Merge remote-tracking branch 'regulator/fix/dbx500' into regulator-linus
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29  * e1000_82576
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41
42 static s32  igb_get_invariants_82575(struct e1000_hw *);
43 static s32  igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32  igb_check_for_link_82575(struct e1000_hw *);
48 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32  igb_init_hw_82575(struct e1000_hw *);
50 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32  igb_reset_hw_82575(struct e1000_hw *);
55 static s32  igb_reset_hw_82580(struct e1000_hw *);
56 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65                                                  u16 *);
66 static s32  igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32  igb_reset_init_script_82575(struct e1000_hw *);
70 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78         { 36, 72, 144, 1, 2, 4, 8, 16,
79           35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81         (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83 /**
84  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85  *  @hw: pointer to the HW structure
86  *
87  *  Called to determine if the I2C pins are being used for I2C or as an
88  *  external MDIO interface since the two options are mutually exclusive.
89  **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92         u32 reg = 0;
93         bool ext_mdio = false;
94
95         switch (hw->mac.type) {
96         case e1000_82575:
97         case e1000_82576:
98                 reg = rd32(E1000_MDIC);
99                 ext_mdio = !!(reg & E1000_MDIC_DEST);
100                 break;
101         case e1000_82580:
102         case e1000_i350:
103         case e1000_i354:
104         case e1000_i210:
105         case e1000_i211:
106                 reg = rd32(E1000_MDICNFG);
107                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108                 break;
109         default:
110                 break;
111         }
112         return ext_mdio;
113 }
114
115 /**
116  *  igb_init_phy_params_82575 - Init PHY func ptrs.
117  *  @hw: pointer to the HW structure
118  **/
119 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120 {
121         struct e1000_phy_info *phy = &hw->phy;
122         s32 ret_val = 0;
123         u32 ctrl_ext;
124
125         if (hw->phy.media_type != e1000_media_type_copper) {
126                 phy->type = e1000_phy_none;
127                 goto out;
128         }
129
130         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
131         phy->reset_delay_us     = 100;
132
133         ctrl_ext = rd32(E1000_CTRL_EXT);
134
135         if (igb_sgmii_active_82575(hw)) {
136                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137                 ctrl_ext |= E1000_CTRL_I2C_ENA;
138         } else {
139                 phy->ops.reset = igb_phy_hw_reset;
140                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141         }
142
143         wr32(E1000_CTRL_EXT, ctrl_ext);
144         igb_reset_mdicnfg_82580(hw);
145
146         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149         } else {
150                 switch (hw->mac.type) {
151                 case e1000_82580:
152                 case e1000_i350:
153                 case e1000_i354:
154                         phy->ops.read_reg = igb_read_phy_reg_82580;
155                         phy->ops.write_reg = igb_write_phy_reg_82580;
156                         break;
157                 case e1000_i210:
158                 case e1000_i211:
159                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
160                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
161                         break;
162                 default:
163                         phy->ops.read_reg = igb_read_phy_reg_igp;
164                         phy->ops.write_reg = igb_write_phy_reg_igp;
165                 }
166         }
167
168         /* set lan id */
169         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170                         E1000_STATUS_FUNC_SHIFT;
171
172         /* Set phy->phy_addr and phy->id. */
173         ret_val = igb_get_phy_id_82575(hw);
174         if (ret_val)
175                 return ret_val;
176
177         /* Verify phy id and set remaining function pointers */
178         switch (phy->id) {
179         case M88E1545_E_PHY_ID:
180         case I347AT4_E_PHY_ID:
181         case M88E1112_E_PHY_ID:
182         case M88E1111_I_PHY_ID:
183                 phy->type               = e1000_phy_m88;
184                 phy->ops.check_polarity = igb_check_polarity_m88;
185                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
186                 if (phy->id != M88E1111_I_PHY_ID)
187                         phy->ops.get_cable_length =
188                                          igb_get_cable_length_m88_gen2;
189                 else
190                         phy->ops.get_cable_length = igb_get_cable_length_m88;
191                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192                 break;
193         case IGP03E1000_E_PHY_ID:
194                 phy->type = e1000_phy_igp_3;
195                 phy->ops.get_phy_info = igb_get_phy_info_igp;
196                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200                 break;
201         case I82580_I_PHY_ID:
202         case I350_I_PHY_ID:
203                 phy->type = e1000_phy_82580;
204                 phy->ops.force_speed_duplex =
205                                          igb_phy_force_speed_duplex_82580;
206                 phy->ops.get_cable_length = igb_get_cable_length_82580;
207                 phy->ops.get_phy_info = igb_get_phy_info_82580;
208                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210                 break;
211         case I210_I_PHY_ID:
212                 phy->type               = e1000_phy_i210;
213                 phy->ops.check_polarity = igb_check_polarity_m88;
214                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
215                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219                 break;
220         default:
221                 ret_val = -E1000_ERR_PHY;
222                 goto out;
223         }
224
225 out:
226         return ret_val;
227 }
228
229 /**
230  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
231  *  @hw: pointer to the HW structure
232  **/
233 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234 {
235         struct e1000_nvm_info *nvm = &hw->nvm;
236         u32 eecd = rd32(E1000_EECD);
237         u16 size;
238
239         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240                      E1000_EECD_SIZE_EX_SHIFT);
241         /* Added to a constant, "size" becomes the left-shift value
242          * for setting word_size.
243          */
244         size += NVM_WORD_SIZE_BASE_SHIFT;
245
246         /* Just in case size is out of range, cap it to the largest
247          * EEPROM size supported
248          */
249         if (size > 15)
250                 size = 15;
251
252         nvm->word_size = 1 << size;
253         if (hw->mac.type < e1000_i210) {
254                 nvm->opcode_bits = 8;
255                 nvm->delay_usec = 1;
256
257                 switch (nvm->override) {
258                 case e1000_nvm_override_spi_large:
259                         nvm->page_size = 32;
260                         nvm->address_bits = 16;
261                         break;
262                 case e1000_nvm_override_spi_small:
263                         nvm->page_size = 8;
264                         nvm->address_bits = 8;
265                         break;
266                 default:
267                         nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268                         nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269                                             16 : 8;
270                         break;
271                 }
272                 if (nvm->word_size == (1 << 15))
273                         nvm->page_size = 128;
274
275                 nvm->type = e1000_nvm_eeprom_spi;
276         } else {
277                 nvm->type = e1000_nvm_flash_hw;
278         }
279
280         /* NVM Function Pointers */
281         switch (hw->mac.type) {
282         case e1000_82580:
283                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
284                 nvm->ops.update = igb_update_nvm_checksum_82580;
285                 nvm->ops.acquire = igb_acquire_nvm_82575;
286                 nvm->ops.release = igb_release_nvm_82575;
287                 if (nvm->word_size < (1 << 15))
288                         nvm->ops.read = igb_read_nvm_eerd;
289                 else
290                         nvm->ops.read = igb_read_nvm_spi;
291                 nvm->ops.write = igb_write_nvm_spi;
292                 break;
293         case e1000_i354:
294         case e1000_i350:
295                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
296                 nvm->ops.update = igb_update_nvm_checksum_i350;
297                 nvm->ops.acquire = igb_acquire_nvm_82575;
298                 nvm->ops.release = igb_release_nvm_82575;
299                 if (nvm->word_size < (1 << 15))
300                         nvm->ops.read = igb_read_nvm_eerd;
301                 else
302                         nvm->ops.read = igb_read_nvm_spi;
303                 nvm->ops.write = igb_write_nvm_spi;
304                 break;
305         case e1000_i210:
306                 nvm->ops.validate = igb_validate_nvm_checksum_i210;
307                 nvm->ops.update   = igb_update_nvm_checksum_i210;
308                 nvm->ops.acquire = igb_acquire_nvm_i210;
309                 nvm->ops.release = igb_release_nvm_i210;
310                 nvm->ops.read    = igb_read_nvm_srrd_i210;
311                 nvm->ops.write   = igb_write_nvm_srwr_i210;
312                 nvm->ops.valid_led_default = igb_valid_led_default_i210;
313                 break;
314         case e1000_i211:
315                 nvm->ops.acquire  = igb_acquire_nvm_i210;
316                 nvm->ops.release  = igb_release_nvm_i210;
317                 nvm->ops.read     = igb_read_nvm_i211;
318                 nvm->ops.valid_led_default = igb_valid_led_default_i210;
319                 nvm->ops.validate = NULL;
320                 nvm->ops.update   = NULL;
321                 nvm->ops.write    = NULL;
322                 break;
323         default:
324                 nvm->ops.validate = igb_validate_nvm_checksum;
325                 nvm->ops.update = igb_update_nvm_checksum;
326                 nvm->ops.acquire = igb_acquire_nvm_82575;
327                 nvm->ops.release = igb_release_nvm_82575;
328                 if (nvm->word_size < (1 << 15))
329                         nvm->ops.read = igb_read_nvm_eerd;
330                 else
331                         nvm->ops.read = igb_read_nvm_spi;
332                 nvm->ops.write = igb_write_nvm_spi;
333                 break;
334         }
335
336         return 0;
337 }
338
339 /**
340  *  igb_init_mac_params_82575 - Init MAC func ptrs.
