ASoC: tlv320aic23: Convert to params_width()
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* e1000_82575
25  * e1000_82576
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61                                                  u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74         36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85         u32 reg = 0;
86         bool ext_mdio = false;
87
88         switch (hw->mac.type) {
89         case e1000_82575:
90         case e1000_82576:
91                 reg = rd32(E1000_MDIC);
92                 ext_mdio = !!(reg & E1000_MDIC_DEST);
93                 break;
94         case e1000_82580:
95         case e1000_i350:
96         case e1000_i354:
97         case e1000_i210:
98         case e1000_i211:
99                 reg = rd32(E1000_MDICNFG);
100                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101                 break;
102         default:
103                 break;
104         }
105         return ext_mdio;
106 }
107
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116         struct e1000_phy_info *phy = &hw->phy;
117         s32 ret_val;
118         u16 data;
119         u8 port = 0;
120
121         /* Check the copper medium. */
122         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123         if (ret_val)
124                 return ret_val;
125
126         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127         if (ret_val)
128                 return ret_val;
129
130         if (data & E1000_M88E1112_STATUS_LINK)
131                 port = E1000_MEDIA_PORT_COPPER;
132
133         /* Check the other medium. */
134         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135         if (ret_val)
136                 return ret_val;
137
138         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139         if (ret_val)
140                 return ret_val;
141
142         /* reset page to 0 */
143         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
144         if (ret_val)
145                 return ret_val;
146
147         if (data & E1000_M88E1112_STATUS_LINK)
148                 port = E1000_MEDIA_PORT_OTHER;
149
150         /* Determine if a swap needs to happen. */
151         if (port && (hw->dev_spec._82575.media_port != port)) {
152                 hw->dev_spec._82575.media_port = port;
153                 hw->dev_spec._82575.media_changed = true;
154         } else {
155                 ret_val = igb_check_for_link_82575(hw);
156         }
157
158         return 0;
159 }
160
161 /**
162  *  igb_init_phy_params_82575 - Init PHY func ptrs.
163  *  @hw: pointer to the HW structure
164  **/
165 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
166 {
167         struct e1000_phy_info *phy = &hw->phy;
168         s32 ret_val = 0;
169         u32 ctrl_ext;
170
171         if (hw->phy.media_type != e1000_media_type_copper) {
172                 phy->type = e1000_phy_none;
173                 goto out;
174         }
175
176         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
177         phy->reset_delay_us     = 100;
178
179         ctrl_ext = rd32(E1000_CTRL_EXT);
180
181         if (igb_sgmii_active_82575(hw)) {
182                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
183                 ctrl_ext |= E1000_CTRL_I2C_ENA;
184         } else {
185                 phy->ops.reset = igb_phy_hw_reset;
186                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
187         }
188
189         wr32(E1000_CTRL_EXT, ctrl_ext);
190         igb_reset_mdicnfg_82580(hw);
191
192         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
193                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
194                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
195         } else {
196                 switch (hw->mac.type) {
197                 case e1000_82580:
198                 case e1000_i350:
199                 case e1000_i354:
200                         phy->ops.read_reg = igb_read_phy_reg_82580;
201                         phy->ops.write_reg = igb_write_phy_reg_82580;
202                         break;
203                 case e1000_i210:
204                 case e1000_i211:
205                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
206                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
207                         break;
208                 default:
209                         phy->ops.read_reg = igb_read_phy_reg_igp;
210                         phy->ops.write_reg = igb_write_phy_reg_igp;
211                 }
212         }
213
214         /* set lan id */
215         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
216                         E1000_STATUS_FUNC_SHIFT;
217
218         /* Set phy->phy_addr and phy->id. */
219         ret_val = igb_get_phy_id_82575(hw);
220         if (ret_val)
221                 return ret_val;
222
223         /* Verify phy id and set remaining function pointers */
224         switch (phy->id) {
225         case M88E1543_E_PHY_ID:
226         case I347AT4_E_PHY_ID:
227         case M88E1112_E_PHY_ID:
228         case M88E1111_I_PHY_ID:
229                 phy->type               = e1000_phy_m88;
230                 phy->ops.check_polarity = igb_check_polarity_m88;
231                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
232                 if (phy->id != M88E1111_I_PHY_ID)
233                         phy->ops.get_cable_length =
234                                          igb_get_cable_length_m88_gen2;
235                 else
236                         phy->ops.get_cable_length = igb_get_cable_length_m88;
237                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
238                 /* Check if this PHY is confgured for media swap. */
239                 if (phy->id == M88E1112_E_PHY_ID) {
240                         u16 data;
241
242                         ret_val = phy->ops.write_reg(hw,
243                                                      E1000_M88E1112_PAGE_ADDR,
244                                                      2);
245                         if (ret_val)
246                                 goto out;
247
248                         ret_val = phy->ops.read_reg(hw,
249                                                     E1000_M88E1112_MAC_CTRL_1,
250                                                     &data);
251                         if (ret_val)
252                                 goto out;
253
254                         data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
255                                E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
256                         if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
257                             data == E1000_M88E1112_AUTO_COPPER_BASEX)
258                                 hw->mac.ops.check_for_link =
259                                                 igb_check_for_link_media_swap;
260                 }
261                 break;
262         case IGP03E1000_E_PHY_ID:
263                 phy->type = e1000_phy_igp_3;
264                 phy->ops.get_phy_info = igb_get_phy_info_igp;
265                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
266                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
267                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
268                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
269                 break;
270         case I82580_I_PHY_ID:
271         case I350_I_PHY_ID:
272                 phy->type = e1000_phy_82580;
273                 phy->ops.force_speed_duplex =
274                                          igb_phy_force_speed_duplex_82580;
275                 phy->ops.get_cable_length = igb_get_cable_length_82580;
276                 phy->ops.get_phy_info = igb_get_phy_info_82580;
277                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
278                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
279                 break;
280         case I210_I_PHY_ID:
281                 phy->type               = e1000_phy_i210;
282                 phy->ops.check_polarity = igb_check_polarity_m88;
283                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
284                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
285                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
286                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
287                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
288                 break;
289         default:
290                 ret_val = -E1000_ERR_PHY;
291                 goto out;
292         }
293
294 out:
295         return ret_val;
296 }
297
298 /**
299  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
300  *  @hw: pointer to the HW structure
301  **/
302 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
303 {
304         struct e1000_nvm_info *nvm = &hw->nvm;
305         u32 eecd = rd32(E1000_EECD);
306         u16 size;
307
308         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
309                      E1000_EECD_SIZE_EX_SHIFT);
310
311         /* Added to a constant, "size" becomes the left-shift value
312          * for setting word_size.
313          */
314         size += NVM_WORD_SIZE_BASE_SHIFT;
315
316         /* Just in case size is out of range, cap it to the largest
317          * EEPROM size supported
318          */
319         if (size > 15)
320                 size = 15;
321
322         nvm->word_size = 1 << size;
323         nvm->opcode_bits = 8;
324         nvm->delay_usec = 1;
325
326         switch (nvm->override) {
327         case e1000_nvm_override_spi_large:
328                 nvm->page_size = 32;
329                 nvm->address_bits = 16;
330                 break;
331         case e1000_nvm_override_spi_small:
332                 nvm->page_size = 8;
333                 nvm->address_bits = 8;
334                 break;
335         default:
336                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
337                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
338                                     16 : 8;
339                 break;
340         }
341         if (nvm->word_size == (1 << 15))
342                 nvm->page_size = 128;
343
344         nvm->type = e1000_nvm_eeprom_spi;
345
346         /* NVM Function Pointers */
347         nvm->ops.acquire = igb_acquire_nvm_82575;
348         nvm->ops.release = igb_release_nvm_82575;
349         nvm->ops.write = igb_write_nvm_spi;
350         nvm->ops.validate = igb_validate_nvm_checksum;
351         nvm->ops.update = igb_update_nvm_checksum;
352         if (nvm->word_size < (1 << 15))
353                 nvm->ops.read = igb_read_nvm_eerd;
354         else
355                 nvm->ops.read = igb_read_nvm_spi;
356
357         /* override generic family function pointers for specific descendants */
358         switch (hw->mac.type) {
359         case e1000_82580:
360                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
361                 nvm->ops.update = igb_update_nvm_checksum_82580;
362                 break;
363         case e1000_i354:
364         case e1000_i350:
365                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
366                 nvm->ops.update = igb_update_nvm_checksum_i350;
367                 break;
368         default:
369                 break;
370         }
371
372         return 0;
373 }
374
375 /**
376  *  igb_init_mac_params_82575 - Init MAC func ptrs.
377  *  @hw: pointer to the HW structure
378  **/
379 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
380 {
381         struct e1000_mac_info *mac = &hw->mac;
382         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383
384         /* Set mta register count */
385         mac->mta_reg_count = 128;
386         /* Set rar entry count */
387         switch (mac->type) {
388         case e1000_82576:
389                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
390                 break;
391         case e1000_82580:
392                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
393                 break;
394         case e1000_i350:
395         case e1000_i354:
396                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
397                 break;
398         default:
399                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
400                 break;
401         }
402         /* reset */
403         if (mac->type >= e1000_82580)
404                 mac->ops.reset_hw = igb_reset_hw_82580;
405         else
406                 mac->ops.reset_hw = igb_reset_hw_82575;
407
408         if (mac->type >= e1000_i210) {
409                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
410                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
411
412         } else {
413                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
414                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
415         }
416
417         /* Set if part includes ASF firmware */
418         mac->asf_firmware_present = true;
419         /* Set if manageability features are enabled. */
420         mac->arc_subsystem_valid =
421                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
422                         ? true : false;
423         /* enable EEE on i350 parts and later parts */
424         if (mac->type >= e1000_i350)
425                 dev_spec->eee_disable = false;
426         else
427                 dev_spec->eee_disable = true;
428         /* Allow a single clear of the SW semaphore on I210 and newer */
429         if (mac->type >= e1000_i210)
430                 dev_spec->clear_semaphore_once = true;
431         /* physical interface link setup */
432         mac->ops.setup_physical_interface =
433                 (hw->phy.media_type == e1000_media_type_copper)
434                         ? igb_setup_copper_link_82575
435                         : igb_setup_serdes_link_82575;
436
437         if (mac->type == e1000_82580) {
438                 switch (hw->device_id) {
439                 /* feature not supported on these id's */
440                 case E1000_DEV_ID_DH89XXCC_SGMII:
441                 case E1000_DEV_ID_DH89XXCC_SERDES:
442                 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
443                 case E1000_DEV_ID_DH89XXCC_SFP:
444                         break;
445                 default:
446                         hw->dev_spec._82575.mas_capable = true;
447                         break;
448                 }
449         }
450         return 0;
451 }
452
453 /**
454  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
455  *  @hw: pointer to the HW structure
456  *
457  *  The media type is chosen based on SFP module.
