Address 3 [63:0]              |
331                  *    +-----------------------------------------------------+
332                  */
333                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
334                 /* [Extended] Receive Descriptor (Write-Back) Format
335                  *
336                  *   63       48 47    32 31     13 12    8 7    4 3        0
337                  *   +------------------------------------------------------+
338                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
339                  *   | Checksum | Ident  |         | Queue |      |  Type   |
340                  *   +------------------------------------------------------+
341                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
342                  *   +------------------------------------------------------+
343                  *   63       48 47    32 31            20 19               0
344                  */
345                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
346                 for (i = 0; i < rx_ring->count; i++) {
347                         const char *next_desc;
348                         buffer_info = &rx_ring->buffer_info[i];
349                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
350                         u1 = (struct my_u1 *)rx_desc_ps;
351                         staterr =
352                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
353
354                         if (i == rx_ring->next_to_use)
355                                 next_desc = " NTU";
356                         else if (i == rx_ring->next_to_clean)
357                                 next_desc = " NTC";
358                         else
359                                 next_desc = "";
360
361                         if (staterr & E1000_RXD_STAT_DD) {
362                                 /* Descriptor Done */
363                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
364                                         "RWB", i,
365                                         (unsigned long long)le64_to_cpu(u1->a),
366                                         (unsigned long long)le64_to_cpu(u1->b),
367                                         (unsigned long long)le64_to_cpu(u1->c),
368                                         (unsigned long long)le64_to_cpu(u1->d),
369                                         buffer_info->skb, next_desc);
370                         } else {
371                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
372                                         "R  ", i,
373                                         (unsigned long long)le64_to_cpu(u1->a),
374                                         (unsigned long long)le64_to_cpu(u1->b),
375                                         (unsigned long long)le64_to_cpu(u1->c),
376                                         (unsigned long long)le64_to_cpu(u1->d),
377                                         (unsigned long long)buffer_info->dma,
378                                         buffer_info->skb, next_desc);
379
380                                 if (netif_msg_pktdata(adapter))
381                                         e1000e_dump_ps_pages(adapter,
382                                                              buffer_info);
383                         }
384                 }
385                 break;
386         default:
387         case 0:
388                 /* Extended Receive Descriptor (Read) Format
389                  *
390                  *   +-----------------------------------------------------+
391                  * 0 |                Buffer Address [63:0]                |
392                  *   +-----------------------------------------------------+
393                  * 8 |                      Reserved                       |
394                  *   +-----------------------------------------------------+
395                  */
396                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
397                 /* Extended Receive Descriptor (Write-Back) Format
398                  *
399                  *   63       48 47    32 31    24 23            4 3        0
400                  *   +------------------------------------------------------+
401                  *   |     RSS Hash      |        |               |         |
402                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
403                  *   | Packet   | IP     |        |               |  Type   |
404                  *   | Checksum | Ident  |        |               |         |
405                  *   +------------------------------------------------------+
406                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
407                  *   +------------------------------------------------------+
408                  *   63       48 47    32 31            20 19               0
409                  */
410                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
411
412                 for (i = 0; i < rx_ring->count; i++) {
413                         const char *next_desc;
414
415                         buffer_info = &rx_ring->buffer_info[i];
416                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
417                         u1 = (struct my_u1 *)rx_desc;
418                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
419
420                         if (i == rx_ring->next_to_use)
421                                 next_desc = " NTU";
422                         else if (i == rx_ring->next_to_clean)
423                                 next_desc = " NTC";
424                         else
425                                 next_desc = "";
426
427                         if (staterr & E1000_RXD_STAT_DD) {
428                                 /* Descriptor Done */
429                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
430                                         "RWB", i,
431                                         (unsigned long long)le64_to_cpu(u1->a),
432                                         (unsigned long long)le64_to_cpu(u1->b),
433                                         buffer_info->skb, next_desc);
434                         } else {
435                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
436                                         "R  ", i,
437                                         (unsigned long long)le64_to_cpu(u1->a),
438                                         (unsigned long long)le64_to_cpu(u1->b),
439                                         (unsigned long long)buffer_info->dma,
440                                         buffer_info->skb, next_desc);
441
442                                 if (netif_msg_pktdata(adapter) &&
443                                     buffer_info->skb)
444                                         print_hex_dump(KERN_INFO, "",
445                                                        DUMP_PREFIX_ADDRESS, 16,
446                                                        1,
447                                                        buffer_info->skb->data,
448                                                        adapter->rx_buffer_len,
449                                                        true);
450                         }
451                 }
452         }
453 }
454
455 /**
456  * e1000_desc_unused - calculate if we have unused descriptors
457  **/
458 static int e1000_desc_unused(struct e1000_ring *ring)
459 {
460         if (ring->next_to_clean > ring->next_to_use)
461                 return ring->next_to_clean - ring->next_to_use - 1;
462
463         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
464 }
465
466 /**
467  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
468  * @adapter: board private structure
469  * @hwtstamps: time stamp structure to update
470  * @systim: unsigned 64bit system time value.
471  *
472  * Convert the system time value stored in the RX/TXSTMP registers into a
473  * hwtstamp which can be used by the upper level time stamping functions.
474  *
475  * The 'systim_lock' spinlock is used to protect the consistency of the
476  * system time value. This is needed because reading the 64 bit time
477  * value involves reading two 32 bit registers. The first read latches the
478  * value.
479  **/
480 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
481                                       struct skb_shared_hwtstamps *hwtstamps,
482                                       u64 systim)
483 {
484         u64 ns;
485         unsigned long flags;
486
487         spin_lock_irqsave(&adapter->systim_lock, flags);
488         ns = timecounter_cyc2time(&adapter->tc, systim);
489         spin_unlock_irqrestore(&adapter->systim_lock, flags);
490
491         memset(hwtstamps, 0, sizeof(*hwtstamps));
492         hwtstamps->hwtstamp = ns_to_ktime(ns);
493 }
494
495 /**
496  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
497  * @adapter: board private structure
498  * @status: descriptor extended error and status field
499  * @skb: particular skb to include time stamp
500  *
501  * If the time stamp is valid, convert it into the timecounter ns value
502  * and store that result into the shhwtstamps structure which is passed
503  * up the network stack.
504  **/
505 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
506                                struct sk_buff *skb)
507 {
508         struct e1000_hw *hw = &adapter->hw;
509         u64 rxstmp;
510
511         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
512             !(status & E1000_RXDEXT_STATERR_TST) ||
513             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
514                 return;
515
516         /* The Rx time stamp registers contain the time stamp.  No other
517          * received packet will be time stamped until the Rx time stamp
518          * registers are read.  Because only one packet can be time stamped
519          * at a time, the register values must belong to this packet and
520          * therefore none of the other additional attributes need to be
521          * compared.
522          */
523         rxstmp = (u64)er32(RXSTMPL);
524         rxstmp |= (u64)er32(RXSTMPH) << 32;
525         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
526
527         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
528 }
529
530 /**
531  * e1000_receive_skb - helper function to handle Rx indications
532  * @adapter: board private structure
533  * @staterr: descriptor extended error and status field as written by hardware
534  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
535  * @skb: pointer to sk_buff to be indicated to stack
536  **/
537 static void e1000_receive_skb(struct e1000_adapter *adapter,
538                               struct net_device *netdev, struct sk_buff *skb,
539                               u32 staterr, __le16 vlan)
540 {
541         u16 tag = le16_to_cpu(vlan);
542
543         e1000e_rx_hwtstamp(adapter, staterr, skb);
544
545         skb->protocol = eth_type_trans(skb, netdev);
546
547         if (staterr & E1000_RXD_STAT_VP)
548                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
549
550         napi_gro_receive(&adapter->napi, skb);
551 }
552
553 /**
554  * e1000_rx_checksum - Receive Checksum Offload
555  * @adapter: board private structure
556  * @status_err: receive descriptor status and error fields
557  * @csum: receive descriptor csum field
558  * @sk_buff: socket buffer with received data
559  **/
560 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
561                               struct sk_buff *skb)
562 {
563         u16 status = (u16)status_err;
564         u8 errors = (u8)(status_err >> 24);
565
566         skb_checksum_none_assert(skb);
567
568         /* Rx checksum disabled */
569         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
570                 return;
571
572         /* Ignore Checksum bit is set */
573         if (status & E1000_RXD_STAT_IXSM)
574                 return;
575
576         /* TCP/UDP checksum error bit or IP checksum error bit is set */
577         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
578                 /* let the stack verify checksum errors */
579                 adapter->hw_csum_err++;
580                 return;
581         }
582
583         /* TCP/UDP Checksum has not been calculated */
584         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
585                 return;
586
587         /* It must be a TCP or UDP packet with a valid checksum */
588         skb->ip_summed = CHECKSUM_UNNECESSARY;
589         adapter->hw_csum_good++;
590 }
591
592 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
593 {
594         struct e1000_adapter *adapter = rx_ring->adapter;
595         struct e1000_hw *hw = &adapter->hw;
596         s32 ret_val = __ew32_prepare(hw);
597
598         writel(i, rx_ring->tail);
599
600         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
601                 u32 rctl = er32(RCTL);
602
603                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
604                 e_err("ME firmware caused invalid RDT - resetting\n");
605                 schedule_work(&adapter->reset_task);
606         }
607 }
608
609 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
610 {
611         struct e1000_adapter *adapter = tx_ring->adapter;
612         struct e1000_hw *hw = &adapter->hw;
613         s32 ret_val = __ew32_prepare(hw);
614
615         writel(i, tx_ring->tail);
616
617         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
618                 u32 tctl = er32(TCTL);
619
620                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
621                 e_err("ME firmware caused invalid TDT - resetting\n");
622                 schedule_work(&adapter->reset_task);
623         }
624 }
625
626 /**
627  * e1000_alloc_rx_buffers - Replace used receive buffers
628  * @rx_ring: Rx descriptor ring
629  **/
630 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
631                                    int cleaned_count, gfp_t gfp)
632 {
633         struct e1000_adapter *adapter = rx_ring->adapter;
634         struct net_device *netdev = adapter->netdev;
635         struct pci_dev *pdev = adapter->pdev;
636         union e1000_rx_desc_extended *rx_desc;
637         struct e1000_buffer *buffer_info;
638         struct sk_buff *skb;
639         unsigned int i;
640         unsigned int bufsz = adapter->rx_buffer_len;
641
642         i = rx_ring->next_to_use;
643         buffer_info = &rx_ring->buffer_info[i];
644
645         while (cleaned_count--) {
646                 skb = buffer_info->skb;
647                 if (skb) {
648                         skb_trim(skb, 0);
649                         goto map_skb;
650                 }
651
652                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
653                 if (!skb) {
654                         /* Better luck next round */
655                         adapter->alloc_rx_buff_failed++;
656                         break;
657                 }
658
659                 buffer_info->skb = skb;
660 map_skb:
661                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
662                                                   adapter->rx_buffer_len,
663                                                   DMA_FROM_DEVICE);
664                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
665                         dev_err(&pdev->dev, "Rx DMA map failed\n");
666                         adapter->rx_dma_failed++;
667                         break;
668                 }
669
670                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
671                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
672
673                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
674                         /* Force memory writes to complete before letting h/w
675                          * know there are new descriptors to fetch.  (Only
676                          * applicable for weak-ordered memory model archs,
677                          * such as IA-64).
678                          */
679                         wmb();
680                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
681                                 e1000e_update_rdt_wa(rx_ring, i);
682                         else
683                                 writel(i, rx_ring->tail);
684                 }
685                 i++;
686                 if (i == rx_ring->count)
687                         i = 0;
688                 buffer_info = &rx_ring->buffer_info[i];
689         }
690
691         rx_ring->next_to_use = i;
692 }
693
694 /**
695  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
696  * @rx_ring: Rx descriptor ring
697  **/
698 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
699                                       int cleaned_count, gfp_t gfp)
700 {
701         struct e1000_adapter *adapter = rx_ring->adapter;
702         struct net_device *netdev = adapter->netdev;
703         struct pci_dev *pdev = adapter->pdev;
704         union e1000_rx_desc_packet_split *rx_desc;
705         struct e1000_buffer *buffer_info;
706         struct e1000_ps_page *ps_page;
707         struct sk_buff *skb;
708         unsigned int i, j;
709
710         i = rx_ring->next_to_use;
711         buffer_info = &rx_ring->buffer_info[i];
712
713         while (cleaned_count--) {
714                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
715
716                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
717                         ps_page = &buffer_info->ps_pages[j];
718                         if (j >= adapter->rx_ps_pages) {
719                                 /* all unused desc entries get hw null ptr */
720                                 rx_desc->read.buffer_addr[j + 1] =
721                                     ~cpu_to_le64(0);
722                                 continue;
723                         }
724                         if (!ps_page->page) {
725                                 ps_page->page = alloc_page(gfp);
726                                 if (!ps_page->page) {
727                                         adapter->alloc_rx_buff_failed++;
728                                         goto no_buffers;
729                                 }
730                                 ps_page->dma = dma_map_page(&pdev->dev,
731                                                             ps_page->page,
732                                                             0, PAGE_SIZE,
733                                                             DMA_FROM_DEVICE);
734                                 if (dma_mapping_error(&pdev->dev,
735                                                       ps_page->dma)) {
736                                         dev_err(&adapter->pdev->dev,
737                                                 "Rx DMA page map failed\n");
738                                         adapter->rx_dma_failed++;
739                                         goto no_buffers;
740                                 }
741                         }
742                         /* Refresh the desc even if buffer_addrs
743                          * didn't change because each write-back
744                          * erases this info.
745                          */
746                         rx_desc->read.buffer_addr[j + 1] =
747                             cpu_to_le64(ps_page->dma);
748                 }
749
750                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
751                                                   gfp);
752
753                 if (!skb) {
754                         adapter->alloc_rx_buff_failed++;
755                         break;
756                 }
757
758                 buffer_info->skb = skb;
759                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
760                                                   adapter->rx_ps_bsize0,
761                                                   DMA_FROM_DEVICE);
762                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
763                         dev_err(&pdev->dev, "Rx DMA map failed\n");
764                         adapter->rx_dma_failed++;
765                         /* cleanup skb */
766                         dev_kfree_skb_any(skb);
767                         buffer_info->skb = NULL;
768                         break;
769                 }
770
771                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
772
773                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
774                         /* Force memory writes to complete before letting h/w
775                          * know there are new descriptors to fetch.  (Only
776                          * applicable for weak-ordered memory model archs,
777                          * such as IA-64).
778                          */
779                         wmb();
780                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
781                                 e1000e_update_rdt_wa(rx_ring, i << 1);
782                         else
783                                 writel(i << 1, rx_ring->tail);
784                 }
785
786                 i++;
787                 if (i == rx_ring->count)
788                         i = 0;
789                 buffer_info = &rx_ring->buffer_info[i];
790         }
791
792 no_buffers:
793         rx_ring->next_to_use = i;
794 }
795
796 /**
797  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
798  * @rx_ring: Rx descriptor ring
799  * @cleaned_count: number of buffers to allocate this pass
800  **/
801
802 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
803                                          int cleaned_count, gfp_t gfp)
804 {
805         struct e1000_adapter *adapter = rx_ring->adapter;
806         struct net_device *netdev = adapter->netdev;
807         struct pci_dev *pdev = adapter->pdev;
808         union e1000_rx_desc_extended *rx_desc;
809         struct e1000_buffer *buffer_info;
810         struct sk_buff *skb;
811         unsigned int i;
812         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
813
814         i = rx_ring->next_to_use;
815         buffer_info = &rx_ring->buffer_info[i];
816
817         while (cleaned_count--) {
818                 skb = buffer_info->skb;
819                 if (skb) {
820                         skb_trim(skb, 0);
821                         goto check_page;
822                 }
823
824                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
825                 if (unlikely(!skb)) {
826                         /* Better luck next round */
827                         adapter->alloc_rx_buff_failed++;
828                         break;
829                 }
830
831                 buffer_info->skb = skb;
832 check_page:
833                 /* allocate a new page if necessary */
834                 if (!buffer_info->page) {
835                         buffer_info->page = alloc_page(gfp);
836                         if (unlikely(!buffer_info->page)) {
837                                 adapter->alloc_rx_buff_failed++;
838                                 break;
839                         }
840                 }
841
842                 if (!buffer_info->dma) {
843                         buffer_info->dma = dma_map_page(&pdev->dev,
844                                                         buffer_info->page, 0,
845                                                         PAGE_SIZE,
846                                                         DMA_FROM_DEVICE);
847                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
848                                 adapter->alloc_rx_buff_failed++;
849                                 break;
850                         }
851                 }
852
853                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
854                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
855
856                 if (unlikely(++i == rx_ring->count))
857                         i = 0;
858                 buffer_info = &rx_ring->buffer_info[i];
859         }
860
861         if (likely(rx_ring->next_to_use != i)) {
862                 rx_ring->next_to_use = i;
863                 if (unlikely(i-- == 0))
864                         i = (rx_ring->count - 1);
865
866                 /* Force memory writes to complete before letting h/w
867                  * know there are new descriptors to fetch.  (Only
868                  * applicable for weak-ordered memory model archs,
869                  * such as IA-64).
870                  */
871                 wmb();
872                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
873                         e1000e_update_rdt_wa(rx_ring, i);
874                 else
875                         writel(i, rx_ring->tail);
876         }
877 }
878
879 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
880                                  struct sk_buff *skb)
881 {
882         if (netdev->features & NETIF_F_RXHASH)
883                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
884 }
885
886 /**
887  * e1000_clean_rx_irq - Send received data up the network stack
888  * @rx_ring: Rx descriptor ring
889  *
890  * the return value indicates whether actual cleaning was done, there
891  * is no guarantee that everything was cleaned
892  **/
893 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
894                                int work_to_do)
895 {
896         struct e1000_adapter *adapter = rx_ring->adapter;
897         struct net_device *netdev = adapter->netdev;
898         struct pci_dev *pdev = adapter->pdev;
899         struct e1000_hw *hw = &adapter->hw;
900         union e1000_rx_desc_extended *rx_desc, *next_rxd;
901         struct e1000_buffer *buffer_info, *next_buffer;
902         u32 length, staterr;
903         unsigned int i;
904         int cleaned_count = 0;
905         bool cleaned = false;
906         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
907
908         i = rx_ring->next_to_clean;
909         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
910         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
911         buffer_info = &rx_ring->buffer_info[i];
912
913         while (staterr & E1000_RXD_STAT_DD) {
914                 struct sk_buff *skb;
915
916                 if (*work_done >= work_to_do)
917                         break;
918                 (*work_done)++;
919                 rmb();  /* read descriptor and rx_buffer_info after status DD */
920
921                 skb = buffer_info->skb;
922                 buffer_info->skb = NULL;
923
924                 prefetch(skb->data - NET_IP_ALIGN);
925
926                 i++;
927                 if (i == rx_ring->count)
928                         i = 0;
929                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
930                 prefetch(next_rxd);
931
932                 next_buffer = &rx_ring->buffer_info[i];
933
934                 cleaned = true;
935                 cleaned_count++;
936                 dma_unmap_single(&pdev->dev, buffer_info->dma,
937                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
938                 buffer_info->dma = 0;
939
940                 length = le16_to_cpu(rx_desc->wb.upper.length);
941
942                 /* !EOP means multiple descriptors were used to store a single
943                  * packet, if that's the case we need to toss it.  In fact, we
944                  * need to toss every packet with the EOP bit clear and the
945                  * next frame that _does_ have the EOP bit set, as it is by
946                  * definition only a frame fragment
947                  */
948                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
949                         adapter->flags2 |= FLAG2_IS_DISCARDING;
950
951                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
952                         /* All receives must fit into a single buffer */
953                         e_dbg("Receive packet consumed multiple buffers\n");
954                         /* recycle */
955                         buffer_info->skb = skb;
956                         if (staterr & E1000_RXD_STAT_EOP)
957                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
958                         goto next_desc;
959                 }
960
961                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
962                              !(netdev->features & NETIF_F_RXALL))) {
963                         /* recycle */
964                         buffer_info->skb = skb;
965                         goto next_desc;
966                 }
967
968                 /* adjust length to remove Ethernet CRC */
969                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
970                         /* If configured to store CRC, don't subtract FCS,
971                          * but keep the FCS bytes out of the total_rx_bytes
972                          * counter
973                          */
974                         if (netdev->features & NETIF_F_RXFCS)
975                                 total_rx_bytes -= 4;
976                         else
977                                 length -= 4;
978                 }
979
980                 total_rx_bytes += length;
981                 total_rx_packets++;
982
983                 /* code added for copybreak, this should improve
984                  * performance for small packets with large amounts
985                  * of reassembly being done in the stack
986                  */
987                 if (length < copybreak) {
988                         struct sk_buff *new_skb =
989                             netdev_alloc_skb_ip_align(netdev, length);
990                         if (new_skb) {
991                                 skb_copy_to_linear_data_offset(new_skb,
992                                                                -NET_IP_ALIGN,
993                                                                (skb->data -
994                                                                 NET_IP_ALIGN),
995                                                                (length +
996                                                                 NET_IP_ALIGN));
997                                 /* save the skb in buffer_info as good */
998                                 buffer_info->skb = skb;
999                                 skb = new_skb;
1000                         }
1001                         /* else just continue with the old one */
1002                 }
1003                 /* end copybreak code */
1004                 skb_put(skb, length);
1005
1006                 /* Receive Checksum Offload */
1007                 e1000_rx_checksum(adapter, staterr, skb);
1008
1009                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1010
1011                 e1000_receive_skb(adapter, netdev, skb, staterr,
1012                                   rx_desc->wb.upper.vlan);
1013
1014 next_desc:
1015                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1016
1017                 /* return some buffers to hardware, one at a time is too slow */
1018                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1019                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1020                                               GFP_ATOMIC);
1021                         cleaned_count = 0;
1022                 }
1023
1024                 /* use prefetched values */
1025                 rx_desc = next_rxd;
1026                 buffer_info = next_buffer;
1027
1028                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1029         }
1030         rx_ring->next_to_clean = i;
1031
1032         cleaned_count = e1000_desc_unused(rx_ring);
1033         if (cleaned_count)
1034                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1035
1036         adapter->total_rx_bytes += total_rx_bytes;
1037         adapter->total_rx_packets += total_rx_packets;
1038         return cleaned;
1039 }
1040
1041 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1042                             struct e1000_buffer *buffer_info)
1043 {
1044         struct e1000_adapter *adapter = tx_ring->adapter;
1045
1046         if (buffer_info->dma) {
1047                 if (buffer_info->mapped_as_page)
1048                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1049                                        buffer_info->length, DMA_TO_DEVICE);
1050                 else
1051                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1052                                          buffer_info->length, DMA_TO_DEVICE);
1053                 buffer_info->dma = 0;
1054         }
1055         if (buffer_info->skb) {
1056                 dev_kfree_skb_any(buffer_info->skb);
1057                 buffer_info->skb = NULL;
1058         }
1059         buffer_info->time_stamp = 0;
1060 }
1061
1062 static void e1000_print_hw_hang(struct work_struct *work)
1063 {
1064         struct e1000_adapter *adapter = container_of(work,
1065                                                      struct e1000_adapter,
1066                                                      print_hang_task);
1067         struct net_device *netdev = adapter->netdev;
1068         struct e1000_ring *tx_ring = adapter->tx_ring;
1069         unsigned int i = tx_ring->next_to_clean;
1070         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1071         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1072         struct e1000_hw *hw = &adapter->hw;
1073         u16 phy_status, phy_1000t_status, phy_ext_status;
1074         u16 pci_status;
1075
1076         if (test_bit(__E1000_DOWN, &adapter->state))
1077                 return;
1078
1079         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1080                 /* May be block on write-back, flush and detect again
1081                  * flush pending descriptor writebacks to memory
1082                  */
1083                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1084                 /* execute the writes immediately */
1085                 e1e_flush();
1086                 /* Due to rare timing issues, write to TIDV again to ensure
1087                  * the write is successful
1088                  */
1089                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1090                 /* execute the writes immediately */
1091                 e1e_flush();
1092                 adapter->tx_hang_recheck = true;
1093                 return;
1094         }
1095         adapter->tx_hang_recheck = false;
1096
1097         if (er32(TDH(0)) == er32(TDT(0))) {
1098                 e_dbg("false hang detected, ignoring\n");
1099                 return;
1100         }
1101
1102         /* Real hang detected */
1103         netif_stop_queue(netdev);
1104
1105         e1e_rphy(hw, MII_BMSR, &phy_status);
1106         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1107         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1108
1109         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1110
1111         /* detected Hardware unit hang */
1112         e_err("Detected Hardware Unit Hang:\n"
1113               "  TDH                  <%x>\n"
1114               "  TDT                  <%x>\n"
1115               "  next_to_use          <%x>\n"
1116               "  next_to_clean        <%x>\n"
1117               "buffer_info[next_to_clean]:\n"
1118               "  time_stamp           <%lx>\n"
1119               "  next_to_watch        <%x>\n"
1120               "  jiffies              <%lx>\n"
1121               "  next_to_watch.status <%x>\n"
1122               "MAC Status             <%x>\n"
1123               "PHY Status             <%x>\n"
1124               "PHY 1000BASE-T Status  <%x>\n"
1125               "PHY Extended Status    <%x>\n"
1126               "PCI Status             <%x>\n",
1127               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1128               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1129               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1130               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1131
1132         e1000e_dump(adapter);
1133
1134         /* Suggest workaround for known h/w issue */
1135         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1136                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1137 }
1138
1139 /**
1140  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1141  * @work: pointer to work struct
1142  *
1143  * This work function polls the TSYNCTXCTL valid bit to determine when a
1144  * timestamp has been taken for the current stored skb.  The timestamp must
1145  * be for this skb because only one such packet is allowed in the queue.