341  *  @hw: pointer to the HW structure
342  **/
343 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
344 {
345         struct e1000_mac_info *mac = &hw->mac;
346         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
347
348         /* Set mta register count */
349         mac->mta_reg_count = 128;
350         /* Set rar entry count */
351         switch (mac->type) {
352         case e1000_82576:
353                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
354                 break;
355         case e1000_82580:
356                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
357                 break;
358         case e1000_i350:
359         case e1000_i354:
360                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
361                 break;
362         default:
363                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
364                 break;
365         }
366         /* reset */
367         if (mac->type >= e1000_82580)
368                 mac->ops.reset_hw = igb_reset_hw_82580;
369         else
370                 mac->ops.reset_hw = igb_reset_hw_82575;
371
372         if (mac->type >= e1000_i210) {
373                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
374                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
375
376         } else {
377                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
378                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
379         }
380
381         /* Set if part includes ASF firmware */
382         mac->asf_firmware_present = true;
383         /* Set if manageability features are enabled. */
384         mac->arc_subsystem_valid =
385                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
386                         ? true : false;
387         /* enable EEE on i350 parts and later parts */
388         if (mac->type >= e1000_i350)
389                 dev_spec->eee_disable = false;
390         else
391                 dev_spec->eee_disable = true;
392         /* Allow a single clear of the SW semaphore on I210 and newer */
393         if (mac->type >= e1000_i210)
394                 dev_spec->clear_semaphore_once = true;
395         /* physical interface link setup */
396         mac->ops.setup_physical_interface =
397                 (hw->phy.media_type == e1000_media_type_copper)
398                         ? igb_setup_copper_link_82575
399                         : igb_setup_serdes_link_82575;
400
401         return 0;
402 }
403
404 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
405 {
406         struct e1000_mac_info *mac = &hw->mac;
407         struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
408         s32 ret_val;
409         u32 ctrl_ext = 0;
410
411         switch (hw->device_id) {
412         case E1000_DEV_ID_82575EB_COPPER:
413         case E1000_DEV_ID_82575EB_FIBER_SERDES:
414         case E1000_DEV_ID_82575GB_QUAD_COPPER:
415                 mac->type = e1000_82575;
416                 break;
417         case E1000_DEV_ID_82576:
418         case E1000_DEV_ID_82576_NS:
419         case E1000_DEV_ID_82576_NS_SERDES:
420         case E1000_DEV_ID_82576_FIBER:
421         case E1000_DEV_ID_82576_SERDES:
422         case E1000_DEV_ID_82576_QUAD_COPPER:
423         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
424         case E1000_DEV_ID_82576_SERDES_QUAD:
425                 mac->type = e1000_82576;
426                 break;
427         case E1000_DEV_ID_82580_COPPER:
428         case E1000_DEV_ID_82580_FIBER:
429         case E1000_DEV_ID_82580_QUAD_FIBER:
430         case E1000_DEV_ID_82580_SERDES:
431         case E1000_DEV_ID_82580_SGMII:
432         case E1000_DEV_ID_82580_COPPER_DUAL:
433         case E1000_DEV_ID_DH89XXCC_SGMII:
434         case E1000_DEV_ID_DH89XXCC_SERDES:
435         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
436         case E1000_DEV_ID_DH89XXCC_SFP:
437                 mac->type = e1000_82580;
438                 break;
439         case E1000_DEV_ID_I350_COPPER:
440         case E1000_DEV_ID_I350_FIBER:
441         case E1000_DEV_ID_I350_SERDES:
442         case E1000_DEV_ID_I350_SGMII:
443                 mac->type = e1000_i350;
444                 break;
445         case E1000_DEV_ID_I210_COPPER:
446         case E1000_DEV_ID_I210_FIBER:
447         case E1000_DEV_ID_I210_SERDES:
448         case E1000_DEV_ID_I210_SGMII:
449                 mac->type = e1000_i210;
450                 break;
451         case E1000_DEV_ID_I211_COPPER:
452                 mac->type = e1000_i211;
453                 break;
454         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
455         case E1000_DEV_ID_I354_SGMII:
456         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
457                 mac->type = e1000_i354;
458                 break;
459         default:
460                 return -E1000_ERR_MAC_INIT;
461                 break;
462         }
463
464         /* Set media type */
465         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
466          * based on the EEPROM. We cannot rely upon device ID. There
467          * is no distinguishable difference between fiber and internal
468          * SerDes mode on the 82575. There can be an external PHY attached
469          * on the SGMII interface. For this, we'll set sgmii_active to true.
470          */
471         hw->phy.media_type = e1000_media_type_copper;
472         dev_spec->sgmii_active = false;
473
474         ctrl_ext = rd32(E1000_CTRL_EXT);
475         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
476         case E1000_CTRL_EXT_LINK_MODE_SGMII:
477                 dev_spec->sgmii_active = true;
478                 break;
479         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
480         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
481                 hw->phy.media_type = e1000_media_type_internal_serdes;
482                 break;
483         default:
484                 break;
485         }
486
487         /* mac initialization and operations */
488         ret_val = igb_init_mac_params_82575(hw);
489         if (ret_val)
490                 goto out;
491
492         /* NVM initialization */
493         ret_val = igb_init_nvm_params_82575(hw);
494         if (ret_val)
495                 goto out;
496
497         /* if part supports SR-IOV then initialize mailbox parameters */
498         switch (mac->type) {
499         case e1000_82576:
500         case e1000_i350:
501                 igb_init_mbx_params_pf(hw);
502                 break;
503         default:
504                 break;
505         }
506
507         /* setup PHY parameters */
508         ret_val = igb_init_phy_params_82575(hw);
509
510 out:
511         return ret_val;
512 }
513
514 /**
515  *  igb_acquire_phy_82575 - Acquire rights to access PHY
516  *  @hw: pointer to the HW structure
517  *
518  *  Acquire access rights to the correct PHY.  This is a
519  *  function pointer entry point called by the api module.
520  **/
521 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
522 {
523         u16 mask = E1000_SWFW_PHY0_SM;
524
525         if (hw->bus.func == E1000_FUNC_1)
526                 mask = E1000_SWFW_PHY1_SM;
527         else if (hw->bus.func == E1000_FUNC_2)
528                 mask = E1000_SWFW_PHY2_SM;
529         else if (hw->bus.func == E1000_FUNC_3)
530                 mask = E1000_SWFW_PHY3_SM;
531
532         return hw->mac.ops.acquire_swfw_sync(hw, mask);
533 }
534
535 /**
536  *  igb_release_phy_82575 - Release rights to access PHY
537  *  @hw: pointer to the HW structure
538  *
539  *  A wrapper to release access rights to the correct PHY.  This is a
540  *  function pointer entry point called by the api module.
541  **/
542 static void igb_release_phy_82575(struct e1000_hw *hw)
543 {
544         u16 mask = E1000_SWFW_PHY0_SM;
545
546         if (hw->bus.func == E1000_FUNC_1)
547                 mask = E1000_SWFW_PHY1_SM;
548         else if (hw->bus.func == E1000_FUNC_2)
549                 mask = E1000_SWFW_PHY2_SM;
550         else if (hw->bus.func == E1000_FUNC_3)
551                 mask = E1000_SWFW_PHY3_SM;
552
553         hw->mac.ops.release_swfw_sync(hw, mask);
554 }
555
556 /**
557  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
558  *  @hw: pointer to the HW structure
559  *  @offset: register offset to be read
560  *  @data: pointer to the read data
561  *
562  *  Reads the PHY register at offset using the serial gigabit media independent
563  *  interface and stores the retrieved information in data.
564  **/
565 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
566                                           u16 *data)
567 {
568         s32 ret_val = -E1000_ERR_PARAM;
569
570         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
571                 hw_dbg("PHY Address %u is out of range\n", offset);
572                 goto out;
573         }
574
575         ret_val = hw->phy.ops.acquire(hw);
576         if (ret_val)
577                 goto out;
578
579         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
580
581         hw->phy.ops.release(hw);
582
583 out:
584         return ret_val;
585 }
586
587 /**
588  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
589  *  @hw: pointer to the HW structure
590  *  @offset: register offset to write to
591  *  @data: data to write at register offset
592  *
593  *  Writes the data to PHY register at the offset using the serial gigabit
594  *  media independent interface.
595  **/
596 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
597                                            u16 data)
598 {
599         s32 ret_val = -E1000_ERR_PARAM;
600
601
602         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
603                 hw_dbg("PHY Address %d is out of range\n", offset);
604                 goto out;
605         }
606
607         ret_val = hw->phy.ops.acquire(hw);
608         if (ret_val)
609                 goto out;
610
611         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
612
613         hw->phy.ops.release(hw);
614
615 out:
616         return ret_val;
617 }
618
619 /**
620  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
621  *  @hw: pointer to the HW structure
622  *
623  *  Retrieves the PHY address and ID for both PHY's which do and do not use
624  *  sgmi interface.
625  **/
626 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
627 {
628         struct e1000_phy_info *phy = &hw->phy;
629         s32  ret_val = 0;
630         u16 phy_id;
631         u32 ctrl_ext;
632         u32 mdic;
633
634         /* For SGMII PHYs, we try the list of possible addresses until
635          * we find one that works.  For non-SGMII PHYs
636          * (e.g. integrated copper PHYs), an address of 1 should
637          * work.  The result of this function should mean phy->phy_addr
638          * and phy->id are set correctly.
639          */
640         if (!(igb_sgmii_active_82575(hw))) {
641                 phy->addr = 1;
642                 ret_val = igb_get_phy_id(hw);
643                 goto out;
644         }
645
646         if (igb_sgmii_uses_mdio_82575(hw)) {
647                 switch (hw->mac.type) {
648                 case e1000_82575:
649                 case e1000_82576:
650                         mdic = rd32(E1000_MDIC);
651                         mdic &= E1000_MDIC_PHY_MASK;
652                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
653                         break;
654                 case e1000_82580:
655                 case e1000_i350:
656                 case e1000_i354:
657                 case e1000_i210:
658                 case e1000_i211:
659                         mdic = rd32(E1000_MDICNFG);
660                         mdic &= E1000_MDICNFG_PHY_MASK;
661                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
662                         break;
663                 default:
664                         ret_val = -E1000_ERR_PHY;
665                         goto out;
666                         break;
667                 }
668                 ret_val = igb_get_phy_id(hw);
669                 goto out;
670         }
671
672         /* Power on sgmii phy if it is disabled */
673         ctrl_ext = rd32(E1000_CTRL_EXT);
674         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
675         wrfl();
676         msleep(300);
677
678         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
679          * Therefore, we need to test 1-7
680          */
681         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
682                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
683                 if (ret_val == 0) {
684                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
685                                phy_id, phy->addr);
686                         /* At the time of this writing, The M88 part is
687                          * the only supported SGMII PHY product.