458  *  compatibility flags retrieved from SFP ID EEPROM.
459  **/
460 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
461 {
462         s32 ret_val = E1000_ERR_CONFIG;
463         u32 ctrl_ext = 0;
464         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
465         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
466         u8 tranceiver_type = 0;
467         s32 timeout = 3;
468
469         /* Turn I2C interface ON and power on sfp cage */
470         ctrl_ext = rd32(E1000_CTRL_EXT);
471         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
472         wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
473
474         wrfl();
475
476         /* Read SFP module data */
477         while (timeout) {
478                 ret_val = igb_read_sfp_data_byte(hw,
479                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
480                         &tranceiver_type);
481                 if (ret_val == 0)
482                         break;
483                 msleep(100);
484                 timeout--;
485         }
486         if (ret_val != 0)
487                 goto out;
488
489         ret_val = igb_read_sfp_data_byte(hw,
490                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
491                         (u8 *)eth_flags);
492         if (ret_val != 0)
493                 goto out;
494
495         /* Check if there is some SFP module plugged and powered */
496         if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
497             (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
498                 dev_spec->module_plugged = true;
499                 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
500                         hw->phy.media_type = e1000_media_type_internal_serdes;
501                 } else if (eth_flags->e100_base_fx) {
502                         dev_spec->sgmii_active = true;
503                         hw->phy.media_type = e1000_media_type_internal_serdes;
504                 } else if (eth_flags->e1000_base_t) {
505                         dev_spec->sgmii_active = true;
506                         hw->phy.media_type = e1000_media_type_copper;
507                 } else {
508                         hw->phy.media_type = e1000_media_type_unknown;
509                         hw_dbg("PHY module has not been recognized\n");
510                         goto out;
511                 }
512         } else {
513                 hw->phy.media_type = e1000_media_type_unknown;
514         }
515         ret_val = 0;
516 out:
517         /* Restore I2C interface setting */
518         wr32(E1000_CTRL_EXT, ctrl_ext);
519         return ret_val;
520 }
521
522 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
523 {
524         struct e1000_mac_info *mac = &hw->mac;
525         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
526         s32 ret_val;
527         u32 ctrl_ext = 0;
528         u32 link_mode = 0;
529
530         switch (hw->device_id) {
531         case E1000_DEV_ID_82575EB_COPPER:
532         case E1000_DEV_ID_82575EB_FIBER_SERDES:
533         case E1000_DEV_ID_82575GB_QUAD_COPPER:
534                 mac->type = e1000_82575;
535                 break;
536         case E1000_DEV_ID_82576:
537         case E1000_DEV_ID_82576_NS:
538         case E1000_DEV_ID_82576_NS_SERDES:
539         case E1000_DEV_ID_82576_FIBER:
540         case E1000_DEV_ID_82576_SERDES:
541         case E1000_DEV_ID_82576_QUAD_COPPER:
542         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
543         case E1000_DEV_ID_82576_SERDES_QUAD:
544                 mac->type = e1000_82576;
545                 break;
546         case E1000_DEV_ID_82580_COPPER:
547         case E1000_DEV_ID_82580_FIBER:
548         case E1000_DEV_ID_82580_QUAD_FIBER:
549         case E1000_DEV_ID_82580_SERDES:
550         case E1000_DEV_ID_82580_SGMII:
551         case E1000_DEV_ID_82580_COPPER_DUAL:
552         case E1000_DEV_ID_DH89XXCC_SGMII:
553         case E1000_DEV_ID_DH89XXCC_SERDES:
554         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
555         case E1000_DEV_ID_DH89XXCC_SFP:
556                 mac->type = e1000_82580;
557                 break;
558         case E1000_DEV_ID_I350_COPPER:
559         case E1000_DEV_ID_I350_FIBER:
560         case E1000_DEV_ID_I350_SERDES:
561         case E1000_DEV_ID_I350_SGMII:
562                 mac->type = e1000_i350;
563                 break;
564         case E1000_DEV_ID_I210_COPPER:
565         case E1000_DEV_ID_I210_FIBER:
566         case E1000_DEV_ID_I210_SERDES:
567         case E1000_DEV_ID_I210_SGMII:
568         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
569         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
570                 mac->type = e1000_i210;
571                 break;
572         case E1000_DEV_ID_I211_COPPER:
573                 mac->type = e1000_i211;
574                 break;
575         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
576         case E1000_DEV_ID_I354_SGMII:
577         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
578                 mac->type = e1000_i354;
579                 break;
580         default:
581                 return -E1000_ERR_MAC_INIT;
582                 break;
583         }
584
585         /* Set media type */
586         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
587          * based on the EEPROM. We cannot rely upon device ID. There
588          * is no distinguishable difference between fiber and internal
589          * SerDes mode on the 82575. There can be an external PHY attached
590          * on the SGMII interface. For this, we'll set sgmii_active to true.
591          */
592         hw->phy.media_type = e1000_media_type_copper;
593         dev_spec->sgmii_active = false;
594         dev_spec->module_plugged = false;
595
596         ctrl_ext = rd32(E1000_CTRL_EXT);
597
598         link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
599         switch (link_mode) {
600         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
601                 hw->phy.media_type = e1000_media_type_internal_serdes;
602                 break;
603         case E1000_CTRL_EXT_LINK_MODE_SGMII:
604                 /* Get phy control interface type set (MDIO vs. I2C)*/
605                 if (igb_sgmii_uses_mdio_82575(hw)) {
606                         hw->phy.media_type = e1000_media_type_copper;
607                         dev_spec->sgmii_active = true;
608                         break;
609                 }
610                 /* fall through for I2C based SGMII */
611         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
612                 /* read media type from SFP EEPROM */
613                 ret_val = igb_set_sfp_media_type_82575(hw);
614                 if ((ret_val != 0) ||
615                     (hw->phy.media_type == e1000_media_type_unknown)) {
616                         /* If media type was not identified then return media
617                          * type defined by the CTRL_EXT settings.
618                          */
619                         hw->phy.media_type = e1000_media_type_internal_serdes;
620
621                         if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
622                                 hw->phy.media_type = e1000_media_type_copper;
623                                 dev_spec->sgmii_active = true;
624                         }
625
626                         break;
627                 }
628
629                 /* do not change link mode for 100BaseFX */
630                 if (dev_spec->eth_flags.e100_base_fx)
631                         break;
632
633                 /* change current link mode setting */
634                 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
635
636                 if (hw->phy.media_type == e1000_media_type_copper)
637                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
638                 else
639                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
640
641                 wr32(E1000_CTRL_EXT, ctrl_ext);
642
643                 break;
644         default:
645                 break;
646         }
647
648         /* mac initialization and operations */
649         ret_val = igb_init_mac_params_82575(hw);
650         if (ret_val)
651                 goto out;
652
653         /* NVM initialization */
654         ret_val = igb_init_nvm_params_82575(hw);
655         switch (hw->mac.type) {
656         case e1000_i210:
657         case e1000_i211:
658                 ret_val = igb_init_nvm_params_i210(hw);
659                 break;
660         default:
661                 break;
662         }
663
664         if (ret_val)
665                 goto out;
666
667         /* if part supports SR-IOV then initialize mailbox parameters */
668         switch (mac->type) {
669         case e1000_82576:
670         case e1000_i350:
671                 igb_init_mbx_params_pf(hw);
672                 break;
673         default:
674                 break;
675         }
676
677         /* setup PHY parameters */
678         ret_val = igb_init_phy_params_82575(hw);
679
680 out:
681         return ret_val;
682 }
683
684 /**
685  *  igb_acquire_phy_82575 - Acquire rights to access PHY
686  *  @hw: pointer to the HW structure
687  *
688  *  Acquire access rights to the correct PHY.  This is a
689  *  function pointer entry point called by the api module.
690  **/
691 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
692 {
693         u16 mask = E1000_SWFW_PHY0_SM;
694
695         if (hw->bus.func == E1000_FUNC_1)
696                 mask = E1000_SWFW_PHY1_SM;
697         else if (hw->bus.func == E1000_FUNC_2)
698                 mask = E1000_SWFW_PHY2_SM;
699         else if (hw->bus.func == E1000_FUNC_3)
700                 mask = E1000_SWFW_PHY3_SM;
701
702         return hw->mac.ops.acquire_swfw_sync(hw, mask);
703 }
704
705 /**
706  *  igb_release_phy_82575 - Release rights to access PHY
707  *  @hw: pointer to the HW structure
708  *
709  *  A wrapper to release access rights to the correct PHY.  This is a
710  *  function pointer entry point called by the api module.
711  **/
712 static void igb_release_phy_82575(struct e1000_hw *hw)
713 {
714         u16 mask = E1000_SWFW_PHY0_SM;
715
716         if (hw->bus.func == E1000_FUNC_1)
717                 mask = E1000_SWFW_PHY1_SM;
718         else if (hw->bus.func == E1000_FUNC_2)
719                 mask = E1000_SWFW_PHY2_SM;
720         else if (hw->bus.func == E1000_FUNC_3)
721                 mask = E1000_SWFW_PHY3_SM;
722
723         hw->mac.ops.release_swfw_sync(hw, mask);
724 }
725
726 /**
727  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
728  *  @hw: pointer to the HW structure
729  *  @offset: register offset to be read
730  *  @data: pointer to the read data
731  *
732  *  Reads the PHY register at offset using the serial gigabit media independent
733  *  interface and stores the retrieved information in data.