1146  */
1147 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1148 {
1149         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1150                                                      tx_hwtstamp_work);
1151         struct e1000_hw *hw = &adapter->hw;
1152
1153         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1154                 struct skb_shared_hwtstamps shhwtstamps;
1155                 u64 txstmp;
1156
1157                 txstmp = er32(TXSTMPL);
1158                 txstmp |= (u64)er32(TXSTMPH) << 32;
1159
1160                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1161
1162                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1163                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1164                 adapter->tx_hwtstamp_skb = NULL;
1165         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1166                               + adapter->tx_timeout_factor * HZ)) {
1167                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1168                 adapter->tx_hwtstamp_skb = NULL;
1169                 adapter->tx_hwtstamp_timeouts++;
1170                 e_warn("clearing Tx timestamp hang\n");
1171         } else {
1172                 /* reschedule to check later */
1173                 schedule_work(&adapter->tx_hwtstamp_work);
1174         }
1175 }
1176
1177 /**
1178  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1179  * @tx_ring: Tx descriptor ring
1180  *
1181  * the return value indicates whether actual cleaning was done, there
1182  * is no guarantee that everything was cleaned
1183  **/
1184 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1185 {
1186         struct e1000_adapter *adapter = tx_ring->adapter;
1187         struct net_device *netdev = adapter->netdev;
1188         struct e1000_hw *hw = &adapter->hw;
1189         struct e1000_tx_desc *tx_desc, *eop_desc;
1190         struct e1000_buffer *buffer_info;
1191         unsigned int i, eop;
1192         unsigned int count = 0;
1193         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1194         unsigned int bytes_compl = 0, pkts_compl = 0;
1195
1196         i = tx_ring->next_to_clean;
1197         eop = tx_ring->buffer_info[i].next_to_watch;
1198         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1199
1200         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1201                (count < tx_ring->count)) {
1202                 bool cleaned = false;
1203
1204                 rmb();          /* read buffer_info after eop_desc */
1205                 for (; !cleaned; count++) {
1206                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1207                         buffer_info = &tx_ring->buffer_info[i];
1208                         cleaned = (i == eop);
1209
1210                         if (cleaned) {
1211                                 total_tx_packets += buffer_info->segs;
1212                                 total_tx_bytes += buffer_info->bytecount;
1213                                 if (buffer_info->skb) {
1214                                         bytes_compl += buffer_info->skb->len;
1215                                         pkts_compl++;
1216                                 }
1217                         }
1218
1219                         e1000_put_txbuf(tx_ring, buffer_info);
1220                         tx_desc->upper.data = 0;
1221
1222                         i++;
1223                         if (i == tx_ring->count)
1224                                 i = 0;
1225                 }
1226
1227                 if (i == tx_ring->next_to_use)
1228                         break;
1229                 eop = tx_ring->buffer_info[i].next_to_watch;
1230                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1231         }
1232
1233         tx_ring->next_to_clean = i;
1234
1235         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1236
1237 #define TX_WAKE_THRESHOLD 32
1238         if (count && netif_carrier_ok(netdev) &&
1239             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1240                 /* Make sure that anybody stopping the queue after this
1241                  * sees the new next_to_clean.
1242                  */
1243                 smp_mb();
1244
1245                 if (netif_queue_stopped(netdev) &&
1246                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1247                         netif_wake_queue(netdev);
1248                         ++adapter->restart_queue;
1249                 }
1250         }
1251
1252         if (adapter->detect_tx_hung) {
1253                 /* Detect a transmit hang in hardware, this serializes the
1254                  * check with the clearing of time_stamp and movement of i
1255                  */
1256                 adapter->detect_tx_hung = false;
1257                 if (tx_ring->buffer_info[i].time_stamp &&
1258                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1259                                + (adapter->tx_timeout_factor * HZ)) &&
1260                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1261                         schedule_work(&adapter->print_hang_task);
1262                 else
1263                         adapter->tx_hang_recheck = false;
1264         }
1265         adapter->total_tx_bytes += total_tx_bytes;
1266         adapter->total_tx_packets += total_tx_packets;
1267         return count < tx_ring->count;
1268 }
1269
1270 /**
1271  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1272  * @rx_ring: Rx descriptor ring
1273  *
1274  * the return value indicates whether actual cleaning was done, there
1275  * is no guarantee that everything was cleaned
1276  **/
1277 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1278                                   int work_to_do)
1279 {
1280         struct e1000_adapter *adapter = rx_ring->adapter;
1281         struct e1000_hw *hw = &adapter->hw;
1282         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1283         struct net_device *netdev = adapter->netdev;
1284         struct pci_dev *pdev = adapter->pdev;
1285         struct e1000_buffer *buffer_info, *next_buffer;
1286         struct e1000_ps_page *ps_page;
1287         struct sk_buff *skb;
1288         unsigned int i, j;
1289         u32 length, staterr;
1290         int cleaned_count = 0;
1291         bool cleaned = false;
1292         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1293
1294         i = rx_ring->next_to_clean;
1295         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1296         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1297         buffer_info = &rx_ring->buffer_info[i];
1298
1299         while (staterr & E1000_RXD_STAT_DD) {
1300                 if (*work_done >= work_to_do)
1301                         break;
1302                 (*work_done)++;
1303                 skb = buffer_info->skb;
1304                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1305
1306                 /* in the packet split case this is header only */
1307                 prefetch(skb->data - NET_IP_ALIGN);
1308
1309                 i++;
1310                 if (i == rx_ring->count)
1311                         i = 0;
1312                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1313                 prefetch(next_rxd);
1314
1315                 next_buffer = &rx_ring->buffer_info[i];
1316
1317                 cleaned = true;
1318                 cleaned_count++;
1319                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1320                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1321                 buffer_info->dma = 0;
1322
1323                 /* see !EOP comment in other Rx routine */
1324                 if (!(staterr & E1000_RXD_STAT_EOP))
1325                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1326
1327                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1328                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1329                         dev_kfree_skb_irq(skb);
1330                         if (staterr & E1000_RXD_STAT_EOP)
1331                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1332                         goto next_desc;
1333                 }
1334
1335                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1336                              !(netdev->features & NETIF_F_RXALL))) {
1337                         dev_kfree_skb_irq(skb);
1338                         goto next_desc;
1339                 }
1340
1341                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1342
1343                 if (!length) {
1344                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1345                         dev_kfree_skb_irq(skb);
1346                         goto next_desc;
1347                 }
1348
1349                 /* Good Receive */
1350                 skb_put(skb, length);
1351
1352                 {
1353                         /* this looks ugly, but it seems compiler issues make
1354                          * it more efficient than reusing j
1355                          */
1356                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1357
1358                         /* page alloc/put takes too long and effects small
1359                          * packet throughput, so unsplit small packets and
1360                          * save the alloc/put only valid in softirq (napi)
1361                          * context to call kmap_*
1362                          */
1363                         if (l1 && (l1 <= copybreak) &&
1364                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1365                                 u8 *vaddr;
1366
1367                                 ps_page = &buffer_info->ps_pages[0];
1368
1369                                 /* there is no documentation about how to call
1370                                  * kmap_atomic, so we can't hold the mapping
1371                                  * very long
1372                                  */
1373                                 dma_sync_single_for_cpu(&pdev->dev,
1374                                                         ps_page->dma,
1375                                                         PAGE_SIZE,
1376                                                         DMA_FROM_DEVICE);
1377                                 vaddr = kmap_atomic(ps_page->page);
1378                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1379                                 kunmap_atomic(vaddr);
1380                                 dma_sync_single_for_device(&pdev->dev,
1381                                                            ps_page->dma,
1382                                                            PAGE_SIZE,
1383                                                            DMA_FROM_DEVICE);
1384
1385                                 /* remove the CRC */
1386                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1387                                         if (!(netdev->features & NETIF_F_RXFCS))
1388                                                 l1 -= 4;
1389                                 }
1390
1391                                 skb_put(skb, l1);
1392                                 goto copydone;
1393                         }       /* if */
1394                 }
1395
1396                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1397                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1398                         if (!length)
1399                                 break;
1400
1401                         ps_page = &buffer_info->ps_pages[j];
1402                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1403                                        DMA_FROM_DEVICE);
1404                         ps_page->dma = 0;
1405                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1406                         ps_page->page = NULL;
1407                         skb->len += length;
1408                         skb->data_len += length;
1409                         skb->truesize += PAGE_SIZE;
1410                 }
1411
1412                 /* strip the ethernet crc, problem is we're using pages now so
1413                  * this whole operation can get a little cpu intensive
1414                  */
1415                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1416                         if (!(netdev->features & NETIF_F_RXFCS))
1417                                 pskb_trim(skb, skb->len - 4);
1418                 }
1419
1420 copydone:
1421                 total_rx_bytes += skb->len;
1422                 total_rx_packets++;
1423
1424                 e1000_rx_checksum(adapter, staterr, skb);
1425
1426                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1427
1428                 if (rx_desc->wb.upper.header_status &
1429                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1430                         adapter->rx_hdr_split++;
1431
1432                 e1000_receive_skb(adapter, netdev, skb, staterr,
1433                                   rx_desc->wb.middle.vlan);
1434
1435 next_desc:
1436                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1437                 buffer_info->skb = NULL;
1438
1439                 /* return some buffers to hardware, one at a time is too slow */
1440                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1441                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1442                                               GFP_ATOMIC);
1443                         cleaned_count = 0;
1444                 }
1445
1446                 /* use prefetched values */
1447                 rx_desc = next_rxd;
1448                 buffer_info = next_buffer;
1449
1450                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1451         }
1452         rx_ring->next_to_clean = i;
1453
1454         cleaned_count = e1000_desc_unused(rx_ring);
1455         if (cleaned_count)
1456                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1457
1458         adapter->total_rx_bytes += total_rx_bytes;
1459         adapter->total_rx_packets += total_rx_packets;
1460         return cleaned;
1461 }
1462
1463 /**
1464  * e1000_consume_page - helper function
1465  **/
1466 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1467                                u16 length)
1468 {
1469         bi->page = NULL;
1470         skb->len += length;
1471         skb->data_len += length;
1472         skb->truesize += PAGE_SIZE;
1473 }
1474
1475 /**
1476  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1477  * @adapter: board private structure
1478  *
1479  * the return value indicates whether actual cleaning was done, there
1480  * is no guarantee that everything was cleaned
1481  **/
1482 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1483                                      int work_to_do)
1484 {
1485         struct e1000_adapter *adapter = rx_ring->adapter;
1486         struct net_device *netdev = adapter->netdev;
1487         struct pci_dev *pdev = adapter->pdev;
1488         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1489         struct e1000_buffer *buffer_info, *next_buffer;
1490         u32 length, staterr;
1491         unsigned int i;
1492         int cleaned_count = 0;
1493         bool cleaned = false;
1494         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1495         struct skb_shared_info *shinfo;
1496
1497         i = rx_ring->next_to_clean;
1498         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1499         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1500         buffer_info = &rx_ring->buffer_info[i];
1501
1502         while (staterr & E1000_RXD_STAT_DD) {
1503                 struct sk_buff *skb;
1504
1505                 if (*work_done >= work_to_do)
1506                         break;
1507                 (*work_done)++;
1508                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1509
1510                 skb = buffer_info->skb;
1511                 buffer_info->skb = NULL;
1512
1513                 ++i;
1514                 if (i == rx_ring->count)
1515                         i = 0;
1516                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1517                 prefetch(next_rxd);
1518
1519                 next_buffer = &rx_ring->buffer_info[i];
1520
1521                 cleaned = true;
1522                 cleaned_count++;
1523                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1524                                DMA_FROM_DEVICE);
1525                 buffer_info->dma = 0;
1526
1527                 length = le16_to_cpu(rx_desc->wb.upper.length);
1528
1529                 /* errors is only valid for DD + EOP descriptors */
1530                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1531                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1532                               !(netdev->features & NETIF_F_RXALL)))) {
1533                         /* recycle both page and skb */
1534                         buffer_info->skb = skb;
1535                         /* an error means any chain goes out the window too */
1536                         if (rx_ring->rx_skb_top)
1537                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1538                         rx_ring->rx_skb_top = NULL;
1539                         goto next_desc;
1540                 }
1541 #define rxtop (rx_ring->rx_skb_top)
1542                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1543                         /* this descriptor is only the beginning (or middle) */
1544                         if (!rxtop) {
1545                                 /* this is the beginning of a chain */
1546                                 rxtop = skb;
1547                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1548                                                    0, length);
1549                         } else {
1550                                 /* this is the middle of a chain */
1551                                 shinfo = skb_shinfo(rxtop);
1552                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1553                                                    buffer_info->page, 0,
1554                                                    length);
1555                                 /* re-use the skb, only consumed the page */
1556                                 buffer_info->skb = skb;
1557                         }
1558                         e1000_consume_page(buffer_info, rxtop, length);
1559                         goto next_desc;
1560                 } else {
1561                         if (rxtop) {
1562                                 /* end of the chain */
1563                                 shinfo = skb_shinfo(rxtop);
1564                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1565                                                    buffer_info->page, 0,
1566                                                    length);
1567                                 /* re-use the current skb, we only consumed the
1568                                  * page
1569                                  */
1570                                 buffer_info->skb = skb;
1571                                 skb = rxtop;
1572                                 rxtop = NULL;
1573                                 e1000_consume_page(buffer_info, skb, length);
1574                         } else {
1575                                 /* no chain, got EOP, this buf is the packet
1576                                  * copybreak to save the put_page/alloc_page
1577                                  */
1578                                 if (length <= copybreak &&
1579                                     skb_tailroom(skb) >= length) {
1580                                         u8 *vaddr;
1581                                         vaddr = kmap_atomic(buffer_info->page);
1582                                         memcpy(skb_tail_pointer(skb), vaddr,
1583                                                length);
1584                                         kunmap_atomic(vaddr);
1585                                         /* re-use the page, so don't erase
1586                                          * buffer_info->page
1587                                          */
1588                                         skb_put(skb, length);
1589                                 } else {
1590                                         skb_fill_page_desc(skb, 0,
1591                                                            buffer_info->page, 0,
1592                                                            length);
1593                                         e1000_consume_page(buffer_info, skb,
1594                                                            length);
1595                                 }
1596                         }
1597                 }
1598
1599                 /* Receive Checksum Offload */
1600                 e1000_rx_checksum(adapter, staterr, skb);
1601
1602                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1603
1604                 /* probably a little skewed due to removing CRC */
1605                 total_rx_bytes += skb->len;
1606                 total_rx_packets++;
1607
1608                 /* eth type trans needs skb->data to point to something */
1609                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1610                         e_err("pskb_may_pull failed.\n");
1611                         dev_kfree_skb_irq(skb);
1612                         goto next_desc;
1613                 }
1614
1615                 e1000_receive_skb(adapter, netdev, skb, staterr,
1616                                   rx_desc->wb.upper.vlan);
1617
1618 next_desc:
1619                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1620
1621                 /* return some buffers to hardware, one at a time is too slow */
1622                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1623                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1624                                               GFP_ATOMIC);
1625                         cleaned_count = 0;
1626                 }
1627
1628                 /* use prefetched values */
1629                 rx_desc = next_rxd;
1630                 buffer_info = next_buffer;
1631
1632                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1633         }
1634         rx_ring->next_to_clean = i;
1635
1636         cleaned_count = e1000_desc_unused(rx_ring);
1637         if (cleaned_count)
1638                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1639
1640         adapter->total_rx_bytes += total_rx_bytes;
1641         adapter->total_rx_packets += total_rx_packets;
1642         return cleaned;
1643 }
1644
1645 /**
1646  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1647  * @rx_ring: Rx descriptor ring
1648  **/
1649 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1650 {
1651         struct e1000_adapter *adapter = rx_ring->adapter;
1652         struct e1000_buffer *buffer_info;
1653         struct e1000_ps_page *ps_page;
1654         struct pci_dev *pdev = adapter->pdev;
1655         unsigned int i, j;
1656
1657         /* Free all the Rx ring sk_buffs */
1658         for (i = 0; i < rx_ring->count; i++) {
1659                 buffer_info = &rx_ring->buffer_info[i];
1660                 if (buffer_info->dma) {
1661                         if (adapter->clean_rx == e1000_clean_rx_irq)
1662                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1663                                                  adapter->rx_buffer_len,
1664                                                  DMA_FROM_DEVICE);
1665                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1666                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1667                                                PAGE_SIZE, DMA_FROM_DEVICE);
1668                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1669                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1670                                                  adapter->rx_ps_bsize0,
1671                                                  DMA_FROM_DEVICE);
1672                         buffer_info->dma = 0;
1673                 }
1674
1675                 if (buffer_info->page) {
1676                         put_page(buffer_info->page);
1677                         buffer_info->page = NULL;
1678                 }
1679
1680                 if (buffer_info->skb) {
1681                         dev_kfree_skb(buffer_info->skb);
1682                         buffer_info->skb = NULL;
1683                 }
1684
1685                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1686                         ps_page = &buffer_info->ps_pages[j];
1687                         if (!ps_page->page)
1688                                 break;
1689                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1690                                        DMA_FROM_DEVICE);
1691                         ps_page->dma = 0;
1692                         put_page(ps_page->page);
1693                         ps_page->page = NULL;
1694                 }
1695         }
1696
1697         /* there also may be some cached data from a chained receive */
1698         if (rx_ring->rx_skb_top) {
1699                 dev_kfree_skb(rx_ring->rx_skb_top);
1700                 rx_ring->rx_skb_top = NULL;
1701         }
1702
1703         /* Zero out the descriptor ring */
1704         memset(rx_ring->desc, 0, rx_ring->size);
1705
1706         rx_ring->next_to_clean = 0;
1707         rx_ring->next_to_use = 0;
1708         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1709
1710         writel(0, rx_ring->head);
1711         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1712                 e1000e_update_rdt_wa(rx_ring, 0);
1713         else
1714                 writel(0, rx_ring->tail);
1715 }
1716
1717 static void e1000e_downshift_workaround(struct work_struct *work)
1718 {
1719         struct e1000_adapter *adapter = container_of(work,
1720                                                      struct e1000_adapter,
1721                                                      downshift_task);
1722
1723         if (test_bit(__E1000_DOWN, &adapter->state))
1724                 return;
1725
1726         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1727 }
1728
1729 /**
1730  * e1000_intr_msi - Interrupt Handler
1731  * @irq: interrupt number
1732  * @data: pointer to a network interface device structure
1733  **/
1734 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1735 {
1736         struct net_device *netdev = data;
1737         struct e1000_adapter *adapter = netdev_priv(netdev);
1738         struct e1000_hw *hw = &adapter->hw;
1739         u32 icr = er32(ICR);
1740
1741         /* read ICR disables interrupts using IAM */
1742         if (icr & E1000_ICR_LSC) {
1743                 hw->mac.get_link_status = true;
1744                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1745                  * disconnect (LSC) before accessing any PHY registers
1746                  */
1747                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1748                     (!(er32(STATUS) & E1000_STATUS_LU)))
1749                         schedule_work(&adapter->downshift_task);
1750
1751                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1752                  * link down event; disable receives here in the ISR and reset
1753                  * adapter in watchdog
1754                  */
1755                 if (netif_carrier_ok(netdev) &&
1756                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1757                         /* disable receives */
1758                         u32 rctl = er32(RCTL);
1759
1760                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1761                         adapter->flags |= FLAG_RESTART_NOW;
1762                 }
1763                 /* guard against interrupt when we're going down */
1764                 if (!test_bit(__E1000_DOWN, &adapter->state))
1765                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1766         }
1767
1768         /* Reset on uncorrectable ECC error */
1769         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1770                 u32 pbeccsts = er32(PBECCSTS);
1771
1772                 adapter->corr_errors +=
1773                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1774                 adapter->uncorr_errors +=
1775                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1776                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1777
1778                 /* Do the reset outside of interrupt context */
1779                 schedule_work(&adapter->reset_task);
1780
1781                 /* return immediately since reset is imminent */
1782                 return IRQ_HANDLED;
1783         }
1784
1785         if (napi_schedule_prep(&adapter->napi)) {
1786                 adapter->total_tx_bytes = 0;
1787                 adapter->total_tx_packets = 0;
1788                 adapter->total_rx_bytes = 0;
1789                 adapter->total_rx_packets = 0;
1790                 __napi_schedule(&adapter->napi);
1791         }
1792
1793         return IRQ_HANDLED;
1794 }
1795
1796 /**
1797  * e1000_intr - Interrupt Handler
1798  * @irq: interrupt number
1799  * @data: pointer to a network interface device structure
1800  **/
1801 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1802 {
1803         struct net_device *netdev = data;
1804         struct e1000_adapter *adapter = netdev_priv(netdev);
1805         struct e1000_hw *hw = &adapter->hw;
1806         u32 rctl, icr = er32(ICR);
1807
1808         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1809                 return IRQ_NONE;        /* Not our interrupt */
1810
1811         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1812          * not set, then the adapter didn't send an interrupt
1813          */
1814         if (!(icr & E1000_ICR_INT_ASSERTED))
1815                 return IRQ_NONE;
1816
1817         /* Interrupt Auto-Mask...upon reading ICR,
1818          * interrupts are masked.  No need for the
1819          * IMC write
1820          */
1821
1822         if (icr & E1000_ICR_LSC) {
1823                 hw->mac.get_link_status = true;
1824                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1825                  * disconnect (LSC) before accessing any PHY registers
1826                  */
1827                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1828                     (!(er32(STATUS) & E1000_STATUS_LU)))
1829                         schedule_work(&adapter->downshift_task);
1830
1831                 /* 80003ES2LAN workaround--
1832                  * For packet buffer work-around on link down event;
1833                  * disable receives here in the ISR and
1834                  * reset adapter in watchdog
1835                  */
1836                 if (netif_carrier_ok(netdev) &&
1837                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1838                         /* disable receives */
1839                         rctl = er32(RCTL);
1840                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1841                         adapter->flags |= FLAG_RESTART_NOW;
1842                 }
1843                 /* guard against interrupt when we're going down */
1844                 if (!test_bit(__E1000_DOWN, &adapter->state))
1845                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1846         }
1847
1848         /* Reset on uncorrectable ECC error */
1849         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1850                 u32 pbeccsts = er32(PBECCSTS);
1851
1852                 adapter->corr_errors +=
1853                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1854                 adapter->uncorr_errors +=
1855                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1856                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1857
1858                 /* Do the reset outside of interrupt context */
1859                 schedule_work(&adapter->reset_task);
1860
1861                 /* return immediately since reset is imminent */
1862                 return IRQ_HANDLED;
1863         }
1864
1865         if (napi_schedule_prep(&adapter->napi)) {
1866                 adapter->total_tx_bytes = 0;
1867                 adapter->total_tx_packets = 0;
1868                 adapter->total_rx_bytes = 0;
1869                 adapter->total_rx_packets = 0;
1870                 __napi_schedule(&adapter->napi);
1871         }
1872
1873         return IRQ_HANDLED;
1874 }
1875
1876 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1877 {
1878         struct net_device *netdev = data;
1879         struct e1000_adapter *adapter = netdev_priv(netdev);
1880         struct e1000_hw *hw = &adapter->hw;
1881         u32 icr = er32(ICR);
1882
1883         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1884                 if (!test_bit(__E1000_DOWN, &adapter->state))
1885                         ew32(IMS, E1000_IMS_OTHER);
1886                 return IRQ_NONE;
1887         }
1888
1889         if (icr & adapter->eiac_mask)
1890                 ew32(ICS, (icr & adapter->eiac_mask));
1891
1892         if (icr & E1000_ICR_OTHER) {
1893                 if (!(icr & E1000_ICR_LSC))
1894                         goto no_link_interrupt;
1895                 hw->mac.get_link_status = true;
1896                 /* guard against interrupt when we're going down */
1897                 if (!test_bit(__E1000_DOWN, &adapter->state))
1898                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1899         }
1900
1901 no_link_interrupt:
1902         if (!test_bit(__E1000_DOWN, &adapter->state))
1903                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1904
1905         return IRQ_HANDLED;
1906 }
1907
1908 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1909 {
1910         struct net_device *netdev = data;
1911         struct e1000_adapter *adapter = netdev_priv(netdev);
1912         struct e1000_hw *hw = &adapter->hw;
1913         struct e1000_ring *tx_ring = adapter->tx_ring;
1914
1915         adapter->total_tx_bytes = 0;
1916         adapter->total_tx_packets = 0;
1917
1918         if (!e1000_clean_tx_irq(tx_ring))
1919                 /* Ring was not completely cleaned, so fire another interrupt */
1920                 ew32(ICS, tx_ring->ims_val);
1921
1922         return IRQ_HANDLED;
1923 }
1924
1925 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1926 {
1927         struct net_device *netdev = data;
1928         struct e1000_adapter *adapter = netdev_priv(netdev);
1929         struct e1000_ring *rx_ring = adapter->rx_ring;
1930
1931         /* Write the ITR value calculated at the end of the
1932          * previous interrupt.
1933          */
1934         if (rx_ring->set_itr) {
1935                 writel(1000000000 / (rx_ring->itr_val * 256),
1936                        rx_ring->itr_register);
1937                 rx_ring->set_itr = 0;
1938         }
1939
1940         if (napi_schedule_prep(&adapter->napi)) {
1941                 adapter->total_rx_bytes = 0;
1942                 adapter->total_rx_packets = 0;
1943                 __napi_schedule(&adapter->napi);
1944         }
1945         return IRQ_HANDLED;
1946 }
1947
1948 /**
1949  * e1000_configure_msix - Configure MSI-X hardware
1950  *
1951  * e1000_configure_msix sets up the hardware to properly
1952  * generate MSI-X interrupts.
1953  **/
1954 static void e1000_configure_msix(struct e1000_adapter *adapter)
1955 {
1956         struct e1000_hw *hw = &adapter->hw;
1957         struct e1000_ring *rx_ring = adapter->rx_ring;
1958         struct e1000_ring *tx_ring = adapter->tx_ring;
1959         int vector = 0;
1960         u32 ctrl_ext, ivar = 0;
1961
1962         adapter->eiac_mask = 0;
1963
1964         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1965         if (hw->mac.type == e1000_82574) {
1966                 u32 rfctl = er32(RFCTL);
1967
1968                 rfctl |= E1000_RFCTL_ACK_DIS;
1969                 ew32(RFCTL, rfctl);
1970         }
1971
1972         /* Configure Rx vector */
1973         rx_ring->ims_val = E1000_IMS_RXQ0;
1974         adapter->eiac_mask |= rx_ring->ims_val;
1975         if (rx_ring->itr_val)
1976                 writel(1000000000 / (rx_ring->itr_val * 256),
1977                        rx_ring->itr_register);
1978         else
1979                 writel(1, rx_ring->itr_register);
1980         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1981
1982         /* Configure Tx vector */
1983         tx_ring->ims_val = E1000_IMS_TXQ0;
1984         vector++;
1985         if (tx_ring->itr_val)
1986                 writel(1000000000 / (tx_ring->itr_val * 256),
1987                        tx_ring->itr_register);
1988         else
1989                 writel(1, tx_ring->itr_register);
1990         adapter->eiac_mask |= tx_ring->ims_val;
1991         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1992
1993         /* set vector for Other Causes, e.g. link changes */
1994         vector++;
1995         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1996         if (rx_ring->itr_val)
1997                 writel(1000000000 / (rx_ring->itr_val * 256),
1998                        hw->hw_addr + E1000_EITR_82574(vector));
1999         else
2000                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2001
2002         /* Cause Tx interrupts on every write back */
2003         ivar |= (1 << 31);
2004
2005         ew32(IVAR, ivar);
2006
2007         /* enable MSI-X PBA support */
2008         ctrl_ext = er32(CTRL_EXT);
2009         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2010
2011         /* Auto-Mask Other interrupts upon ICR read */
2012         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2013         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2014         ew32(CTRL_EXT, ctrl_ext);
2015         e1e_flush();
2016 }
2017
2018 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2019 {
2020         if (adapter->msix_entries) {
2021                 pci_disable_msix(adapter->pdev);
2022                 kfree(adapter->msix_entries);
2023                 adapter->msix_entries = NULL;
2024         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2025                 pci_disable_msi(adapter->pdev);
2026                 adapter->flags &= ~FLAG_MSI_ENABLED;
2027         }
2028 }
2029
2030 /**
2031  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2032  *
2033  * Attempt to configure interrupts using the best available
2034  * capabilities of the hardware and kernel.