688                          */
689                         if (phy_id == M88_VENDOR)
690                                 break;
691                 } else {
692                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
693                 }
694         }
695
696         /* A valid PHY type couldn't be found. */
697         if (phy->addr == 8) {
698                 phy->addr = 0;
699                 ret_val = -E1000_ERR_PHY;
700                 goto out;
701         } else {
702                 ret_val = igb_get_phy_id(hw);
703         }
704
705         /* restore previous sfp cage power state */
706         wr32(E1000_CTRL_EXT, ctrl_ext);
707
708 out:
709         return ret_val;
710 }
711
712 /**
713  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
714  *  @hw: pointer to the HW structure
715  *
716  *  Resets the PHY using the serial gigabit media independent interface.
717  **/
718 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
719 {
720         s32 ret_val;
721
722         /* This isn't a true "hard" reset, but is the only reset
723          * available to us at this time.
724          */
725
726         hw_dbg("Soft resetting SGMII attached PHY...\n");
727
728         /* SFP documentation requires the following to configure the SPF module
729          * to work on SGMII.  No further documentation is given.
730          */
731         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
732         if (ret_val)
733                 goto out;
734
735         ret_val = igb_phy_sw_reset(hw);
736
737 out:
738         return ret_val;
739 }
740
741 /**
742  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
743  *  @hw: pointer to the HW structure
744  *  @active: true to enable LPLU, false to disable
745  *
746  *  Sets the LPLU D0 state according to the active flag.  When
747  *  activating LPLU this function also disables smart speed
748  *  and vice versa.  LPLU will not be activated unless the
749  *  device autonegotiation advertisement meets standards of
750  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
751  *  This is a function pointer entry point only called by
752  *  PHY setup routines.
753  **/
754 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
755 {
756         struct e1000_phy_info *phy = &hw->phy;
757         s32 ret_val;
758         u16 data;
759
760         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
761         if (ret_val)
762                 goto out;
763
764         if (active) {
765                 data |= IGP02E1000_PM_D0_LPLU;
766                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
767                                                  data);
768                 if (ret_val)
769                         goto out;
770
771                 /* When LPLU is enabled, we should disable SmartSpeed */
772                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
773                                                 &data);
774                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
775                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
776                                                  data);
777                 if (ret_val)
778                         goto out;
779         } else {
780                 data &= ~IGP02E1000_PM_D0_LPLU;
781                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
782                                                  data);
783                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
784                  * during Dx states where the power conservation is most
785                  * important.  During driver activity we should enable
786                  * SmartSpeed, so performance is maintained.
787                  */
788                 if (phy->smart_speed == e1000_smart_speed_on) {
789                         ret_val = phy->ops.read_reg(hw,
790                                         IGP01E1000_PHY_PORT_CONFIG, &data);
791                         if (ret_val)
792                                 goto out;
793
794                         data |= IGP01E1000_PSCFR_SMART_SPEED;
795                         ret_val = phy->ops.write_reg(hw,
796                                         IGP01E1000_PHY_PORT_CONFIG, data);
797                         if (ret_val)
798                                 goto out;
799                 } else if (phy->smart_speed == e1000_smart_speed_off) {
800                         ret_val = phy->ops.read_reg(hw,
801                                         IGP01E1000_PHY_PORT_CONFIG, &data);
802                         if (ret_val)
803                                 goto out;
804
805                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
806                         ret_val = phy->ops.write_reg(hw,
807                                         IGP01E1000_PHY_PORT_CONFIG, data);
808                         if (ret_val)
809                                 goto out;
810                 }
811         }
812
813 out:
814         return ret_val;
815 }
816
817 /**
818  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
819  *  @hw: pointer to the HW structure
820  *  @active: true to enable LPLU, false to disable
821  *
822  *  Sets the LPLU D0 state according to the active flag.  When
823  *  activating LPLU this function also disables smart speed
824  *  and vice versa.  LPLU will not be activated unless the
825  *  device autonegotiation advertisement meets standards of
826  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
827  *  This is a function pointer entry point only called by
828  *  PHY setup routines.
829  **/
830 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
831 {
832         struct e1000_phy_info *phy = &hw->phy;
833         s32 ret_val = 0;
834         u16 data;
835
836         data = rd32(E1000_82580_PHY_POWER_MGMT);
837
838         if (active) {
839                 data |= E1000_82580_PM_D0_LPLU;
840
841                 /* When LPLU is enabled, we should disable SmartSpeed */
842                 data &= ~E1000_82580_PM_SPD;
843         } else {
844                 data &= ~E1000_82580_PM_D0_LPLU;
845
846                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
847                  * during Dx states where the power conservation is most
848                  * important.  During driver activity we should enable
849                  * SmartSpeed, so performance is maintained.
850                  */
851                 if (phy->smart_speed == e1000_smart_speed_on)
852                         data |= E1000_82580_PM_SPD;
853                 else if (phy->smart_speed == e1000_smart_speed_off)
854                         data &= ~E1000_82580_PM_SPD; }
855
856         wr32(E1000_82580_PHY_POWER_MGMT, data);
857         return ret_val;
858 }
859
860 /**
861  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
862  *  @hw: pointer to the HW structure
863  *  @active: boolean used to enable/disable lplu
864  *
865  *  Success returns 0, Failure returns 1
866  *
867  *  The low power link up (lplu) state is set to the power management level D3
868  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
869  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
870  *  is used during Dx states where the power conservation is most important.
871  *  During driver activity, SmartSpeed should be enabled so performance is
872  *  maintained.
873  **/
874 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
875 {
876         struct e1000_phy_info *phy = &hw->phy;
877         s32 ret_val = 0;
878         u16 data;
879
880         data = rd32(E1000_82580_PHY_POWER_MGMT);
881
882         if (!active) {
883                 data &= ~E1000_82580_PM_D3_LPLU;
884                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
885                  * during Dx states where the power conservation is most
886                  * important.  During driver activity we should enable
887                  * SmartSpeed, so performance is maintained.
888                  */
889                 if (phy->smart_speed == e1000_smart_speed_on)
890                         data |= E1000_82580_PM_SPD;
891                 else if (phy->smart_speed == e1000_smart_speed_off)
892                         data &= ~E1000_82580_PM_SPD;
893         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
894                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
895                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
896                 data |= E1000_82580_PM_D3_LPLU;
897                 /* When LPLU is enabled, we should disable SmartSpeed */
898                 data &= ~E1000_82580_PM_SPD;
899         }
900
901         wr32(E1000_82580_PHY_POWER_MGMT, data);
902         return ret_val;
903 }
904
905 /**
906  *  igb_acquire_nvm_82575 - Request for access to EEPROM
907  *  @hw: pointer to the HW structure
908  *
909  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
910  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
911  *  Return successful if access grant bit set, else clear the request for
912  *  EEPROM access and return -E1000_ERR_NVM (-1).
913  **/
914 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
915 {
916         s32 ret_val;
917
918         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
919         if (ret_val)
920                 goto out;
921
922         ret_val = igb_acquire_nvm(hw);
923
924         if (ret_val)
925                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
926
927 out:
928         return ret_val;
929 }
930
931 /**
932  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
933  *  @hw: pointer to the HW structure
934  *
935  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
936  *  then release the semaphores acquired.
937  **/
938 static void igb_release_nvm_82575(struct e1000_hw *hw)
939 {
940         igb_release_nvm(hw);
941         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
942 }
943
944 /**
945  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
946  *  @hw: pointer to the HW structure
947  *  @mask: specifies which semaphore to acquire
948  *
949  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
950  *  will also specify which port we're acquiring the lock for.
951  **/
952 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
953 {
954         u32 swfw_sync;
955         u32 swmask = mask;
956         u32 fwmask = mask << 16;
957         s32 ret_val = 0;
958         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
959
960         while (i < timeout) {
961                 if (igb_get_hw_semaphore(hw)) {
962                         ret_val = -E1000_ERR_SWFW_SYNC;
963                         goto out;
964                 }
965
966                 swfw_sync = rd32(E1000_SW_FW_SYNC);
967                 if (!(swfw_sync & (fwmask | swmask)))
968                         break;
969
970                 /* Firmware currently using resource (fwmask)
971                  * or other software thread using resource (swmask)
972                  */
973                 igb_put_hw_semaphore(hw);
974                 mdelay(5);
975                 i++;
976         }
977
978         if (i == timeout) {
979                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
980                 ret_val = -E1000_ERR_SWFW_SYNC;
981                 goto out;
982         }
983
984         swfw_sync |= swmask;
985         wr32(E1000_SW_FW_SYNC, swfw_sync);
986
987         igb_put_hw_semaphore(hw);
988
989 out:
990         return ret_val;
991 }
992
993 /**
994  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
995  *  @hw: pointer to the HW structure
996  *  @mask: specifies which semaphore to acquire
997  *
998  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
999  *  will also specify which port we're releasing the lock for.