734  **/
735 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
736                                           u16 *data)
737 {
738         s32 ret_val = -E1000_ERR_PARAM;
739
740         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
741                 hw_dbg("PHY Address %u is out of range\n", offset);
742                 goto out;
743         }
744
745         ret_val = hw->phy.ops.acquire(hw);
746         if (ret_val)
747                 goto out;
748
749         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
750
751         hw->phy.ops.release(hw);
752
753 out:
754         return ret_val;
755 }
756
757 /**
758  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
759  *  @hw: pointer to the HW structure
760  *  @offset: register offset to write to
761  *  @data: data to write at register offset
762  *
763  *  Writes the data to PHY register at the offset using the serial gigabit
764  *  media independent interface.
765  **/
766 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
767                                            u16 data)
768 {
769         s32 ret_val = -E1000_ERR_PARAM;
770
771
772         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
773                 hw_dbg("PHY Address %d is out of range\n", offset);
774                 goto out;
775         }
776
777         ret_val = hw->phy.ops.acquire(hw);
778         if (ret_val)
779                 goto out;
780
781         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
782
783         hw->phy.ops.release(hw);
784
785 out:
786         return ret_val;
787 }
788
789 /**
790  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
791  *  @hw: pointer to the HW structure
792  *
793  *  Retrieves the PHY address and ID for both PHY's which do and do not use
794  *  sgmi interface.
795  **/
796 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
797 {
798         struct e1000_phy_info *phy = &hw->phy;
799         s32  ret_val = 0;
800         u16 phy_id;
801         u32 ctrl_ext;
802         u32 mdic;
803
804         /* Extra read required for some PHY's on i354 */
805         if (hw->mac.type == e1000_i354)
806                 igb_get_phy_id(hw);
807
808         /* For SGMII PHYs, we try the list of possible addresses until
809          * we find one that works.  For non-SGMII PHYs
810          * (e.g. integrated copper PHYs), an address of 1 should
811          * work.  The result of this function should mean phy->phy_addr
812          * and phy->id are set correctly.
813          */
814         if (!(igb_sgmii_active_82575(hw))) {
815                 phy->addr = 1;
816                 ret_val = igb_get_phy_id(hw);
817                 goto out;
818         }
819
820         if (igb_sgmii_uses_mdio_82575(hw)) {
821                 switch (hw->mac.type) {
822                 case e1000_82575:
823                 case e1000_82576:
824                         mdic = rd32(E1000_MDIC);
825                         mdic &= E1000_MDIC_PHY_MASK;
826                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
827                         break;
828                 case e1000_82580:
829                 case e1000_i350:
830                 case e1000_i354:
831                 case e1000_i210:
832                 case e1000_i211:
833                         mdic = rd32(E1000_MDICNFG);
834                         mdic &= E1000_MDICNFG_PHY_MASK;
835                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
836                         break;
837                 default:
838                         ret_val = -E1000_ERR_PHY;
839                         goto out;
840                         break;
841                 }
842                 ret_val = igb_get_phy_id(hw);
843                 goto out;
844         }
845
846         /* Power on sgmii phy if it is disabled */
847         ctrl_ext = rd32(E1000_CTRL_EXT);
848         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
849         wrfl();
850         msleep(300);
851
852         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
853          * Therefore, we need to test 1-7
854          */
855         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
856                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
857                 if (ret_val == 0) {
858                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
859                                phy_id, phy->addr);
860                         /* At the time of this writing, The M88 part is
861                          * the only supported SGMII PHY product.
862                          */
863                         if (phy_id == M88_VENDOR)
864                                 break;
865                 } else {
866                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
867                 }
868         }
869
870         /* A valid PHY type couldn't be found. */
871         if (phy->addr == 8) {
872                 phy->addr = 0;
873                 ret_val = -E1000_ERR_PHY;
874                 goto out;
875         } else {
876                 ret_val = igb_get_phy_id(hw);
877         }
878
879         /* restore previous sfp cage power state */
880         wr32(E1000_CTRL_EXT, ctrl_ext);
881
882 out:
883         return ret_val;
884 }
885
886 /**
887  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
888  *  @hw: pointer to the HW structure
889  *
890  *  Resets the PHY using the serial gigabit media independent interface.
891  **/
892 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
893 {
894         s32 ret_val;
895
896         /* This isn't a true "hard" reset, but is the only reset
897          * available to us at this time.
898          */
899
900         hw_dbg("Soft resetting SGMII attached PHY...\n");
901
902         /* SFP documentation requires the following to configure the SPF module
903          * to work on SGMII.  No further documentation is given.
904          */
905         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
906         if (ret_val)
907                 goto out;
908
909         ret_val = igb_phy_sw_reset(hw);
910
911 out:
912         return ret_val;
913 }
914
915 /**
916  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
917  *  @hw: pointer to the HW structure
918  *  @active: true to enable LPLU, false to disable
919  *
920  *  Sets the LPLU D0 state according to the active flag.  When
921  *  activating LPLU this function also disables smart speed
922  *  and vice versa.  LPLU will not be activated unless the
923  *  device autonegotiation advertisement meets standards of
924  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
925  *  This is a function pointer entry point only called by
926  *  PHY setup routines.
927  **/
928 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
929 {
930         struct e1000_phy_info *phy = &hw->phy;
931         s32 ret_val;
932         u16 data;
933
934         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
935         if (ret_val)
936                 goto out;
937
938         if (active) {
939                 data |= IGP02E1000_PM_D0_LPLU;
940                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
941                                                  data);
942                 if (ret_val)
943                         goto out;
944
945                 /* When LPLU is enabled, we should disable SmartSpeed */
946                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
947                                                 &data);
948                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
949                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
950                                                  data);
951                 if (ret_val)
952                         goto out;
953         } else {
954                 data &= ~IGP02E1000_PM_D0_LPLU;
955                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
956                                                  data);
957                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
958                  * during Dx states where the power conservation is most
959                  * important.  During driver activity we should enable
960                  * SmartSpeed, so performance is maintained.
961                  */
962                 if (phy->smart_speed == e1000_smart_speed_on) {
963                         ret_val = phy->ops.read_reg(hw,
964                                         IGP01E1000_PHY_PORT_CONFIG, &data);
965                         if (ret_val)
966                                 goto out;
967
968                         data |= IGP01E1000_PSCFR_SMART_SPEED;
969                         ret_val = phy->ops.write_reg(hw,
970                                         IGP01E1000_PHY_PORT_CONFIG, data);
971                         if (ret_val)
972                                 goto out;
973                 } else if (phy->smart_speed == e1000_smart_speed_off) {
974                         ret_val = phy->ops.read_reg(hw,
975                                         IGP01E1000_PHY_PORT_CONFIG, &data);
976                         if (ret_val)
977                                 goto out;
978
979                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
980                         ret_val = phy->ops.write_reg(hw,
981                                         IGP01E1000_PHY_PORT_CONFIG, data);
982                         if (ret_val)
983                                 goto out;
984                 }
985         }
986
987 out:
988         return ret_val;
989 }
990
991 /**
992  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
993  *  @hw: pointer to the HW structure
994  *  @active: true to enable LPLU, false to disable
995  *
996  *  Sets the LPLU D0 state according to the active flag.  When
997  *  activating LPLU this function also disables smart speed
998  *  and vice versa.  LPLU will not be activated unless the
999  *  device autonegotiation advertisement meets standards of
1000  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1001  *  This is a function pointer entry point only called by
1002  *  PHY setup routines.
1003  **/
1004 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1005 {
1006         struct e1000_phy_info *phy = &hw->phy;
1007         u16 data;
1008
1009         data = rd32(E1000_82580_PHY_POWER_MGMT);
1010
1011         if (active) {
1012                 data |= E1000_82580_PM_D0_LPLU;
1013
1014                 /* When LPLU is enabled, we should disable SmartSpeed */
1015                 data &= ~E1000_82580_PM_SPD;
1016         } else {
1017                 data &= ~E1000_82580_PM_D0_LPLU;
1018
1019                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1020                  * during Dx states where the power conservation is most
1021                  * important.  During driver activity we should enable
1022                  * SmartSpeed, so performance is maintained.
1023                  */
1024                 if (phy->smart_speed == e1000_smart_speed_on)
1025                         data |= E1000_82580_PM_SPD;
1026                 else if (phy->smart_speed == e1000_smart_speed_off)
1027                         data &= ~E1000_82580_PM_SPD; }
1028
1029         wr32(E1000_82580_PHY_POWER_MGMT, data);
1030         return 0;
1031 }
1032
1033 /**
1034  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1035  *  @hw: pointer to the HW structure
1036  *  @active: boolean used to enable/disable lplu
1037  *
1038  *  Success returns 0, Failure returns 1
1039  *
1040  *  The low power link up (lplu) state is set to the power management level D3
1041  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1042  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1043  *  is used during Dx states where the power conservation is most important.
1044  *  During driver activity, SmartSpeed should be enabled so performance is
1045  *  maintained.
1046  **/
1047 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1048 {
1049         struct e1000_phy_info *phy = &hw->phy;
1050         u16 data;
1051
1052         data = rd32(E1000_82580_PHY_POWER_MGMT);
1053
1054         if (!active) {
1055                 data &= ~E1000_82580_PM_D3_LPLU;
1056                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1057                  * during Dx states where the power conservation is most
1058                  * important.  During driver activity we should enable
1059                  * SmartSpeed, so performance is maintained.
1060                  */
1061                 if (phy->smart_speed == e1000_smart_speed_on)
1062                         data |= E1000_82580_PM_SPD;
1063                 else if (phy->smart_speed == e1000_smart_speed_off)
1064                         data &= ~E1000_82580_PM_SPD;
1065         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1066                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1067                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1068                 data |= E1000_82580_PM_D3_LPLU;
1069                 /* When LPLU is enabled, we should disable SmartSpeed */
1070                 data &= ~E1000_82580_PM_SPD;
1071         }
1072
1073         wr32(E1000_82580_PHY_POWER_MGMT, data);
1074         return 0;
1075 }
1076
1077 /**
1078  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1079  *  @hw: pointer to the HW structure
1080  *
1081  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1082  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1083  *  Return successful if access grant bit set, else clear the request for
1084  *  EEPROM access and return -E1000_ERR_NVM (-1).