2035  **/
2036 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2037 {
2038         int err;
2039         int i;
2040
2041         switch (adapter->int_mode) {
2042         case E1000E_INT_MODE_MSIX:
2043                 if (adapter->flags & FLAG_HAS_MSIX) {
2044                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2045                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2046                                                         sizeof(struct
2047                                                                msix_entry),
2048                                                         GFP_KERNEL);
2049                         if (adapter->msix_entries) {
2050                                 struct e1000_adapter *a = adapter;
2051
2052                                 for (i = 0; i < adapter->num_vectors; i++)
2053                                         adapter->msix_entries[i].entry = i;
2054
2055                                 err = pci_enable_msix_range(a->pdev,
2056                                                             a->msix_entries,
2057                                                             a->num_vectors,
2058                                                             a->num_vectors);
2059                                 if (err > 0)
2060                                         return;
2061                         }
2062                         /* MSI-X failed, so fall through and try MSI */
2063                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2064                         e1000e_reset_interrupt_capability(adapter);
2065                 }
2066                 adapter->int_mode = E1000E_INT_MODE_MSI;
2067                 /* Fall through */
2068         case E1000E_INT_MODE_MSI:
2069                 if (!pci_enable_msi(adapter->pdev)) {
2070                         adapter->flags |= FLAG_MSI_ENABLED;
2071                 } else {
2072                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2073                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2074                 }
2075                 /* Fall through */
2076         case E1000E_INT_MODE_LEGACY:
2077                 /* Don't do anything; this is the system default */
2078                 break;
2079         }
2080
2081         /* store the number of vectors being used */
2082         adapter->num_vectors = 1;
2083 }
2084
2085 /**
2086  * e1000_request_msix - Initialize MSI-X interrupts
2087  *
2088  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2089  * kernel.
2090  **/
2091 static int e1000_request_msix(struct e1000_adapter *adapter)
2092 {
2093         struct net_device *netdev = adapter->netdev;
2094         int err = 0, vector = 0;
2095
2096         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2097                 snprintf(adapter->rx_ring->name,
2098                          sizeof(adapter->rx_ring->name) - 1,
2099                          "%s-rx-0", netdev->name);
2100         else
2101                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2102         err = request_irq(adapter->msix_entries[vector].vector,
2103                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2104                           netdev);
2105         if (err)
2106                 return err;
2107         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2108             E1000_EITR_82574(vector);
2109         adapter->rx_ring->itr_val = adapter->itr;
2110         vector++;
2111
2112         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2113                 snprintf(adapter->tx_ring->name,
2114                          sizeof(adapter->tx_ring->name) - 1,
2115                          "%s-tx-0", netdev->name);
2116         else
2117                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2118         err = request_irq(adapter->msix_entries[vector].vector,
2119                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2120                           netdev);
2121         if (err)
2122                 return err;
2123         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2124             E1000_EITR_82574(vector);
2125         adapter->tx_ring->itr_val = adapter->itr;
2126         vector++;
2127
2128         err = request_irq(adapter->msix_entries[vector].vector,
2129                           e1000_msix_other, 0, netdev->name, netdev);
2130         if (err)
2131                 return err;
2132
2133         e1000_configure_msix(adapter);
2134
2135         return 0;
2136 }
2137
2138 /**
2139  * e1000_request_irq - initialize interrupts
2140  *
2141  * Attempts to configure interrupts using the best available
2142  * capabilities of the hardware and kernel.
2143  **/
2144 static int e1000_request_irq(struct e1000_adapter *adapter)
2145 {
2146         struct net_device *netdev = adapter->netdev;
2147         int err;
2148
2149         if (adapter->msix_entries) {
2150                 err = e1000_request_msix(adapter);
2151                 if (!err)
2152                         return err;
2153                 /* fall back to MSI */
2154                 e1000e_reset_interrupt_capability(adapter);
2155                 adapter->int_mode = E1000E_INT_MODE_MSI;
2156                 e1000e_set_interrupt_capability(adapter);
2157         }
2158         if (adapter->flags & FLAG_MSI_ENABLED) {
2159                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2160                                   netdev->name, netdev);
2161                 if (!err)
2162                         return err;
2163
2164                 /* fall back to legacy interrupt */
2165                 e1000e_reset_interrupt_capability(adapter);
2166                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2167         }
2168
2169         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2170                           netdev->name, netdev);
2171         if (err)
2172                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2173
2174         return err;
2175 }
2176
2177 static void e1000_free_irq(struct e1000_adapter *adapter)
2178 {
2179         struct net_device *netdev = adapter->netdev;
2180
2181         if (adapter->msix_entries) {
2182                 int vector = 0;
2183
2184                 free_irq(adapter->msix_entries[vector].vector, netdev);
2185                 vector++;
2186
2187                 free_irq(adapter->msix_entries[vector].vector, netdev);
2188                 vector++;
2189
2190                 /* Other Causes interrupt vector */
2191                 free_irq(adapter->msix_entries[vector].vector, netdev);
2192                 return;
2193         }
2194
2195         free_irq(adapter->pdev->irq, netdev);
2196 }
2197
2198 /**
2199  * e1000_irq_disable - Mask off interrupt generation on the NIC
2200  **/
2201 static void e1000_irq_disable(struct e1000_adapter *adapter)
2202 {
2203         struct e1000_hw *hw = &adapter->hw;
2204
2205         ew32(IMC, ~0);
2206         if (adapter->msix_entries)
2207                 ew32(EIAC_82574, 0);
2208         e1e_flush();
2209
2210         if (adapter->msix_entries) {
2211                 int i;
2212
2213                 for (i = 0; i < adapter->num_vectors; i++)
2214                         synchronize_irq(adapter->msix_entries[i].vector);
2215         } else {
2216                 synchronize_irq(adapter->pdev->irq);
2217         }
2218 }
2219
2220 /**
2221  * e1000_irq_enable - Enable default interrupt generation settings
2222  **/
2223 static void e1000_irq_enable(struct e1000_adapter *adapter)
2224 {
2225         struct e1000_hw *hw = &adapter->hw;
2226
2227         if (adapter->msix_entries) {
2228                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2229                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2230         } else if (hw->mac.type == e1000_pch_lpt) {
2231                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2232         } else {
2233                 ew32(IMS, IMS_ENABLE_MASK);
2234         }
2235         e1e_flush();
2236 }
2237
2238 /**
2239  * e1000e_get_hw_control - get control of the h/w from f/w
2240  * @adapter: address of board private structure
2241  *
2242  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2243  * For ASF and Pass Through versions of f/w this means that
2244  * the driver is loaded. For AMT version (only with 82573)
2245  * of the f/w this means that the network i/f is open.
2246  **/
2247 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2248 {
2249         struct e1000_hw *hw = &adapter->hw;
2250         u32 ctrl_ext;
2251         u32 swsm;
2252
2253         /* Let firmware know the driver has taken over */
2254         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2255                 swsm = er32(SWSM);
2256                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2257         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2258                 ctrl_ext = er32(CTRL_EXT);
2259                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2260         }
2261 }
2262
2263 /**
2264  * e1000e_release_hw_control - release control of the h/w to f/w
2265  * @adapter: address of board private structure
2266  *
2267  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2268  * For ASF and Pass Through versions of f/w this means that the
2269  * driver is no longer loaded. For AMT version (only with 82573) i
2270  * of the f/w this means that the network i/f is closed.
2271  *
2272  **/
2273 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2274 {
2275         struct e1000_hw *hw = &adapter->hw;
2276         u32 ctrl_ext;
2277         u32 swsm;
2278
2279         /* Let firmware taken over control of h/w */
2280         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2281                 swsm = er32(SWSM);
2282                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2283         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2284                 ctrl_ext = er32(CTRL_EXT);
2285                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2286         }
2287 }
2288
2289 /**
2290  * e1000_alloc_ring_dma - allocate memory for a ring structure
2291  **/
2292 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2293                                 struct e1000_ring *ring)
2294 {
2295         struct pci_dev *pdev = adapter->pdev;
2296
2297         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2298                                         GFP_KERNEL);
2299         if (!ring->desc)
2300                 return -ENOMEM;
2301
2302         return 0;
2303 }
2304
2305 /**
2306  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2307  * @tx_ring: Tx descriptor ring
2308  *
2309  * Return 0 on success, negative on failure
2310  **/
2311 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2312 {
2313         struct e1000_adapter *adapter = tx_ring->adapter;
2314         int err = -ENOMEM, size;
2315
2316         size = sizeof(struct e1000_buffer) * tx_ring->count;
2317         tx_ring->buffer_info = vzalloc(size);
2318         if (!tx_ring->buffer_info)
2319                 goto err;
2320
2321         /* round up to nearest 4K */
2322         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2323         tx_ring->size = ALIGN(tx_ring->size, 4096);
2324
2325         err = e1000_alloc_ring_dma(adapter, tx_ring);
2326         if (err)
2327                 goto err;
2328
2329         tx_ring->next_to_use = 0;
2330         tx_ring->next_to_clean = 0;
2331
2332         return 0;
2333 err:
2334         vfree(tx_ring->buffer_info);
2335         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2336         return err;
2337 }
2338
2339 /**
2340  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2341  * @rx_ring: Rx descriptor ring
2342  *
2343  * Returns 0 on success, negative on failure
2344  **/
2345 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2346 {
2347         struct e1000_adapter *adapter = rx_ring->adapter;
2348         struct e1000_buffer *buffer_info;
2349         int i, size, desc_len, err = -ENOMEM;
2350
2351         size = sizeof(struct e1000_buffer) * rx_ring->count;
2352         rx_ring->buffer_info = vzalloc(size);
2353         if (!rx_ring->buffer_info)
2354                 goto err;
2355
2356         for (i = 0; i < rx_ring->count; i++) {
2357                 buffer_info = &rx_ring->buffer_info[i];
2358                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2359                                                 sizeof(struct e1000_ps_page),
2360                                                 GFP_KERNEL);
2361                 if (!buffer_info->ps_pages)
2362                         goto err_pages;
2363         }
2364
2365         desc_len = sizeof(union e1000_rx_desc_packet_split);
2366
2367         /* Round up to nearest 4K */
2368         rx_ring->size = rx_ring->count * desc_len;
2369         rx_ring->size = ALIGN(rx_ring->size, 4096);
2370
2371         err = e1000_alloc_ring_dma(adapter, rx_ring);
2372         if (err)
2373                 goto err_pages;
2374
2375         rx_ring->next_to_clean = 0;
2376         rx_ring->next_to_use = 0;
2377         rx_ring->rx_skb_top = NULL;
2378
2379         return 0;
2380
2381 err_pages:
2382         for (i = 0; i < rx_ring->count; i++) {
2383                 buffer_info = &rx_ring->buffer_info[i];
2384                 kfree(buffer_info->ps_pages);
2385         }
2386 err:
2387         vfree(rx_ring->buffer_info);
2388         e_err("Unable to allocate memory for the receive descriptor ring\n");
2389         return err;
2390 }
2391
2392 /**
2393  * e1000_clean_tx_ring - Free Tx Buffers
2394  * @tx_ring: Tx descriptor ring
2395  **/
2396 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2397 {
2398         struct e1000_adapter *adapter = tx_ring->adapter;
2399         struct e1000_buffer *buffer_info;
2400         unsigned long size;
2401         unsigned int i;
2402
2403         for (i = 0; i < tx_ring->count; i++) {
2404                 buffer_info = &tx_ring->buffer_info[i];
2405                 e1000_put_txbuf(tx_ring, buffer_info);
2406         }
2407
2408         netdev_reset_queue(adapter->netdev);
2409         size = sizeof(struct e1000_buffer) * tx_ring->count;
2410         memset(tx_ring->buffer_info, 0, size);
2411
2412         memset(tx_ring->desc, 0, tx_ring->size);
2413
2414         tx_ring->next_to_use = 0;
2415         tx_ring->next_to_clean = 0;
2416
2417         writel(0, tx_ring->head);
2418         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2419                 e1000e_update_tdt_wa(tx_ring, 0);
2420         else
2421                 writel(0, tx_ring->tail);
2422 }
2423
2424 /**
2425  * e1000e_free_tx_resources - Free Tx Resources per Queue
2426  * @tx_ring: Tx descriptor ring
2427  *
2428  * Free all transmit software resources
2429  **/
2430 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2431 {
2432         struct e1000_adapter *adapter = tx_ring->adapter;
2433         struct pci_dev *pdev = adapter->pdev;
2434
2435         e1000_clean_tx_ring(tx_ring);
2436
2437         vfree(tx_ring->buffer_info);
2438         tx_ring->buffer_info = NULL;
2439
2440         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2441                           tx_ring->dma);
2442         tx_ring->desc = NULL;
2443 }
2444
2445 /**
2446  * e1000e_free_rx_resources - Free Rx Resources
2447  * @rx_ring: Rx descriptor ring
2448  *
2449  * Free all receive software resources
2450  **/
2451 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2452 {
2453         struct e1000_adapter *adapter = rx_ring->adapter;
2454         struct pci_dev *pdev = adapter->pdev;
2455         int i;
2456
2457         e1000_clean_rx_ring(rx_ring);
2458
2459         for (i = 0; i < rx_ring->count; i++)
2460                 kfree(rx_ring->buffer_info[i].ps_pages);
2461
2462         vfree(rx_ring->buffer_info);
2463         rx_ring->buffer_info = NULL;
2464
2465         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2466                           rx_ring->dma);
2467         rx_ring->desc = NULL;
2468 }
2469
2470 /**
2471  * e1000_update_itr - update the dynamic ITR value based on statistics
2472  * @adapter: pointer to adapter
2473  * @itr_setting: current adapter->itr
2474  * @packets: the number of packets during this measurement interval
2475  * @bytes: the number of bytes during this measurement interval
2476  *
2477  *      Stores a new ITR value based on packets and byte
2478  *      counts during the last interrupt.  The advantage of per interrupt
2479  *      computation is faster updates and more accurate ITR for the current
2480  *      traffic pattern.  Constants in this function were computed
2481  *      based on theoretical maximum wire speed and thresholds were set based
2482  *      on testing data as well as attempting to minimize response time
2483  *      while increasing bulk throughput.  This functionality is controlled
2484  *      by the InterruptThrottleRate module parameter.
2485  **/
2486 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2487 {
2488         unsigned int retval = itr_setting;
2489
2490         if (packets == 0)
2491                 return itr_setting;
2492
2493         switch (itr_setting) {
2494         case lowest_latency:
2495                 /* handle TSO and jumbo frames */
2496                 if (bytes / packets > 8000)
2497                         retval = bulk_latency;
2498                 else if ((packets < 5) && (bytes > 512))
2499                         retval = low_latency;
2500                 break;
2501         case low_latency:       /* 50 usec aka 20000 ints/s */
2502                 if (bytes > 10000) {
2503                         /* this if handles the TSO accounting */
2504                         if (bytes / packets > 8000)
2505                                 retval = bulk_latency;
2506                         else if ((packets < 10) || ((bytes / packets) > 1200))
2507                                 retval = bulk_latency;
2508                         else if ((packets > 35))
2509                                 retval = lowest_latency;
2510                 } else if (bytes / packets > 2000) {
2511                         retval = bulk_latency;
2512                 } else if (packets <= 2 && bytes < 512) {
2513                         retval = lowest_latency;
2514                 }
2515                 break;
2516         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2517                 if (bytes > 25000) {
2518                         if (packets > 35)
2519                                 retval = low_latency;
2520                 } else if (bytes < 6000) {
2521                         retval = low_latency;
2522                 }
2523                 break;
2524         }
2525
2526         return retval;
2527 }
2528
2529 static void e1000_set_itr(struct e1000_adapter *adapter)
2530 {
2531         u16 current_itr;
2532         u32 new_itr = adapter->itr;
2533
2534         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2535         if (adapter->link_speed != SPEED_1000) {
2536                 current_itr = 0;
2537                 new_itr = 4000;
2538                 goto set_itr_now;
2539         }
2540
2541         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2542                 new_itr = 0;
2543                 goto set_itr_now;
2544         }
2545
2546         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2547                                            adapter->total_tx_packets,
2548                                            adapter->total_tx_bytes);
2549         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2550         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2551                 adapter->tx_itr = low_latency;
2552
2553         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2554                                            adapter->total_rx_packets,
2555                                            adapter->total_rx_bytes);
2556         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2557         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2558                 adapter->rx_itr = low_latency;
2559
2560         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2561
2562         /* counts and packets in update_itr are dependent on these numbers */
2563         switch (current_itr) {
2564         case lowest_latency:
2565                 new_itr = 70000;
2566                 break;
2567         case low_latency:
2568                 new_itr = 20000;        /* aka hwitr = ~200 */
2569                 break;
2570         case bulk_latency:
2571                 new_itr = 4000;
2572                 break;
2573         default:
2574                 break;
2575         }
2576
2577 set_itr_now:
2578         if (new_itr != adapter->itr) {
2579                 /* this attempts to bias the interrupt rate towards Bulk
2580                  * by adding intermediate steps when interrupt rate is
2581                  * increasing
2582                  */
2583                 new_itr = new_itr > adapter->itr ?
2584                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2585                 adapter->itr = new_itr;
2586                 adapter->rx_ring->itr_val = new_itr;
2587                 if (adapter->msix_entries)
2588                         adapter->rx_ring->set_itr = 1;
2589                 else
2590                         e1000e_write_itr(adapter, new_itr);
2591         }
2592 }
2593
2594 /**
2595  * e1000e_write_itr - write the ITR value to the appropriate registers
2596  * @adapter: address of board private structure
2597  * @itr: new ITR value to program
2598  *
2599  * e1000e_write_itr determines if the adapter is in MSI-X mode
2600  * and, if so, writes the EITR registers with the ITR value.
2601  * Otherwise, it writes the ITR value into the ITR register.
2602  **/
2603 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2604 {
2605         struct e1000_hw *hw = &adapter->hw;
2606         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2607
2608         if (adapter->msix_entries) {
2609                 int vector;
2610
2611                 for (vector = 0; vector < adapter->num_vectors; vector++)
2612                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2613         } else {
2614                 ew32(ITR, new_itr);
2615         }
2616 }
2617
2618 /**
2619  * e1000_alloc_queues - Allocate memory for all rings
2620  * @adapter: board private structure to initialize
2621  **/
2622 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2623 {
2624         int size = sizeof(struct e1000_ring);
2625
2626         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2627         if (!adapter->tx_ring)
2628                 goto err;
2629         adapter->tx_ring->count = adapter->tx_ring_count;
2630         adapter->tx_ring->adapter = adapter;
2631
2632         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2633         if (!adapter->rx_ring)
2634                 goto err;
2635         adapter->rx_ring->count = adapter->rx_ring_count;
2636         adapter->rx_ring->adapter = adapter;
2637
2638         return 0;
2639 err:
2640         e_err("Unable to allocate memory for queues\n");
2641         kfree(adapter->rx_ring);
2642         kfree(adapter->tx_ring);
2643         return -ENOMEM;
2644 }
2645
2646 /**
2647  * e1000e_poll - NAPI Rx polling callback
2648  * @napi: struct associated with this polling callback
2649  * @weight: number of packets driver is allowed to process this poll
2650  **/
2651 static int e1000e_poll(struct napi_struct *napi, int weight)
2652 {
2653         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2654                                                      napi);
2655         struct e1000_hw *hw = &adapter->hw;
2656         struct net_device *poll_dev = adapter->netdev;
2657         int tx_cleaned = 1, work_done = 0;
2658
2659         adapter = netdev_priv(poll_dev);
2660
2661         if (!adapter->msix_entries ||
2662             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2663                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2664
2665         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2666
2667         if (!tx_cleaned)
2668                 work_done = weight;
2669
2670         /* If weight not fully consumed, exit the polling mode */
2671         if (work_done < weight) {
2672                 if (adapter->itr_setting & 3)
2673                         e1000_set_itr(adapter);
2674                 napi_complete(napi);
2675                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2676                         if (adapter->msix_entries)
2677                                 ew32(IMS, adapter->rx_ring->ims_val);
2678                         else
2679                                 e1000_irq_enable(adapter);
2680                 }
2681         }
2682
2683         return work_done;
2684 }
2685
2686 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2687                                  __always_unused __be16 proto, u16 vid)
2688 {
2689         struct e1000_adapter *adapter = netdev_priv(netdev);
2690         struct e1000_hw *hw = &adapter->hw;
2691         u32 vfta, index;
2692
2693         /* don't update vlan cookie if already programmed */
2694         if ((adapter->hw.mng_cookie.status &
2695              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2696             (vid == adapter->mng_vlan_id))
2697                 return 0;
2698
2699         /* add VID to filter table */
2700         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2701                 index = (vid >> 5) & 0x7F;
2702                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2703                 vfta |= (1 << (vid & 0x1F));
2704                 hw->mac.ops.write_vfta(hw, index, vfta);
2705         }
2706
2707         set_bit(vid, adapter->active_vlans);
2708
2709         return 0;
2710 }
2711
2712 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2713                                   __always_unused __be16 proto, u16 vid)
2714 {
2715         struct e1000_adapter *adapter = netdev_priv(netdev);
2716         struct e1000_hw *hw = &adapter->hw;
2717         u32 vfta, index;
2718
2719         if ((adapter->hw.mng_cookie.status &
2720              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2721             (vid == adapter->mng_vlan_id)) {
2722                 /* release control to f/w */
2723                 e1000e_release_hw_control(adapter);
2724                 return 0;
2725         }
2726
2727         /* remove VID from filter table */
2728         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2729                 index = (vid >> 5) & 0x7F;
2730                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2731                 vfta &= ~(1 << (vid & 0x1F));
2732                 hw->mac.ops.write_vfta(hw, index, vfta);
2733         }
2734
2735         clear_bit(vid, adapter->active_vlans);
2736
2737         return 0;
2738 }
2739
2740 /**
2741  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2742  * @adapter: board private structure to initialize
2743  **/
2744 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2745 {
2746         struct net_device *netdev = adapter->netdev;
2747         struct e1000_hw *hw = &adapter->hw;
2748         u32 rctl;
2749
2750         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2751                 /* disable VLAN receive filtering */
2752                 rctl = er32(RCTL);
2753                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2754                 ew32(RCTL, rctl);
2755
2756                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2757                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2758                                                adapter->mng_vlan_id);
2759                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2760                 }
2761         }
2762 }
2763
2764 /**
2765  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2766  * @adapter: board private structure to initialize
2767  **/
2768 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2769 {
2770         struct e1000_hw *hw = &adapter->hw;
2771         u32 rctl;
2772
2773         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2774                 /* enable VLAN receive filtering */
2775                 rctl = er32(RCTL);
2776                 rctl |= E1000_RCTL_VFE;
2777                 rctl &= ~E1000_RCTL_CFIEN;
2778                 ew32(RCTL, rctl);
2779         }
2780 }
2781
2782 /**
2783  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2784  * @adapter: board private structure to initialize
2785  **/
2786 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2787 {
2788         struct e1000_hw *hw = &adapter->hw;
2789         u32 ctrl;
2790
2791         /* disable VLAN tag insert/strip */
2792         ctrl = er32(CTRL);
2793         ctrl &= ~E1000_CTRL_VME;
2794         ew32(CTRL, ctrl);
2795 }
2796
2797 /**
2798  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2799  * @adapter: board private structure to initialize
2800  **/
2801 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2802 {
2803         struct e1000_hw *hw = &adapter->hw;
2804         u32 ctrl;
2805
2806         /* enable VLAN tag insert/strip */
2807         ctrl = er32(CTRL);
2808         ctrl |= E1000_CTRL_VME;
2809         ew32(CTRL, ctrl);
2810 }
2811
2812 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2813 {
2814         struct net_device *netdev = adapter->netdev;
2815         u16 vid = adapter->hw.mng_cookie.vlan_id;
2816         u16 old_vid = adapter->mng_vlan_id;
2817
2818         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2819                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2820                 adapter->mng_vlan_id = vid;
2821         }
2822
2823         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2824                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2825 }
2826
2827 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2828 {
2829         u16 vid;
2830
2831         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2832
2833         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2834             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2835 }
2836
2837 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2838 {
2839         struct e1000_hw *hw = &adapter->hw;
2840         u32 manc, manc2h, mdef, i, j;
2841
2842         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2843                 return;
2844
2845         manc = er32(MANC);
2846
2847         /* enable receiving management packets to the host. this will probably
2848          * generate destination unreachable messages from the host OS, but
2849          * the packets will be handled on SMBUS
2850          */
2851         manc |= E1000_MANC_EN_MNG2HOST;
2852         manc2h = er32(MANC2H);
2853
2854         switch (hw->mac.type) {
2855         default:
2856                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2857                 break;
2858         case e1000_82574:
2859         case e1000_82583:
2860                 /* Check if IPMI pass-through decision filter already exists;
2861                  * if so, enable it.
2862                  */
2863                 for (i = 0, j = 0; i < 8; i++) {
2864                         mdef = er32(MDEF(i));
2865
2866                         /* Ignore filters with anything other than IPMI ports */
2867                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2868                                 continue;
2869
2870                         /* Enable this decision filter in MANC2H */
2871                         if (mdef)
2872                                 manc2h |= (1 << i);
2873
2874                         j |= mdef;
2875                 }
2876
2877                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2878                         break;
2879
2880                 /* Create new decision filter in an empty filter */
2881                 for (i = 0, j = 0; i < 8; i++)
2882                         if (er32(MDEF(i)) == 0) {
2883                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2884                                                E1000_MDEF_PORT_664));
2885                                 manc2h |= (1 << 1);
2886                                 j++;
2887                                 break;
2888                         }
2889
2890                 if (!j)
2891                         e_warn("Unable to create IPMI pass-through filter\n");
2892                 break;
2893         }
2894
2895         ew32(MANC2H, manc2h);
2896         ew32(MANC, manc);
2897 }
2898
2899 /**
2900  * e1000_configure_tx - Configure Transmit Unit after Reset
2901  * @adapter: board private structure
2902  *
2903  * Configure the Tx unit of the MAC after a reset.