1000  **/
1001 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1002 {
1003         u32 swfw_sync;
1004
1005         while (igb_get_hw_semaphore(hw) != 0);
1006         /* Empty */
1007
1008         swfw_sync = rd32(E1000_SW_FW_SYNC);
1009         swfw_sync &= ~mask;
1010         wr32(E1000_SW_FW_SYNC, swfw_sync);
1011
1012         igb_put_hw_semaphore(hw);
1013 }
1014
1015 /**
1016  *  igb_get_cfg_done_82575 - Read config done bit
1017  *  @hw: pointer to the HW structure
1018  *
1019  *  Read the management control register for the config done bit for
1020  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1021  *  to read the config done bit, so an error is *ONLY* logged and returns
1022  *  0.  If we were to return with error, EEPROM-less silicon
1023  *  would not be able to be reset or change link.
1024  **/
1025 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1026 {
1027         s32 timeout = PHY_CFG_TIMEOUT;
1028         s32 ret_val = 0;
1029         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1030
1031         if (hw->bus.func == 1)
1032                 mask = E1000_NVM_CFG_DONE_PORT_1;
1033         else if (hw->bus.func == E1000_FUNC_2)
1034                 mask = E1000_NVM_CFG_DONE_PORT_2;
1035         else if (hw->bus.func == E1000_FUNC_3)
1036                 mask = E1000_NVM_CFG_DONE_PORT_3;
1037
1038         while (timeout) {
1039                 if (rd32(E1000_EEMNGCTL) & mask)
1040                         break;
1041                 msleep(1);
1042                 timeout--;
1043         }
1044         if (!timeout)
1045                 hw_dbg("MNG configuration cycle has not completed.\n");
1046
1047         /* If EEPROM is not marked present, init the PHY manually */
1048         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1049             (hw->phy.type == e1000_phy_igp_3))
1050                 igb_phy_init_script_igp3(hw);
1051
1052         return ret_val;
1053 }
1054
1055 /**
1056  *  igb_check_for_link_82575 - Check for link
1057  *  @hw: pointer to the HW structure
1058  *
1059  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1060  *  use the generic interface for determining link.
1061  **/
1062 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1063 {
1064         s32 ret_val;
1065         u16 speed, duplex;
1066
1067         if (hw->phy.media_type != e1000_media_type_copper) {
1068                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1069                                                              &duplex);
1070                 /* Use this flag to determine if link needs to be checked or
1071                  * not.  If  we have link clear the flag so that we do not
1072                  * continue to check for link.
1073                  */
1074                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1075
1076                 /* Configure Flow Control now that Auto-Neg has completed.
1077                  * First, we need to restore the desired flow control
1078                  * settings because we may have had to re-autoneg with a
1079                  * different link partner.
1080                  */
1081                 ret_val = igb_config_fc_after_link_up(hw);
1082                 if (ret_val)
1083                         hw_dbg("Error configuring flow control\n");
1084         } else {
1085                 ret_val = igb_check_for_copper_link(hw);
1086         }
1087
1088         return ret_val;
1089 }
1090
1091 /**
1092  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1093  *  @hw: pointer to the HW structure
1094  **/
1095 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1096 {
1097         u32 reg;
1098
1099
1100         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1101             !igb_sgmii_active_82575(hw))
1102                 return;
1103
1104         /* Enable PCS to turn on link */
1105         reg = rd32(E1000_PCS_CFG0);
1106         reg |= E1000_PCS_CFG_PCS_EN;
1107         wr32(E1000_PCS_CFG0, reg);
1108
1109         /* Power up the laser */
1110         reg = rd32(E1000_CTRL_EXT);
1111         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1112         wr32(E1000_CTRL_EXT, reg);
1113
1114         /* flush the write to verify completion */
1115         wrfl();
1116         msleep(1);
1117 }
1118
1119 /**
1120  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1121  *  @hw: pointer to the HW structure
1122  *  @speed: stores the current speed
1123  *  @duplex: stores the current duplex
1124  *
1125  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1126  *  duplex, then store the values in the pointers provided.
1127  **/
1128 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1129                                                 u16 *duplex)
1130 {
1131         struct e1000_mac_info *mac = &hw->mac;
1132         u32 pcs;
1133
1134         /* Set up defaults for the return values of this function */
1135         mac->serdes_has_link = false;
1136         *speed = 0;
1137         *duplex = 0;
1138
1139         /* Read the PCS Status register for link state. For non-copper mode,
1140          * the status register is not accurate. The PCS status register is
1141          * used instead.
1142          */
1143         pcs = rd32(E1000_PCS_LSTAT);
1144
1145         /* The link up bit determines when link is up on autoneg. The sync ok
1146          * gets set once both sides sync up and agree upon link. Stable link
1147          * can be determined by checking for both link up and link sync ok
1148          */
1149         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1150                 mac->serdes_has_link = true;
1151
1152                 /* Detect and store PCS speed */
1153                 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1154                         *speed = SPEED_1000;
1155                 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1156                         *speed = SPEED_100;
1157                 } else {
1158                         *speed = SPEED_10;
1159                 }
1160
1161                 /* Detect and store PCS duplex */
1162                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1163                         *duplex = FULL_DUPLEX;
1164                 } else {
1165                         *duplex = HALF_DUPLEX;
1166                 }
1167         }
1168
1169         return 0;
1170 }
1171
1172 /**
1173  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1174  *  @hw: pointer to the HW structure
1175  *
1176  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1177  *  when management pass thru is not enabled.
1178  **/
1179 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1180 {
1181         u32 reg;
1182
1183         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1184             igb_sgmii_active_82575(hw))
1185                 return;
1186
1187         if (!igb_enable_mng_pass_thru(hw)) {
1188                 /* Disable PCS to turn off link */
1189                 reg = rd32(E1000_PCS_CFG0);
1190                 reg &= ~E1000_PCS_CFG_PCS_EN;
1191                 wr32(E1000_PCS_CFG0, reg);
1192
1193                 /* shutdown the laser */
1194                 reg = rd32(E1000_CTRL_EXT);
1195                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1196                 wr32(E1000_CTRL_EXT, reg);
1197
1198                 /* flush the write to verify completion */
1199                 wrfl();
1200                 msleep(1);
1201         }
1202 }
1203
1204 /**
1205  *  igb_reset_hw_82575 - Reset hardware
1206  *  @hw: pointer to the HW structure
1207  *
1208  *  This resets the hardware into a known state.  This is a
1209  *  function pointer entry point called by the api module.
1210  **/
1211 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1212 {
1213         u32 ctrl, icr;
1214         s32 ret_val;
1215
1216         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1217          * on the last TLP read/write transaction when MAC is reset.
1218          */
1219         ret_val = igb_disable_pcie_master(hw);
1220         if (ret_val)
1221                 hw_dbg("PCI-E Master disable polling has failed.\n");
1222
1223         /* set the completion timeout for interface */
1224         ret_val = igb_set_pcie_completion_timeout(hw);
1225         if (ret_val) {
1226                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1227         }
1228
1229         hw_dbg("Masking off all interrupts\n");
1230         wr32(E1000_IMC, 0xffffffff);
1231
1232         wr32(E1000_RCTL, 0);
1233         wr32(E1000_TCTL, E1000_TCTL_PSP);
1234         wrfl();
1235
1236         msleep(10);
1237
1238         ctrl = rd32(E1000_CTRL);
1239
1240         hw_dbg("Issuing a global reset to MAC\n");
1241         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1242
1243         ret_val = igb_get_auto_rd_done(hw);
1244         if (ret_val) {
1245                 /* When auto config read does not complete, do not
1246                  * return with an error. This can happen in situations
1247                  * where there is no eeprom and prevents getting link.
1248                  */
1249                 hw_dbg("Auto Read Done did not complete\n");
1250         }
1251
1252         /* If EEPROM is not present, run manual init scripts */
1253         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1254                 igb_reset_init_script_82575(hw);
1255
1256         /* Clear any pending interrupt events. */
1257         wr32(E1000_IMC, 0xffffffff);
1258         icr = rd32(E1000_ICR);
1259
1260         /* Install any alternate MAC address into RAR0 */
1261         ret_val = igb_check_alt_mac_addr(hw);
1262
1263         return ret_val;
1264 }
1265
1266 /**
1267  *  igb_init_hw_82575 - Initialize hardware
1268  *  @hw: pointer to the HW structure
1269  *
1270  *  This inits the hardware readying it for operation.
1271  **/
1272 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1273 {
1274         struct e1000_mac_info *mac = &hw->mac;
1275         s32 ret_val;
1276         u16 i, rar_count = mac->rar_entry_count;
1277
1278         /* Initialize identification LED */
1279         ret_val = igb_id_led_init(hw);
1280         if (ret_val) {
1281                 hw_dbg("Error initializing identification LED\n");
1282                 /* This is not fatal and we should not stop init due to this */
1283         }
1284
1285         /* Disabling VLAN filtering */
1286         hw_dbg("Initializing the IEEE VLAN\n");
1287         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1288                 igb_clear_vfta_i350(hw);
1289         else
1290                 igb_clear_vfta(hw);
1291
1292         /* Setup the receive address */
1293         igb_init_rx_addrs(hw, rar_count);
1294
1295         /* Zero out the Multicast HASH table */
1296         hw_dbg("Zeroing the MTA\n");
1297         for (i = 0; i < mac->mta_reg_count; i++)
1298                 array_wr32(E1000_MTA, i, 0);
1299
1300         /* Zero out the Unicast HASH table */
1301         hw_dbg("Zeroing the UTA\n");
1302         for (i = 0; i < mac->uta_reg_count; i++)
1303                 array_wr32(E1000_UTA, i, 0);
1304
1305         /* Setup link and flow control */
1306         ret_val = igb_setup_link(hw);
1307
1308         /* Clear all of the statistics registers (clear on read).  It is
1309          * important that we do this after we have tried to establish link
1310          * because the symbol error count will increment wildly if there
1311          * is no link.