1085  **/
1086 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1087 {
1088         s32 ret_val;
1089
1090         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1091         if (ret_val)
1092                 goto out;
1093
1094         ret_val = igb_acquire_nvm(hw);
1095
1096         if (ret_val)
1097                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1098
1099 out:
1100         return ret_val;
1101 }
1102
1103 /**
1104  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1105  *  @hw: pointer to the HW structure
1106  *
1107  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1108  *  then release the semaphores acquired.
1109  **/
1110 static void igb_release_nvm_82575(struct e1000_hw *hw)
1111 {
1112         igb_release_nvm(hw);
1113         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1114 }
1115
1116 /**
1117  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1118  *  @hw: pointer to the HW structure
1119  *  @mask: specifies which semaphore to acquire
1120  *
1121  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1122  *  will also specify which port we're acquiring the lock for.
1123  **/
1124 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1125 {
1126         u32 swfw_sync;
1127         u32 swmask = mask;
1128         u32 fwmask = mask << 16;
1129         s32 ret_val = 0;
1130         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1131
1132         while (i < timeout) {
1133                 if (igb_get_hw_semaphore(hw)) {
1134                         ret_val = -E1000_ERR_SWFW_SYNC;
1135                         goto out;
1136                 }
1137
1138                 swfw_sync = rd32(E1000_SW_FW_SYNC);
1139                 if (!(swfw_sync & (fwmask | swmask)))
1140                         break;
1141
1142                 /* Firmware currently using resource (fwmask)
1143                  * or other software thread using resource (swmask)
1144                  */
1145                 igb_put_hw_semaphore(hw);
1146                 mdelay(5);
1147                 i++;
1148         }
1149
1150         if (i == timeout) {
1151                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1152                 ret_val = -E1000_ERR_SWFW_SYNC;
1153                 goto out;
1154         }
1155
1156         swfw_sync |= swmask;
1157         wr32(E1000_SW_FW_SYNC, swfw_sync);
1158
1159         igb_put_hw_semaphore(hw);
1160
1161 out:
1162         return ret_val;
1163 }
1164
1165 /**
1166  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1167  *  @hw: pointer to the HW structure
1168  *  @mask: specifies which semaphore to acquire
1169  *
1170  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1171  *  will also specify which port we're releasing the lock for.
1172  **/
1173 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1174 {
1175         u32 swfw_sync;
1176
1177         while (igb_get_hw_semaphore(hw) != 0)
1178                 ; /* Empty */
1179
1180         swfw_sync = rd32(E1000_SW_FW_SYNC);
1181         swfw_sync &= ~mask;
1182         wr32(E1000_SW_FW_SYNC, swfw_sync);
1183
1184         igb_put_hw_semaphore(hw);
1185 }
1186
1187 /**
1188  *  igb_get_cfg_done_82575 - Read config done bit
1189  *  @hw: pointer to the HW structure
1190  *
1191  *  Read the management control register for the config done bit for
1192  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1193  *  to read the config done bit, so an error is *ONLY* logged and returns
1194  *  0.  If we were to return with error, EEPROM-less silicon
1195  *  would not be able to be reset or change link.
1196  **/
1197 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1198 {
1199         s32 timeout = PHY_CFG_TIMEOUT;
1200         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1201
1202         if (hw->bus.func == 1)
1203                 mask = E1000_NVM_CFG_DONE_PORT_1;
1204         else if (hw->bus.func == E1000_FUNC_2)
1205                 mask = E1000_NVM_CFG_DONE_PORT_2;
1206         else if (hw->bus.func == E1000_FUNC_3)
1207                 mask = E1000_NVM_CFG_DONE_PORT_3;
1208
1209         while (timeout) {
1210                 if (rd32(E1000_EEMNGCTL) & mask)
1211                         break;
1212                 usleep_range(1000, 2000);
1213                 timeout--;
1214         }
1215         if (!timeout)
1216                 hw_dbg("MNG configuration cycle has not completed.\n");
1217
1218         /* If EEPROM is not marked present, init the PHY manually */
1219         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1220             (hw->phy.type == e1000_phy_igp_3))
1221                 igb_phy_init_script_igp3(hw);
1222
1223         return 0;
1224 }
1225
1226 /**
1227  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1228  *  @hw: pointer to the HW structure
1229  *  @speed: stores the current speed
1230  *  @duplex: stores the current duplex
1231  *
1232  *  This is a wrapper function, if using the serial gigabit media independent
1233  *  interface, use PCS to retrieve the link speed and duplex information.
1234  *  Otherwise, use the generic function to get the link speed and duplex info.
1235  **/
1236 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1237                                         u16 *duplex)
1238 {
1239         s32 ret_val;
1240
1241         if (hw->phy.media_type != e1000_media_type_copper)
1242                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1243                                                                duplex);
1244         else
1245                 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1246                                                                     duplex);
1247
1248         return ret_val;
1249 }
1250
1251 /**
1252  *  igb_check_for_link_82575 - Check for link
1253  *  @hw: pointer to the HW structure
1254  *
1255  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1256  *  use the generic interface for determining link.
1257  **/
1258 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1259 {
1260         s32 ret_val;
1261         u16 speed, duplex;
1262
1263         if (hw->phy.media_type != e1000_media_type_copper) {
1264                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1265                                                              &duplex);
1266                 /* Use this flag to determine if link needs to be checked or
1267                  * not.  If  we have link clear the flag so that we do not
1268                  * continue to check for link.
1269                  */
1270                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1271
1272                 /* Configure Flow Control now that Auto-Neg has completed.
1273                  * First, we need to restore the desired flow control
1274                  * settings because we may have had to re-autoneg with a
1275                  * different link partner.
1276                  */
1277                 ret_val = igb_config_fc_after_link_up(hw);
1278                 if (ret_val)
1279                         hw_dbg("Error configuring flow control\n");
1280         } else {
1281                 ret_val = igb_check_for_copper_link(hw);
1282         }
1283
1284         return ret_val;
1285 }
1286
1287 /**
1288  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1289  *  @hw: pointer to the HW structure
1290  **/
1291 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1292 {
1293         u32 reg;
1294
1295
1296         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1297             !igb_sgmii_active_82575(hw))
1298                 return;
1299
1300         /* Enable PCS to turn on link */
1301         reg = rd32(E1000_PCS_CFG0);
1302         reg |= E1000_PCS_CFG_PCS_EN;
1303         wr32(E1000_PCS_CFG0, reg);
1304
1305         /* Power up the laser */
1306         reg = rd32(E1000_CTRL_EXT);
1307         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1308         wr32(E1000_CTRL_EXT, reg);
1309
1310         /* flush the write to verify completion */
1311         wrfl();
1312         usleep_range(1000, 2000);
1313 }
1314
1315 /**
1316  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1317  *  @hw: pointer to the HW structure
1318  *  @speed: stores the current speed
1319  *  @duplex: stores the current duplex
1320  *
1321  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1322  *  duplex, then store the values in the pointers provided.
1323  **/
1324 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1325                                                 u16 *duplex)
1326 {
1327         struct e1000_mac_info *mac = &hw->mac;
1328         u32 pcs, status;
1329
1330         /* Set up defaults for the return values of this function */
1331         mac->serdes_has_link = false;
1332         *speed = 0;
1333         *duplex = 0;
1334
1335         /* Read the PCS Status register for link state. For non-copper mode,
1336          * the status register is not accurate. The PCS status register is
1337          * used instead.
1338          */
1339         pcs = rd32(E1000_PCS_LSTAT);
1340
1341         /* The link up bit determines when link is up on autoneg. The sync ok
1342          * gets set once both sides sync up and agree upon link. Stable link
1343          * can be determined by checking for both link up and link sync ok
1344          */
1345         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1346                 mac->serdes_has_link = true;
1347
1348                 /* Detect and store PCS speed */
1349                 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1350                         *speed = SPEED_1000;
1351                 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1352                         *speed = SPEED_100;
1353                 else
1354                         *speed = SPEED_10;
1355
1356                 /* Detect and store PCS duplex */
1357                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1358                         *duplex = FULL_DUPLEX;
1359                 else
1360                         *duplex = HALF_DUPLEX;
1361
1362         /* Check if it is an I354 2.5Gb backplane connection. */
1363                 if (mac->type == e1000_i354) {
1364                         status = rd32(E1000_STATUS);
1365                         if ((status & E1000_STATUS_2P5_SKU) &&
1366                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
1367                                 *speed = SPEED_2500;
1368                                 *duplex = FULL_DUPLEX;
1369                                 hw_dbg("2500 Mbs, ");
1370                                 hw_dbg("Full Duplex\n");
1371                         }
1372                 }
1373
1374         }
1375
1376         return 0;
1377 }
1378
1379 /**
1380  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1381  *  @hw: pointer to the HW structure
1382  *
1383  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1384  *  when management pass thru is not enabled.
1385  **/
1386 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1387 {
1388         u32 reg;
1389
1390         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1391             igb_sgmii_active_82575(hw))
1392                 return;
1393
1394         if (!igb_enable_mng_pass_thru(hw)) {
1395                 /* Disable PCS to turn off link */
1396                 reg = rd32(E1000_PCS_CFG0);
1397                 reg &= ~E1000_PCS_CFG_PCS_EN;
1398                 wr32(E1000_PCS_CFG0, reg);
1399
1400                 /* shutdown the laser */
1401                 reg = rd32(E1000_CTRL_EXT);
1402                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1403                 wr32(E1000_CTRL_EXT, reg);
1404
1405                 /* flush the write to verify completion */
1406                 wrfl();
1407                 usleep_range(1000, 2000);
1408         }
1409 }
1410
1411 /**
1412  *  igb_reset_hw_82575 - Reset hardware
1413  *  @hw: pointer to the HW structure
1414  *
1415  *  This resets the hardware into a known state.  This is a
1416  *  function pointer entry point called by the api module.
1417  **/
1418 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1419 {
1420         u32 ctrl;
1421         s32 ret_val;
1422
1423         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1424          * on the last TLP read/write transaction when MAC is reset.