2904  **/
2905 static void e1000_configure_tx(struct e1000_adapter *adapter)
2906 {
2907         struct e1000_hw *hw = &adapter->hw;
2908         struct e1000_ring *tx_ring = adapter->tx_ring;
2909         u64 tdba;
2910         u32 tdlen, tctl, tarc;
2911
2912         /* Setup the HW Tx Head and Tail descriptor pointers */
2913         tdba = tx_ring->dma;
2914         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2915         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2916         ew32(TDBAH(0), (tdba >> 32));
2917         ew32(TDLEN(0), tdlen);
2918         ew32(TDH(0), 0);
2919         ew32(TDT(0), 0);
2920         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2921         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2922
2923         /* Set the Tx Interrupt Delay register */
2924         ew32(TIDV, adapter->tx_int_delay);
2925         /* Tx irq moderation */
2926         ew32(TADV, adapter->tx_abs_int_delay);
2927
2928         if (adapter->flags2 & FLAG2_DMA_BURST) {
2929                 u32 txdctl = er32(TXDCTL(0));
2930
2931                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2932                             E1000_TXDCTL_WTHRESH);
2933                 /* set up some performance related parameters to encourage the
2934                  * hardware to use the bus more efficiently in bursts, depends
2935                  * on the tx_int_delay to be enabled,
2936                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2937                  * hthresh = 1 ==> prefetch when one or more available
2938                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2939                  * BEWARE: this seems to work but should be considered first if
2940                  * there are Tx hangs or other Tx related bugs
2941                  */
2942                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2943                 ew32(TXDCTL(0), txdctl);
2944         }
2945         /* erratum work around: set txdctl the same for both queues */
2946         ew32(TXDCTL(1), er32(TXDCTL(0)));
2947
2948         /* Program the Transmit Control Register */
2949         tctl = er32(TCTL);
2950         tctl &= ~E1000_TCTL_CT;
2951         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2952                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2953
2954         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2955                 tarc = er32(TARC(0));
2956                 /* set the speed mode bit, we'll clear it if we're not at
2957                  * gigabit link later
2958                  */
2959 #define SPEED_MODE_BIT (1 << 21)
2960                 tarc |= SPEED_MODE_BIT;
2961                 ew32(TARC(0), tarc);
2962         }
2963
2964         /* errata: program both queues to unweighted RR */
2965         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2966                 tarc = er32(TARC(0));
2967                 tarc |= 1;
2968                 ew32(TARC(0), tarc);
2969                 tarc = er32(TARC(1));
2970                 tarc |= 1;
2971                 ew32(TARC(1), tarc);
2972         }
2973
2974         /* Setup Transmit Descriptor Settings for eop descriptor */
2975         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2976
2977         /* only set IDE if we are delaying interrupts using the timers */
2978         if (adapter->tx_int_delay)
2979                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2980
2981         /* enable Report Status bit */
2982         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2983
2984         ew32(TCTL, tctl);
2985
2986         hw->mac.ops.config_collision_dist(hw);
2987 }
2988
2989 /**
2990  * e1000_setup_rctl - configure the receive control registers
2991  * @adapter: Board private structure
2992  **/
2993 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2994                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2995 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2996 {
2997         struct e1000_hw *hw = &adapter->hw;
2998         u32 rctl, rfctl;
2999         u32 pages = 0;
3000
3001         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3002          * If jumbo frames not set, program related MAC/PHY registers
3003          * to h/w defaults
3004          */
3005         if (hw->mac.type >= e1000_pch2lan) {
3006                 s32 ret_val;
3007
3008                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3009                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3010                 else
3011                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3012
3013                 if (ret_val)
3014                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3015         }
3016
3017         /* Program MC offset vector base */
3018         rctl = er32(RCTL);
3019         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3020         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3021             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3022             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3023
3024         /* Do not Store bad packets */
3025         rctl &= ~E1000_RCTL_SBP;
3026
3027         /* Enable Long Packet receive */
3028         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3029                 rctl &= ~E1000_RCTL_LPE;
3030         else
3031                 rctl |= E1000_RCTL_LPE;
3032
3033         /* Some systems expect that the CRC is included in SMBUS traffic. The
3034          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3035          * host memory when this is enabled
3036          */
3037         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3038                 rctl |= E1000_RCTL_SECRC;
3039
3040         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3041         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3042                 u16 phy_data;
3043
3044                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3045                 phy_data &= 0xfff8;
3046                 phy_data |= (1 << 2);
3047                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3048
3049                 e1e_rphy(hw, 22, &phy_data);
3050                 phy_data &= 0x0fff;
3051                 phy_data |= (1 << 14);
3052                 e1e_wphy(hw, 0x10, 0x2823);
3053                 e1e_wphy(hw, 0x11, 0x0003);
3054                 e1e_wphy(hw, 22, phy_data);
3055         }
3056
3057         /* Setup buffer sizes */
3058         rctl &= ~E1000_RCTL_SZ_4096;
3059         rctl |= E1000_RCTL_BSEX;
3060         switch (adapter->rx_buffer_len) {
3061         case 2048:
3062         default:
3063                 rctl |= E1000_RCTL_SZ_2048;
3064                 rctl &= ~E1000_RCTL_BSEX;
3065                 break;
3066         case 4096:
3067                 rctl |= E1000_RCTL_SZ_4096;
3068                 break;
3069         case 8192:
3070                 rctl |= E1000_RCTL_SZ_8192;
3071                 break;
3072         case 16384:
3073                 rctl |= E1000_RCTL_SZ_16384;
3074                 break;
3075         }
3076
3077         /* Enable Extended Status in all Receive Descriptors */
3078         rfctl = er32(RFCTL);
3079         rfctl |= E1000_RFCTL_EXTEN;
3080         ew32(RFCTL, rfctl);
3081
3082         /* 82571 and greater support packet-split where the protocol
3083          * header is placed in skb->data and the packet data is
3084          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3085          * In the case of a non-split, skb->data is linearly filled,
3086          * followed by the page buffers.  Therefore, skb->data is
3087          * sized to hold the largest protocol header.
3088          *
3089          * allocations using alloc_page take too long for regular MTU
3090          * so only enable packet split for jumbo frames
3091          *
3092          * Using pages when the page size is greater than 16k wastes
3093          * a lot of memory, since we allocate 3 pages at all times
3094          * per packet.
3095          */
3096         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3097         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3098                 adapter->rx_ps_pages = pages;
3099         else
3100                 adapter->rx_ps_pages = 0;
3101
3102         if (adapter->rx_ps_pages) {
3103                 u32 psrctl = 0;
3104
3105                 /* Enable Packet split descriptors */
3106                 rctl |= E1000_RCTL_DTYP_PS;
3107
3108                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3109
3110                 switch (adapter->rx_ps_pages) {
3111                 case 3:
3112                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3113                         /* fall-through */
3114                 case 2:
3115                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3116                         /* fall-through */
3117                 case 1:
3118                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3119                         break;
3120                 }
3121
3122                 ew32(PSRCTL, psrctl);
3123         }
3124
3125         /* This is useful for sniffing bad packets. */
3126         if (adapter->netdev->features & NETIF_F_RXALL) {
3127                 /* UPE and MPE will be handled by normal PROMISC logic
3128                  * in e1000e_set_rx_mode
3129                  */
3130                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3131                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3132                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3133
3134                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3135                           E1000_RCTL_DPF |      /* Allow filtered pause */
3136                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3137                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3138                  * and that breaks VLANs.
3139                  */
3140         }
3141
3142         ew32(RCTL, rctl);
3143         /* just started the receive unit, no need to restart */
3144         adapter->flags &= ~FLAG_RESTART_NOW;
3145 }
3146
3147 /**
3148  * e1000_configure_rx - Configure Receive Unit after Reset
3149  * @adapter: board private structure
3150  *
3151  * Configure the Rx unit of the MAC after a reset.
3152  **/
3153 static void e1000_configure_rx(struct e1000_adapter *adapter)
3154 {
3155         struct e1000_hw *hw = &adapter->hw;
3156         struct e1000_ring *rx_ring = adapter->rx_ring;
3157         u64 rdba;
3158         u32 rdlen, rctl, rxcsum, ctrl_ext;
3159
3160         if (adapter->rx_ps_pages) {
3161                 /* this is a 32 byte descriptor */
3162                 rdlen = rx_ring->count *
3163                     sizeof(union e1000_rx_desc_packet_split);
3164                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3165                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3166         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3167                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3168                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3169                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3170         } else {
3171                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3172                 adapter->clean_rx = e1000_clean_rx_irq;
3173                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3174         }
3175
3176         /* disable receives while setting up the descriptors */
3177         rctl = er32(RCTL);
3178         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3179                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3180         e1e_flush();
3181         usleep_range(10000, 20000);
3182
3183         if (adapter->flags2 & FLAG2_DMA_BURST) {
3184                 /* set the writeback threshold (only takes effect if the RDTR
3185                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3186                  * enable prefetching of 0x20 Rx descriptors
3187                  * granularity = 01
3188                  * wthresh = 04,
3189                  * hthresh = 04,
3190                  * pthresh = 0x20
3191                  */
3192                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3193                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3194
3195                 /* override the delay timers for enabling bursting, only if
3196                  * the value was not set by the user via module options
3197                  */
3198                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3199                         adapter->rx_int_delay = BURST_RDTR;
3200                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3201                         adapter->rx_abs_int_delay = BURST_RADV;
3202         }
3203
3204         /* set the Receive Delay Timer Register */
3205         ew32(RDTR, adapter->rx_int_delay);
3206
3207         /* irq moderation */
3208         ew32(RADV, adapter->rx_abs_int_delay);
3209         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3210                 e1000e_write_itr(adapter, adapter->itr);
3211
3212         ctrl_ext = er32(CTRL_EXT);
3213         /* Auto-Mask interrupts upon ICR access */
3214         ctrl_ext |= E1000_CTRL_EXT_IAME;
3215         ew32(IAM, 0xffffffff);
3216         ew32(CTRL_EXT, ctrl_ext);
3217         e1e_flush();
3218
3219         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3220          * the Base and Length of the Rx Descriptor Ring
3221          */
3222         rdba = rx_ring->dma;
3223         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3224         ew32(RDBAH(0), (rdba >> 32));
3225         ew32(RDLEN(0), rdlen);
3226         ew32(RDH(0), 0);
3227         ew32(RDT(0), 0);
3228         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3229         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3230
3231         /* Enable Receive Checksum Offload for TCP and UDP */
3232         rxcsum = er32(RXCSUM);
3233         if (adapter->netdev->features & NETIF_F_RXCSUM)
3234                 rxcsum |= E1000_RXCSUM_TUOFL;
3235         else
3236                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3237         ew32(RXCSUM, rxcsum);
3238
3239         /* With jumbo frames, excessive C-state transition latencies result
3240          * in dropped transactions.
3241          */
3242         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3243                 u32 lat =
3244                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3245                      adapter->max_frame_size) * 8 / 1000;
3246
3247                 if (adapter->flags & FLAG_IS_ICH) {
3248                         u32 rxdctl = er32(RXDCTL(0));
3249
3250                         ew32(RXDCTL(0), rxdctl | 0x3);
3251                 }
3252
3253                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3254         } else {
3255                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3256                                       PM_QOS_DEFAULT_VALUE);
3257         }
3258
3259         /* Enable Receives */
3260         ew32(RCTL, rctl);
3261 }
3262
3263 /**
3264  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3265  * @netdev: network interface device structure
3266  *
3267  * Writes multicast address list to the MTA hash table.
3268  * Returns: -ENOMEM on failure
3269  *                0 on no addresses written
3270  *                X on writing X addresses to MTA
3271  */
3272 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3273 {
3274         struct e1000_adapter *adapter = netdev_priv(netdev);
3275         struct e1000_hw *hw = &adapter->hw;
3276         struct netdev_hw_addr *ha;
3277         u8 *mta_list;
3278         int i;
3279
3280         if (netdev_mc_empty(netdev)) {
3281                 /* nothing to program, so clear mc list */
3282                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3283                 return 0;
3284         }
3285
3286         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3287         if (!mta_list)
3288                 return -ENOMEM;
3289
3290         /* update_mc_addr_list expects a packed array of only addresses. */
3291         i = 0;
3292         netdev_for_each_mc_addr(ha, netdev)
3293             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3294
3295         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3296         kfree(mta_list);
3297
3298         return netdev_mc_count(netdev);
3299 }
3300
3301 /**
3302  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3303  * @netdev: network interface device structure
3304  *
3305  * Writes unicast address list to the RAR table.
3306  * Returns: -ENOMEM on failure/insufficient address space
3307  *                0 on no addresses written
3308  *                X on writing X addresses to the RAR table
3309  **/
3310 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3311 {
3312         struct e1000_adapter *adapter = netdev_priv(netdev);
3313         struct e1000_hw *hw = &adapter->hw;
3314         unsigned int rar_entries;
3315         int count = 0;
3316
3317         rar_entries = hw->mac.ops.rar_get_count(hw);
3318
3319         /* save a rar entry for our hardware address */
3320         rar_entries--;
3321
3322         /* save a rar entry for the LAA workaround */
3323         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3324                 rar_entries--;
3325
3326         /* return ENOMEM indicating insufficient memory for addresses */
3327         if (netdev_uc_count(netdev) > rar_entries)
3328                 return -ENOMEM;
3329
3330         if (!netdev_uc_empty(netdev) && rar_entries) {
3331                 struct netdev_hw_addr *ha;
3332
3333                 /* write the addresses in reverse order to avoid write
3334                  * combining
3335                  */
3336                 netdev_for_each_uc_addr(ha, netdev) {
3337                         int rval;
3338
3339                         if (!rar_entries)
3340                                 break;
3341                         rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3342                         if (rval < 0)
3343                                 return -ENOMEM;
3344                         count++;
3345                 }
3346         }
3347
3348         /* zero out the remaining RAR entries not used above */
3349         for (; rar_entries > 0; rar_entries--) {
3350                 ew32(RAH(rar_entries), 0);
3351                 ew32(RAL(rar_entries), 0);
3352         }
3353         e1e_flush();
3354
3355         return count;
3356 }
3357
3358 /**
3359  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3360  * @netdev: network interface device structure
3361  *
3362  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3363  * address list or the network interface flags are updated.  This routine is
3364  * responsible for configuring the hardware for proper unicast, multicast,
3365  * promiscuous mode, and all-multi behavior.
3366  **/
3367 static void e1000e_set_rx_mode(struct net_device *netdev)
3368 {
3369         struct e1000_adapter *adapter = netdev_priv(netdev);
3370         struct e1000_hw *hw = &adapter->hw;
3371         u32 rctl;
3372
3373         if (pm_runtime_suspended(netdev->dev.parent))
3374                 return;
3375
3376         /* Check for Promiscuous and All Multicast modes */
3377         rctl = er32(RCTL);
3378
3379         /* clear the affected bits */
3380         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3381
3382         if (netdev->flags & IFF_PROMISC) {
3383                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3384                 /* Do not hardware filter VLANs in promisc mode */
3385                 e1000e_vlan_filter_disable(adapter);
3386         } else {
3387                 int count;
3388
3389                 if (netdev->flags & IFF_ALLMULTI) {
3390                         rctl |= E1000_RCTL_MPE;
3391                 } else {
3392                         /* Write addresses to the MTA, if the attempt fails
3393                          * then we should just turn on promiscuous mode so
3394                          * that we can at least receive multicast traffic
3395                          */
3396                         count = e1000e_write_mc_addr_list(netdev);
3397                         if (count < 0)
3398                                 rctl |= E1000_RCTL_MPE;
3399                 }
3400                 e1000e_vlan_filter_enable(adapter);
3401                 /* Write addresses to available RAR registers, if there is not
3402                  * sufficient space to store all the addresses then enable
3403                  * unicast promiscuous mode
3404                  */
3405                 count = e1000e_write_uc_addr_list(netdev);
3406                 if (count < 0)
3407                         rctl |= E1000_RCTL_UPE;
3408         }
3409
3410         ew32(RCTL, rctl);
3411
3412         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3413                 e1000e_vlan_strip_enable(adapter);
3414         else
3415                 e1000e_vlan_strip_disable(adapter);
3416 }
3417
3418 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3419 {
3420         struct e1000_hw *hw = &adapter->hw;
3421         u32 mrqc, rxcsum;
3422         int i;
3423         static const u32 rsskey[10] = {
3424                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3425                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3426         };
3427
3428         /* Fill out hash function seed */
3429         for (i = 0; i < 10; i++)
3430                 ew32(RSSRK(i), rsskey[i]);
3431
3432         /* Direct all traffic to queue 0 */
3433         for (i = 0; i < 32; i++)
3434                 ew32(RETA(i), 0);
3435
3436         /* Disable raw packet checksumming so that RSS hash is placed in
3437          * descriptor on writeback.
3438          */
3439         rxcsum = er32(RXCSUM);
3440         rxcsum |= E1000_RXCSUM_PCSD;
3441
3442         ew32(RXCSUM, rxcsum);
3443
3444         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3445                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3446                 E1000_MRQC_RSS_FIELD_IPV6 |
3447                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3448                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3449
3450         ew32(MRQC, mrqc);
3451 }
3452
3453 /**
3454  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3455  * @adapter: board private structure
3456  * @timinca: pointer to returned time increment attributes
3457  *
3458  * Get attributes for incrementing the System Time Register SYSTIML/H at
3459  * the default base frequency, and set the cyclecounter shift value.
3460  **/
3461 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3462 {
3463         struct e1000_hw *hw = &adapter->hw;
3464         u32 incvalue, incperiod, shift;
3465
3466         /* Make sure clock is enabled on I217 before checking the frequency */
3467         if ((hw->mac.type == e1000_pch_lpt) &&
3468             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3469             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3470                 u32 fextnvm7 = er32(FEXTNVM7);
3471
3472                 if (!(fextnvm7 & (1 << 0))) {
3473                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3474                         e1e_flush();
3475                 }
3476         }
3477
3478         switch (hw->mac.type) {
3479         case e1000_pch2lan:
3480         case e1000_pch_lpt:
3481                 /* On I217, the clock frequency is 25MHz or 96MHz as
3482                  * indicated by the System Clock Frequency Indication
3483                  */
3484                 if ((hw->mac.type != e1000_pch_lpt) ||
3485                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3486                         /* Stable 96MHz frequency */
3487                         incperiod = INCPERIOD_96MHz;
3488                         incvalue = INCVALUE_96MHz;
3489                         shift = INCVALUE_SHIFT_96MHz;
3490                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3491                         break;
3492                 }
3493                 /* fall-through */
3494         case e1000_82574:
3495         case e1000_82583:
3496                 /* Stable 25MHz frequency */
3497                 incperiod = INCPERIOD_25MHz;
3498                 incvalue = INCVALUE_25MHz;
3499                 shift = INCVALUE_SHIFT_25MHz;
3500                 adapter->cc.shift = shift;
3501                 break;
3502         default:
3503                 return -EINVAL;
3504         }
3505
3506         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3507                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3508
3509         return 0;
3510 }
3511
3512 /**
3513  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3514  * @adapter: board private structure
3515  *
3516  * Outgoing time stamping can be enabled and disabled. Play nice and
3517  * disable it when requested, although it shouldn't cause any overhead
3518  * when no packet needs it. At most one packet in the queue may be
3519  * marked for time stamping, otherwise it would be impossible to tell
3520  * for sure to which packet the hardware time stamp belongs.
3521  *
3522  * Incoming time stamping has to be configured via the hardware filters.
3523  * Not all combinations are supported, in particular event type has to be
3524  * specified. Matching the kind of event packet is not supported, with the
3525  * exception of "all V2 events regardless of level 2 or 4".
3526  **/
3527 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3528                                   struct hwtstamp_config *config)
3529 {
3530         struct e1000_hw *hw = &adapter->hw;
3531         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3532         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3533         u32 rxmtrl = 0;
3534         u16 rxudp = 0;
3535         bool is_l4 = false;
3536         bool is_l2 = false;
3537         u32 regval;
3538         s32 ret_val;
3539
3540         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3541                 return -EINVAL;
3542
3543         /* flags reserved for future extensions - must be zero */
3544         if (config->flags)
3545                 return -EINVAL;
3546
3547         switch (config->tx_type) {
3548         case HWTSTAMP_TX_OFF:
3549                 tsync_tx_ctl = 0;
3550                 break;
3551         case HWTSTAMP_TX_ON:
3552                 break;
3553         default:
3554                 return -ERANGE;
3555         }
3556
3557         switch (config->rx_filter) {
3558         case HWTSTAMP_FILTER_NONE:
3559                 tsync_rx_ctl = 0;
3560                 break;
3561         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3562                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3563                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3564                 is_l4 = true;
3565                 break;
3566         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3567                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3568                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3569                 is_l4 = true;
3570                 break;
3571         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3572                 /* Also time stamps V2 L2 Path Delay Request/Response */
3573                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3574                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3575                 is_l2 = true;
3576                 break;
3577         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3578                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3579                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3580                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3581                 is_l2 = true;
3582                 break;
3583         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3584                 /* Hardware cannot filter just V2 L4 Sync messages;
3585                  * fall-through to V2 (both L2 and L4) Sync.
3586                  */
3587         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3588                 /* Also time stamps V2 Path Delay Request/Response. */
3589                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3590                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3591                 is_l2 = true;
3592                 is_l4 = true;
3593                 break;
3594         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3595                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3596                  * fall-through to V2 (both L2 and L4) Delay Request.
3597                  */
3598         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3599                 /* Also time stamps V2 Path Delay Request/Response. */
3600                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3601                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3602                 is_l2 = true;
3603                 is_l4 = true;
3604                 break;
3605         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3606         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3607                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3608                  * fall-through to all V2 (both L2 and L4) Events.
3609                  */
3610         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3611                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3612                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3613                 is_l2 = true;
3614                 is_l4 = true;
3615                 break;
3616         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3617                 /* For V1, the hardware can only filter Sync messages or
3618                  * Delay Request messages but not both so fall-through to
3619                  * time stamp all packets.
3620                  */
3621         case HWTSTAMP_FILTER_ALL:
3622                 is_l2 = true;
3623                 is_l4 = true;
3624                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3625                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3626                 break;
3627         default:
3628                 return -ERANGE;
3629         }
3630
3631         adapter->hwtstamp_config = *config;
3632
3633         /* enable/disable Tx h/w time stamping */
3634         regval = er32(TSYNCTXCTL);
3635         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3636         regval |= tsync_tx_ctl;
3637         ew32(TSYNCTXCTL, regval);
3638         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3639             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3640                 e_err("Timesync Tx Control register not set as expected\n");
3641                 return -EAGAIN;
3642         }
3643
3644         /* enable/disable Rx h/w time stamping */
3645         regval = er32(TSYNCRXCTL);
3646         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3647         regval |= tsync_rx_ctl;
3648         ew32(TSYNCRXCTL, regval);
3649         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3650                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3651             (regval & (E1000_TSYNCRXCTL_ENABLED |
3652                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3653                 e_err("Timesync Rx Control register not set as expected\n");
3654                 return -EAGAIN;
3655         }
3656
3657         /* L2: define ethertype filter for time stamped packets */
3658         if (is_l2)
3659                 rxmtrl |= ETH_P_1588;
3660
3661         /* define which PTP packets get time stamped */
3662         ew32(RXMTRL, rxmtrl);
3663
3664         /* Filter by destination port */
3665         if (is_l4) {
3666                 rxudp = PTP_EV_PORT;
3667                 cpu_to_be16s(&rxudp);
3668         }
3669         ew32(RXUDP, rxudp);
3670
3671         e1e_flush();
3672
3673         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3674         er32(RXSTMPH);
3675         er32(TXSTMPH);
3676
3677         /* Get and set the System Time Register SYSTIM base frequency */
3678         ret_val = e1000e_get_base_timinca(adapter, &regval);
3679         if (ret_val)
3680                 return ret_val;
3681         ew32(TIMINCA, regval);
3682
3683         /* reset the ns time counter */
3684         timecounter_init(&adapter->tc, &adapter->cc,
3685                          ktime_to_ns(ktime_get_real()));
3686
3687         return 0;
3688 }
3689
3690 /**
3691  * e1000_configure - configure the hardware for Rx and Tx
3692  * @adapter: private board structure
3693  **/
3694 static void e1000_configure(struct e1000_adapter *adapter)
3695 {
3696         struct e1000_ring *rx_ring = adapter->rx_ring;
3697
3698         e1000e_set_rx_mode(adapter->netdev);
3699
3700         e1000_restore_vlan(adapter);
3701         e1000_init_manageability_pt(adapter);
3702
3703         e1000_configure_tx(adapter);
3704
3705         if (adapter->netdev->features & NETIF_F_RXHASH)
3706                 e1000e_setup_rss_hash(adapter);
3707         e1000_setup_rctl(adapter);
3708         e1000_configure_rx(adapter);
3709         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3710 }
3711
3712 /**
3713  * e1000e_power_up_phy - restore link in case the phy was powered down
3714  * @adapter: address of board private structure
3715  *
3716  * The phy may be powered down to save power and turn off link when the
3717  * driver is unloaded and wake on lan is not enabled (among others)
3718  * *** this routine MUST be followed by a call to e1000e_reset ***
3719  **/
3720 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3721 {
3722         if (adapter->hw.phy.ops.power_up)
3723                 adapter->hw.phy.ops.power_up(&adapter->hw);
3724
3725         adapter->hw.mac.ops.setup_link(&adapter->hw);
3726 }
3727
3728 /**
3729  * e1000_power_down_phy - Power down the PHY
3730  *
3731  * Power down the PHY so no link is implied when interface is down.
3732  * The PHY cannot be powered down if management or WoL is active.
3733  */
3734 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3735 {
3736         if (adapter->hw.phy.ops.power_down)
3737                 adapter->hw.phy.ops.power_down(&adapter->hw);
3738 }
3739
3740 /**
3741  * e1000e_reset - bring the hardware into a known good state
3742  *
3743  * This function boots the hardware and enables some settings that
3744  * require a configuration cycle of the hardware - those cannot be
3745  * set/changed during runtime. After reset the device needs to be
3746  * properly configured for Rx, Tx etc.
3747  */
3748 void e1000e_reset(struct e1000_adapter *adapter)
3749 {
3750         struct e1000_mac_info *mac = &adapter->hw.mac;
3751         struct e1000_fc_info *fc = &adapter->hw.fc;
3752         struct e1000_hw *hw = &adapter->hw;
3753         u32 tx_space, min_tx_space, min_rx_space;
3754         u32 pba = adapter->pba;
3755         u16 hwm;
3756
3757         /* reset Packet Buffer Allocation to default */
3758         ew32(PBA, pba);
3759
3760         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3761                 /* To maintain wire speed transmits, the Tx FIFO should be
3762                  * large enough to accommodate two full transmit packets,
3763                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3764                  * the Rx FIFO should be large enough to accommodate at least
3765                  * one full receive packet and is similarly rounded up and
3766                  * expressed in KB.