1312          */
1313         igb_clear_hw_cntrs_82575(hw);
1314         return ret_val;
1315 }
1316
1317 /**
1318  *  igb_setup_copper_link_82575 - Configure copper link settings
1319  *  @hw: pointer to the HW structure
1320  *
1321  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1322  *  for link, once link is established calls to configure collision distance
1323  *  and flow control are called.
1324  **/
1325 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1326 {
1327         u32 ctrl;
1328         s32  ret_val;
1329         u32 phpm_reg;
1330
1331         ctrl = rd32(E1000_CTRL);
1332         ctrl |= E1000_CTRL_SLU;
1333         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1334         wr32(E1000_CTRL, ctrl);
1335
1336         /* Clear Go Link Disconnect bit */
1337         if (hw->mac.type >= e1000_82580) {
1338                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1339                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1340                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1341         }
1342
1343         ret_val = igb_setup_serdes_link_82575(hw);
1344         if (ret_val)
1345                 goto out;
1346
1347         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1348                 /* allow time for SFP cage time to power up phy */
1349                 msleep(300);
1350
1351                 ret_val = hw->phy.ops.reset(hw);
1352                 if (ret_val) {
1353                         hw_dbg("Error resetting the PHY.\n");
1354                         goto out;
1355                 }
1356         }
1357         switch (hw->phy.type) {
1358         case e1000_phy_i210:
1359         case e1000_phy_m88:
1360                 switch (hw->phy.id) {
1361                 case I347AT4_E_PHY_ID:
1362                 case M88E1112_E_PHY_ID:
1363                 case M88E1545_E_PHY_ID:
1364                 case I210_I_PHY_ID:
1365                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1366                         break;
1367                 default:
1368                         ret_val = igb_copper_link_setup_m88(hw);
1369                         break;
1370                 }
1371                 break;
1372         case e1000_phy_igp_3:
1373                 ret_val = igb_copper_link_setup_igp(hw);
1374                 break;
1375         case e1000_phy_82580:
1376                 ret_val = igb_copper_link_setup_82580(hw);
1377                 break;
1378         default:
1379                 ret_val = -E1000_ERR_PHY;
1380                 break;
1381         }
1382
1383         if (ret_val)
1384                 goto out;
1385
1386         ret_val = igb_setup_copper_link(hw);
1387 out:
1388         return ret_val;
1389 }
1390
1391 /**
1392  *  igb_setup_serdes_link_82575 - Setup link for serdes
1393  *  @hw: pointer to the HW structure
1394  *
1395  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1396  *  used on copper connections where the serialized gigabit media independent
1397  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1398  *  for auto-negotiation or forces speed/duplex.
1399  **/
1400 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1401 {
1402         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1403         bool pcs_autoneg;
1404         s32 ret_val = E1000_SUCCESS;
1405         u16 data;
1406
1407         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1408             !igb_sgmii_active_82575(hw))
1409                 return ret_val;
1410
1411
1412         /* On the 82575, SerDes loopback mode persists until it is
1413          * explicitly turned off or a power cycle is performed.  A read to
1414          * the register does not indicate its status.  Therefore, we ensure
1415          * loopback mode is disabled during initialization.
1416          */
1417         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1418
1419         /* power on the sfp cage if present and turn on I2C */
1420         ctrl_ext = rd32(E1000_CTRL_EXT);
1421         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1422         ctrl_ext |= E1000_CTRL_I2C_ENA;
1423         wr32(E1000_CTRL_EXT, ctrl_ext);
1424
1425         ctrl_reg = rd32(E1000_CTRL);
1426         ctrl_reg |= E1000_CTRL_SLU;
1427
1428         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1429                 /* set both sw defined pins */
1430                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1431
1432                 /* Set switch control to serdes energy detect */
1433                 reg = rd32(E1000_CONNSW);
1434                 reg |= E1000_CONNSW_ENRGSRC;
1435                 wr32(E1000_CONNSW, reg);
1436         }
1437
1438         reg = rd32(E1000_PCS_LCTL);
1439
1440         /* default pcs_autoneg to the same setting as mac autoneg */
1441         pcs_autoneg = hw->mac.autoneg;
1442
1443         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1444         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1445                 /* sgmii mode lets the phy handle forcing speed/duplex */
1446                 pcs_autoneg = true;
1447                 /* autoneg time out should be disabled for SGMII mode */
1448                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1449                 break;
1450         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1451                 /* disable PCS autoneg and support parallel detect only */
1452                 pcs_autoneg = false;
1453         default:
1454                 if (hw->mac.type == e1000_82575 ||
1455                     hw->mac.type == e1000_82576) {
1456                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1457                         if (ret_val) {
1458                                 printk(KERN_DEBUG "NVM Read Error\n\n");
1459                                 return ret_val;
1460                         }
1461
1462                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1463                                 pcs_autoneg = false;
1464                 }
1465
1466                 /* non-SGMII modes only supports a speed of 1000/Full for the
1467                  * link so it is best to just force the MAC and let the pcs
1468                  * link either autoneg or be forced to 1000/Full
1469                  */
1470                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1471                             E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1472
1473                 /* set speed of 1000/Full if speed/duplex is forced */
1474                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1475                 break;
1476         }
1477
1478         wr32(E1000_CTRL, ctrl_reg);
1479
1480         /* New SerDes mode allows for forcing speed or autonegotiating speed
1481          * at 1gb. Autoneg should be default set by most drivers. This is the
1482          * mode that will be compatible with older link partners and switches.
1483          * However, both are supported by the hardware and some drivers/tools.
1484          */
1485         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1486                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1487
1488         if (pcs_autoneg) {
1489                 /* Set PCS register for autoneg */
1490                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1491                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1492
1493                 /* Disable force flow control for autoneg */
1494                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1495
1496                 /* Configure flow control advertisement for autoneg */
1497                 anadv_reg = rd32(E1000_PCS_ANADV);
1498                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1499                 switch (hw->fc.requested_mode) {
1500                 case e1000_fc_full:
1501                 case e1000_fc_rx_pause:
1502                         anadv_reg |= E1000_TXCW_ASM_DIR;
1503                         anadv_reg |= E1000_TXCW_PAUSE;
1504                         break;
1505                 case e1000_fc_tx_pause:
1506                         anadv_reg |= E1000_TXCW_ASM_DIR;
1507                         break;
1508                 default:
1509                         break;
1510                 }
1511                 wr32(E1000_PCS_ANADV, anadv_reg);
1512
1513                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1514         } else {
1515                 /* Set PCS register for forced link */
1516                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1517
1518                 /* Force flow control for forced link */
1519                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1520
1521                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1522         }
1523
1524         wr32(E1000_PCS_LCTL, reg);
1525
1526         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1527                 igb_force_mac_fc(hw);
1528
1529         return ret_val;
1530 }
1531
1532 /**
1533  *  igb_sgmii_active_82575 - Return sgmii state
1534  *  @hw: pointer to the HW structure
1535  *
1536  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1537  *  which can be enabled for use in the embedded applications.  Simply
1538  *  return the current state of the sgmii interface.
1539  **/
1540 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1541 {
1542         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1543         return dev_spec->sgmii_active;
1544 }
1545
1546 /**
1547  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1548  *  @hw: pointer to the HW structure
1549  *
1550  *  Inits recommended HW defaults after a reset when there is no EEPROM
1551  *  detected. This is only for the 82575.
1552  **/
1553 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1554 {
1555         if (hw->mac.type == e1000_82575) {
1556                 hw_dbg("Running reset init script for 82575\n");
1557                 /* SerDes configuration via SERDESCTRL */
1558                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1559                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1560                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1561                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1562
1563                 /* CCM configuration via CCMCTL register */
1564                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1565                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1566
1567                 /* PCIe lanes configuration */
1568                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1569                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1570                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1571                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1572
1573                 /* PCIe PLL Configuration */
1574                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1575                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1576                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1577         }
1578
1579         return 0;
1580 }
1581
1582 /**
1583  *  igb_read_mac_addr_82575 - Read device MAC address
1584  *  @hw: pointer to the HW structure
1585  **/
1586 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1587 {
1588         s32 ret_val = 0;
1589
1590         /* If there's an alternate MAC address place it in RAR0
1591          * so that it will override the Si installed default perm
1592          * address.
1593          */
1594         ret_val = igb_check_alt_mac_addr(hw);
1595         if (ret_val)
1596                 goto out;
1597
1598         ret_val = igb_read_mac_addr(hw);
1599
1600 out:
1601         return ret_val;
1602 }
1603
1604 /**
1605  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1606  * @hw: pointer to the HW structure
1607  *
1608  * In the case of a PHY power down to save power, or to turn off link during a
1609  * driver unload, or wake on lan is not enabled, remove the link.
1610  **/
1611 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1612 {
1613         /* If the management interface is not enabled, then power down */
1614         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1615                 igb_power_down_phy_copper(hw);
1616 }
1617
1618 /**
1619  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1620  *  @hw: pointer to the HW structure
1621  *
1622  *  Clears the hardware counters by reading the counter registers.