1425          */
1426         ret_val = igb_disable_pcie_master(hw);
1427         if (ret_val)
1428                 hw_dbg("PCI-E Master disable polling has failed.\n");
1429
1430         /* set the completion timeout for interface */
1431         ret_val = igb_set_pcie_completion_timeout(hw);
1432         if (ret_val)
1433                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1434
1435         hw_dbg("Masking off all interrupts\n");
1436         wr32(E1000_IMC, 0xffffffff);
1437
1438         wr32(E1000_RCTL, 0);
1439         wr32(E1000_TCTL, E1000_TCTL_PSP);
1440         wrfl();
1441
1442         usleep_range(10000, 20000);
1443
1444         ctrl = rd32(E1000_CTRL);
1445
1446         hw_dbg("Issuing a global reset to MAC\n");
1447         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1448
1449         ret_val = igb_get_auto_rd_done(hw);
1450         if (ret_val) {
1451                 /* When auto config read does not complete, do not
1452                  * return with an error. This can happen in situations
1453                  * where there is no eeprom and prevents getting link.
1454                  */
1455                 hw_dbg("Auto Read Done did not complete\n");
1456         }
1457
1458         /* If EEPROM is not present, run manual init scripts */
1459         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1460                 igb_reset_init_script_82575(hw);
1461
1462         /* Clear any pending interrupt events. */
1463         wr32(E1000_IMC, 0xffffffff);
1464         rd32(E1000_ICR);
1465
1466         /* Install any alternate MAC address into RAR0 */
1467         ret_val = igb_check_alt_mac_addr(hw);
1468
1469         return ret_val;
1470 }
1471
1472 /**
1473  *  igb_init_hw_82575 - Initialize hardware
1474  *  @hw: pointer to the HW structure
1475  *
1476  *  This inits the hardware readying it for operation.
1477  **/
1478 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1479 {
1480         struct e1000_mac_info *mac = &hw->mac;
1481         s32 ret_val;
1482         u16 i, rar_count = mac->rar_entry_count;
1483
1484         /* Initialize identification LED */
1485         ret_val = igb_id_led_init(hw);
1486         if (ret_val) {
1487                 hw_dbg("Error initializing identification LED\n");
1488                 /* This is not fatal and we should not stop init due to this */
1489         }
1490
1491         /* Disabling VLAN filtering */
1492         hw_dbg("Initializing the IEEE VLAN\n");
1493         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1494                 igb_clear_vfta_i350(hw);
1495         else
1496                 igb_clear_vfta(hw);
1497
1498         /* Setup the receive address */
1499         igb_init_rx_addrs(hw, rar_count);
1500
1501         /* Zero out the Multicast HASH table */
1502         hw_dbg("Zeroing the MTA\n");
1503         for (i = 0; i < mac->mta_reg_count; i++)
1504                 array_wr32(E1000_MTA, i, 0);
1505
1506         /* Zero out the Unicast HASH table */
1507         hw_dbg("Zeroing the UTA\n");
1508         for (i = 0; i < mac->uta_reg_count; i++)
1509                 array_wr32(E1000_UTA, i, 0);
1510
1511         /* Setup link and flow control */
1512         ret_val = igb_setup_link(hw);
1513
1514         /* Clear all of the statistics registers (clear on read).  It is
1515          * important that we do this after we have tried to establish link
1516          * because the symbol error count will increment wildly if there
1517          * is no link.
1518          */
1519         igb_clear_hw_cntrs_82575(hw);
1520         return ret_val;
1521 }
1522
1523 /**
1524  *  igb_setup_copper_link_82575 - Configure copper link settings
1525  *  @hw: pointer to the HW structure
1526  *
1527  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1528  *  for link, once link is established calls to configure collision distance
1529  *  and flow control are called.
1530  **/
1531 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1532 {
1533         u32 ctrl;
1534         s32  ret_val;
1535         u32 phpm_reg;
1536
1537         ctrl = rd32(E1000_CTRL);
1538         ctrl |= E1000_CTRL_SLU;
1539         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1540         wr32(E1000_CTRL, ctrl);
1541
1542         /* Clear Go Link Disconnect bit on supported devices */
1543         switch (hw->mac.type) {
1544         case e1000_82580:
1545         case e1000_i350:
1546         case e1000_i210:
1547         case e1000_i211:
1548                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1549                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1550                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1551                 break;
1552         default:
1553                 break;
1554         }
1555
1556         ret_val = igb_setup_serdes_link_82575(hw);
1557         if (ret_val)
1558                 goto out;
1559
1560         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1561                 /* allow time for SFP cage time to power up phy */
1562                 msleep(300);
1563
1564                 ret_val = hw->phy.ops.reset(hw);
1565                 if (ret_val) {
1566                         hw_dbg("Error resetting the PHY.\n");
1567                         goto out;
1568                 }
1569         }
1570         switch (hw->phy.type) {
1571         case e1000_phy_i210:
1572         case e1000_phy_m88:
1573                 switch (hw->phy.id) {
1574                 case I347AT4_E_PHY_ID:
1575                 case M88E1112_E_PHY_ID:
1576                 case M88E1543_E_PHY_ID:
1577                 case I210_I_PHY_ID:
1578                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1579                         break;
1580                 default:
1581                         ret_val = igb_copper_link_setup_m88(hw);
1582                         break;
1583                 }
1584                 break;
1585         case e1000_phy_igp_3:
1586                 ret_val = igb_copper_link_setup_igp(hw);
1587                 break;
1588         case e1000_phy_82580:
1589                 ret_val = igb_copper_link_setup_82580(hw);
1590                 break;
1591         default:
1592                 ret_val = -E1000_ERR_PHY;
1593                 break;
1594         }
1595
1596         if (ret_val)
1597                 goto out;
1598
1599         ret_val = igb_setup_copper_link(hw);
1600 out:
1601         return ret_val;
1602 }
1603
1604 /**
1605  *  igb_setup_serdes_link_82575 - Setup link for serdes
1606  *  @hw: pointer to the HW structure
1607  *
1608  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1609  *  used on copper connections where the serialized gigabit media independent
1610  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1611  *  for auto-negotiation or forces speed/duplex.
1612  **/
1613 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1614 {
1615         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1616         bool pcs_autoneg;
1617         s32 ret_val = 0;
1618         u16 data;
1619
1620         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1621             !igb_sgmii_active_82575(hw))
1622                 return ret_val;
1623
1624
1625         /* On the 82575, SerDes loopback mode persists until it is
1626          * explicitly turned off or a power cycle is performed.  A read to
1627          * the register does not indicate its status.  Therefore, we ensure
1628          * loopback mode is disabled during initialization.
1629          */
1630         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1631
1632         /* power on the sfp cage if present and turn on I2C */
1633         ctrl_ext = rd32(E1000_CTRL_EXT);
1634         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1635         ctrl_ext |= E1000_CTRL_I2C_ENA;
1636         wr32(E1000_CTRL_EXT, ctrl_ext);
1637
1638         ctrl_reg = rd32(E1000_CTRL);
1639         ctrl_reg |= E1000_CTRL_SLU;
1640
1641         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1642                 /* set both sw defined pins */
1643                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1644
1645                 /* Set switch control to serdes energy detect */
1646                 reg = rd32(E1000_CONNSW);
1647                 reg |= E1000_CONNSW_ENRGSRC;
1648                 wr32(E1000_CONNSW, reg);
1649         }
1650
1651         reg = rd32(E1000_PCS_LCTL);
1652
1653         /* default pcs_autoneg to the same setting as mac autoneg */
1654         pcs_autoneg = hw->mac.autoneg;
1655
1656         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1657         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1658                 /* sgmii mode lets the phy handle forcing speed/duplex */
1659                 pcs_autoneg = true;
1660                 /* autoneg time out should be disabled for SGMII mode */
1661                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1662                 break;
1663         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1664                 /* disable PCS autoneg and support parallel detect only */
1665                 pcs_autoneg = false;
1666         default:
1667                 if (hw->mac.type == e1000_82575 ||
1668                     hw->mac.type == e1000_82576) {
1669                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1670                         if (ret_val) {
1671                                 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1672                                 return ret_val;
1673                         }
1674
1675                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1676                                 pcs_autoneg = false;
1677                 }
1678
1679                 /* non-SGMII modes only supports a speed of 1000/Full for the
1680                  * link so it is best to just force the MAC and let the pcs
1681                  * link either autoneg or be forced to 1000/Full
1682                  */
1683                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1684                                 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1685
1686                 /* set speed of 1000/Full if speed/duplex is forced */
1687                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1688                 break;
1689         }
1690
1691         wr32(E1000_CTRL, ctrl_reg);
1692
1693         /* New SerDes mode allows for forcing speed or autonegotiating speed
1694          * at 1gb. Autoneg should be default set by most drivers. This is the
1695          * mode that will be compatible with older link partners and switches.
1696          * However, both are supported by the hardware and some drivers/tools.
1697          */
1698         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1699                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1700
1701         if (pcs_autoneg) {
1702                 /* Set PCS register for autoneg */
1703                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1704                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1705
1706                 /* Disable force flow control for autoneg */
1707                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1708
1709                 /* Configure flow control advertisement for autoneg */
1710                 anadv_reg = rd32(E1000_PCS_ANADV);
1711                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1712                 switch (hw->fc.requested_mode) {
1713                 case e1000_fc_full:
1714                 case e1000_fc_rx_pause:
1715                         anadv_reg |= E1000_TXCW_ASM_DIR;
1716                         anadv_reg |= E1000_TXCW_PAUSE;
1717                         break;
1718                 case e1000_fc_tx_pause:
1719                         anadv_reg |= E1000_TXCW_ASM_DIR;
1720                         break;
1721                 default:
1722                         break;
1723                 }
1724                 wr32(E1000_PCS_ANADV, anadv_reg);
1725
1726                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1727         } else {
1728                 /* Set PCS register for forced link */
1729                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1730
1731                 /* Force flow control for forced link */
1732                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1733
1734                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1735         }
1736
1737         wr32(E1000_PCS_LCTL, reg);
1738
1739         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1740                 igb_force_mac_fc(hw);
1741
1742         return ret_val;
1743 }
1744
1745 /**
1746  *  igb_sgmii_active_82575 - Return sgmii state
1747  *  @hw: pointer to the HW structure
1748  *
1749  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1750  *  which can be enabled for use in the embedded applications.  Simply
1751  *  return the current state of the sgmii interface.
1752  **/
1753 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1754 {
1755         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1756         return dev_spec->sgmii_active;
1757 }
1758
1759 /**
1760  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1761  *  @hw: pointer to the HW structure
1762  *
1763  *  Inits recommended HW defaults after a reset when there is no EEPROM
1764  *  detected. This is only for the 82575.