3767                  */
3768                 pba = er32(PBA);
3769                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3770                 tx_space = pba >> 16;
3771                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3772                 pba &= 0xffff;
3773                 /* the Tx fifo also stores 16 bytes of information about the Tx
3774                  * but don't include ethernet FCS because hardware appends it
3775                  */
3776                 min_tx_space = (adapter->max_frame_size +
3777                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3778                 min_tx_space = ALIGN(min_tx_space, 1024);
3779                 min_tx_space >>= 10;
3780                 /* software strips receive CRC, so leave room for it */
3781                 min_rx_space = adapter->max_frame_size;
3782                 min_rx_space = ALIGN(min_rx_space, 1024);
3783                 min_rx_space >>= 10;
3784
3785                 /* If current Tx allocation is less than the min Tx FIFO size,
3786                  * and the min Tx FIFO size is less than the current Rx FIFO
3787                  * allocation, take space away from current Rx allocation
3788                  */
3789                 if ((tx_space < min_tx_space) &&
3790                     ((min_tx_space - tx_space) < pba)) {
3791                         pba -= min_tx_space - tx_space;
3792
3793                         /* if short on Rx space, Rx wins and must trump Tx
3794                          * adjustment
3795                          */
3796                         if (pba < min_rx_space)
3797                                 pba = min_rx_space;
3798                 }
3799
3800                 ew32(PBA, pba);
3801         }
3802
3803         /* flow control settings
3804          *
3805          * The high water mark must be low enough to fit one full frame
3806          * (or the size used for early receive) above it in the Rx FIFO.
3807          * Set it to the lower of:
3808          * - 90% of the Rx FIFO size, and
3809          * - the full Rx FIFO size minus one full frame
3810          */
3811         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3812                 fc->pause_time = 0xFFFF;
3813         else
3814                 fc->pause_time = E1000_FC_PAUSE_TIME;
3815         fc->send_xon = true;
3816         fc->current_mode = fc->requested_mode;
3817
3818         switch (hw->mac.type) {
3819         case e1000_ich9lan:
3820         case e1000_ich10lan:
3821                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3822                         pba = 14;
3823                         ew32(PBA, pba);
3824                         fc->high_water = 0x2800;
3825                         fc->low_water = fc->high_water - 8;
3826                         break;
3827                 }
3828                 /* fall-through */
3829         default:
3830                 hwm = min(((pba << 10) * 9 / 10),
3831                           ((pba << 10) - adapter->max_frame_size));
3832
3833                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3834                 fc->low_water = fc->high_water - 8;
3835                 break;
3836         case e1000_pchlan:
3837                 /* Workaround PCH LOM adapter hangs with certain network
3838                  * loads.  If hangs persist, try disabling Tx flow control.
3839                  */
3840                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3841                         fc->high_water = 0x3500;
3842                         fc->low_water = 0x1500;
3843                 } else {
3844                         fc->high_water = 0x5000;
3845                         fc->low_water = 0x3000;
3846                 }
3847                 fc->refresh_time = 0x1000;
3848                 break;
3849         case e1000_pch2lan:
3850         case e1000_pch_lpt:
3851                 fc->refresh_time = 0x0400;
3852
3853                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3854                         fc->high_water = 0x05C20;
3855                         fc->low_water = 0x05048;
3856                         fc->pause_time = 0x0650;
3857                         break;
3858                 }
3859
3860                 pba = 14;
3861                 ew32(PBA, pba);
3862                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3863                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3864                 break;
3865         }
3866
3867         /* Alignment of Tx data is on an arbitrary byte boundary with the
3868          * maximum size per Tx descriptor limited only to the transmit
3869          * allocation of the packet buffer minus 96 bytes with an upper
3870          * limit of 24KB due to receive synchronization limitations.
3871          */
3872         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3873                                        24 << 10);
3874
3875         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3876          * fit in receive buffer.
3877          */
3878         if (adapter->itr_setting & 0x3) {
3879                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3880                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3881                                 dev_info(&adapter->pdev->dev,
3882                                          "Interrupt Throttle Rate off\n");
3883                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3884                                 e1000e_write_itr(adapter, 0);
3885                         }
3886                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3887                         dev_info(&adapter->pdev->dev,
3888                                  "Interrupt Throttle Rate on\n");
3889                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3890                         adapter->itr = 20000;
3891                         e1000e_write_itr(adapter, adapter->itr);
3892                 }
3893         }
3894
3895         /* Allow time for pending master requests to run */
3896         mac->ops.reset_hw(hw);
3897
3898         /* For parts with AMT enabled, let the firmware know
3899          * that the network interface is in control
3900          */
3901         if (adapter->flags & FLAG_HAS_AMT)
3902                 e1000e_get_hw_control(adapter);
3903
3904         ew32(WUC, 0);
3905
3906         if (mac->ops.init_hw(hw))
3907                 e_err("Hardware Error\n");
3908
3909         e1000_update_mng_vlan(adapter);
3910
3911         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3912         ew32(VET, ETH_P_8021Q);
3913
3914         e1000e_reset_adaptive(hw);
3915
3916         /* initialize systim and reset the ns time counter */
3917         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3918
3919         /* Set EEE advertisement as appropriate */
3920         if (adapter->flags2 & FLAG2_HAS_EEE) {
3921                 s32 ret_val;
3922                 u16 adv_addr;
3923
3924                 switch (hw->phy.type) {
3925                 case e1000_phy_82579:
3926                         adv_addr = I82579_EEE_ADVERTISEMENT;
3927                         break;
3928                 case e1000_phy_i217:
3929                         adv_addr = I217_EEE_ADVERTISEMENT;
3930                         break;
3931                 default:
3932                         dev_err(&adapter->pdev->dev,
3933                                 "Invalid PHY type setting EEE advertisement\n");
3934                         return;
3935                 }
3936
3937                 ret_val = hw->phy.ops.acquire(hw);
3938                 if (ret_val) {
3939                         dev_err(&adapter->pdev->dev,
3940                                 "EEE advertisement - unable to acquire PHY\n");
3941                         return;
3942                 }
3943
3944                 e1000_write_emi_reg_locked(hw, adv_addr,
3945                                            hw->dev_spec.ich8lan.eee_disable ?
3946                                            0 : adapter->eee_advert);
3947
3948                 hw->phy.ops.release(hw);
3949         }
3950
3951         if (!netif_running(adapter->netdev) &&
3952             !test_bit(__E1000_TESTING, &adapter->state))
3953                 e1000_power_down_phy(adapter);
3954
3955         e1000_get_phy_info(hw);
3956
3957         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3958             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3959                 u16 phy_data = 0;
3960                 /* speed up time to link by disabling smart power down, ignore
3961                  * the return value of this function because there is nothing
3962                  * different we would do if it failed
3963                  */
3964                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3965                 phy_data &= ~IGP02E1000_PM_SPD;
3966                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3967         }
3968 }
3969
3970 int e1000e_up(struct e1000_adapter *adapter)
3971 {
3972         struct e1000_hw *hw = &adapter->hw;
3973
3974         /* hardware has been reset, we need to reload some things */
3975         e1000_configure(adapter);
3976
3977         clear_bit(__E1000_DOWN, &adapter->state);
3978
3979         if (adapter->msix_entries)
3980                 e1000_configure_msix(adapter);
3981         e1000_irq_enable(adapter);
3982
3983         netif_start_queue(adapter->netdev);
3984
3985         /* fire a link change interrupt to start the watchdog */
3986         if (adapter->msix_entries)
3987                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3988         else
3989                 ew32(ICS, E1000_ICS_LSC);
3990
3991         return 0;
3992 }
3993
3994 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3995 {
3996         struct e1000_hw *hw = &adapter->hw;
3997
3998         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3999                 return;
4000
4001         /* flush pending descriptor writebacks to memory */
4002         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4003         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4004
4005         /* execute the writes immediately */
4006         e1e_flush();
4007
4008         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4009          * write is successful
4010          */
4011         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4012         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4013
4014         /* execute the writes immediately */
4015         e1e_flush();
4016 }
4017
4018 static void e1000e_update_stats(struct e1000_adapter *adapter);
4019
4020 /**
4021  * e1000e_down - quiesce the device and optionally reset the hardware
4022  * @adapter: board private structure
4023  * @reset: boolean flag to reset the hardware or not
4024  */
4025 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4026 {
4027         struct net_device *netdev = adapter->netdev;
4028         struct e1000_hw *hw = &adapter->hw;
4029         u32 tctl, rctl;
4030
4031         /* signal that we're down so the interrupt handler does not
4032          * reschedule our watchdog timer
4033          */
4034         set_bit(__E1000_DOWN, &adapter->state);
4035
4036         /* disable receives in the hardware */
4037         rctl = er32(RCTL);
4038         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4039                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4040         /* flush and sleep below */
4041
4042         netif_stop_queue(netdev);
4043
4044         /* disable transmits in the hardware */
4045         tctl = er32(TCTL);
4046         tctl &= ~E1000_TCTL_EN;
4047         ew32(TCTL, tctl);
4048
4049         /* flush both disables and wait for them to finish */
4050         e1e_flush();
4051         usleep_range(10000, 20000);
4052
4053         e1000_irq_disable(adapter);
4054
4055         napi_synchronize(&adapter->napi);
4056
4057         del_timer_sync(&adapter->watchdog_timer);
4058         del_timer_sync(&adapter->phy_info_timer);
4059
4060         netif_carrier_off(netdev);
4061
4062         spin_lock(&adapter->stats64_lock);
4063         e1000e_update_stats(adapter);
4064         spin_unlock(&adapter->stats64_lock);
4065
4066         e1000e_flush_descriptors(adapter);
4067         e1000_clean_tx_ring(adapter->tx_ring);
4068         e1000_clean_rx_ring(adapter->rx_ring);
4069
4070         adapter->link_speed = 0;
4071         adapter->link_duplex = 0;
4072
4073         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4074         if ((hw->mac.type >= e1000_pch2lan) &&
4075             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4076             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4077                 e_dbg("failed to disable jumbo frame workaround mode\n");
4078
4079         if (reset && !pci_channel_offline(adapter->pdev))
4080                 e1000e_reset(adapter);
4081 }
4082
4083 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4084 {
4085         might_sleep();
4086         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4087                 usleep_range(1000, 2000);
4088         e1000e_down(adapter, true);
4089         e1000e_up(adapter);
4090         clear_bit(__E1000_RESETTING, &adapter->state);
4091 }
4092
4093 /**
4094  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4095  * @cc: cyclecounter structure
4096  **/
4097 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4098 {
4099         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4100                                                      cc);
4101         struct e1000_hw *hw = &adapter->hw;
4102         cycle_t systim, systim_next;
4103
4104         /* latch SYSTIMH on read of SYSTIML */
4105         systim = (cycle_t)er32(SYSTIML);
4106         systim |= (cycle_t)er32(SYSTIMH) << 32;
4107
4108         if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4109                 u64 incvalue, time_delta, rem, temp;
4110                 int i;
4111
4112                 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4113                  * check to see that the time is incrementing at a reasonable
4114                  * rate and is a multiple of incvalue
4115                  */
4116                 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4117                 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4118                         /* latch SYSTIMH on read of SYSTIML */
4119                         systim_next = (cycle_t)er32(SYSTIML);
4120                         systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4121
4122                         time_delta = systim_next - systim;
4123                         temp = time_delta;
4124                         rem = do_div(temp, incvalue);
4125
4126                         systim = systim_next;
4127
4128                         if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4129                             (rem == 0))
4130                                 break;
4131                 }
4132         }
4133         return systim;
4134 }
4135
4136 /**
4137  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4138  * @adapter: board private structure to initialize
4139  *
4140  * e1000_sw_init initializes the Adapter private data structure.
4141  * Fields are initialized based on PCI device information and
4142  * OS network device settings (MTU size).
4143  **/
4144 static int e1000_sw_init(struct e1000_adapter *adapter)
4145 {
4146         struct net_device *netdev = adapter->netdev;
4147
4148         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4149         adapter->rx_ps_bsize0 = 128;
4150         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4151         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4152         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4153         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4154
4155         spin_lock_init(&adapter->stats64_lock);
4156
4157         e1000e_set_interrupt_capability(adapter);
4158
4159         if (e1000_alloc_queues(adapter))
4160                 return -ENOMEM;
4161
4162         /* Setup hardware time stamping cyclecounter */
4163         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4164                 adapter->cc.read = e1000e_cyclecounter_read;
4165                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4166                 adapter->cc.mult = 1;
4167                 /* cc.shift set in e1000e_get_base_tininca() */
4168
4169                 spin_lock_init(&adapter->systim_lock);
4170                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4171         }
4172
4173         /* Explicitly disable IRQ since the NIC can be in any state. */
4174         e1000_irq_disable(adapter);
4175
4176         set_bit(__E1000_DOWN, &adapter->state);
4177         return 0;
4178 }
4179
4180 /**
4181  * e1000_intr_msi_test - Interrupt Handler
4182  * @irq: interrupt number
4183  * @data: pointer to a network interface device structure
4184  **/
4185 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4186 {
4187         struct net_device *netdev = data;
4188         struct e1000_adapter *adapter = netdev_priv(netdev);
4189         struct e1000_hw *hw = &adapter->hw;
4190         u32 icr = er32(ICR);
4191
4192         e_dbg("icr is %08X\n", icr);
4193         if (icr & E1000_ICR_RXSEQ) {
4194                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4195                 /* Force memory writes to complete before acknowledging the
4196                  * interrupt is handled.
4197                  */
4198                 wmb();
4199         }
4200
4201         return IRQ_HANDLED;
4202 }
4203
4204 /**
4205  * e1000_test_msi_interrupt - Returns 0 for successful test
4206  * @adapter: board private struct
4207  *
4208  * code flow taken from tg3.c
4209  **/
4210 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4211 {
4212         struct net_device *netdev = adapter->netdev;
4213         struct e1000_hw *hw = &adapter->hw;
4214         int err;
4215
4216         /* poll_enable hasn't been called yet, so don't need disable */
4217         /* clear any pending events */
4218         er32(ICR);
4219
4220         /* free the real vector and request a test handler */
4221         e1000_free_irq(adapter);
4222         e1000e_reset_interrupt_capability(adapter);
4223
4224         /* Assume that the test fails, if it succeeds then the test
4225          * MSI irq handler will unset this flag
4226          */
4227         adapter->flags |= FLAG_MSI_TEST_FAILED;
4228
4229         err = pci_enable_msi(adapter->pdev);
4230         if (err)
4231                 goto msi_test_failed;
4232
4233         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4234                           netdev->name, netdev);
4235         if (err) {
4236                 pci_disable_msi(adapter->pdev);
4237                 goto msi_test_failed;
4238         }
4239
4240         /* Force memory writes to complete before enabling and firing an
4241          * interrupt.
4242          */
4243         wmb();
4244
4245         e1000_irq_enable(adapter);
4246
4247         /* fire an unusual interrupt on the test handler */
4248         ew32(ICS, E1000_ICS_RXSEQ);
4249         e1e_flush();
4250         msleep(100);
4251
4252         e1000_irq_disable(adapter);
4253
4254         rmb();                  /* read flags after interrupt has been fired */
4255
4256         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4257                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4258                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4259         } else {
4260                 e_dbg("MSI interrupt test succeeded!\n");
4261         }
4262
4263         free_irq(adapter->pdev->irq, netdev);
4264         pci_disable_msi(adapter->pdev);
4265
4266 msi_test_failed:
4267         e1000e_set_interrupt_capability(adapter);
4268         return e1000_request_irq(adapter);
4269 }
4270
4271 /**
4272  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4273  * @adapter: board private struct
4274  *
4275  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4276  **/
4277 static int e1000_test_msi(struct e1000_adapter *adapter)
4278 {
4279         int err;
4280         u16 pci_cmd;
4281
4282         if (!(adapter->flags & FLAG_MSI_ENABLED))
4283                 return 0;
4284
4285         /* disable SERR in case the MSI write causes a master abort */
4286         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4287         if (pci_cmd & PCI_COMMAND_SERR)
4288                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4289                                       pci_cmd & ~PCI_COMMAND_SERR);
4290
4291         err = e1000_test_msi_interrupt(adapter);
4292
4293         /* re-enable SERR */
4294         if (pci_cmd & PCI_COMMAND_SERR) {
4295                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4296                 pci_cmd |= PCI_COMMAND_SERR;
4297                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4298         }
4299
4300         return err;
4301 }
4302
4303 /**
4304  * e1000_open - Called when a network interface is made active
4305  * @netdev: network interface device structure
4306  *
4307  * Returns 0 on success, negative value on failure
4308  *
4309  * The open entry point is called when a network interface is made
4310  * active by the system (IFF_UP).  At this point all resources needed
4311  * for transmit and receive operations are allocated, the interrupt
4312  * handler is registered with the OS, the watchdog timer is started,
4313  * and the stack is notified that the interface is ready.
4314  **/
4315 static int e1000_open(struct net_device *netdev)
4316 {
4317         struct e1000_adapter *adapter = netdev_priv(netdev);
4318         struct e1000_hw *hw = &adapter->hw;
4319         struct pci_dev *pdev = adapter->pdev;
4320         int err;
4321
4322         /* disallow open during test */
4323         if (test_bit(__E1000_TESTING, &adapter->state))
4324                 return -EBUSY;
4325
4326         pm_runtime_get_sync(&pdev->dev);
4327
4328         netif_carrier_off(netdev);
4329
4330         /* allocate transmit descriptors */
4331         err = e1000e_setup_tx_resources(adapter->tx_ring);
4332         if (err)
4333                 goto err_setup_tx;
4334
4335         /* allocate receive descriptors */
4336         err = e1000e_setup_rx_resources(adapter->rx_ring);
4337         if (err)
4338                 goto err_setup_rx;
4339
4340         /* If AMT is enabled, let the firmware know that the network
4341          * interface is now open and reset the part to a known state.
4342          */
4343         if (adapter->flags & FLAG_HAS_AMT) {
4344                 e1000e_get_hw_control(adapter);
4345                 e1000e_reset(adapter);
4346         }
4347
4348         e1000e_power_up_phy(adapter);
4349
4350         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4351         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4352                 e1000_update_mng_vlan(adapter);
4353
4354         /* DMA latency requirement to workaround jumbo issue */
4355         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4356                            PM_QOS_DEFAULT_VALUE);
4357
4358         /* before we allocate an interrupt, we must be ready to handle it.
4359          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4360          * as soon as we call pci_request_irq, so we have to setup our
4361          * clean_rx handler before we do so.
4362          */
4363         e1000_configure(adapter);
4364
4365         err = e1000_request_irq(adapter);
4366         if (err)
4367                 goto err_req_irq;
4368
4369         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4370          * ignore e1000e MSI messages, which means we need to test our MSI
4371          * interrupt now
4372          */
4373         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4374                 err = e1000_test_msi(adapter);
4375                 if (err) {
4376                         e_err("Interrupt allocation failed\n");
4377                         goto err_req_irq;
4378                 }
4379         }
4380
4381         /* From here on the code is the same as e1000e_up() */
4382         clear_bit(__E1000_DOWN, &adapter->state);
4383
4384         napi_enable(&adapter->napi);
4385
4386         e1000_irq_enable(adapter);
4387
4388         adapter->tx_hang_recheck = false;
4389         netif_start_queue(netdev);
4390
4391         hw->mac.get_link_status = true;
4392         pm_runtime_put(&pdev->dev);
4393
4394         /* fire a link status change interrupt to start the watchdog */
4395         if (adapter->msix_entries)
4396                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4397         else
4398                 ew32(ICS, E1000_ICS_LSC);
4399
4400         return 0;
4401
4402 err_req_irq:
4403         e1000e_release_hw_control(adapter);
4404         e1000_power_down_phy(adapter);
4405         e1000e_free_rx_resources(adapter->rx_ring);
4406 err_setup_rx:
4407         e1000e_free_tx_resources(adapter->tx_ring);
4408 err_setup_tx:
4409         e1000e_reset(adapter);
4410         pm_runtime_put_sync(&pdev->dev);
4411
4412         return err;
4413 }
4414
4415 /**
4416  * e1000_close - Disables a network interface
4417  * @netdev: network interface device structure
4418  *
4419  * Returns 0, this is not allowed to fail
4420  *
4421  * The close entry point is called when an interface is de-activated
4422  * by the OS.  The hardware is still under the drivers control, but
4423  * needs to be disabled.  A global MAC reset is issued to stop the
4424  * hardware, and all transmit and receive resources are freed.
4425  **/
4426 static int e1000_close(struct net_device *netdev)
4427 {
4428         struct e1000_adapter *adapter = netdev_priv(netdev);
4429         struct pci_dev *pdev = adapter->pdev;
4430         int count = E1000_CHECK_RESET_COUNT;
4431
4432         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4433                 usleep_range(10000, 20000);
4434
4435         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4436
4437         pm_runtime_get_sync(&pdev->dev);
4438
4439         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4440                 e1000e_down(adapter, true);
4441                 e1000_free_irq(adapter);
4442
4443                 /* Link status message must follow this format */
4444                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4445         }
4446
4447         napi_disable(&adapter->napi);
4448
4449         e1000e_free_tx_resources(adapter->tx_ring);
4450         e1000e_free_rx_resources(adapter->rx_ring);
4451
4452         /* kill manageability vlan ID if supported, but not if a vlan with
4453          * the same ID is registered on the host OS (let 8021q kill it)
4454          */
4455         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4456                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4457                                        adapter->mng_vlan_id);
4458
4459         /* If AMT is enabled, let the firmware know that the network
4460          * interface is now closed
4461          */
4462         if ((adapter->flags & FLAG_HAS_AMT) &&
4463             !test_bit(__E1000_TESTING, &adapter->state))
4464                 e1000e_release_hw_control(adapter);
4465
4466         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4467
4468         pm_runtime_put_sync(&pdev->dev);
4469
4470         return 0;
4471 }
4472
4473 /**
4474  * e1000_set_mac - Change the Ethernet Address of the NIC
4475  * @netdev: network interface device structure
4476  * @p: pointer to an address structure
4477  *
4478  * Returns 0 on success, negative on failure
4479  **/
4480 static int e1000_set_mac(struct net_device *netdev, void *p)
4481 {
4482         struct e1000_adapter *adapter = netdev_priv(netdev);
4483         struct e1000_hw *hw = &adapter->hw;
4484         struct sockaddr *addr = p;
4485
4486         if (!is_valid_ether_addr(addr->sa_data))
4487                 return -EADDRNOTAVAIL;
4488
4489         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4490         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4491
4492         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4493
4494         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4495                 /* activate the work around */
4496                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4497
4498                 /* Hold a copy of the LAA in RAR[14] This is done so that
4499                  * between the time RAR[0] gets clobbered  and the time it
4500                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4501                  * of the RARs and no incoming packets directed to this port
4502                  * are dropped. Eventually the LAA will be in RAR[0] and
4503                  * RAR[14]
4504                  */
4505                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4506                                     adapter->hw.mac.rar_entry_count - 1);
4507         }
4508
4509         return 0;
4510 }
4511
4512 /**
4513  * e1000e_update_phy_task - work thread to update phy
4514  * @work: pointer to our work struct
4515  *
4516  * this worker thread exists because we must acquire a
4517  * semaphore to read the phy, which we could msleep while
4518  * waiting for it, and we can't msleep in a timer.
4519  **/
4520 static void e1000e_update_phy_task(struct work_struct *work)
4521 {
4522         struct e1000_adapter *adapter = container_of(work,
4523                                                      struct e1000_adapter,
4524                                                      update_phy_task);
4525         struct e1000_hw *hw = &adapter->hw;
4526
4527         if (test_bit(__E1000_DOWN, &adapter->state))
4528                 return;
4529
4530         e1000_get_phy_info(hw);
4531
4532         /* Enable EEE on 82579 after link up */
4533         if (hw->phy.type == e1000_phy_82579)
4534                 e1000_set_eee_pchlan(hw);
4535 }
4536
4537 /**
4538  * e1000_update_phy_info - timre call-back to update PHY info
4539  * @data: pointer to adapter cast into an unsigned long
4540  *
4541  * Need to wait a few seconds after link up to get diagnostic information from
4542  * the phy
4543  **/
4544 static void e1000_update_phy_info(unsigned long data)
4545 {
4546         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4547
4548         if (test_bit(__E1000_DOWN, &adapter->state))
4549                 return;
4550
4551         schedule_work(&adapter->update_phy_task);
4552 }
4553
4554 /**
4555  * e1000e_update_phy_stats - Update the PHY statistics counters
4556  * @adapter: board private structure
4557  *
4558  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4559  **/
4560 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4561 {
4562         struct e1000_hw *hw = &adapter->hw;
4563         s32 ret_val;
4564         u16 phy_data;
4565
4566         ret_val = hw->phy.ops.acquire(hw);
4567         if (ret_val)
4568                 return;
4569
4570         /* A page set is expensive so check if already on desired page.
4571          * If not, set to the page with the PHY status registers.
4572          */
4573         hw->phy.addr = 1;
4574         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4575                                            &phy_data);
4576         if (ret_val)
4577                 goto release;
4578         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4579                 ret_val = hw->phy.ops.set_page(hw,
4580                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4581                 if (ret_val)
4582                         goto release;
4583         }
4584
4585         /* Single Collision Count */
4586         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4587         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4588         if (!ret_val)
4589                 adapter->stats.scc += phy_data;
4590
4591         /* Excessive Collision Count */
4592         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4593         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4594         if (!ret_val)
4595                 adapter->stats.ecol += phy_data;
4596
4597         /* Multiple Collision Count */
4598         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4599         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4600         if (!ret_val)
4601                 adapter->stats.mcc += phy_data;
4602
4603         /* Late Collision Count */
4604         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4605         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4606         if (!ret_val)
4607                 adapter->stats.latecol += phy_data;
4608
4609         /* Collision Count - also used for adaptive IFS */
4610         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4611         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4612         if (!ret_val)
4613                 hw->mac.collision_delta = phy_data;
4614
4615         /* Defer Count */
4616         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4617         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4618         if (!ret_val)
4619                 adapter->stats.dc += phy_data;
4620
4621         /* Transmit with no CRS */
4622         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4623         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4624         if (!ret_val)
4625                 adapter->stats.tncrs += phy_data;
4626
4627 release:
4628         hw->phy.ops.release(hw);
4629 }
4630
4631 /**
4632  * e1000e_update_stats - Update the board statistics counters
4633  * @adapter: board private structure
4634  **/
4635 static void e1000e_update_stats(struct e1000_adapter *adapter)
4636 {
4637         struct net_device *netdev = adapter->netdev;
4638         struct e1000_hw *hw = &adapter->hw;
4639         struct pci_dev *pdev = adapter->pdev;
4640
4641         /* Prevent stats update while adapter is being reset, or if the pci
4642          * connection is down.