1623  **/
1624 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1625 {
1626         igb_clear_hw_cntrs_base(hw);
1627
1628         rd32(E1000_PRC64);
1629         rd32(E1000_PRC127);
1630         rd32(E1000_PRC255);
1631         rd32(E1000_PRC511);
1632         rd32(E1000_PRC1023);
1633         rd32(E1000_PRC1522);
1634         rd32(E1000_PTC64);
1635         rd32(E1000_PTC127);
1636         rd32(E1000_PTC255);
1637         rd32(E1000_PTC511);
1638         rd32(E1000_PTC1023);
1639         rd32(E1000_PTC1522);
1640
1641         rd32(E1000_ALGNERRC);
1642         rd32(E1000_RXERRC);
1643         rd32(E1000_TNCRS);
1644         rd32(E1000_CEXTERR);
1645         rd32(E1000_TSCTC);
1646         rd32(E1000_TSCTFC);
1647
1648         rd32(E1000_MGTPRC);
1649         rd32(E1000_MGTPDC);
1650         rd32(E1000_MGTPTC);
1651
1652         rd32(E1000_IAC);
1653         rd32(E1000_ICRXOC);
1654
1655         rd32(E1000_ICRXPTC);
1656         rd32(E1000_ICRXATC);
1657         rd32(E1000_ICTXPTC);
1658         rd32(E1000_ICTXATC);
1659         rd32(E1000_ICTXQEC);
1660         rd32(E1000_ICTXQMTC);
1661         rd32(E1000_ICRXDMTC);
1662
1663         rd32(E1000_CBTMPC);
1664         rd32(E1000_HTDPMC);
1665         rd32(E1000_CBRMPC);
1666         rd32(E1000_RPTHC);
1667         rd32(E1000_HGPTC);
1668         rd32(E1000_HTCBDPC);
1669         rd32(E1000_HGORCL);
1670         rd32(E1000_HGORCH);
1671         rd32(E1000_HGOTCL);
1672         rd32(E1000_HGOTCH);
1673         rd32(E1000_LENERRS);
1674
1675         /* This register should not be read in copper configurations */
1676         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1677             igb_sgmii_active_82575(hw))
1678                 rd32(E1000_SCVPC);
1679 }
1680
1681 /**
1682  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1683  *  @hw: pointer to the HW structure
1684  *
1685  *  After rx enable if managability is enabled then there is likely some
1686  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1687  *  function clears the fifos and flushes any packets that came in as rx was
1688  *  being enabled.
1689  **/
1690 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1691 {
1692         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1693         int i, ms_wait;
1694
1695         if (hw->mac.type != e1000_82575 ||
1696             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1697                 return;
1698
1699         /* Disable all RX queues */
1700         for (i = 0; i < 4; i++) {
1701                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1702                 wr32(E1000_RXDCTL(i),
1703                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1704         }
1705         /* Poll all queues to verify they have shut down */
1706         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1707                 msleep(1);
1708                 rx_enabled = 0;
1709                 for (i = 0; i < 4; i++)
1710                         rx_enabled |= rd32(E1000_RXDCTL(i));
1711                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1712                         break;
1713         }
1714
1715         if (ms_wait == 10)
1716                 hw_dbg("Queue disable timed out after 10ms\n");
1717
1718         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1719          * incoming packets are rejected.  Set enable and wait 2ms so that
1720          * any packet that was coming in as RCTL.EN was set is flushed
1721          */
1722         rfctl = rd32(E1000_RFCTL);
1723         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1724
1725         rlpml = rd32(E1000_RLPML);
1726         wr32(E1000_RLPML, 0);
1727
1728         rctl = rd32(E1000_RCTL);
1729         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1730         temp_rctl |= E1000_RCTL_LPE;
1731
1732         wr32(E1000_RCTL, temp_rctl);
1733         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1734         wrfl();
1735         msleep(2);
1736
1737         /* Enable RX queues that were previously enabled and restore our
1738          * previous state
1739          */
1740         for (i = 0; i < 4; i++)
1741                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1742         wr32(E1000_RCTL, rctl);
1743         wrfl();
1744
1745         wr32(E1000_RLPML, rlpml);
1746         wr32(E1000_RFCTL, rfctl);
1747
1748         /* Flush receive errors generated by workaround */
1749         rd32(E1000_ROC);
1750         rd32(E1000_RNBC);
1751         rd32(E1000_MPC);
1752 }
1753
1754 /**
1755  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1756  *  @hw: pointer to the HW structure
1757  *
1758  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1759  *  however the hardware default for these parts is 500us to 1ms which is less
1760  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1761  *  increase the value to either 10ms to 200ms for capability version 1 config,
1762  *  or 16ms to 55ms for version 2.
1763  **/
1764 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1765 {
1766         u32 gcr = rd32(E1000_GCR);
1767         s32 ret_val = 0;
1768         u16 pcie_devctl2;
1769
1770         /* only take action if timeout value is defaulted to 0 */
1771         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1772                 goto out;
1773
1774         /* if capabilities version is type 1 we can write the
1775          * timeout of 10ms to 200ms through the GCR register
1776          */
1777         if (!(gcr & E1000_GCR_CAP_VER2)) {
1778                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1779                 goto out;
1780         }
1781
1782         /* for version 2 capabilities we need to write the config space
1783          * directly in order to set the completion timeout value for
1784          * 16ms to 55ms
1785          */
1786         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1787                                         &pcie_devctl2);
1788         if (ret_val)
1789                 goto out;
1790
1791         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1792
1793         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1794                                          &pcie_devctl2);
1795 out:
1796         /* disable completion timeout resend */
1797         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1798
1799         wr32(E1000_GCR, gcr);
1800         return ret_val;
1801 }
1802
1803 /**
1804  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1805  *  @hw: pointer to the hardware struct
1806  *  @enable: state to enter, either enabled or disabled
1807  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1808  *
1809  *  enables/disables L2 switch anti-spoofing functionality.
1810  **/
1811 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1812 {
1813         u32 reg_val, reg_offset;
1814
1815         switch (hw->mac.type) {
1816         case e1000_82576:
1817                 reg_offset = E1000_DTXSWC;
1818                 break;
1819         case e1000_i350:
1820         case e1000_i354:
1821                 reg_offset = E1000_TXSWC;
1822                 break;
1823         default:
1824                 return;
1825         }
1826
1827         reg_val = rd32(reg_offset);
1828         if (enable) {
1829                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1830                              E1000_DTXSWC_VLAN_SPOOF_MASK);
1831                 /* The PF can spoof - it has to in order to
1832                  * support emulation mode NICs
1833                  */
1834                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1835         } else {
1836                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1837                              E1000_DTXSWC_VLAN_SPOOF_MASK);
1838         }
1839         wr32(reg_offset, reg_val);
1840 }
1841
1842 /**
1843  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1844  *  @hw: pointer to the hardware struct
1845  *  @enable: state to enter, either enabled or disabled
1846  *
1847  *  enables/disables L2 switch loopback functionality.
1848  **/
1849 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1850 {
1851         u32 dtxswc;
1852
1853         switch (hw->mac.type) {
1854         case e1000_82576:
1855                 dtxswc = rd32(E1000_DTXSWC);
1856                 if (enable)
1857                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1858                 else
1859                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1860                 wr32(E1000_DTXSWC, dtxswc);
1861                 break;
1862         case e1000_i354:
1863         case e1000_i350:
1864                 dtxswc = rd32(E1000_TXSWC);
1865                 if (enable)
1866                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1867                 else
1868                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1869                 wr32(E1000_TXSWC, dtxswc);
1870                 break;
1871         default:
1872                 /* Currently no other hardware supports loopback */
1873                 break;
1874         }
1875
1876 }
1877
1878 /**
1879  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1880  *  @hw: pointer to the hardware struct
1881  *  @enable: state to enter, either enabled or disabled
1882  *
1883  *  enables/disables replication of packets across multiple pools.
1884  **/
1885 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1886 {
1887         u32 vt_ctl = rd32(E1000_VT_CTL);
1888
1889         if (enable)
1890                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1891         else
1892                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1893
1894         wr32(E1000_VT_CTL, vt_ctl);
1895 }
1896
1897 /**
1898  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1899  *  @hw: pointer to the HW structure
1900  *  @offset: register offset to be read
1901  *  @data: pointer to the read data
1902  *
1903  *  Reads the MDI control register in the PHY at offset and stores the
1904  *  information read to data.
1905  **/
1906 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1907 {
1908         s32 ret_val;
1909
1910         ret_val = hw->phy.ops.acquire(hw);
1911         if (ret_val)
1912                 goto out;
1913
1914         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1915
1916         hw->phy.ops.release(hw);
1917
1918 out:
1919         return ret_val;
1920 }
1921
1922 /**
1923  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1924  *  @hw: pointer to the HW structure
1925  *  @offset: register offset to write to
1926  *  @data: data to write to register at offset
1927  *
1928  *  Writes data to MDI control register in the PHY at offset.
1929  **/
1930 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1931 {
1932         s32 ret_val;
1933
1934
1935         ret_val = hw->phy.ops.acquire(hw);
1936         if (ret_val)
1937                 goto out;
1938
1939         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1940
1941         hw->phy.ops.release(hw);
1942
1943 out:
1944         return ret_val;
1945 }
1946
1947 /**
1948  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1949  *  @hw: pointer to the HW structure
1950  *
1951  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1952  *  the values found in the EEPROM.  This addresses an issue in which these
1953  *  bits are not restored from EEPROM after reset.
1954  **/
1955 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1956 {
1957         s32 ret_val = 0;
1958         u32 mdicnfg;
1959         u16 nvm_data = 0;
1960
1961         if (hw->mac.type != e1000_82580)
1962                 goto out;
1963         if (!igb_sgmii_active_82575(hw))
1964                 goto out;
1965
1966         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1967                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1968                                    &nvm_data);
1969         if (ret_val) {
1970                 hw_dbg("NVM Read Error\n");
1971                 goto out;
1972         }
1973
1974         mdicnfg = rd32(E1000_MDICNFG);
1975         if (nvm_data & NVM_WORD24_EXT_MDIO)
1976                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1977         if (nvm_data & NVM_WORD24_COM_MDIO)
1978                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1979         wr32(E1000_MDICNFG, mdicnfg);
1980 out:
1981         return ret_val;
1982 }
1983
1984 /**
1985  *  igb_reset_hw_82580 - Reset hardware
1986  *  @hw: pointer to the HW structure
1987  *
1988  *  This resets function or entire device (all ports, etc.)
