Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 #ifdef CONFIG_PM_RUNTIME
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 #endif
194 static const struct dev_pm_ops igb_pm_ops = {
195         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197                         igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205         .notifier_call  = igb_notify_dca,
206         .next           = NULL,
207         .priority       = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221                      pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226         .error_detected = igb_io_error_detected,
227         .slot_reset = igb_io_slot_reset,
228         .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234         .name     = igb_driver_name,
235         .id_table = igb_pci_tbl,
236         .probe    = igb_probe,
237         .remove   = igb_remove,
238 #ifdef CONFIG_PM
239         .driver.pm = &igb_pm_ops,
240 #endif
241         .shutdown = igb_shutdown,
242         .sriov_configure = igb_pci_sriov_configure,
243         .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257         u32 ofs;
258         char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263         /* General Registers */
264         {E1000_CTRL, "CTRL"},
265         {E1000_STATUS, "STATUS"},
266         {E1000_CTRL_EXT, "CTRL_EXT"},
267
268         /* Interrupt Registers */
269         {E1000_ICR, "ICR"},
270
271         /* RX Registers */
272         {E1000_RCTL, "RCTL"},
273         {E1000_RDLEN(0), "RDLEN"},
274         {E1000_RDH(0), "RDH"},
275         {E1000_RDT(0), "RDT"},
276         {E1000_RXDCTL(0), "RXDCTL"},
277         {E1000_RDBAL(0), "RDBAL"},
278         {E1000_RDBAH(0), "RDBAH"},
279
280         /* TX Registers */
281         {E1000_TCTL, "TCTL"},
282         {E1000_TDBAL(0), "TDBAL"},
283         {E1000_TDBAH(0), "TDBAH"},
284         {E1000_TDLEN(0), "TDLEN"},
285         {E1000_TDH(0), "TDH"},
286         {E1000_TDT(0), "TDT"},
287         {E1000_TXDCTL(0), "TXDCTL"},
288         {E1000_TDFH, "TDFH"},
289         {E1000_TDFT, "TDFT"},
290         {E1000_TDFHS, "TDFHS"},
291         {E1000_TDFPC, "TDFPC"},
292
293         /* List Terminator */
294         {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300         int n = 0;
301         char rname[16];
302         u32 regs[8];
303
304         switch (reginfo->ofs) {
305         case E1000_RDLEN(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RDLEN(n));
308                 break;
309         case E1000_RDH(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDH(n));
312                 break;
313         case E1000_RDT(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDT(n));
316                 break;
317         case E1000_RXDCTL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RXDCTL(n));
320                 break;
321         case E1000_RDBAL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RDBAL(n));
324                 break;
325         case E1000_RDBAH(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAH(n));
328                 break;
329         case E1000_TDBAL(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAL(n));
332                 break;
333         case E1000_TDBAH(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDBAH(n));
336                 break;
337         case E1000_TDLEN(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDLEN(n));
340                 break;
341         case E1000_TDH(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDH(n));
344                 break;
345         case E1000_TDT(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDT(n));
348                 break;
349         case E1000_TXDCTL(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TXDCTL(n));
352                 break;
353         default:
354                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355                 return;
356         }
357
358         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360                 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366         struct net_device *netdev = adapter->netdev;
367         struct e1000_hw *hw = &adapter->hw;
368         struct igb_reg_info *reginfo;
369         struct igb_ring *tx_ring;
370         union e1000_adv_tx_desc *tx_desc;
371         struct my_u0 { u64 a; u64 b; } *u0;
372         struct igb_ring *rx_ring;
373         union e1000_adv_rx_desc *rx_desc;
374         u32 staterr;
375         u16 i, n;
376
377         if (!netif_msg_hw(adapter))
378                 return;
379
380         /* Print netdevice Info */
381         if (netdev) {
382                 dev_info(&adapter->pdev->dev, "Net device Info\n");
383                 pr_info("Device Name     state            trans_start      last_rx\n");
384                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385                         netdev->state, netdev->trans_start, netdev->last_rx);
386         }
387
388         /* Print Registers */
389         dev_info(&adapter->pdev->dev, "Register Dump\n");
390         pr_info(" Register Name   Value\n");
391         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392              reginfo->name; reginfo++) {
393                 igb_regdump(hw, reginfo);
394         }
395
396         /* Print TX Ring Summary */
397         if (!netdev || !netif_running(netdev))
398                 goto exit;
399
400         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402         for (n = 0; n < adapter->num_tx_queues; n++) {
403                 struct igb_tx_buffer *buffer_info;
404                 tx_ring = adapter->tx_ring[n];
405                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
408                         (u64)dma_unmap_addr(buffer_info, dma),
409                         dma_unmap_len(buffer_info, len),
410                         buffer_info->next_to_watch,
411                         (u64)buffer_info->time_stamp);
412         }
413
414         /* Print TX Rings */
415         if (!netif_msg_tx_done(adapter))
416                 goto rx_ring_summary;
417
418         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420         /* Transmit Descriptor Formats
421          *
422          * Advanced Transmit Descriptor
423          *   +--------------------------------------------------------------+
424          * 0 |         Buffer Address [63:0]                                |
425          *   +--------------------------------------------------------------+