4643          */
4644         if (adapter->link_speed == 0)
4645                 return;
4646         if (pci_channel_offline(pdev))
4647                 return;
4648
4649         adapter->stats.crcerrs += er32(CRCERRS);
4650         adapter->stats.gprc += er32(GPRC);
4651         adapter->stats.gorc += er32(GORCL);
4652         er32(GORCH);            /* Clear gorc */
4653         adapter->stats.bprc += er32(BPRC);
4654         adapter->stats.mprc += er32(MPRC);
4655         adapter->stats.roc += er32(ROC);
4656
4657         adapter->stats.mpc += er32(MPC);
4658
4659         /* Half-duplex statistics */
4660         if (adapter->link_duplex == HALF_DUPLEX) {
4661                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4662                         e1000e_update_phy_stats(adapter);
4663                 } else {
4664                         adapter->stats.scc += er32(SCC);
4665                         adapter->stats.ecol += er32(ECOL);
4666                         adapter->stats.mcc += er32(MCC);
4667                         adapter->stats.latecol += er32(LATECOL);
4668                         adapter->stats.dc += er32(DC);
4669
4670                         hw->mac.collision_delta = er32(COLC);
4671
4672                         if ((hw->mac.type != e1000_82574) &&
4673                             (hw->mac.type != e1000_82583))
4674                                 adapter->stats.tncrs += er32(TNCRS);
4675                 }
4676                 adapter->stats.colc += hw->mac.collision_delta;
4677         }
4678
4679         adapter->stats.xonrxc += er32(XONRXC);
4680         adapter->stats.xontxc += er32(XONTXC);
4681         adapter->stats.xoffrxc += er32(XOFFRXC);
4682         adapter->stats.xofftxc += er32(XOFFTXC);
4683         adapter->stats.gptc += er32(GPTC);
4684         adapter->stats.gotc += er32(GOTCL);
4685         er32(GOTCH);            /* Clear gotc */
4686         adapter->stats.rnbc += er32(RNBC);
4687         adapter->stats.ruc += er32(RUC);
4688
4689         adapter->stats.mptc += er32(MPTC);
4690         adapter->stats.bptc += er32(BPTC);
4691
4692         /* used for adaptive IFS */
4693
4694         hw->mac.tx_packet_delta = er32(TPT);
4695         adapter->stats.tpt += hw->mac.tx_packet_delta;
4696
4697         adapter->stats.algnerrc += er32(ALGNERRC);
4698         adapter->stats.rxerrc += er32(RXERRC);
4699         adapter->stats.cexterr += er32(CEXTERR);
4700         adapter->stats.tsctc += er32(TSCTC);
4701         adapter->stats.tsctfc += er32(TSCTFC);
4702
4703         /* Fill out the OS statistics structure */
4704         netdev->stats.multicast = adapter->stats.mprc;
4705         netdev->stats.collisions = adapter->stats.colc;
4706
4707         /* Rx Errors */
4708
4709         /* RLEC on some newer hardware can be incorrect so build
4710          * our own version based on RUC and ROC
4711          */
4712         netdev->stats.rx_errors = adapter->stats.rxerrc +
4713             adapter->stats.crcerrs + adapter->stats.algnerrc +
4714             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4715         netdev->stats.rx_length_errors = adapter->stats.ruc +
4716             adapter->stats.roc;
4717         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4718         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4719         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4720
4721         /* Tx Errors */
4722         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4723         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4724         netdev->stats.tx_window_errors = adapter->stats.latecol;
4725         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4726
4727         /* Tx Dropped needs to be maintained elsewhere */
4728
4729         /* Management Stats */
4730         adapter->stats.mgptc += er32(MGTPTC);
4731         adapter->stats.mgprc += er32(MGTPRC);
4732         adapter->stats.mgpdc += er32(MGTPDC);
4733
4734         /* Correctable ECC Errors */
4735         if (hw->mac.type == e1000_pch_lpt) {
4736                 u32 pbeccsts = er32(PBECCSTS);
4737
4738                 adapter->corr_errors +=
4739                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4740                 adapter->uncorr_errors +=
4741                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4742                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4743         }
4744 }
4745
4746 /**
4747  * e1000_phy_read_status - Update the PHY register status snapshot
4748  * @adapter: board private structure
4749  **/
4750 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4751 {
4752         struct e1000_hw *hw = &adapter->hw;
4753         struct e1000_phy_regs *phy = &adapter->phy_regs;
4754
4755         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4756             (er32(STATUS) & E1000_STATUS_LU) &&
4757             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4758                 int ret_val;
4759
4760                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4761                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4762                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4763                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4764                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4765                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4766                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4767                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4768                 if (ret_val)
4769                         e_warn("Error reading PHY register\n");
4770         } else {
4771                 /* Do not read PHY registers if link is not up
4772                  * Set values to typical power-on defaults
4773                  */
4774                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4775                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4776                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4777                              BMSR_ERCAP);
4778                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4779                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4780                 phy->lpa = 0;
4781                 phy->expansion = EXPANSION_ENABLENPAGE;
4782                 phy->ctrl1000 = ADVERTISE_1000FULL;
4783                 phy->stat1000 = 0;
4784                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4785         }
4786 }
4787
4788 static void e1000_print_link_info(struct e1000_adapter *adapter)
4789 {
4790         struct e1000_hw *hw = &adapter->hw;
4791         u32 ctrl = er32(CTRL);
4792
4793         /* Link status message must follow this format for user tools */
4794         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4795                 adapter->netdev->name, adapter->link_speed,
4796                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4797                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4798                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4799                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4800 }
4801
4802 static bool e1000e_has_link(struct e1000_adapter *adapter)
4803 {
4804         struct e1000_hw *hw = &adapter->hw;
4805         bool link_active = false;
4806         s32 ret_val = 0;
4807
4808         /* get_link_status is set on LSC (link status) interrupt or
4809          * Rx sequence error interrupt.  get_link_status will stay
4810          * false until the check_for_link establishes link
4811          * for copper adapters ONLY
4812          */
4813         switch (hw->phy.media_type) {
4814         case e1000_media_type_copper:
4815                 if (hw->mac.get_link_status) {
4816                         ret_val = hw->mac.ops.check_for_link(hw);
4817                         link_active = !hw->mac.get_link_status;
4818                 } else {
4819                         link_active = true;
4820                 }
4821                 break;
4822         case e1000_media_type_fiber:
4823                 ret_val = hw->mac.ops.check_for_link(hw);
4824                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4825                 break;
4826         case e1000_media_type_internal_serdes:
4827                 ret_val = hw->mac.ops.check_for_link(hw);
4828                 link_active = adapter->hw.mac.serdes_has_link;
4829                 break;
4830         default:
4831         case e1000_media_type_unknown:
4832                 break;
4833         }
4834
4835         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4836             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4837                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4838                 e_info("Gigabit has been disabled, downgrading speed\n");
4839         }
4840
4841         return link_active;
4842 }
4843
4844 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4845 {
4846         /* make sure the receive unit is started */
4847         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4848             (adapter->flags & FLAG_RESTART_NOW)) {
4849                 struct e1000_hw *hw = &adapter->hw;
4850                 u32 rctl = er32(RCTL);
4851
4852                 ew32(RCTL, rctl | E1000_RCTL_EN);
4853                 adapter->flags &= ~FLAG_RESTART_NOW;
4854         }
4855 }
4856
4857 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4858 {
4859         struct e1000_hw *hw = &adapter->hw;
4860
4861         /* With 82574 controllers, PHY needs to be checked periodically
4862          * for hung state and reset, if two calls return true
4863          */
4864         if (e1000_check_phy_82574(hw))
4865                 adapter->phy_hang_count++;
4866         else
4867                 adapter->phy_hang_count = 0;
4868
4869         if (adapter->phy_hang_count > 1) {
4870                 adapter->phy_hang_count = 0;
4871                 e_dbg("PHY appears hung - resetting\n");
4872                 schedule_work(&adapter->reset_task);
4873         }
4874 }
4875
4876 /**
4877  * e1000_watchdog - Timer Call-back
4878  * @data: pointer to adapter cast into an unsigned long
4879  **/
4880 static void e1000_watchdog(unsigned long data)
4881 {
4882         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4883
4884         /* Do the rest outside of interrupt context */
4885         schedule_work(&adapter->watchdog_task);
4886
4887         /* TODO: make this use queue_delayed_work() */
4888 }
4889
4890 static void e1000_watchdog_task(struct work_struct *work)
4891 {
4892         struct e1000_adapter *adapter = container_of(work,
4893                                                      struct e1000_adapter,
4894                                                      watchdog_task);
4895         struct net_device *netdev = adapter->netdev;
4896         struct e1000_mac_info *mac = &adapter->hw.mac;
4897         struct e1000_phy_info *phy = &adapter->hw.phy;
4898         struct e1000_ring *tx_ring = adapter->tx_ring;
4899         struct e1000_hw *hw = &adapter->hw;
4900         u32 link, tctl;
4901
4902         if (test_bit(__E1000_DOWN, &adapter->state))
4903                 return;
4904
4905         link = e1000e_has_link(adapter);
4906         if ((netif_carrier_ok(netdev)) && link) {
4907                 /* Cancel scheduled suspend requests. */
4908                 pm_runtime_resume(netdev->dev.parent);
4909
4910                 e1000e_enable_receives(adapter);
4911                 goto link_up;
4912         }
4913
4914         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4915             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4916                 e1000_update_mng_vlan(adapter);
4917
4918         if (link) {
4919                 if (!netif_carrier_ok(netdev)) {
4920                         bool txb2b = true;
4921
4922                         /* Cancel scheduled suspend requests. */
4923                         pm_runtime_resume(netdev->dev.parent);
4924
4925                         /* update snapshot of PHY registers on LSC */
4926                         e1000_phy_read_status(adapter);
4927                         mac->ops.get_link_up_info(&adapter->hw,
4928                                                   &adapter->link_speed,
4929                                                   &adapter->link_duplex);
4930                         e1000_print_link_info(adapter);
4931
4932                         /* check if SmartSpeed worked */
4933                         e1000e_check_downshift(hw);
4934                         if (phy->speed_downgraded)
4935                                 netdev_warn(netdev,
4936                                             "Link Speed was downgraded by SmartSpeed\n");
4937
4938                         /* On supported PHYs, check for duplex mismatch only
4939                          * if link has autonegotiated at 10/100 half
4940                          */
4941                         if ((hw->phy.type == e1000_phy_igp_3 ||
4942                              hw->phy.type == e1000_phy_bm) &&
4943                             hw->mac.autoneg &&
4944                             (adapter->link_speed == SPEED_10 ||
4945                              adapter->link_speed == SPEED_100) &&
4946                             (adapter->link_duplex == HALF_DUPLEX)) {
4947                                 u16 autoneg_exp;
4948
4949                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4950
4951                                 if (!(autoneg_exp & EXPANSION_NWAY))
4952                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4953                         }
4954
4955                         /* adjust timeout factor according to speed/duplex */
4956                         adapter->tx_timeout_factor = 1;
4957                         switch (adapter->link_speed) {
4958                         case SPEED_10:
4959                                 txb2b = false;
4960                                 adapter->tx_timeout_factor = 16;
4961                                 break;
4962                         case SPEED_100:
4963                                 txb2b = false;
4964                                 adapter->tx_timeout_factor = 10;
4965                                 break;
4966                         }
4967
4968                         /* workaround: re-program speed mode bit after
4969                          * link-up event
4970                          */
4971                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4972                             !txb2b) {
4973                                 u32 tarc0;
4974
4975                                 tarc0 = er32(TARC(0));
4976                                 tarc0 &= ~SPEED_MODE_BIT;
4977                                 ew32(TARC(0), tarc0);
4978                         }
4979
4980                         /* disable TSO for pcie and 10/100 speeds, to avoid
4981                          * some hardware issues
4982                          */
4983                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4984                                 switch (adapter->link_speed) {
4985                                 case SPEED_10:
4986                                 case SPEED_100:
4987                                         e_info("10/100 speed: disabling TSO\n");
4988                                         netdev->features &= ~NETIF_F_TSO;
4989                                         netdev->features &= ~NETIF_F_TSO6;
4990                                         break;
4991                                 case SPEED_1000:
4992                                         netdev->features |= NETIF_F_TSO;
4993                                         netdev->features |= NETIF_F_TSO6;
4994                                         break;
4995                                 default:
4996                                         /* oops */
4997                                         break;
4998                                 }
4999                         }
5000
5001                         /* enable transmits in the hardware, need to do this
5002                          * after setting TARC(0)
5003                          */
5004                         tctl = er32(TCTL);
5005                         tctl |= E1000_TCTL_EN;
5006                         ew32(TCTL, tctl);
5007
5008                         /* Perform any post-link-up configuration before
5009                          * reporting link up.
5010                          */
5011                         if (phy->ops.cfg_on_link_up)
5012                                 phy->ops.cfg_on_link_up(hw);
5013
5014                         netif_carrier_on(netdev);
5015
5016                         if (!test_bit(__E1000_DOWN, &adapter->state))
5017                                 mod_timer(&adapter->phy_info_timer,
5018                                           round_jiffies(jiffies + 2 * HZ));
5019                 }
5020         } else {
5021                 if (netif_carrier_ok(netdev)) {
5022                         adapter->link_speed = 0;
5023                         adapter->link_duplex = 0;
5024                         /* Link status message must follow this format */
5025                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5026                         netif_carrier_off(netdev);
5027                         if (!test_bit(__E1000_DOWN, &adapter->state))
5028                                 mod_timer(&adapter->phy_info_timer,
5029                                           round_jiffies(jiffies + 2 * HZ));
5030
5031                         /* 8000ES2LAN requires a Rx packet buffer work-around
5032                          * on link down event; reset the controller to flush
5033                          * the Rx packet buffer.
5034                          */
5035                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5036                                 adapter->flags |= FLAG_RESTART_NOW;
5037                         else
5038                                 pm_schedule_suspend(netdev->dev.parent,
5039                                                     LINK_TIMEOUT);
5040                 }
5041         }
5042
5043 link_up:
5044         spin_lock(&adapter->stats64_lock);
5045         e1000e_update_stats(adapter);
5046
5047         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5048         adapter->tpt_old = adapter->stats.tpt;
5049         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5050         adapter->colc_old = adapter->stats.colc;
5051
5052         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5053         adapter->gorc_old = adapter->stats.gorc;
5054         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5055         adapter->gotc_old = adapter->stats.gotc;
5056         spin_unlock(&adapter->stats64_lock);
5057
5058         /* If the link is lost the controller stops DMA, but
5059          * if there is queued Tx work it cannot be done.  So
5060          * reset the controller to flush the Tx packet buffers.
5061          */
5062         if (!netif_carrier_ok(netdev) &&
5063             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5064                 adapter->flags |= FLAG_RESTART_NOW;
5065
5066         /* If reset is necessary, do it outside of interrupt context. */
5067         if (adapter->flags & FLAG_RESTART_NOW) {
5068                 schedule_work(&adapter->reset_task);
5069                 /* return immediately since reset is imminent */
5070                 return;
5071         }
5072
5073         e1000e_update_adaptive(&adapter->hw);
5074
5075         /* Simple mode for Interrupt Throttle Rate (ITR) */
5076         if (adapter->itr_setting == 4) {
5077                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5078                  * Total asymmetrical Tx or Rx gets ITR=8000;
5079                  * everyone else is between 2000-8000.
5080                  */
5081                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5082                 u32 dif = (adapter->gotc > adapter->gorc ?
5083                            adapter->gotc - adapter->gorc :
5084                            adapter->gorc - adapter->gotc) / 10000;
5085                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5086
5087                 e1000e_write_itr(adapter, itr);
5088         }
5089
5090         /* Cause software interrupt to ensure Rx ring is cleaned */
5091         if (adapter->msix_entries)
5092                 ew32(ICS, adapter->rx_ring->ims_val);
5093         else
5094                 ew32(ICS, E1000_ICS_RXDMT0);
5095
5096         /* flush pending descriptors to memory before detecting Tx hang */
5097         e1000e_flush_descriptors(adapter);
5098
5099         /* Force detection of hung controller every watchdog period */
5100         adapter->detect_tx_hung = true;
5101
5102         /* With 82571 controllers, LAA may be overwritten due to controller
5103          * reset from the other port. Set the appropriate LAA in RAR[0]
5104          */
5105         if (e1000e_get_laa_state_82571(hw))
5106                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5107
5108         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5109                 e1000e_check_82574_phy_workaround(adapter);
5110
5111         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5112         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5113                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5114                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5115                         er32(RXSTMPH);
5116                         adapter->rx_hwtstamp_cleared++;
5117                 } else {
5118                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5119                 }
5120         }
5121
5122         /* Reset the timer */
5123         if (!test_bit(__E1000_DOWN, &adapter->state))
5124                 mod_timer(&adapter->watchdog_timer,
5125                           round_jiffies(jiffies + 2 * HZ));
5126 }
5127
5128 #define E1000_TX_FLAGS_CSUM             0x00000001
5129 #define E1000_TX_FLAGS_VLAN             0x00000002
5130 #define E1000_TX_FLAGS_TSO              0x00000004
5131 #define E1000_TX_FLAGS_IPV4             0x00000008
5132 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5133 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5134 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5135 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5136
5137 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5138 {
5139         struct e1000_context_desc *context_desc;
5140         struct e1000_buffer *buffer_info;
5141         unsigned int i;
5142         u32 cmd_length = 0;
5143         u16 ipcse = 0, mss;
5144         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5145         int err;
5146
5147         if (!skb_is_gso(skb))
5148                 return 0;
5149
5150         err = skb_cow_head(skb, 0);
5151         if (err < 0)
5152                 return err;
5153
5154         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5155         mss = skb_shinfo(skb)->gso_size;
5156         if (skb->protocol == htons(ETH_P_IP)) {
5157                 struct iphdr *iph = ip_hdr(skb);
5158                 iph->tot_len = 0;
5159                 iph->check = 0;
5160                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5161                                                          0, IPPROTO_TCP, 0);
5162                 cmd_length = E1000_TXD_CMD_IP;
5163                 ipcse = skb_transport_offset(skb) - 1;
5164         } else if (skb_is_gso_v6(skb)) {
5165                 ipv6_hdr(skb)->payload_len = 0;
5166                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5167                                                        &ipv6_hdr(skb)->daddr,
5168                                                        0, IPPROTO_TCP, 0);
5169                 ipcse = 0;
5170         }
5171         ipcss = skb_network_offset(skb);
5172         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5173         tucss = skb_transport_offset(skb);
5174         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5175
5176         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5177                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5178
5179         i = tx_ring->next_to_use;
5180         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5181         buffer_info = &tx_ring->buffer_info[i];
5182
5183         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5184         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5185         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5186         context_desc->upper_setup.tcp_fields.tucss = tucss;
5187         context_desc->upper_setup.tcp_fields.tucso = tucso;
5188         context_desc->upper_setup.tcp_fields.tucse = 0;
5189         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5190         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5191         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5192
5193         buffer_info->time_stamp = jiffies;
5194         buffer_info->next_to_watch = i;
5195
5196         i++;
5197         if (i == tx_ring->count)
5198                 i = 0;
5199         tx_ring->next_to_use = i;
5200
5201         return 1;
5202 }
5203
5204 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5205 {
5206         struct e1000_adapter *adapter = tx_ring->adapter;
5207         struct e1000_context_desc *context_desc;
5208         struct e1000_buffer *buffer_info;
5209         unsigned int i;
5210         u8 css;
5211         u32 cmd_len = E1000_TXD_CMD_DEXT;
5212         __be16 protocol;
5213
5214         if (skb->ip_summed != CHECKSUM_PARTIAL)
5215                 return false;
5216
5217         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5218                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5219         else
5220                 protocol = skb->protocol;
5221
5222         switch (protocol) {
5223         case cpu_to_be16(ETH_P_IP):
5224                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5225                         cmd_len |= E1000_TXD_CMD_TCP;
5226                 break;
5227         case cpu_to_be16(ETH_P_IPV6):
5228                 /* XXX not handling all IPV6 headers */
5229                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5230                         cmd_len |= E1000_TXD_CMD_TCP;
5231                 break;
5232         default:
5233                 if (unlikely(net_ratelimit()))
5234                         e_warn("checksum_partial proto=%x!\n",
5235                                be16_to_cpu(protocol));
5236                 break;
5237         }
5238
5239         css = skb_checksum_start_offset(skb);
5240
5241         i = tx_ring->next_to_use;
5242         buffer_info = &tx_ring->buffer_info[i];
5243         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5244
5245         context_desc->lower_setup.ip_config = 0;
5246         context_desc->upper_setup.tcp_fields.tucss = css;
5247         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5248         context_desc->upper_setup.tcp_fields.tucse = 0;
5249         context_desc->tcp_seg_setup.data = 0;
5250         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5251
5252         buffer_info->time_stamp = jiffies;
5253         buffer_info->next_to_watch = i;
5254
5255         i++;
5256         if (i == tx_ring->count)
5257                 i = 0;
5258         tx_ring->next_to_use = i;
5259
5260         return true;
5261 }
5262
5263 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5264                         unsigned int first, unsigned int max_per_txd,
5265                         unsigned int nr_frags)
5266 {
5267         struct e1000_adapter *adapter = tx_ring->adapter;
5268         struct pci_dev *pdev = adapter->pdev;
5269         struct e1000_buffer *buffer_info;
5270         unsigned int len = skb_headlen(skb);
5271         unsigned int offset = 0, size, count = 0, i;
5272         unsigned int f, bytecount, segs;
5273
5274         i = tx_ring->next_to_use;
5275
5276         while (len) {
5277                 buffer_info = &tx_ring->buffer_info[i];
5278                 size = min(len, max_per_txd);
5279
5280                 buffer_info->length = size;
5281                 buffer_info->time_stamp = jiffies;
5282                 buffer_info->next_to_watch = i;
5283                 buffer_info->dma = dma_map_single(&pdev->dev,
5284                                                   skb->data + offset,
5285                                                   size, DMA_TO_DEVICE);
5286                 buffer_info->mapped_as_page = false;
5287                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5288                         goto dma_error;
5289
5290                 len -= size;
5291                 offset += size;
5292                 count++;
5293
5294                 if (len) {
5295                         i++;
5296                         if (i == tx_ring->count)
5297                                 i = 0;
5298                 }
5299         }
5300
5301         for (f = 0; f < nr_frags; f++) {
5302                 const struct skb_frag_struct *frag;
5303
5304                 frag = &skb_shinfo(skb)->frags[f];
5305                 len = skb_frag_size(frag);
5306                 offset = 0;
5307
5308                 while (len) {
5309                         i++;
5310                         if (i == tx_ring->count)
5311                                 i = 0;
5312
5313                         buffer_info = &tx_ring->buffer_info[i];
5314                         size = min(len, max_per_txd);
5315
5316                         buffer_info->length = size;
5317                         buffer_info->time_stamp = jiffies;
5318                         buffer_info->next_to_watch = i;
5319                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5320                                                             offset, size,
5321                                                             DMA_TO_DEVICE);
5322                         buffer_info->mapped_as_page = true;
5323                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5324                                 goto dma_error;
5325
5326                         len -= size;
5327                         offset += size;
5328                         count++;
5329                 }
5330         }
5331
5332         segs = skb_shinfo(skb)->gso_segs ? : 1;
5333         /* multiply data chunks by size of headers */
5334         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5335
5336         tx_ring->buffer_info[i].skb = skb;
5337         tx_ring->buffer_info[i].segs = segs;
5338         tx_ring->buffer_info[i].bytecount = bytecount;
5339         tx_ring->buffer_info[first].next_to_watch = i;
5340
5341         return count;
5342
5343 dma_error:
5344         dev_err(&pdev->dev, "Tx DMA map failed\n");
5345         buffer_info->dma = 0;
5346         if (count)
5347                 count--;
5348
5349         while (count--) {
5350                 if (i == 0)
5351                         i += tx_ring->count;
5352                 i--;
5353                 buffer_info = &tx_ring->buffer_info[i];
5354                 e1000_put_txbuf(tx_ring, buffer_info);
5355         }
5356
5357         return 0;
5358 }
5359
5360 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5361 {
5362         struct e1000_adapter *adapter = tx_ring->adapter;
5363         struct e1000_tx_desc *tx_desc = NULL;
5364         struct e1000_buffer *buffer_info;
5365         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5366         unsigned int i;
5367
5368         if (tx_flags & E1000_TX_FLAGS_TSO) {
5369                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5370                     E1000_TXD_CMD_TSE;
5371                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5372
5373                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5374                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5375         }
5376
5377         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5378                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5379                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5380         }
5381
5382         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5383                 txd_lower |= E1000_TXD_CMD_VLE;
5384                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5385         }
5386
5387         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5388                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5389
5390         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5391                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5392                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5393         }
5394
5395         i = tx_ring->next_to_use;
5396
5397         do {
5398                 buffer_info = &tx_ring->buffer_info[i];
5399                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5400                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5401                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5402                                                   buffer_info->length);
5403                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5404
5405                 i++;
5406                 if (i == tx_ring->count)
5407                         i = 0;
5408         } while (--count > 0);
5409
5410         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5411
5412         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5413         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5414                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5415
5416         /* Force memory writes to complete before letting h/w
5417          * know there are new descriptors to fetch.  (Only
5418          * applicable for weak-ordered memory model archs,
5419          * such as IA-64).
5420          */
5421         wmb();
5422
5423         tx_ring->next_to_use = i;
5424
5425         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5426                 e1000e_update_tdt_wa(tx_ring, i);
5427         else
5428                 writel(i, tx_ring->tail);
5429
5430         /* we need this if more than one processor can write to our tail
5431          * at a time, it synchronizes IO on IA64/Altix systems
5432          */
5433         mmiowb();
5434 }
5435
5436 #define MINIMUM_DHCP_PACKET_SIZE 282
5437 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5438                                     struct sk_buff *skb)
5439 {
5440         struct e1000_hw *hw = &adapter->hw;
5441         u16 length, offset;
5442
5443         if (vlan_tx_tag_present(skb) &&
5444             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5445               (adapter->hw.mng_cookie.status &
5446                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5447                 return 0;
5448
5449         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5450                 return 0;
5451
5452         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5453                 return 0;
5454
5455         {
5456                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5457                 struct udphdr *udp;
5458
5459                 if (ip->protocol != IPPROTO_UDP)
5460                         return 0;
5461
5462                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5463                 if (ntohs(udp->dest) != 67)
5464                         return 0;
5465
5466                 offset = (u8 *)udp + 8 - skb->data;
5467                 length = skb->len - offset;
5468                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5469         }
5470
5471         return 0;
5472 }
5473
5474 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5475 {
5476         struct e1000_adapter *adapter = tx_ring->adapter;
5477
5478         netif_stop_queue(adapter->netdev);
5479         /* Herbert's original patch had:
5480          *  smp_mb__after_netif_stop_queue();
5481          * but since that doesn't exist yet, just open code it.
5482          */
5483         smp_mb();
5484
5485         /* We need to check again in a case another CPU has just
5486          * made room available.