1989  *  to a known state.
1990  **/
1991 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1992 {
1993         s32 ret_val = 0;
1994         /* BH SW mailbox bit in SW_FW_SYNC */
1995         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1996         u32 ctrl, icr;
1997         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1998
1999
2000         hw->dev_spec._82575.global_device_reset = false;
2001
2002         /* due to hw errata, global device reset doesn't always
2003          * work on 82580
2004          */
2005         if (hw->mac.type == e1000_82580)
2006                 global_device_reset = false;
2007
2008         /* Get current control state. */
2009         ctrl = rd32(E1000_CTRL);
2010
2011         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2012          * on the last TLP read/write transaction when MAC is reset.
2013          */
2014         ret_val = igb_disable_pcie_master(hw);
2015         if (ret_val)
2016                 hw_dbg("PCI-E Master disable polling has failed.\n");
2017
2018         hw_dbg("Masking off all interrupts\n");
2019         wr32(E1000_IMC, 0xffffffff);
2020         wr32(E1000_RCTL, 0);
2021         wr32(E1000_TCTL, E1000_TCTL_PSP);
2022         wrfl();
2023
2024         msleep(10);
2025
2026         /* Determine whether or not a global dev reset is requested */
2027         if (global_device_reset &&
2028                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2029                         global_device_reset = false;
2030
2031         if (global_device_reset &&
2032                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2033                 ctrl |= E1000_CTRL_DEV_RST;
2034         else
2035                 ctrl |= E1000_CTRL_RST;
2036
2037         wr32(E1000_CTRL, ctrl);
2038         wrfl();
2039
2040         /* Add delay to insure DEV_RST has time to complete */
2041         if (global_device_reset)
2042                 msleep(5);
2043
2044         ret_val = igb_get_auto_rd_done(hw);
2045         if (ret_val) {
2046                 /* When auto config read does not complete, do not
2047                  * return with an error. This can happen in situations
2048                  * where there is no eeprom and prevents getting link.
2049                  */
2050                 hw_dbg("Auto Read Done did not complete\n");
2051         }
2052
2053         /* clear global device reset status bit */
2054         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2055
2056         /* Clear any pending interrupt events. */
2057         wr32(E1000_IMC, 0xffffffff);
2058         icr = rd32(E1000_ICR);
2059
2060         ret_val = igb_reset_mdicnfg_82580(hw);
2061         if (ret_val)
2062                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2063
2064         /* Install any alternate MAC address into RAR0 */
2065         ret_val = igb_check_alt_mac_addr(hw);
2066
2067         /* Release semaphore */
2068         if (global_device_reset)
2069                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2070
2071         return ret_val;
2072 }
2073
2074 /**
2075  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2076  *  @data: data received by reading RXPBS register
2077  *
2078  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2079  *  This function converts the retrieved value into the correct table value
2080  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2081  *  0x0 36  72 144   1   2   4   8  16
2082  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2083  */
2084 u16 igb_rxpbs_adjust_82580(u32 data)
2085 {
2086         u16 ret_val = 0;
2087
2088         if (data < E1000_82580_RXPBS_TABLE_SIZE)
2089                 ret_val = e1000_82580_rxpbs_table[data];
2090
2091         return ret_val;
2092 }
2093
2094 /**
2095  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2096  *  checksum
2097  *  @hw: pointer to the HW structure
2098  *  @offset: offset in words of the checksum protected region
2099  *
2100  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2101  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2102  **/
2103 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2104                                                  u16 offset)
2105 {
2106         s32 ret_val = 0;
2107         u16 checksum = 0;
2108         u16 i, nvm_data;
2109
2110         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2111                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2112                 if (ret_val) {
2113                         hw_dbg("NVM Read Error\n");
2114                         goto out;
2115                 }
2116                 checksum += nvm_data;
2117         }
2118
2119         if (checksum != (u16) NVM_SUM) {
2120                 hw_dbg("NVM Checksum Invalid\n");
2121                 ret_val = -E1000_ERR_NVM;
2122                 goto out;
2123         }
2124
2125 out:
2126         return ret_val;
2127 }
2128
2129 /**
2130  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2131  *  checksum
2132  *  @hw: pointer to the HW structure
2133  *  @offset: offset in words of the checksum protected region
2134  *
2135  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2136  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2137  *  value to the EEPROM.
2138  **/
2139 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2140 {
2141         s32 ret_val;
2142         u16 checksum = 0;
2143         u16 i, nvm_data;
2144
2145         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2146                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2147                 if (ret_val) {
2148                         hw_dbg("NVM Read Error while updating checksum.\n");
2149                         goto out;
2150                 }
2151                 checksum += nvm_data;
2152         }
2153         checksum = (u16) NVM_SUM - checksum;
2154         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2155                                 &checksum);
2156         if (ret_val)
2157                 hw_dbg("NVM Write Error while updating checksum.\n");
2158
2159 out:
2160         return ret_val;
2161 }
2162
2163 /**
2164  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2165  *  @hw: pointer to the HW structure
2166  *
2167  *  Calculates the EEPROM section checksum by reading/adding each word of
2168  *  the EEPROM and then verifies that the sum of the EEPROM is
2169  *  equal to 0xBABA.
2170  **/
2171 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2172 {
2173         s32 ret_val = 0;
2174         u16 eeprom_regions_count = 1;
2175         u16 j, nvm_data;
2176         u16 nvm_offset;
2177
2178         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2179         if (ret_val) {
2180                 hw_dbg("NVM Read Error\n");
2181                 goto out;
2182         }
2183
2184         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2185                 /* if checksums compatibility bit is set validate checksums
2186                  * for all 4 ports.
2187                  */
2188                 eeprom_regions_count = 4;
2189         }
2190
2191         for (j = 0; j < eeprom_regions_count; j++) {
2192                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2193                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2194                                                                 nvm_offset);
2195                 if (ret_val != 0)
2196                         goto out;
2197         }
2198
2199 out:
2200         return ret_val;
2201 }
2202
2203 /**
2204  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2205  *  @hw: pointer to the HW structure
2206  *
2207  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2208  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2209  *  checksum and writes the value to the EEPROM.
2210  **/
2211 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2212 {
2213         s32 ret_val;
2214         u16 j, nvm_data;
2215         u16 nvm_offset;
2216
2217         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2218         if (ret_val) {
2219                 hw_dbg("NVM Read Error while updating checksum"
2220                         " compatibility bit.\n");
2221                 goto out;
2222         }
2223
2224         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2225                 /* set compatibility bit to validate checksums appropriately */
2226                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2227                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2228                                         &nvm_data);
2229                 if (ret_val) {
2230                         hw_dbg("NVM Write Error while updating checksum"
2231                                 " compatibility bit.\n");
2232                         goto out;
2233                 }
2234         }
2235
2236         for (j = 0; j < 4; j++) {
2237                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2238                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2239                 if (ret_val)
2240                         goto out;
2241         }
2242
2243 out:
2244         return ret_val;
2245 }
2246
2247 /**
2248  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2249  *  @hw: pointer to the HW structure
2250  *
2251  *  Calculates the EEPROM section checksum by reading/adding each word of
2252  *  the EEPROM and then verifies that the sum of the EEPROM is
2253  *  equal to 0xBABA.
2254  **/
2255 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2256 {
2257         s32 ret_val = 0;
2258         u16 j;
2259         u16 nvm_offset;
2260
2261         for (j = 0; j < 4; j++) {
2262                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2263                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2264                                                                 nvm_offset);
2265                 if (ret_val != 0)
2266                         goto out;
2267         }
2268
2269 out:
2270         return ret_val;
2271 }
2272
2273 /**
2274  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2275  *  @hw: pointer to the HW structure
2276  *
2277  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2278  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2279  *  checksum and writes the value to the EEPROM.
2280  **/
2281 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2282 {
2283         s32 ret_val = 0;
2284         u16 j;
2285         u16 nvm_offset;
2286
2287         for (j = 0; j < 4; j++) {
2288                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2289                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2290                 if (ret_val != 0)
2291                         goto out;
2292         }
2293
2294 out:
2295         return ret_val;
2296 }
2297
2298 /**
2299  *  __igb_access_emi_reg - Read/write EMI register
2300  *  @hw: pointer to the HW structure
2301  *  @addr: EMI address to program
2302  *  @data: pointer to value to read/write from/to the EMI address
2303  *  @read: boolean flag to indicate read or write
2304  **/
2305 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2306                                   u16 *data, bool read)
2307 {
2308         s32 ret_val = E1000_SUCCESS;
2309
2310         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2311         if (ret_val)
2312                 return ret_val;
2313
2314         if (read)
2315                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2316         else
2317                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2318
2319         return ret_val;
2320 }
2321
2322 /**
2323  *  igb_read_emi_reg - Read Extended Management Interface register
2324  *  @hw: pointer to the HW structure
2325  *  @addr: EMI address to program
2326  *  @data: value to be read from the EMI address
2327  **/
2328 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2329 {
2330         return __igb_access_emi_reg(hw, addr, data, true);
2331 }
2332
2333 /**
2334  *  igb_set_eee_i350 - Enable/disable EEE support
2335  *  @hw: pointer to the HW structure
2336  *
2337  *  Enable/disable EEE based on setting in dev_spec structure.