1765  **/
1766 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1767 {
1768         if (hw->mac.type == e1000_82575) {
1769                 hw_dbg("Running reset init script for 82575\n");
1770                 /* SerDes configuration via SERDESCTRL */
1771                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1772                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1773                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1774                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1775
1776                 /* CCM configuration via CCMCTL register */
1777                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1778                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1779
1780                 /* PCIe lanes configuration */
1781                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1782                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1783                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1784                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1785
1786                 /* PCIe PLL Configuration */
1787                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1788                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1789                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1790         }
1791
1792         return 0;
1793 }
1794
1795 /**
1796  *  igb_read_mac_addr_82575 - Read device MAC address
1797  *  @hw: pointer to the HW structure
1798  **/
1799 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1800 {
1801         s32 ret_val = 0;
1802
1803         /* If there's an alternate MAC address place it in RAR0
1804          * so that it will override the Si installed default perm
1805          * address.
1806          */
1807         ret_val = igb_check_alt_mac_addr(hw);
1808         if (ret_val)
1809                 goto out;
1810
1811         ret_val = igb_read_mac_addr(hw);
1812
1813 out:
1814         return ret_val;
1815 }
1816
1817 /**
1818  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1819  * @hw: pointer to the HW structure
1820  *
1821  * In the case of a PHY power down to save power, or to turn off link during a
1822  * driver unload, or wake on lan is not enabled, remove the link.
1823  **/
1824 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1825 {
1826         /* If the management interface is not enabled, then power down */
1827         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1828                 igb_power_down_phy_copper(hw);
1829 }
1830
1831 /**
1832  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1833  *  @hw: pointer to the HW structure
1834  *
1835  *  Clears the hardware counters by reading the counter registers.
1836  **/
1837 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1838 {
1839         igb_clear_hw_cntrs_base(hw);
1840
1841         rd32(E1000_PRC64);
1842         rd32(E1000_PRC127);
1843         rd32(E1000_PRC255);
1844         rd32(E1000_PRC511);
1845         rd32(E1000_PRC1023);
1846         rd32(E1000_PRC1522);
1847         rd32(E1000_PTC64);
1848         rd32(E1000_PTC127);
1849         rd32(E1000_PTC255);
1850         rd32(E1000_PTC511);
1851         rd32(E1000_PTC1023);
1852         rd32(E1000_PTC1522);
1853
1854         rd32(E1000_ALGNERRC);
1855         rd32(E1000_RXERRC);
1856         rd32(E1000_TNCRS);
1857         rd32(E1000_CEXTERR);
1858         rd32(E1000_TSCTC);
1859         rd32(E1000_TSCTFC);
1860
1861         rd32(E1000_MGTPRC);
1862         rd32(E1000_MGTPDC);
1863         rd32(E1000_MGTPTC);
1864
1865         rd32(E1000_IAC);
1866         rd32(E1000_ICRXOC);
1867
1868         rd32(E1000_ICRXPTC);
1869         rd32(E1000_ICRXATC);
1870         rd32(E1000_ICTXPTC);
1871         rd32(E1000_ICTXATC);
1872         rd32(E1000_ICTXQEC);
1873         rd32(E1000_ICTXQMTC);
1874         rd32(E1000_ICRXDMTC);
1875
1876         rd32(E1000_CBTMPC);
1877         rd32(E1000_HTDPMC);
1878         rd32(E1000_CBRMPC);
1879         rd32(E1000_RPTHC);
1880         rd32(E1000_HGPTC);
1881         rd32(E1000_HTCBDPC);
1882         rd32(E1000_HGORCL);
1883         rd32(E1000_HGORCH);
1884         rd32(E1000_HGOTCL);
1885         rd32(E1000_HGOTCH);
1886         rd32(E1000_LENERRS);
1887
1888         /* This register should not be read in copper configurations */
1889         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1890             igb_sgmii_active_82575(hw))
1891                 rd32(E1000_SCVPC);
1892 }
1893
1894 /**
1895  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1896  *  @hw: pointer to the HW structure
1897  *
1898  *  After rx enable if managability is enabled then there is likely some
1899  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1900  *  function clears the fifos and flushes any packets that came in as rx was
1901  *  being enabled.
1902  **/
1903 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1904 {
1905         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1906         int i, ms_wait;
1907
1908         if (hw->mac.type != e1000_82575 ||
1909             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1910                 return;
1911
1912         /* Disable all RX queues */
1913         for (i = 0; i < 4; i++) {
1914                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1915                 wr32(E1000_RXDCTL(i),
1916                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1917         }
1918         /* Poll all queues to verify they have shut down */
1919         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1920                 usleep_range(1000, 2000);
1921                 rx_enabled = 0;
1922                 for (i = 0; i < 4; i++)
1923                         rx_enabled |= rd32(E1000_RXDCTL(i));
1924                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1925                         break;
1926         }
1927
1928         if (ms_wait == 10)
1929                 hw_dbg("Queue disable timed out after 10ms\n");
1930
1931         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1932          * incoming packets are rejected.  Set enable and wait 2ms so that
1933          * any packet that was coming in as RCTL.EN was set is flushed
1934          */
1935         rfctl = rd32(E1000_RFCTL);
1936         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1937
1938         rlpml = rd32(E1000_RLPML);
1939         wr32(E1000_RLPML, 0);
1940
1941         rctl = rd32(E1000_RCTL);
1942         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1943         temp_rctl |= E1000_RCTL_LPE;
1944
1945         wr32(E1000_RCTL, temp_rctl);
1946         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1947         wrfl();
1948         usleep_range(2000, 3000);
1949
1950         /* Enable RX queues that were previously enabled and restore our
1951          * previous state
1952          */
1953         for (i = 0; i < 4; i++)
1954                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1955         wr32(E1000_RCTL, rctl);
1956         wrfl();
1957
1958         wr32(E1000_RLPML, rlpml);
1959         wr32(E1000_RFCTL, rfctl);
1960
1961         /* Flush receive errors generated by workaround */
1962         rd32(E1000_ROC);
1963         rd32(E1000_RNBC);
1964         rd32(E1000_MPC);
1965 }
1966
1967 /**
1968  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1969  *  @hw: pointer to the HW structure
1970  *
1971  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1972  *  however the hardware default for these parts is 500us to 1ms which is less
1973  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1974  *  increase the value to either 10ms to 200ms for capability version 1 config,
1975  *  or 16ms to 55ms for version 2.
1976  **/
1977 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1978 {
1979         u32 gcr = rd32(E1000_GCR);
1980         s32 ret_val = 0;
1981         u16 pcie_devctl2;
1982
1983         /* only take action if timeout value is defaulted to 0 */
1984         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1985                 goto out;
1986
1987         /* if capabilities version is type 1 we can write the
1988          * timeout of 10ms to 200ms through the GCR register
1989          */
1990         if (!(gcr & E1000_GCR_CAP_VER2)) {
1991                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1992                 goto out;
1993         }
1994
1995         /* for version 2 capabilities we need to write the config space
1996          * directly in order to set the completion timeout value for
1997          * 16ms to 55ms
1998          */
1999         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2000                                         &pcie_devctl2);
2001         if (ret_val)
2002                 goto out;
2003
2004         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2005
2006         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2007                                          &pcie_devctl2);
2008 out:
2009         /* disable completion timeout resend */
2010         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2011
2012         wr32(E1000_GCR, gcr);
2013         return ret_val;
2014 }
2015
2016 /**
2017  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2018  *  @hw: pointer to the hardware struct
2019  *  @enable: state to enter, either enabled or disabled
2020  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2021  *
2022  *  enables/disables L2 switch anti-spoofing functionality.
2023  **/
2024 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2025 {
2026         u32 reg_val, reg_offset;
2027
2028         switch (hw->mac.type) {
2029         case e1000_82576:
2030                 reg_offset = E1000_DTXSWC;
2031                 break;
2032         case e1000_i350:
2033         case e1000_i354:
2034                 reg_offset = E1000_TXSWC;
2035                 break;
2036         default:
2037                 return;
2038         }
2039
2040         reg_val = rd32(reg_offset);
2041         if (enable) {
2042                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2043                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2044                 /* The PF can spoof - it has to in order to
2045                  * support emulation mode NICs
2046                  */
2047                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2048         } else {
2049                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2050                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2051         }
2052         wr32(reg_offset, reg_val);
2053 }
2054
2055 /**
2056  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2057  *  @hw: pointer to the hardware struct
2058  *  @enable: state to enter, either enabled or disabled
2059  *
2060  *  enables/disables L2 switch loopback functionality.
2061  **/
2062 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2063 {
2064         u32 dtxswc;
2065
2066         switch (hw->mac.type) {
2067         case e1000_82576:
2068                 dtxswc = rd32(E1000_DTXSWC);
2069                 if (enable)
2070                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2071                 else
2072                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2073                 wr32(E1000_DTXSWC, dtxswc);
2074                 break;
2075         case e1000_i354:
2076         case e1000_i350:
2077                 dtxswc = rd32(E1000_TXSWC);
2078                 if (enable)
2079                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2080                 else
2081                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2082                 wr32(E1000_TXSWC, dtxswc);
2083                 break;
2084         default:
2085                 /* Currently no other hardware supports loopback */
2086                 break;
2087         }
2088
2089 }
2090
2091 /**
2092  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2093  *  @hw: pointer to the hardware struct
2094  *  @enable: state to enter, either enabled or disabled
2095  *
2096  *  enables/disables replication of packets across multiple pools.
2097  **/
2098 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2099 {
2100         u32 vt_ctl = rd32(E1000_VT_CTL);
2101
2102         if (enable)
2103                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2104         else
2105                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2106
2107         wr32(E1000_VT_CTL, vt_ctl);
2108 }
2109
2110 /**
2111  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2112  *  @hw: pointer to the HW structure
2113  *  @offset: register offset to be read
2114  *  @data: pointer to the read data
2115  *
2116  *  Reads the MDI control register in the PHY at offset and stores the
2117  *  information read to data.