5487          */
5488         if (e1000_desc_unused(tx_ring) < size)
5489                 return -EBUSY;
5490
5491         /* A reprieve! */
5492         netif_start_queue(adapter->netdev);
5493         ++adapter->restart_queue;
5494         return 0;
5495 }
5496
5497 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5498 {
5499         BUG_ON(size > tx_ring->count);
5500
5501         if (e1000_desc_unused(tx_ring) >= size)
5502                 return 0;
5503         return __e1000_maybe_stop_tx(tx_ring, size);
5504 }
5505
5506 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5507                                     struct net_device *netdev)
5508 {
5509         struct e1000_adapter *adapter = netdev_priv(netdev);
5510         struct e1000_ring *tx_ring = adapter->tx_ring;
5511         unsigned int first;
5512         unsigned int tx_flags = 0;
5513         unsigned int len = skb_headlen(skb);
5514         unsigned int nr_frags;
5515         unsigned int mss;
5516         int count = 0;
5517         int tso;
5518         unsigned int f;
5519
5520         if (test_bit(__E1000_DOWN, &adapter->state)) {
5521                 dev_kfree_skb_any(skb);
5522                 return NETDEV_TX_OK;
5523         }
5524
5525         if (skb->len <= 0) {
5526                 dev_kfree_skb_any(skb);
5527                 return NETDEV_TX_OK;
5528         }
5529
5530         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5531          * pad skb in order to meet this minimum size requirement
5532          */
5533         if (unlikely(skb->len < 17)) {
5534                 if (skb_pad(skb, 17 - skb->len))
5535                         return NETDEV_TX_OK;
5536                 skb->len = 17;
5537                 skb_set_tail_pointer(skb, 17);
5538         }
5539
5540         mss = skb_shinfo(skb)->gso_size;
5541         if (mss) {
5542                 u8 hdr_len;
5543
5544                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5545                  * points to just header, pull a few bytes of payload from
5546                  * frags into skb->data
5547                  */
5548                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5549                 /* we do this workaround for ES2LAN, but it is un-necessary,
5550                  * avoiding it could save a lot of cycles
5551                  */
5552                 if (skb->data_len && (hdr_len == len)) {
5553                         unsigned int pull_size;
5554
5555                         pull_size = min_t(unsigned int, 4, skb->data_len);
5556                         if (!__pskb_pull_tail(skb, pull_size)) {
5557                                 e_err("__pskb_pull_tail failed.\n");
5558                                 dev_kfree_skb_any(skb);
5559                                 return NETDEV_TX_OK;
5560                         }
5561                         len = skb_headlen(skb);
5562                 }
5563         }
5564
5565         /* reserve a descriptor for the offload context */
5566         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5567                 count++;
5568         count++;
5569
5570         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5571
5572         nr_frags = skb_shinfo(skb)->nr_frags;
5573         for (f = 0; f < nr_frags; f++)
5574                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5575                                       adapter->tx_fifo_limit);
5576
5577         if (adapter->hw.mac.tx_pkt_filtering)
5578                 e1000_transfer_dhcp_info(adapter, skb);
5579
5580         /* need: count + 2 desc gap to keep tail from touching
5581          * head, otherwise try next time
5582          */
5583         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5584                 return NETDEV_TX_BUSY;
5585
5586         if (vlan_tx_tag_present(skb)) {
5587                 tx_flags |= E1000_TX_FLAGS_VLAN;
5588                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5589         }
5590
5591         first = tx_ring->next_to_use;
5592
5593         tso = e1000_tso(tx_ring, skb);
5594         if (tso < 0) {
5595                 dev_kfree_skb_any(skb);
5596                 return NETDEV_TX_OK;
5597         }
5598
5599         if (tso)
5600                 tx_flags |= E1000_TX_FLAGS_TSO;
5601         else if (e1000_tx_csum(tx_ring, skb))
5602                 tx_flags |= E1000_TX_FLAGS_CSUM;
5603
5604         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5605          * 82571 hardware supports TSO capabilities for IPv6 as well...
5606          * no longer assume, we must.
5607          */
5608         if (skb->protocol == htons(ETH_P_IP))
5609                 tx_flags |= E1000_TX_FLAGS_IPV4;
5610
5611         if (unlikely(skb->no_fcs))
5612                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5613
5614         /* if count is 0 then mapping error has occurred */
5615         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5616                              nr_frags);
5617         if (count) {
5618                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5619                              !adapter->tx_hwtstamp_skb)) {
5620                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5621                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5622                         adapter->tx_hwtstamp_skb = skb_get(skb);
5623                         adapter->tx_hwtstamp_start = jiffies;
5624                         schedule_work(&adapter->tx_hwtstamp_work);
5625                 } else {
5626                         skb_tx_timestamp(skb);
5627                 }
5628
5629                 netdev_sent_queue(netdev, skb->len);
5630                 e1000_tx_queue(tx_ring, tx_flags, count);
5631                 /* Make sure there is space in the ring for the next send. */
5632                 e1000_maybe_stop_tx(tx_ring,
5633                                     (MAX_SKB_FRAGS *
5634                                      DIV_ROUND_UP(PAGE_SIZE,
5635                                                   adapter->tx_fifo_limit) + 2));
5636         } else {
5637                 dev_kfree_skb_any(skb);
5638                 tx_ring->buffer_info[first].time_stamp = 0;
5639                 tx_ring->next_to_use = first;
5640         }
5641
5642         return NETDEV_TX_OK;
5643 }
5644
5645 /**
5646  * e1000_tx_timeout - Respond to a Tx Hang
5647  * @netdev: network interface device structure
5648  **/
5649 static void e1000_tx_timeout(struct net_device *netdev)
5650 {
5651         struct e1000_adapter *adapter = netdev_priv(netdev);
5652
5653         /* Do the reset outside of interrupt context */
5654         adapter->tx_timeout_count++;
5655         schedule_work(&adapter->reset_task);
5656 }
5657
5658 static void e1000_reset_task(struct work_struct *work)
5659 {
5660         struct e1000_adapter *adapter;
5661         adapter = container_of(work, struct e1000_adapter, reset_task);
5662
5663         /* don't run the task if already down */
5664         if (test_bit(__E1000_DOWN, &adapter->state))
5665                 return;
5666
5667         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5668                 e1000e_dump(adapter);
5669                 e_err("Reset adapter unexpectedly\n");
5670         }
5671         e1000e_reinit_locked(adapter);
5672 }
5673
5674 /**
5675  * e1000_get_stats64 - Get System Network Statistics
5676  * @netdev: network interface device structure
5677  * @stats: rtnl_link_stats64 pointer
5678  *
5679  * Returns the address of the device statistics structure.
5680  **/
5681 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5682                                              struct rtnl_link_stats64 *stats)
5683 {
5684         struct e1000_adapter *adapter = netdev_priv(netdev);
5685
5686         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5687         spin_lock(&adapter->stats64_lock);
5688         e1000e_update_stats(adapter);
5689         /* Fill out the OS statistics structure */
5690         stats->rx_bytes = adapter->stats.gorc;
5691         stats->rx_packets = adapter->stats.gprc;
5692         stats->tx_bytes = adapter->stats.gotc;
5693         stats->tx_packets = adapter->stats.gptc;
5694         stats->multicast = adapter->stats.mprc;
5695         stats->collisions = adapter->stats.colc;
5696
5697         /* Rx Errors */
5698
5699         /* RLEC on some newer hardware can be incorrect so build
5700          * our own version based on RUC and ROC
5701          */
5702         stats->rx_errors = adapter->stats.rxerrc +
5703             adapter->stats.crcerrs + adapter->stats.algnerrc +
5704             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5705         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5706         stats->rx_crc_errors = adapter->stats.crcerrs;
5707         stats->rx_frame_errors = adapter->stats.algnerrc;
5708         stats->rx_missed_errors = adapter->stats.mpc;
5709
5710         /* Tx Errors */
5711         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5712         stats->tx_aborted_errors = adapter->stats.ecol;
5713         stats->tx_window_errors = adapter->stats.latecol;
5714         stats->tx_carrier_errors = adapter->stats.tncrs;
5715
5716         /* Tx Dropped needs to be maintained elsewhere */
5717
5718         spin_unlock(&adapter->stats64_lock);
5719         return stats;
5720 }
5721
5722 /**
5723  * e1000_change_mtu - Change the Maximum Transfer Unit
5724  * @netdev: network interface device structure
5725  * @new_mtu: new value for maximum frame size
5726  *
5727  * Returns 0 on success, negative on failure
5728  **/
5729 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5730 {
5731         struct e1000_adapter *adapter = netdev_priv(netdev);
5732         int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5733
5734         /* Jumbo frame support */
5735         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5736             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5737                 e_err("Jumbo Frames not supported.\n");
5738                 return -EINVAL;
5739         }
5740
5741         /* Supported frame sizes */
5742         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5743             (max_frame > adapter->max_hw_frame_size)) {
5744                 e_err("Unsupported MTU setting\n");
5745                 return -EINVAL;
5746         }
5747
5748         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5749         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5750             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5751             (new_mtu > ETH_DATA_LEN)) {
5752                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5753                 return -EINVAL;
5754         }
5755
5756         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5757                 usleep_range(1000, 2000);
5758         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5759         adapter->max_frame_size = max_frame;
5760         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5761         netdev->mtu = new_mtu;
5762
5763         pm_runtime_get_sync(netdev->dev.parent);
5764
5765         if (netif_running(netdev))
5766                 e1000e_down(adapter, true);
5767
5768         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5769          * means we reserve 2 more, this pushes us to allocate from the next
5770          * larger slab size.
5771          * i.e. RXBUFFER_2048 --> size-4096 slab
5772          * However with the new *_jumbo_rx* routines, jumbo receives will use
5773          * fragmented skbs
5774          */
5775
5776         if (max_frame <= 2048)
5777                 adapter->rx_buffer_len = 2048;
5778         else
5779                 adapter->rx_buffer_len = 4096;
5780
5781         /* adjust allocation if LPE protects us, and we aren't using SBP */
5782         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5783             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5784                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5785                     + ETH_FCS_LEN;
5786
5787         if (netif_running(netdev))
5788                 e1000e_up(adapter);
5789         else
5790                 e1000e_reset(adapter);
5791
5792         pm_runtime_put_sync(netdev->dev.parent);
5793
5794         clear_bit(__E1000_RESETTING, &adapter->state);
5795
5796         return 0;
5797 }
5798
5799 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5800                            int cmd)
5801 {
5802         struct e1000_adapter *adapter = netdev_priv(netdev);
5803         struct mii_ioctl_data *data = if_mii(ifr);
5804
5805         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5806                 return -EOPNOTSUPP;
5807
5808         switch (cmd) {
5809         case SIOCGMIIPHY:
5810                 data->phy_id = adapter->hw.phy.addr;
5811                 break;
5812         case SIOCGMIIREG:
5813                 e1000_phy_read_status(adapter);
5814
5815                 switch (data->reg_num & 0x1F) {
5816                 case MII_BMCR:
5817                         data->val_out = adapter->phy_regs.bmcr;
5818                         break;
5819                 case MII_BMSR:
5820                         data->val_out = adapter->phy_regs.bmsr;
5821                         break;
5822                 case MII_PHYSID1:
5823                         data->val_out = (adapter->hw.phy.id >> 16);
5824                         break;
5825                 case MII_PHYSID2:
5826                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5827                         break;
5828                 case MII_ADVERTISE:
5829                         data->val_out = adapter->phy_regs.advertise;
5830                         break;
5831                 case MII_LPA:
5832                         data->val_out = adapter->phy_regs.lpa;
5833                         break;
5834                 case MII_EXPANSION:
5835                         data->val_out = adapter->phy_regs.expansion;
5836                         break;
5837                 case MII_CTRL1000:
5838                         data->val_out = adapter->phy_regs.ctrl1000;
5839                         break;
5840                 case MII_STAT1000:
5841                         data->val_out = adapter->phy_regs.stat1000;
5842                         break;
5843                 case MII_ESTATUS:
5844                         data->val_out = adapter->phy_regs.estatus;
5845                         break;
5846                 default:
5847                         return -EIO;
5848                 }
5849                 break;
5850         case SIOCSMIIREG:
5851         default:
5852                 return -EOPNOTSUPP;
5853         }
5854         return 0;
5855 }
5856
5857 /**
5858  * e1000e_hwtstamp_ioctl - control hardware time stamping
5859  * @netdev: network interface device structure
5860  * @ifreq: interface request
5861  *
5862  * Outgoing time stamping can be enabled and disabled. Play nice and
5863  * disable it when requested, although it shouldn't cause any overhead
5864  * when no packet needs it. At most one packet in the queue may be
5865  * marked for time stamping, otherwise it would be impossible to tell
5866  * for sure to which packet the hardware time stamp belongs.
5867  *
5868  * Incoming time stamping has to be configured via the hardware filters.
5869  * Not all combinations are supported, in particular event type has to be
5870  * specified. Matching the kind of event packet is not supported, with the
5871  * exception of "all V2 events regardless of level 2 or 4".
5872  **/
5873 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5874 {
5875         struct e1000_adapter *adapter = netdev_priv(netdev);
5876         struct hwtstamp_config config;
5877         int ret_val;
5878
5879         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5880                 return -EFAULT;
5881
5882         ret_val = e1000e_config_hwtstamp(adapter, &config);
5883         if (ret_val)
5884                 return ret_val;
5885
5886         switch (config.rx_filter) {
5887         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5888         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5889         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5890         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5891         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5892         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5893                 /* With V2 type filters which specify a Sync or Delay Request,
5894                  * Path Delay Request/Response messages are also time stamped
5895                  * by hardware so notify the caller the requested packets plus
5896                  * some others are time stamped.
5897                  */
5898                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5899                 break;
5900         default:
5901                 break;
5902         }
5903
5904         return copy_to_user(ifr->ifr_data, &config,
5905                             sizeof(config)) ? -EFAULT : 0;
5906 }
5907
5908 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5909 {
5910         struct e1000_adapter *adapter = netdev_priv(netdev);
5911
5912         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5913                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5914 }
5915
5916 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5917 {
5918         switch (cmd) {
5919         case SIOCGMIIPHY:
5920         case SIOCGMIIREG:
5921         case SIOCSMIIREG:
5922                 return e1000_mii_ioctl(netdev, ifr, cmd);
5923         case SIOCSHWTSTAMP:
5924                 return e1000e_hwtstamp_set(netdev, ifr);
5925         case SIOCGHWTSTAMP:
5926                 return e1000e_hwtstamp_get(netdev, ifr);
5927         default:
5928                 return -EOPNOTSUPP;
5929         }
5930 }
5931
5932 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5933 {
5934         struct e1000_hw *hw = &adapter->hw;
5935         u32 i, mac_reg, wuc;
5936         u16 phy_reg, wuc_enable;
5937         int retval;
5938
5939         /* copy MAC RARs to PHY RARs */
5940         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5941
5942         retval = hw->phy.ops.acquire(hw);
5943         if (retval) {
5944                 e_err("Could not acquire PHY\n");
5945                 return retval;
5946         }
5947
5948         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5949         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5950         if (retval)
5951                 goto release;
5952
5953         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5954         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5955                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5956                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5957                                            (u16)(mac_reg & 0xFFFF));
5958                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5959                                            (u16)((mac_reg >> 16) & 0xFFFF));
5960         }
5961
5962         /* configure PHY Rx Control register */
5963         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5964         mac_reg = er32(RCTL);
5965         if (mac_reg & E1000_RCTL_UPE)
5966                 phy_reg |= BM_RCTL_UPE;
5967         if (mac_reg & E1000_RCTL_MPE)
5968                 phy_reg |= BM_RCTL_MPE;
5969         phy_reg &= ~(BM_RCTL_MO_MASK);
5970         if (mac_reg & E1000_RCTL_MO_3)
5971                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5972                             << BM_RCTL_MO_SHIFT);
5973         if (mac_reg & E1000_RCTL_BAM)
5974                 phy_reg |= BM_RCTL_BAM;
5975         if (mac_reg & E1000_RCTL_PMCF)
5976                 phy_reg |= BM_RCTL_PMCF;
5977         mac_reg = er32(CTRL);
5978         if (mac_reg & E1000_CTRL_RFCE)
5979                 phy_reg |= BM_RCTL_RFCE;
5980         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5981
5982         wuc = E1000_WUC_PME_EN;
5983         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
5984                 wuc |= E1000_WUC_APME;
5985
5986         /* enable PHY wakeup in MAC register */
5987         ew32(WUFC, wufc);
5988         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
5989                    E1000_WUC_PME_STATUS | wuc));
5990
5991         /* configure and enable PHY wakeup in PHY registers */
5992         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5993         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
5994
5995         /* activate PHY wakeup */
5996         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5997         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5998         if (retval)
5999                 e_err("Could not set PHY Host Wakeup bit\n");
6000 release:
6001         hw->phy.ops.release(hw);
6002
6003         return retval;
6004 }
6005
6006 static int e1000e_pm_freeze(struct device *dev)
6007 {
6008         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6009         struct e1000_adapter *adapter = netdev_priv(netdev);
6010
6011         netif_device_detach(netdev);
6012
6013         if (netif_running(netdev)) {
6014                 int count = E1000_CHECK_RESET_COUNT;
6015
6016                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6017                         usleep_range(10000, 20000);
6018
6019                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6020
6021                 /* Quiesce the device without resetting the hardware */
6022                 e1000e_down(adapter, false);
6023                 e1000_free_irq(adapter);
6024         }
6025         e1000e_reset_interrupt_capability(adapter);
6026
6027         /* Allow time for pending master requests to run */
6028         e1000e_disable_pcie_master(&adapter->hw);
6029
6030         return 0;
6031 }
6032
6033 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6034 {
6035         struct net_device *netdev = pci_get_drvdata(pdev);
6036         struct e1000_adapter *adapter = netdev_priv(netdev);
6037         struct e1000_hw *hw = &adapter->hw;
6038         u32 ctrl, ctrl_ext, rctl, status;
6039         /* Runtime suspend should only enable wakeup for link changes */
6040         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6041         int retval = 0;
6042
6043         status = er32(STATUS);
6044         if (status & E1000_STATUS_LU)
6045                 wufc &= ~E1000_WUFC_LNKC;
6046
6047         if (wufc) {
6048                 e1000_setup_rctl(adapter);
6049                 e1000e_set_rx_mode(netdev);
6050
6051                 /* turn on all-multi mode if wake on multicast is enabled */
6052                 if (wufc & E1000_WUFC_MC) {
6053                         rctl = er32(RCTL);
6054                         rctl |= E1000_RCTL_MPE;
6055                         ew32(RCTL, rctl);
6056                 }
6057
6058                 ctrl = er32(CTRL);
6059                 ctrl |= E1000_CTRL_ADVD3WUC;
6060                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6061                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6062                 ew32(CTRL, ctrl);
6063
6064                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6065                     adapter->hw.phy.media_type ==
6066                     e1000_media_type_internal_serdes) {
6067                         /* keep the laser running in D3 */
6068                         ctrl_ext = er32(CTRL_EXT);
6069                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6070                         ew32(CTRL_EXT, ctrl_ext);
6071                 }
6072
6073                 if (!runtime)
6074                         e1000e_power_up_phy(adapter);
6075
6076                 if (adapter->flags & FLAG_IS_ICH)
6077                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6078
6079                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6080                         /* enable wakeup by the PHY */
6081                         retval = e1000_init_phy_wakeup(adapter, wufc);
6082                         if (retval)
6083                                 return retval;
6084                 } else {
6085                         /* enable wakeup by the MAC */
6086                         ew32(WUFC, wufc);
6087                         ew32(WUC, E1000_WUC_PME_EN);
6088                 }
6089         } else {
6090                 ew32(WUC, 0);
6091                 ew32(WUFC, 0);
6092
6093                 e1000_power_down_phy(adapter);
6094         }
6095
6096         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6097                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6098         } else if (hw->mac.type == e1000_pch_lpt) {
6099                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6100                         /* ULP does not support wake from unicast, multicast
6101                          * or broadcast.
6102                          */
6103                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6104
6105                 if (retval)
6106                         return retval;
6107         }
6108
6109
6110         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6111          * would have already happened in close and is redundant.
6112          */
6113         e1000e_release_hw_control(adapter);
6114
6115         pci_clear_master(pdev);
6116
6117         /* The pci-e switch on some quad port adapters will report a
6118          * correctable error when the MAC transitions from D0 to D3.  To
6119          * prevent this we need to mask off the correctable errors on the
6120          * downstream port of the pci-e switch.
6121          *
6122          * We don't have the associated upstream bridge while assigning
6123          * the PCI device into guest. For example, the KVM on power is
6124          * one of the cases.
6125          */
6126         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6127                 struct pci_dev *us_dev = pdev->bus->self;
6128                 u16 devctl;
6129
6130                 if (!us_dev)
6131                         return 0;
6132
6133                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6134                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6135                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6136
6137                 pci_save_state(pdev);
6138                 pci_prepare_to_sleep(pdev);
6139
6140                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6141         }
6142
6143         return 0;
6144 }
6145
6146 /**
6147  * e1000e_disable_aspm - Disable ASPM states
6148  * @pdev: pointer to PCI device struct
6149  * @state: bit-mask of ASPM states to disable
6150  *
6151  * Some devices *must* have certain ASPM states disabled per hardware errata.
6152  **/
6153 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6154 {
6155         struct pci_dev *parent = pdev->bus->self;
6156         u16 aspm_dis_mask = 0;
6157         u16 pdev_aspmc, parent_aspmc;
6158
6159         switch (state) {
6160         case PCIE_LINK_STATE_L0S:
6161         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6162                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6163                 /* fall-through - can't have L1 without L0s */
6164         case PCIE_LINK_STATE_L1:
6165                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6166                 break;
6167         default:
6168                 return;
6169         }
6170
6171         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6172         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6173
6174         if (parent) {
6175                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6176                                           &parent_aspmc);
6177                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6178         }
6179
6180         /* Nothing to do if the ASPM states to be disabled already are */
6181         if (!(pdev_aspmc & aspm_dis_mask) &&
6182             (!parent || !(parent_aspmc & aspm_dis_mask)))
6183                 return;
6184
6185         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6186                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6187                  "L0s" : "",
6188                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6189                  "L1" : "");
6190
6191 #ifdef CONFIG_PCIEASPM
6192         pci_disable_link_state_locked(pdev, state);
6193
6194         /* Double-check ASPM control.  If not disabled by the above, the
6195          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6196          * not enabled); override by writing PCI config space directly.
6197          */
6198         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6199         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6200
6201         if (!(aspm_dis_mask & pdev_aspmc))
6202                 return;
6203 #endif
6204
6205         /* Both device and parent should have the same ASPM setting.
6206          * Disable ASPM in downstream component first and then upstream.
6207          */
6208         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6209
6210         if (parent)
6211                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6212                                            aspm_dis_mask);
6213 }
6214
6215 #ifdef CONFIG_PM
6216 static int __e1000_resume(struct pci_dev *pdev)
6217 {
6218         struct net_device *netdev = pci_get_drvdata(pdev);
6219         struct e1000_adapter *adapter = netdev_priv(netdev);
6220         struct e1000_hw *hw = &adapter->hw;
6221         u16 aspm_disable_flag = 0;
6222
6223         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6224                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6225         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6226                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6227         if (aspm_disable_flag)
6228                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6229
6230         pci_set_master(pdev);
6231
6232         if (hw->mac.type >= e1000_pch2lan)
6233                 e1000_resume_workarounds_pchlan(&adapter->hw);
6234
6235         e1000e_power_up_phy(adapter);
6236
6237         /* report the system wakeup cause from S3/S4 */
6238         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6239                 u16 phy_data;
6240
6241                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6242                 if (phy_data) {
6243                         e_info("PHY Wakeup cause - %s\n",
6244                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6245                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6246                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6247                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6248                                phy_data & E1000_WUS_LNKC ?
6249                                "Link Status Change" : "other");
6250                 }
6251                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6252         } else {
6253                 u32 wus = er32(WUS);
6254
6255                 if (wus) {
6256                         e_info("MAC Wakeup cause - %s\n",
6257                                wus & E1000_WUS_EX ? "Unicast Packet" :
6258                                wus & E1000_WUS_MC ? "Multicast Packet" :
6259                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6260                                wus & E1000_WUS_MAG ? "Magic Packet" :
6261                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6262                                "other");
6263                 }
6264                 ew32(WUS, ~0);
6265         }
6266
6267         e1000e_reset(adapter);
6268
6269         e1000_init_manageability_pt(adapter);
6270
6271         /* If the controller has AMT, do not set DRV_LOAD until the interface
6272          * is up.  For all other cases, let the f/w know that the h/w is now
6273          * under the control of the driver.