2338  *
2339  **/
2340 s32 igb_set_eee_i350(struct e1000_hw *hw)
2341 {
2342         s32 ret_val = 0;
2343         u32 ipcnfg, eeer;
2344
2345         if ((hw->mac.type < e1000_i350) ||
2346             (hw->phy.media_type != e1000_media_type_copper))
2347                 goto out;
2348         ipcnfg = rd32(E1000_IPCNFG);
2349         eeer = rd32(E1000_EEER);
2350
2351         /* enable or disable per user setting */
2352         if (!(hw->dev_spec._82575.eee_disable)) {
2353                 u32 eee_su = rd32(E1000_EEE_SU);
2354
2355                 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2356                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2357                         E1000_EEER_LPI_FC);
2358
2359                 /* This bit should not be set in normal operation. */
2360                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2361                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2362
2363         } else {
2364                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2365                         E1000_IPCNFG_EEE_100M_AN);
2366                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2367                         E1000_EEER_RX_LPI_EN |
2368                         E1000_EEER_LPI_FC);
2369         }
2370         wr32(E1000_IPCNFG, ipcnfg);
2371         wr32(E1000_EEER, eeer);
2372         rd32(E1000_IPCNFG);
2373         rd32(E1000_EEER);
2374 out:
2375
2376         return ret_val;
2377 }
2378
2379 /**
2380  *  igb_set_eee_i354 - Enable/disable EEE support
2381  *  @hw: pointer to the HW structure
2382  *
2383  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2384  *
2385  **/
2386 s32 igb_set_eee_i354(struct e1000_hw *hw)
2387 {
2388         struct e1000_phy_info *phy = &hw->phy;
2389         s32 ret_val = 0;
2390         u16 phy_data;
2391
2392         if ((hw->phy.media_type != e1000_media_type_copper) ||
2393             (phy->id != M88E1545_E_PHY_ID))
2394                 goto out;
2395
2396         if (!hw->dev_spec._82575.eee_disable) {
2397                 /* Switch to PHY page 18. */
2398                 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 18);
2399                 if (ret_val)
2400                         goto out;
2401
2402                 ret_val = phy->ops.read_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2403                                             &phy_data);
2404                 if (ret_val)
2405                         goto out;
2406
2407                 phy_data |= E1000_M88E1545_EEE_CTRL_1_MS;
2408                 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2409                                              phy_data);
2410                 if (ret_val)
2411                         goto out;
2412
2413                 /* Return the PHY to page 0. */
2414                 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 0);
2415                 if (ret_val)
2416                         goto out;
2417
2418                 /* Turn on EEE advertisement. */
2419                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2420                                              E1000_EEE_ADV_DEV_I354,
2421                                              &phy_data);
2422                 if (ret_val)
2423                         goto out;
2424
2425                 phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2426                             E1000_EEE_ADV_1000_SUPPORTED;
2427                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2428                                                 E1000_EEE_ADV_DEV_I354,
2429                                                 phy_data);
2430         } else {
2431                 /* Turn off EEE advertisement. */
2432                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2433                                              E1000_EEE_ADV_DEV_I354,
2434                                              &phy_data);
2435                 if (ret_val)
2436                         goto out;
2437
2438                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2439                               E1000_EEE_ADV_1000_SUPPORTED);
2440                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2441                                               E1000_EEE_ADV_DEV_I354,
2442                                               phy_data);
2443         }
2444
2445 out:
2446         return ret_val;
2447 }
2448
2449 /**
2450  *  igb_get_eee_status_i354 - Get EEE status
2451  *  @hw: pointer to the HW structure
2452  *  @status: EEE status
2453  *
2454  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2455  *  been received.
2456  **/
2457 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2458 {
2459         struct e1000_phy_info *phy = &hw->phy;
2460         s32 ret_val = 0;
2461         u16 phy_data;
2462
2463         /* Check if EEE is supported on this device. */
2464         if ((hw->phy.media_type != e1000_media_type_copper) ||
2465             (phy->id != M88E1545_E_PHY_ID))
2466                 goto out;
2467
2468         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2469                                      E1000_PCS_STATUS_DEV_I354,
2470                                      &phy_data);
2471         if (ret_val)
2472                 goto out;
2473
2474         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2475                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2476
2477 out:
2478         return ret_val;
2479 }
2480
2481 static const u8 e1000_emc_temp_data[4] = {
2482         E1000_EMC_INTERNAL_DATA,
2483         E1000_EMC_DIODE1_DATA,
2484         E1000_EMC_DIODE2_DATA,
2485         E1000_EMC_DIODE3_DATA
2486 };
2487 static const u8 e1000_emc_therm_limit[4] = {
2488         E1000_EMC_INTERNAL_THERM_LIMIT,
2489         E1000_EMC_DIODE1_THERM_LIMIT,
2490         E1000_EMC_DIODE2_THERM_LIMIT,
2491         E1000_EMC_DIODE3_THERM_LIMIT
2492 };
2493
2494 /**
2495  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2496  *  @hw: pointer to hardware structure
2497  *
2498  *  Updates the temperatures in mac.thermal_sensor_data
2499  **/
2500 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2501 {
2502         s32 status = E1000_SUCCESS;
2503         u16 ets_offset;
2504         u16 ets_cfg;
2505         u16 ets_sensor;
2506         u8  num_sensors;
2507         u8  sensor_index;
2508         u8  sensor_location;
2509         u8  i;
2510         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2511
2512         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2513                 return E1000_NOT_IMPLEMENTED;
2514
2515         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2516
2517         /* Return the internal sensor only if ETS is unsupported */
2518         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2519         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2520                 return status;
2521
2522         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2523         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2524             != NVM_ETS_TYPE_EMC)
2525                 return E1000_NOT_IMPLEMENTED;
2526
2527         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2528         if (num_sensors > E1000_MAX_SENSORS)
2529                 num_sensors = E1000_MAX_SENSORS;
2530
2531         for (i = 1; i < num_sensors; i++) {
2532                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2533                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2534                                 NVM_ETS_DATA_INDEX_SHIFT);
2535                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2536                                    NVM_ETS_DATA_LOC_SHIFT);
2537
2538                 if (sensor_location != 0)
2539                         hw->phy.ops.read_i2c_byte(hw,
2540                                         e1000_emc_temp_data[sensor_index],
2541                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2542                                         &data->sensor[i].temp);
2543         }
2544         return status;
2545 }
2546
2547 /**
2548  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2549  *  @hw: pointer to hardware structure
2550  *
2551  *  Sets the thermal sensor thresholds according to the NVM map
2552  *  and save off the threshold and location values into mac.thermal_sensor_data
2553  **/
2554 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2555 {
2556         s32 status = E1000_SUCCESS;
2557         u16 ets_offset;
2558         u16 ets_cfg;
2559         u16 ets_sensor;
2560         u8  low_thresh_delta;
2561         u8  num_sensors;
2562         u8  sensor_index;
2563         u8  sensor_location;
2564         u8  therm_limit;
2565         u8  i;
2566         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2567
2568         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2569                 return E1000_NOT_IMPLEMENTED;
2570
2571         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2572
2573         data->sensor[0].location = 0x1;
2574         data->sensor[0].caution_thresh =
2575                 (rd32(E1000_THHIGHTC) & 0xFF);
2576         data->sensor[0].max_op_thresh =
2577                 (rd32(E1000_THLOWTC) & 0xFF);
2578
2579         /* Return the internal sensor only if ETS is unsupported */
2580         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2581         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2582                 return status;
2583
2584         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2585         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2586             != NVM_ETS_TYPE_EMC)
2587                 return E1000_NOT_IMPLEMENTED;
2588
2589         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2590                             NVM_ETS_LTHRES_DELTA_SHIFT);
2591         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2592
2593         for (i = 1; i <= num_sensors; i++) {
2594                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2595                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2596                                 NVM_ETS_DATA_INDEX_SHIFT);
2597                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2598                                    NVM_ETS_DATA_LOC_SHIFT);
2599                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2600
2601                 hw->phy.ops.write_i2c_byte(hw,
2602                         e1000_emc_therm_limit[sensor_index],
2603                         E1000_I2C_THERMAL_SENSOR_ADDR,
2604                         therm_limit);
2605
2606                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2607                         data->sensor[i].location = sensor_location;
2608                         data->sensor[i].caution_thresh = therm_limit;
2609                         data->sensor[i].max_op_thresh = therm_limit -
2610                                                         low_thresh_delta;
2611                 }
2612         }
2613         return status;
2614 }
2615
2616 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2617         .init_hw              = igb_init_hw_82575,
2618         .check_for_link       = igb_check_for_link_82575,
2619         .rar_set              = igb_rar_set,
2620         .read_mac_addr        = igb_read_mac_addr_82575,
2621         .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2622 #ifdef CONFIG_IGB_HWMON
2623         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2624         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2625 #endif
2626 };
2627
2628 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2629         .acquire              = igb_acquire_phy_82575,
2630         .get_cfg_done         = igb_get_cfg_done_82575,
2631         .release              = igb_release_phy_82575,
2632         .write_i2c_byte       = igb_write_i2c_byte,
2633         .read_i2c_byte        = igb_read_i2c_byte,
2634 };
2635
2636 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2637         .acquire              = igb_acquire_nvm_82575,
2638         .read                 = igb_read_nvm_eerd,
2639         .release              = igb_release_nvm_82575,
2640         .write                = igb_write_nvm_spi,
2641 };
2642
2643 const struct e1000_info e1000_82575_info = {
2644         .get_invariants = igb_get_invariants_82575,
2645         .mac_ops = &e1000_mac_ops_82575,
2646         .phy_ops = &e1000_phy_ops_82575,
2647         .nvm_ops = &e1000_nvm_ops_82575,
2648 };
2649