2118  **/
2119 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2120 {
2121         s32 ret_val;
2122
2123         ret_val = hw->phy.ops.acquire(hw);
2124         if (ret_val)
2125                 goto out;
2126
2127         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2128
2129         hw->phy.ops.release(hw);
2130
2131 out:
2132         return ret_val;
2133 }
2134
2135 /**
2136  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2137  *  @hw: pointer to the HW structure
2138  *  @offset: register offset to write to
2139  *  @data: data to write to register at offset
2140  *
2141  *  Writes data to MDI control register in the PHY at offset.
2142  **/
2143 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2144 {
2145         s32 ret_val;
2146
2147
2148         ret_val = hw->phy.ops.acquire(hw);
2149         if (ret_val)
2150                 goto out;
2151
2152         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2153
2154         hw->phy.ops.release(hw);
2155
2156 out:
2157         return ret_val;
2158 }
2159
2160 /**
2161  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2162  *  @hw: pointer to the HW structure
2163  *
2164  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2165  *  the values found in the EEPROM.  This addresses an issue in which these
2166  *  bits are not restored from EEPROM after reset.
2167  **/
2168 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2169 {
2170         s32 ret_val = 0;
2171         u32 mdicnfg;
2172         u16 nvm_data = 0;
2173
2174         if (hw->mac.type != e1000_82580)
2175                 goto out;
2176         if (!igb_sgmii_active_82575(hw))
2177                 goto out;
2178
2179         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2180                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2181                                    &nvm_data);
2182         if (ret_val) {
2183                 hw_dbg("NVM Read Error\n");
2184                 goto out;
2185         }
2186
2187         mdicnfg = rd32(E1000_MDICNFG);
2188         if (nvm_data & NVM_WORD24_EXT_MDIO)
2189                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2190         if (nvm_data & NVM_WORD24_COM_MDIO)
2191                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2192         wr32(E1000_MDICNFG, mdicnfg);
2193 out:
2194         return ret_val;
2195 }
2196
2197 /**
2198  *  igb_reset_hw_82580 - Reset hardware
2199  *  @hw: pointer to the HW structure
2200  *
2201  *  This resets function or entire device (all ports, etc.)
2202  *  to a known state.
2203  **/
2204 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2205 {
2206         s32 ret_val = 0;
2207         /* BH SW mailbox bit in SW_FW_SYNC */
2208         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2209         u32 ctrl;
2210         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2211
2212         hw->dev_spec._82575.global_device_reset = false;
2213
2214         /* due to hw errata, global device reset doesn't always
2215          * work on 82580
2216          */
2217         if (hw->mac.type == e1000_82580)
2218                 global_device_reset = false;
2219
2220         /* Get current control state. */
2221         ctrl = rd32(E1000_CTRL);
2222
2223         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2224          * on the last TLP read/write transaction when MAC is reset.
2225          */
2226         ret_val = igb_disable_pcie_master(hw);
2227         if (ret_val)
2228                 hw_dbg("PCI-E Master disable polling has failed.\n");
2229
2230         hw_dbg("Masking off all interrupts\n");
2231         wr32(E1000_IMC, 0xffffffff);
2232         wr32(E1000_RCTL, 0);
2233         wr32(E1000_TCTL, E1000_TCTL_PSP);
2234         wrfl();
2235
2236         usleep_range(10000, 11000);
2237
2238         /* Determine whether or not a global dev reset is requested */
2239         if (global_device_reset &&
2240                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2241                         global_device_reset = false;
2242
2243         if (global_device_reset &&
2244                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2245                 ctrl |= E1000_CTRL_DEV_RST;
2246         else
2247                 ctrl |= E1000_CTRL_RST;
2248
2249         wr32(E1000_CTRL, ctrl);
2250         wrfl();
2251
2252         /* Add delay to insure DEV_RST has time to complete */
2253         if (global_device_reset)
2254                 usleep_range(5000, 6000);
2255
2256         ret_val = igb_get_auto_rd_done(hw);
2257         if (ret_val) {
2258                 /* When auto config read does not complete, do not
2259                  * return with an error. This can happen in situations
2260                  * where there is no eeprom and prevents getting link.
2261                  */
2262                 hw_dbg("Auto Read Done did not complete\n");
2263         }
2264
2265         /* clear global device reset status bit */
2266         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2267
2268         /* Clear any pending interrupt events. */
2269         wr32(E1000_IMC, 0xffffffff);
2270         rd32(E1000_ICR);
2271
2272         ret_val = igb_reset_mdicnfg_82580(hw);
2273         if (ret_val)
2274                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2275
2276         /* Install any alternate MAC address into RAR0 */
2277         ret_val = igb_check_alt_mac_addr(hw);
2278
2279         /* Release semaphore */
2280         if (global_device_reset)
2281                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2282
2283         return ret_val;
2284 }
2285
2286 /**
2287  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2288  *  @data: data received by reading RXPBS register
2289  *
2290  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2291  *  This function converts the retrieved value into the correct table value
2292  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2293  *  0x0 36  72 144   1   2   4   8  16
2294  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2295  */
2296 u16 igb_rxpbs_adjust_82580(u32 data)
2297 {
2298         u16 ret_val = 0;
2299
2300         if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2301                 ret_val = e1000_82580_rxpbs_table[data];
2302
2303         return ret_val;
2304 }
2305
2306 /**
2307  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2308  *  checksum
2309  *  @hw: pointer to the HW structure
2310  *  @offset: offset in words of the checksum protected region
2311  *
2312  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2313  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2314  **/
2315 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2316                                                  u16 offset)
2317 {
2318         s32 ret_val = 0;
2319         u16 checksum = 0;
2320         u16 i, nvm_data;
2321
2322         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2323                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2324                 if (ret_val) {
2325                         hw_dbg("NVM Read Error\n");
2326                         goto out;
2327                 }
2328                 checksum += nvm_data;
2329         }
2330
2331         if (checksum != (u16) NVM_SUM) {
2332                 hw_dbg("NVM Checksum Invalid\n");
2333                 ret_val = -E1000_ERR_NVM;
2334                 goto out;
2335         }
2336
2337 out:
2338         return ret_val;
2339 }
2340
2341 /**
2342  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2343  *  checksum
2344  *  @hw: pointer to the HW structure
2345  *  @offset: offset in words of the checksum protected region
2346  *
2347  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2348  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2349  *  value to the EEPROM.
2350  **/
2351 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2352 {
2353         s32 ret_val;
2354         u16 checksum = 0;
2355         u16 i, nvm_data;
2356
2357         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2358                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2359                 if (ret_val) {
2360                         hw_dbg("NVM Read Error while updating checksum.\n");
2361                         goto out;
2362                 }
2363                 checksum += nvm_data;
2364         }
2365         checksum = (u16) NVM_SUM - checksum;
2366         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2367                                 &checksum);
2368         if (ret_val)
2369                 hw_dbg("NVM Write Error while updating checksum.\n");
2370
2371 out:
2372         return ret_val;
2373 }
2374
2375 /**
2376  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2377  *  @hw: pointer to the HW structure
2378  *
2379  *  Calculates the EEPROM section checksum by reading/adding each word of
2380  *  the EEPROM and then verifies that the sum of the EEPROM is
2381  *  equal to 0xBABA.
2382  **/
2383 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2384 {
2385         s32 ret_val = 0;
2386         u16 eeprom_regions_count = 1;
2387         u16 j, nvm_data;
2388         u16 nvm_offset;
2389
2390         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2391         if (ret_val) {
2392                 hw_dbg("NVM Read Error\n");
2393                 goto out;
2394         }
2395
2396         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2397                 /* if checksums compatibility bit is set validate checksums
2398                  * for all 4 ports.
2399                  */
2400                 eeprom_regions_count = 4;
2401         }
2402
2403         for (j = 0; j < eeprom_regions_count; j++) {
2404                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2405                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2406                                                                 nvm_offset);
2407                 if (ret_val != 0)
2408                         goto out;
2409         }
2410
2411 out:
2412         return ret_val;
2413 }
2414
2415 /**
2416  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2417  *  @hw: pointer to the HW structure
2418  *
2419  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2420  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2421  *  checksum and writes the value to the EEPROM.
2422  **/
2423 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2424 {
2425         s32 ret_val;
2426         u16 j, nvm_data;
2427         u16 nvm_offset;
2428
2429         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2430         if (ret_val) {
2431                 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2432                 goto out;
2433         }
2434
2435         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2436                 /* set compatibility bit to validate checksums appropriately */
2437                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2438                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2439                                         &nvm_data);
2440                 if (ret_val) {
2441                         hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2442                         goto out;
2443                 }
2444         }
2445
2446         for (j = 0; j < 4; j++) {
2447                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2448                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2449                 if (ret_val)
2450                         goto out;
2451         }
2452
2453 out:
2454         return ret_val;
2455 }
2456
2457 /**
2458  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2459  *  @hw: pointer to the HW structure
2460  *
2461  *  Calculates the EEPROM section checksum by reading/adding each word of
2462  *  the EEPROM and then verifies that the sum of the EEPROM is
2463  *  equal to 0xBABA.
2464  **/
2465 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2466 {
2467         s32 ret_val = 0;
2468         u16 j;
2469         u16 nvm_offset;
2470
2471         for (j = 0; j < 4; j++) {
2472                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2473                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2474                                                                 nvm_offset);
2475                 if (ret_val != 0)
2476                         goto out;
2477         }
2478
2479 out:
2480         return ret_val;
2481 }
2482
2483 /**
2484  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2485  *  @hw: pointer to the HW structure
2486  *
2487  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2488  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2489  *  checksum and writes the value to the EEPROM.
2490  **/
2491 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2492 {
2493         s32 ret_val = 0;
2494         u16 j;
2495         u16 nvm_offset;
2496
2497         for (j = 0; j < 4; j++) {
2498                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2499                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2500                 if (ret_val != 0)
2501                         goto out;
2502         }
2503
2504 out:
2505         return ret_val;
2506 }
2507
2508 /**
2509  *  __igb_access_emi_reg - Read/write EMI register
2510  *  @hw: pointer to the HW structure
2511  *  @addr: EMI address to program
2512  *  @data: pointer to value to read/write from/to the EMI address
2513  *  @read: boolean flag to indicate read or write
2514  **/
2515 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2516                                   u16 *data, bool read)
2517 {
2518         s32 ret_val = 0;
2519
2520         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2521         if (ret_val)
2522                 return ret_val;
2523
2524         if (read)
2525                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2526         else
2527                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2528
2529         return ret_val;
2530 }
2531
2532 /**
2533  *  igb_read_emi_reg - Read Extended Management Interface register
2534  *  @hw: pointer to the HW structure
2535  *  @addr: EMI address to program
2536  *  @data: value to be read from the EMI address
2537  **/
2538 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2539 {
2540         return __igb_access_emi_reg(hw, addr, data, true);
2541 }
2542
2543 /**
2544  *  igb_set_eee_i350 - Enable/disable EEE support
2545  *  @hw: pointer to the HW structure
2546  *
2547  *  Enable/disable EEE based on setting in dev_spec structure.