6274          */
6275         if (!(adapter->flags & FLAG_HAS_AMT))
6276                 e1000e_get_hw_control(adapter);
6277
6278         return 0;
6279 }
6280
6281 #ifdef CONFIG_PM_SLEEP
6282 static int e1000e_pm_thaw(struct device *dev)
6283 {
6284         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6285         struct e1000_adapter *adapter = netdev_priv(netdev);
6286
6287         e1000e_set_interrupt_capability(adapter);
6288         if (netif_running(netdev)) {
6289                 u32 err = e1000_request_irq(adapter);
6290
6291                 if (err)
6292                         return err;
6293
6294                 e1000e_up(adapter);
6295         }
6296
6297         netif_device_attach(netdev);
6298
6299         return 0;
6300 }
6301
6302 static int e1000e_pm_suspend(struct device *dev)
6303 {
6304         struct pci_dev *pdev = to_pci_dev(dev);
6305
6306         e1000e_pm_freeze(dev);
6307
6308         return __e1000_shutdown(pdev, false);
6309 }
6310
6311 static int e1000e_pm_resume(struct device *dev)
6312 {
6313         struct pci_dev *pdev = to_pci_dev(dev);
6314         int rc;
6315
6316         rc = __e1000_resume(pdev);
6317         if (rc)
6318                 return rc;
6319
6320         return e1000e_pm_thaw(dev);
6321 }
6322 #endif /* CONFIG_PM_SLEEP */
6323
6324 #ifdef CONFIG_PM_RUNTIME
6325 static int e1000e_pm_runtime_idle(struct device *dev)
6326 {
6327         struct pci_dev *pdev = to_pci_dev(dev);
6328         struct net_device *netdev = pci_get_drvdata(pdev);
6329         struct e1000_adapter *adapter = netdev_priv(netdev);
6330
6331         if (!e1000e_has_link(adapter))
6332                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6333
6334         return -EBUSY;
6335 }
6336
6337 static int e1000e_pm_runtime_resume(struct device *dev)
6338 {
6339         struct pci_dev *pdev = to_pci_dev(dev);
6340         struct net_device *netdev = pci_get_drvdata(pdev);
6341         struct e1000_adapter *adapter = netdev_priv(netdev);
6342         int rc;
6343
6344         rc = __e1000_resume(pdev);
6345         if (rc)
6346                 return rc;
6347
6348         if (netdev->flags & IFF_UP)
6349                 rc = e1000e_up(adapter);
6350
6351         return rc;
6352 }
6353
6354 static int e1000e_pm_runtime_suspend(struct device *dev)
6355 {
6356         struct pci_dev *pdev = to_pci_dev(dev);
6357         struct net_device *netdev = pci_get_drvdata(pdev);
6358         struct e1000_adapter *adapter = netdev_priv(netdev);
6359
6360         if (netdev->flags & IFF_UP) {
6361                 int count = E1000_CHECK_RESET_COUNT;
6362
6363                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6364                         usleep_range(10000, 20000);
6365
6366                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6367
6368                 /* Down the device without resetting the hardware */
6369                 e1000e_down(adapter, false);
6370         }
6371
6372         if (__e1000_shutdown(pdev, true)) {
6373                 e1000e_pm_runtime_resume(dev);
6374                 return -EBUSY;
6375         }
6376
6377         return 0;
6378 }
6379 #endif /* CONFIG_PM_RUNTIME */
6380 #endif /* CONFIG_PM */
6381
6382 static void e1000_shutdown(struct pci_dev *pdev)
6383 {
6384         e1000e_pm_freeze(&pdev->dev);
6385
6386         __e1000_shutdown(pdev, false);
6387 }
6388
6389 #ifdef CONFIG_NET_POLL_CONTROLLER
6390
6391 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6392 {
6393         struct net_device *netdev = data;
6394         struct e1000_adapter *adapter = netdev_priv(netdev);
6395
6396         if (adapter->msix_entries) {
6397                 int vector, msix_irq;
6398
6399                 vector = 0;
6400                 msix_irq = adapter->msix_entries[vector].vector;
6401                 disable_irq(msix_irq);
6402                 e1000_intr_msix_rx(msix_irq, netdev);
6403                 enable_irq(msix_irq);
6404
6405                 vector++;
6406                 msix_irq = adapter->msix_entries[vector].vector;
6407                 disable_irq(msix_irq);
6408                 e1000_intr_msix_tx(msix_irq, netdev);
6409                 enable_irq(msix_irq);
6410
6411                 vector++;
6412                 msix_irq = adapter->msix_entries[vector].vector;
6413                 disable_irq(msix_irq);
6414                 e1000_msix_other(msix_irq, netdev);
6415                 enable_irq(msix_irq);
6416         }
6417
6418         return IRQ_HANDLED;
6419 }
6420
6421 /**
6422  * e1000_netpoll
6423  * @netdev: network interface device structure
6424  *
6425  * Polling 'interrupt' - used by things like netconsole to send skbs
6426  * without having to re-enable interrupts. It's not called while
6427  * the interrupt routine is executing.
6428  */
6429 static void e1000_netpoll(struct net_device *netdev)
6430 {
6431         struct e1000_adapter *adapter = netdev_priv(netdev);
6432
6433         switch (adapter->int_mode) {
6434         case E1000E_INT_MODE_MSIX:
6435                 e1000_intr_msix(adapter->pdev->irq, netdev);
6436                 break;
6437         case E1000E_INT_MODE_MSI:
6438                 disable_irq(adapter->pdev->irq);
6439                 e1000_intr_msi(adapter->pdev->irq, netdev);
6440                 enable_irq(adapter->pdev->irq);
6441                 break;
6442         default:                /* E1000E_INT_MODE_LEGACY */
6443                 disable_irq(adapter->pdev->irq);
6444                 e1000_intr(adapter->pdev->irq, netdev);
6445                 enable_irq(adapter->pdev->irq);
6446                 break;
6447         }
6448 }
6449 #endif
6450
6451 /**
6452  * e1000_io_error_detected - called when PCI error is detected
6453  * @pdev: Pointer to PCI device
6454  * @state: The current pci connection state
6455  *
6456  * This function is called after a PCI bus error affecting
6457  * this device has been detected.
6458  */
6459 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6460                                                 pci_channel_state_t state)
6461 {
6462         struct net_device *netdev = pci_get_drvdata(pdev);
6463         struct e1000_adapter *adapter = netdev_priv(netdev);
6464
6465         netif_device_detach(netdev);
6466
6467         if (state == pci_channel_io_perm_failure)
6468                 return PCI_ERS_RESULT_DISCONNECT;
6469
6470         if (netif_running(netdev))
6471                 e1000e_down(adapter, true);
6472         pci_disable_device(pdev);
6473
6474         /* Request a slot slot reset. */
6475         return PCI_ERS_RESULT_NEED_RESET;
6476 }
6477
6478 /**
6479  * e1000_io_slot_reset - called after the pci bus has been reset.
6480  * @pdev: Pointer to PCI device
6481  *
6482  * Restart the card from scratch, as if from a cold-boot. Implementation
6483  * resembles the first-half of the e1000e_pm_resume routine.
6484  */
6485 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6486 {
6487         struct net_device *netdev = pci_get_drvdata(pdev);
6488         struct e1000_adapter *adapter = netdev_priv(netdev);
6489         struct e1000_hw *hw = &adapter->hw;
6490         u16 aspm_disable_flag = 0;
6491         int err;
6492         pci_ers_result_t result;
6493
6494         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6495                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6496         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6497                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6498         if (aspm_disable_flag)
6499                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6500
6501         err = pci_enable_device_mem(pdev);
6502         if (err) {
6503                 dev_err(&pdev->dev,
6504                         "Cannot re-enable PCI device after reset.\n");
6505                 result = PCI_ERS_RESULT_DISCONNECT;
6506         } else {
6507                 pdev->state_saved = true;
6508                 pci_restore_state(pdev);
6509                 pci_set_master(pdev);
6510
6511                 pci_enable_wake(pdev, PCI_D3hot, 0);
6512                 pci_enable_wake(pdev, PCI_D3cold, 0);
6513
6514                 e1000e_reset(adapter);
6515                 ew32(WUS, ~0);
6516                 result = PCI_ERS_RESULT_RECOVERED;
6517         }
6518
6519         pci_cleanup_aer_uncorrect_error_status(pdev);
6520
6521         return result;
6522 }
6523
6524 /**
6525  * e1000_io_resume - called when traffic can start flowing again.
6526  * @pdev: Pointer to PCI device
6527  *
6528  * This callback is called when the error recovery driver tells us that
6529  * its OK to resume normal operation. Implementation resembles the
6530  * second-half of the e1000e_pm_resume routine.
6531  */
6532 static void e1000_io_resume(struct pci_dev *pdev)
6533 {
6534         struct net_device *netdev = pci_get_drvdata(pdev);
6535         struct e1000_adapter *adapter = netdev_priv(netdev);
6536
6537         e1000_init_manageability_pt(adapter);
6538
6539         if (netif_running(netdev)) {
6540                 if (e1000e_up(adapter)) {
6541                         dev_err(&pdev->dev,
6542                                 "can't bring device back up after reset\n");
6543                         return;
6544                 }
6545         }
6546
6547         netif_device_attach(netdev);
6548
6549         /* If the controller has AMT, do not set DRV_LOAD until the interface
6550          * is up.  For all other cases, let the f/w know that the h/w is now
6551          * under the control of the driver.
6552          */
6553         if (!(adapter->flags & FLAG_HAS_AMT))
6554                 e1000e_get_hw_control(adapter);
6555 }
6556
6557 static void e1000_print_device_info(struct e1000_adapter *adapter)
6558 {
6559         struct e1000_hw *hw = &adapter->hw;
6560         struct net_device *netdev = adapter->netdev;
6561         u32 ret_val;
6562         u8 pba_str[E1000_PBANUM_LENGTH];
6563
6564         /* print bus type/speed/width info */
6565         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6566                /* bus width */
6567                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6568                 "Width x1"),
6569                /* MAC address */
6570                netdev->dev_addr);
6571         e_info("Intel(R) PRO/%s Network Connection\n",
6572                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6573         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6574                                                 E1000_PBANUM_LENGTH);
6575         if (ret_val)
6576                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6577         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6578                hw->mac.type, hw->phy.type, pba_str);
6579 }
6580
6581 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6582 {
6583         struct e1000_hw *hw = &adapter->hw;
6584         int ret_val;
6585         u16 buf = 0;
6586
6587         if (hw->mac.type != e1000_82573)
6588                 return;
6589
6590         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6591         le16_to_cpus(&buf);
6592         if (!ret_val && (!(buf & (1 << 0)))) {
6593                 /* Deep Smart Power Down (DSPD) */
6594                 dev_warn(&adapter->pdev->dev,
6595                          "Warning: detected DSPD enabled in EEPROM\n");
6596         }
6597 }
6598
6599 static int e1000_set_features(struct net_device *netdev,
6600                               netdev_features_t features)
6601 {
6602         struct e1000_adapter *adapter = netdev_priv(netdev);
6603         netdev_features_t changed = features ^ netdev->features;
6604
6605         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6606                 adapter->flags |= FLAG_TSO_FORCE;
6607
6608         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6609                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6610                          NETIF_F_RXALL)))
6611                 return 0;
6612
6613         if (changed & NETIF_F_RXFCS) {
6614                 if (features & NETIF_F_RXFCS) {
6615                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6616                 } else {
6617                         /* We need to take it back to defaults, which might mean
6618                          * stripping is still disabled at the adapter level.
6619                          */
6620                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6621                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6622                         else
6623                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6624                 }
6625         }
6626
6627         netdev->features = features;
6628
6629         if (netif_running(netdev))
6630                 e1000e_reinit_locked(adapter);
6631         else
6632                 e1000e_reset(adapter);
6633
6634         return 0;
6635 }
6636
6637 static const struct net_device_ops e1000e_netdev_ops = {
6638         .ndo_open               = e1000_open,
6639         .ndo_stop               = e1000_close,
6640         .ndo_start_xmit         = e1000_xmit_frame,
6641         .ndo_get_stats64        = e1000e_get_stats64,
6642         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6643         .ndo_set_mac_address    = e1000_set_mac,
6644         .ndo_change_mtu         = e1000_change_mtu,
6645         .ndo_do_ioctl           = e1000_ioctl,
6646         .ndo_tx_timeout         = e1000_tx_timeout,
6647         .ndo_validate_addr      = eth_validate_addr,
6648
6649         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6650         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6651 #ifdef CONFIG_NET_POLL_CONTROLLER
6652         .ndo_poll_controller    = e1000_netpoll,
6653 #endif
6654         .ndo_set_features = e1000_set_features,
6655 };
6656
6657 /**
6658  * e1000_probe - Device Initialization Routine
6659  * @pdev: PCI device information struct
6660  * @ent: entry in e1000_pci_tbl
6661  *
6662  * Returns 0 on success, negative on failure
6663  *
6664  * e1000_probe initializes an adapter identified by a pci_dev structure.
6665  * The OS initialization, configuring of the adapter private structure,
6666  * and a hardware reset occur.
6667  **/
6668 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6669 {
6670         struct net_device *netdev;
6671         struct e1000_adapter *adapter;
6672         struct e1000_hw *hw;
6673         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6674         resource_size_t mmio_start, mmio_len;
6675         resource_size_t flash_start, flash_len;
6676         static int cards_found;
6677         u16 aspm_disable_flag = 0;
6678         int bars, i, err, pci_using_dac;
6679         u16 eeprom_data = 0;
6680         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6681
6682         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6683                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6684         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6685                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6686         if (aspm_disable_flag)
6687                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6688
6689         err = pci_enable_device_mem(pdev);
6690         if (err)
6691                 return err;
6692
6693         pci_using_dac = 0;
6694         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6695         if (!err) {
6696                 pci_using_dac = 1;
6697         } else {
6698                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6699                 if (err) {
6700                         dev_err(&pdev->dev,
6701                                 "No usable DMA configuration, aborting\n");
6702                         goto err_dma;
6703                 }
6704         }
6705
6706         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6707         err = pci_request_selected_regions_exclusive(pdev, bars,
6708                                                      e1000e_driver_name);
6709         if (err)
6710                 goto err_pci_reg;
6711
6712         /* AER (Advanced Error Reporting) hooks */
6713         pci_enable_pcie_error_reporting(pdev);
6714
6715         pci_set_master(pdev);
6716         /* PCI config space info */
6717         err = pci_save_state(pdev);
6718         if (err)
6719                 goto err_alloc_etherdev;
6720
6721         err = -ENOMEM;
6722         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6723         if (!netdev)
6724                 goto err_alloc_etherdev;
6725
6726         SET_NETDEV_DEV(netdev, &pdev->dev);
6727
6728         netdev->irq = pdev->irq;
6729
6730         pci_set_drvdata(pdev, netdev);
6731         adapter = netdev_priv(netdev);
6732         hw = &adapter->hw;
6733         adapter->netdev = netdev;
6734         adapter->pdev = pdev;
6735         adapter->ei = ei;
6736         adapter->pba = ei->pba;
6737         adapter->flags = ei->flags;
6738         adapter->flags2 = ei->flags2;
6739         adapter->hw.adapter = adapter;
6740         adapter->hw.mac.type = ei->mac;
6741         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6742         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6743
6744         mmio_start = pci_resource_start(pdev, 0);
6745         mmio_len = pci_resource_len(pdev, 0);
6746
6747         err = -EIO;
6748         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6749         if (!adapter->hw.hw_addr)
6750                 goto err_ioremap;
6751
6752         if ((adapter->flags & FLAG_HAS_FLASH) &&
6753             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6754                 flash_start = pci_resource_start(pdev, 1);
6755                 flash_len = pci_resource_len(pdev, 1);
6756                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6757                 if (!adapter->hw.flash_address)
6758                         goto err_flashmap;
6759         }
6760
6761         /* Set default EEE advertisement */
6762         if (adapter->flags2 & FLAG2_HAS_EEE)
6763                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6764
6765         /* construct the net_device struct */
6766         netdev->netdev_ops = &e1000e_netdev_ops;
6767         e1000e_set_ethtool_ops(netdev);
6768         netdev->watchdog_timeo = 5 * HZ;
6769         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6770         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6771
6772         netdev->mem_start = mmio_start;
6773         netdev->mem_end = mmio_start + mmio_len;
6774
6775         adapter->bd_number = cards_found++;
6776
6777         e1000e_check_options(adapter);
6778
6779         /* setup adapter struct */
6780         err = e1000_sw_init(adapter);
6781         if (err)
6782                 goto err_sw_init;
6783
6784         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6785         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6786         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6787
6788         err = ei->get_variants(adapter);
6789         if (err)
6790                 goto err_hw_init;
6791
6792         if ((adapter->flags & FLAG_IS_ICH) &&
6793             (adapter->flags & FLAG_READ_ONLY_NVM))
6794                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6795
6796         hw->mac.ops.get_bus_info(&adapter->hw);
6797
6798         adapter->hw.phy.autoneg_wait_to_complete = 0;
6799
6800         /* Copper options */
6801         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6802                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6803                 adapter->hw.phy.disable_polarity_correction = 0;
6804                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6805         }
6806
6807         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6808                 dev_info(&pdev->dev,
6809                          "PHY reset is blocked due to SOL/IDER session.\n");
6810
6811         /* Set initial default active device features */
6812         netdev->features = (NETIF_F_SG |
6813                             NETIF_F_HW_VLAN_CTAG_RX |
6814                             NETIF_F_HW_VLAN_CTAG_TX |
6815                             NETIF_F_TSO |
6816                             NETIF_F_TSO6 |
6817                             NETIF_F_RXHASH |
6818                             NETIF_F_RXCSUM |
6819                             NETIF_F_HW_CSUM);
6820
6821         /* Set user-changeable features (subset of all device features) */
6822         netdev->hw_features = netdev->features;
6823         netdev->hw_features |= NETIF_F_RXFCS;
6824         netdev->priv_flags |= IFF_SUPP_NOFCS;
6825         netdev->hw_features |= NETIF_F_RXALL;
6826
6827         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6828                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6829
6830         netdev->vlan_features |= (NETIF_F_SG |
6831                                   NETIF_F_TSO |
6832                                   NETIF_F_TSO6 |
6833                                   NETIF_F_HW_CSUM);
6834
6835         netdev->priv_flags |= IFF_UNICAST_FLT;
6836
6837         if (pci_using_dac) {
6838                 netdev->features |= NETIF_F_HIGHDMA;
6839                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6840         }
6841
6842         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6843                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6844
6845         /* before reading the NVM, reset the controller to
6846          * put the device in a known good starting state
6847          */
6848         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6849
6850         /* systems with ASPM and others may see the checksum fail on the first
6851          * attempt. Let's give it a few tries
6852          */
6853         for (i = 0;; i++) {
6854                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6855                         break;
6856                 if (i == 2) {
6857                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6858                         err = -EIO;
6859                         goto err_eeprom;
6860                 }
6861         }
6862
6863         e1000_eeprom_checks(adapter);
6864
6865         /* copy the MAC address */
6866         if (e1000e_read_mac_addr(&adapter->hw))
6867                 dev_err(&pdev->dev,
6868                         "NVM Read Error while reading MAC address\n");
6869
6870         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6871
6872         if (!is_valid_ether_addr(netdev->dev_addr)) {
6873                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6874                         netdev->dev_addr);
6875                 err = -EIO;
6876                 goto err_eeprom;
6877         }
6878
6879         init_timer(&adapter->watchdog_timer);
6880         adapter->watchdog_timer.function = e1000_watchdog;
6881         adapter->watchdog_timer.data = (unsigned long)adapter;
6882
6883         init_timer(&adapter->phy_info_timer);
6884         adapter->phy_info_timer.function = e1000_update_phy_info;
6885         adapter->phy_info_timer.data = (unsigned long)adapter;
6886
6887         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6888         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6889         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6890         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6891         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6892
6893         /* Initialize link parameters. User can change them with ethtool */
6894         adapter->hw.mac.autoneg = 1;
6895         adapter->fc_autoneg = true;
6896         adapter->hw.fc.requested_mode = e1000_fc_default;
6897         adapter->hw.fc.current_mode = e1000_fc_default;
6898         adapter->hw.phy.autoneg_advertised = 0x2f;
6899
6900         /* Initial Wake on LAN setting - If APM wake is enabled in
6901          * the EEPROM, enable the ACPI Magic Packet filter
6902          */
6903         if (adapter->flags & FLAG_APME_IN_WUC) {
6904                 /* APME bit in EEPROM is mapped to WUC.APME */
6905                 eeprom_data = er32(WUC);
6906                 eeprom_apme_mask = E1000_WUC_APME;
6907                 if ((hw->mac.type > e1000_ich10lan) &&
6908                     (eeprom_data & E1000_WUC_PHY_WAKE))
6909                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6910         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6911                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6912                     (adapter->hw.bus.func == 1))
6913                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6914                                        1, &eeprom_data);
6915                 else
6916                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6917                                        1, &eeprom_data);
6918         }
6919
6920         /* fetch WoL from EEPROM */
6921         if (eeprom_data & eeprom_apme_mask)
6922                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6923
6924         /* now that we have the eeprom settings, apply the special cases
6925          * where the eeprom may be wrong or the board simply won't support
6926          * wake on lan on a particular port
6927          */
6928         if (!(adapter->flags & FLAG_HAS_WOL))
6929                 adapter->eeprom_wol = 0;
6930
6931         /* initialize the wol settings based on the eeprom settings */
6932         adapter->wol = adapter->eeprom_wol;
6933
6934         /* make sure adapter isn't asleep if manageability is enabled */
6935         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6936             (hw->mac.ops.check_mng_mode(hw)))
6937                 device_wakeup_enable(&pdev->dev);
6938
6939         /* save off EEPROM version number */
6940         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6941
6942         /* reset the hardware with the new settings */
6943         e1000e_reset(adapter);
6944
6945         /* If the controller has AMT, do not set DRV_LOAD until the interface
6946          * is up.  For all other cases, let the f/w know that the h/w is now
6947          * under the control of the driver.
6948          */
6949         if (!(adapter->flags & FLAG_HAS_AMT))
6950                 e1000e_get_hw_control(adapter);
6951
6952         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6953         err = register_netdev(netdev);
6954         if (err)
6955                 goto err_register;
6956
6957         /* carrier off reporting is important to ethtool even BEFORE open */
6958         netif_carrier_off(netdev);
6959
6960         /* init PTP hardware clock */
6961         e1000e_ptp_init(adapter);
6962
6963         e1000_print_device_info(adapter);
6964
6965         if (pci_dev_run_wake(pdev))
6966                 pm_runtime_put_noidle(&pdev->dev);
6967
6968         return 0;
6969
6970 err_register:
6971         if (!(adapter->flags & FLAG_HAS_AMT))
6972                 e1000e_release_hw_control(adapter);
6973 err_eeprom:
6974         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6975                 e1000_phy_hw_reset(&adapter->hw);
6976 err_hw_init:
6977         kfree(adapter->tx_ring);
6978         kfree(adapter->rx_ring);
6979 err_sw_init:
6980         if (adapter->hw.flash_address)
6981                 iounmap(adapter->hw.flash_address);
6982         e1000e_reset_interrupt_capability(adapter);
6983 err_flashmap:
6984         iounmap(adapter->hw.hw_addr);
6985 err_ioremap:
6986         free_netdev(netdev);
6987 err_alloc_etherdev:
6988         pci_release_selected_regions(pdev,
6989                                      pci_select_bars(pdev, IORESOURCE_MEM));
6990 err_pci_reg:
6991 err_dma:
6992         pci_disable_device(pdev);
6993         return err;
6994 }
6995
6996 /**
6997  * e1000_remove - Device Removal Routine
6998  * @pdev: PCI device information struct
6999  *
7000  * e1000_remove is called by the PCI subsystem to alert the driver
7001  * that it should release a PCI device.  The could be caused by a
7002  * Hot-Plug event, or because the driver is going to be removed from
7003  * memory.
7004  **/
7005 static void e1000_remove(struct pci_dev *pdev)
7006 {
7007         struct net_device *netdev = pci_get_drvdata(pdev);
7008         struct e1000_adapter *adapter = netdev_priv(netdev);
7009         bool down = test_bit(__E1000_DOWN, &adapter->state);
7010
7011         e1000e_ptp_remove(adapter);
7012
7013         /* The timers may be rescheduled, so explicitly disable them
7014          * from being rescheduled.
7015          */
7016         if (!down)
7017                 set_bit(__E1000_DOWN, &adapter->state);
7018         del_timer_sync(&adapter->watchdog_timer);
7019         del_timer_sync(&adapter->phy_info_timer);
7020
7021         cancel_work_sync(&adapter->reset_task);
7022         cancel_work_sync(&adapter->watchdog_task);
7023         cancel_work_sync(&adapter->downshift_task);
7024         cancel_work_sync(&adapter->update_phy_task);
7025         cancel_work_sync(&adapter->print_hang_task);
7026
7027         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7028                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7029                 if (adapter->tx_hwtstamp_skb) {
7030                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7031                         adapter->tx_hwtstamp_skb = NULL;
7032                 }
7033         }
7034
7035         /* Don't lie to e1000_close() down the road. */
7036         if (!down)
7037                 clear_bit(__E1000_DOWN, &adapter->state);
7038         unregister_netdev(netdev);
7039
7040         if (pci_dev_run_wake(pdev))
7041                 pm_runtime_get_noresume(&pdev->dev);
7042
7043         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7044          * would have already happened in close and is redundant.
7045          */
7046         e1000e_release_hw_control(adapter);
7047
7048         e1000e_reset_interrupt_capability(adapter);
7049         kfree(adapter->tx_ring);
7050         kfree(adapter->rx_ring);
7051
7052         iounmap(adapter->hw.hw_addr);
7053         if (adapter->hw.flash_address)
7054                 iounmap(adapter->hw.flash_address);
7055         pci_release_selected_regions(pdev,
7056                                      pci_select_bars(pdev, IORESOURCE_MEM));
7057
7058         free_netdev(netdev);
7059
7060         /* AER disable */
7061         pci_disable_pcie_error_reporting(pdev);
7062
7063         pci_disable_device(pdev);
7064 }
7065
7066 /* PCI Error Recovery (ERS) */
7067 static const struct pci_error_handlers e1000_err_handler = {
7068         .error_detected = e1000_io_error_detected,
7069         .slot_reset = e1000_io_slot_reset,
7070         .resume = e1000_io_resume,
7071 };
7072
7073 static const struct pci_device_id e1000_pci_tbl[] = {
7074         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7075         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7076         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7077         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7078           board_82571 },
7079         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7080         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7081         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7082         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7083         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7084
7085         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7086         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7089
7090         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7093
7094         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7095         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7097
7098         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7099           board_80003es2lan },
7100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7101           board_80003es2lan },
7102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7103           board_80003es2lan },
7104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7105           board_80003es2lan },
7106
7107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7114         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7115
7116         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7117         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7118         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7119         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7120         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7121         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7122         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7123         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7124         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7125
7126         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7127         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7128         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7129
7130         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7131         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7132         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7133
7134         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7135         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7136         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7137         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7138
7139         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7140         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7141
7142         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7143         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7144         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7145         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7146         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7147         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7148         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7149         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7150
7151         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7152 };
7153 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7154
7155 static const struct dev_pm_ops e1000_pm_ops = {
7156 #ifdef CONFIG_PM_SLEEP
7157         .suspend        = e1000e_pm_suspend,
7158         .resume         = e1000e_pm_resume,
7159         .freeze         = e1000e_pm_freeze,
7160         .thaw           = e1000e_pm_thaw,
7161         .poweroff       = e1000e_pm_suspend,
7162         .restore        = e1000e_pm_resume,
7163 #endif
7164         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7165                            e1000e_pm_runtime_idle)
7166 };
7167
7168 /* PCI Device API Driver */
7169 static struct pci_driver e1000_driver = {
7170         .name     = e1000e_driver_name,
7171         .id_table = e1000_pci_tbl,
7172         .probe    = e1000_probe,
7173         .remove   = e1000_remove,
7174         .driver   = {
7175                 .pm = &e1000_pm_ops,
7176         },
7177         .shutdown = e1000_shutdown,
7178         .err_handler = &e1000_err_handler
7179 };
7180
7181 /**
7182  * e1000_init_module - Driver Registration Routine
7183  *
7184  * e1000_init_module is the first routine called when the driver is
7185  * loaded. All it does is register with the PCI subsystem.
7186  **/
7187 static int __init e1000_init_module(void)
7188 {
7189         int ret;
7190
7191         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7192                 e1000e_driver_version);
7193         pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7194         ret = pci_register_driver(&e1000_driver);
7195
7196         return ret;
7197 }
7198 module_init(e1000_init_module);
7199
7200 /**
7201  * e1000_exit_module - Driver Exit Cleanup Routine
7202  *
7203  * e1000_exit_module is called just before the driver is removed
7204  * from memory.
7205  **/
7206 static void __exit e1000_exit_module(void)
7207 {
7208         pci_unregister_driver(&e1000_driver);
7209 }
7210 module_exit(e1000_exit_module);
7211
7212 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7213 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7214 MODULE_LICENSE("GPL");
7215 MODULE_VERSION(DRV_VERSION);
7216
7217 /* netdev.c */