2548  *
2549  **/
2550 s32 igb_set_eee_i350(struct e1000_hw *hw)
2551 {
2552         u32 ipcnfg, eeer;
2553
2554         if ((hw->mac.type < e1000_i350) ||
2555             (hw->phy.media_type != e1000_media_type_copper))
2556                 goto out;
2557         ipcnfg = rd32(E1000_IPCNFG);
2558         eeer = rd32(E1000_EEER);
2559
2560         /* enable or disable per user setting */
2561         if (!(hw->dev_spec._82575.eee_disable)) {
2562                 u32 eee_su = rd32(E1000_EEE_SU);
2563
2564                 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2565                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2566                         E1000_EEER_LPI_FC);
2567
2568                 /* This bit should not be set in normal operation. */
2569                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2570                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2571
2572         } else {
2573                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2574                         E1000_IPCNFG_EEE_100M_AN);
2575                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2576                         E1000_EEER_RX_LPI_EN |
2577                         E1000_EEER_LPI_FC);
2578         }
2579         wr32(E1000_IPCNFG, ipcnfg);
2580         wr32(E1000_EEER, eeer);
2581         rd32(E1000_IPCNFG);
2582         rd32(E1000_EEER);
2583 out:
2584
2585         return 0;
2586 }
2587
2588 /**
2589  *  igb_set_eee_i354 - Enable/disable EEE support
2590  *  @hw: pointer to the HW structure
2591  *
2592  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2593  *
2594  **/
2595 s32 igb_set_eee_i354(struct e1000_hw *hw)
2596 {
2597         struct e1000_phy_info *phy = &hw->phy;
2598         s32 ret_val = 0;
2599         u16 phy_data;
2600
2601         if ((hw->phy.media_type != e1000_media_type_copper) ||
2602             (phy->id != M88E1543_E_PHY_ID))
2603                 goto out;
2604
2605         if (!hw->dev_spec._82575.eee_disable) {
2606                 /* Switch to PHY page 18. */
2607                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2608                 if (ret_val)
2609                         goto out;
2610
2611                 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2612                                             &phy_data);
2613                 if (ret_val)
2614                         goto out;
2615
2616                 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2617                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2618                                              phy_data);
2619                 if (ret_val)
2620                         goto out;
2621
2622                 /* Return the PHY to page 0. */
2623                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2624                 if (ret_val)
2625                         goto out;
2626
2627                 /* Turn on EEE advertisement. */
2628                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2629                                              E1000_EEE_ADV_DEV_I354,
2630                                              &phy_data);
2631                 if (ret_val)
2632                         goto out;
2633
2634                 phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2635                             E1000_EEE_ADV_1000_SUPPORTED;
2636                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2637                                                 E1000_EEE_ADV_DEV_I354,
2638                                                 phy_data);
2639         } else {
2640                 /* Turn off EEE advertisement. */
2641                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2642                                              E1000_EEE_ADV_DEV_I354,
2643                                              &phy_data);
2644                 if (ret_val)
2645                         goto out;
2646
2647                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2648                               E1000_EEE_ADV_1000_SUPPORTED);
2649                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2650                                               E1000_EEE_ADV_DEV_I354,
2651                                               phy_data);
2652         }
2653
2654 out:
2655         return ret_val;
2656 }
2657
2658 /**
2659  *  igb_get_eee_status_i354 - Get EEE status
2660  *  @hw: pointer to the HW structure
2661  *  @status: EEE status
2662  *
2663  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2664  *  been received.
2665  **/
2666 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2667 {
2668         struct e1000_phy_info *phy = &hw->phy;
2669         s32 ret_val = 0;
2670         u16 phy_data;
2671
2672         /* Check if EEE is supported on this device. */
2673         if ((hw->phy.media_type != e1000_media_type_copper) ||
2674             (phy->id != M88E1543_E_PHY_ID))
2675                 goto out;
2676
2677         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2678                                      E1000_PCS_STATUS_DEV_I354,
2679                                      &phy_data);
2680         if (ret_val)
2681                 goto out;
2682
2683         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2684                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2685
2686 out:
2687         return ret_val;
2688 }
2689
2690 static const u8 e1000_emc_temp_data[4] = {
2691         E1000_EMC_INTERNAL_DATA,
2692         E1000_EMC_DIODE1_DATA,
2693         E1000_EMC_DIODE2_DATA,
2694         E1000_EMC_DIODE3_DATA
2695 };
2696 static const u8 e1000_emc_therm_limit[4] = {
2697         E1000_EMC_INTERNAL_THERM_LIMIT,
2698         E1000_EMC_DIODE1_THERM_LIMIT,
2699         E1000_EMC_DIODE2_THERM_LIMIT,
2700         E1000_EMC_DIODE3_THERM_LIMIT
2701 };
2702
2703 #ifdef CONFIG_IGB_HWMON
2704 /**
2705  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2706  *  @hw: pointer to hardware structure
2707  *
2708  *  Updates the temperatures in mac.thermal_sensor_data
2709  **/
2710 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2711 {
2712         u16 ets_offset;
2713         u16 ets_cfg;
2714         u16 ets_sensor;
2715         u8  num_sensors;
2716         u8  sensor_index;
2717         u8  sensor_location;
2718         u8  i;
2719         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2720
2721         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2722                 return E1000_NOT_IMPLEMENTED;
2723
2724         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2725
2726         /* Return the internal sensor only if ETS is unsupported */
2727         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2728         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2729                 return 0;
2730
2731         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2732         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2733             != NVM_ETS_TYPE_EMC)
2734                 return E1000_NOT_IMPLEMENTED;
2735
2736         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2737         if (num_sensors > E1000_MAX_SENSORS)
2738                 num_sensors = E1000_MAX_SENSORS;
2739
2740         for (i = 1; i < num_sensors; i++) {
2741                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2742                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2743                                 NVM_ETS_DATA_INDEX_SHIFT);
2744                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2745                                    NVM_ETS_DATA_LOC_SHIFT);
2746
2747                 if (sensor_location != 0)
2748                         hw->phy.ops.read_i2c_byte(hw,
2749                                         e1000_emc_temp_data[sensor_index],
2750                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2751                                         &data->sensor[i].temp);
2752         }
2753         return 0;
2754 }
2755
2756 /**
2757  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2758  *  @hw: pointer to hardware structure
2759  *
2760  *  Sets the thermal sensor thresholds according to the NVM map
2761  *  and save off the threshold and location values into mac.thermal_sensor_data
2762  **/
2763 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2764 {
2765         u16 ets_offset;
2766         u16 ets_cfg;
2767         u16 ets_sensor;
2768         u8  low_thresh_delta;
2769         u8  num_sensors;
2770         u8  sensor_index;
2771         u8  sensor_location;
2772         u8  therm_limit;
2773         u8  i;
2774         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2775
2776         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2777                 return E1000_NOT_IMPLEMENTED;
2778
2779         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2780
2781         data->sensor[0].location = 0x1;
2782         data->sensor[0].caution_thresh =
2783                 (rd32(E1000_THHIGHTC) & 0xFF);
2784         data->sensor[0].max_op_thresh =
2785                 (rd32(E1000_THLOWTC) & 0xFF);
2786
2787         /* Return the internal sensor only if ETS is unsupported */
2788         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2789         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2790                 return 0;
2791
2792         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2793         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2794             != NVM_ETS_TYPE_EMC)
2795                 return E1000_NOT_IMPLEMENTED;
2796
2797         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2798                             NVM_ETS_LTHRES_DELTA_SHIFT);
2799         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2800
2801         for (i = 1; i <= num_sensors; i++) {
2802                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2803                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2804                                 NVM_ETS_DATA_INDEX_SHIFT);
2805                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2806                                    NVM_ETS_DATA_LOC_SHIFT);
2807                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2808
2809                 hw->phy.ops.write_i2c_byte(hw,
2810                         e1000_emc_therm_limit[sensor_index],
2811                         E1000_I2C_THERMAL_SENSOR_ADDR,
2812                         therm_limit);
2813
2814                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2815                         data->sensor[i].location = sensor_location;
2816                         data->sensor[i].caution_thresh = therm_limit;
2817                         data->sensor[i].max_op_thresh = therm_limit -
2818                                                         low_thresh_delta;
2819                 }
2820         }
2821         return 0;
2822 }
2823
2824 #endif
2825 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2826         .init_hw              = igb_init_hw_82575,
2827         .check_for_link       = igb_check_for_link_82575,
2828         .rar_set              = igb_rar_set,
2829         .read_mac_addr        = igb_read_mac_addr_82575,
2830         .get_speed_and_duplex = igb_get_link_up_info_82575,
2831 #ifdef CONFIG_IGB_HWMON
2832         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2833         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2834 #endif
2835 };
2836
2837 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2838         .acquire              = igb_acquire_phy_82575,
2839         .get_cfg_done         = igb_get_cfg_done_82575,
2840         .release              = igb_release_phy_82575,
2841         .write_i2c_byte       = igb_write_i2c_byte,
2842         .read_i2c_byte        = igb_read_i2c_byte,
2843 };
2844
2845 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2846         .acquire              = igb_acquire_nvm_82575,
2847         .read                 = igb_read_nvm_eerd,
2848         .release              = igb_release_nvm_82575,
2849         .write                = igb_write_nvm_spi,
2850 };
2851
2852 const struct e1000_info e1000_82575_info = {
2853         .get_invariants = igb_get_invariants_82575,
2854         .mac_ops = &e1000_mac_ops_82575,
2855         .phy_ops = &e1000_phy_ops_82575,
2856         .nvm_ops = &e1000_nvm_ops_82575,
2857 };
2858