426          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427          *   +--------------------------------------------------------------+
428          *   63      46 45    40 39 38 36 35 32 31   24             15       0
429          */
430
431         for (n = 0; n < adapter->num_tx_queues; n++) {
432                 tx_ring = adapter->tx_ring[n];
433                 pr_info("------------------------------------\n");
434                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435                 pr_info("------------------------------------\n");
436                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437
438                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439                         const char *next_desc;
440                         struct igb_tx_buffer *buffer_info;
441                         tx_desc = IGB_TX_DESC(tx_ring, i);
442                         buffer_info = &tx_ring->tx_buffer_info[i];
443                         u0 = (struct my_u0 *)tx_desc;
444                         if (i == tx_ring->next_to_use &&
445                             i == tx_ring->next_to_clean)
446                                 next_desc = " NTC/U";
447                         else if (i == tx_ring->next_to_use)
448                                 next_desc = " NTU";
449                         else if (i == tx_ring->next_to_clean)
450                                 next_desc = " NTC";
451                         else
452                                 next_desc = "";
453
454                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455                                 i, le64_to_cpu(u0->a),
456                                 le64_to_cpu(u0->b),
457                                 (u64)dma_unmap_addr(buffer_info, dma),
458                                 dma_unmap_len(buffer_info, len),
459                                 buffer_info->next_to_watch,
460                                 (u64)buffer_info->time_stamp,
461                                 buffer_info->skb, next_desc);
462
463                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
464                                 print_hex_dump(KERN_INFO, "",
465                                         DUMP_PREFIX_ADDRESS,
466                                         16, 1, buffer_info->skb->data,
467                                         dma_unmap_len(buffer_info, len),
468                                         true);
469                 }
470         }
471
472         /* Print RX Rings Summary */
473 rx_ring_summary:
474         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475         pr_info("Queue [NTU] [NTC]\n");
476         for (n = 0; n < adapter->num_rx_queues; n++) {
477                 rx_ring = adapter->rx_ring[n];
478                 pr_info(" %5d %5X %5X\n",
479                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
480         }
481
482         /* Print RX Rings */
483         if (!netif_msg_rx_status(adapter))
484                 goto exit;
485
486         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488         /* Advanced Receive Descriptor (Read) Format
489          *    63                                           1        0
490          *    +-----------------------------------------------------+
491          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492          *    +----------------------------------------------+------+
493          *  8 |       Header Buffer Address [63:1]           |  DD  |
494          *    +-----------------------------------------------------+
495          *
496          *
497          * Advanced Receive Descriptor (Write-Back) Format
498          *
499          *   63       48 47    32 31  30      21 20 17 16   4 3     0
500          *   +------------------------------------------------------+
501          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502          *   | Checksum   Ident  |   |           |    | Type | Type |
503          *   +------------------------------------------------------+
504          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505          *   +------------------------------------------------------+
506          *   63       48 47    32 31            20 19               0
507          */
508
509         for (n = 0; n < adapter->num_rx_queues; n++) {
510                 rx_ring = adapter->rx_ring[n];
511                 pr_info("------------------------------------\n");
512                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513                 pr_info("------------------------------------\n");
514                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517                 for (i = 0; i < rx_ring->count; i++) {
518                         const char *next_desc;
519                         struct igb_rx_buffer *buffer_info;
520                         buffer_info = &rx_ring->rx_buffer_info[i];
521                         rx_desc = IGB_RX_DESC(rx_ring, i);
522                         u0 = (struct my_u0 *)rx_desc;
523                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525                         if (i == rx_ring->next_to_use)
526                                 next_desc = " NTU";
527                         else if (i == rx_ring->next_to_clean)
528                                 next_desc = " NTC";
529                         else
530                                 next_desc = "";
531
532                         if (staterr & E1000_RXD_STAT_DD) {
533                                 /* Descriptor Done */
534                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535                                         "RWB", i,
536                                         le64_to_cpu(u0->a),
537                                         le64_to_cpu(u0->b),
538                                         next_desc);
539                         } else {
540                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541                                         "R  ", i,
542                                         le64_to_cpu(u0->a),
543                                         le64_to_cpu(u0->b),
544                                         (u64)buffer_info->dma,
545                                         next_desc);
546
547                                 if (netif_msg_pktdata(adapter) &&
548                                     buffer_info->dma && buffer_info->page) {
549                                         print_hex_dump(KERN_INFO, "",
550                                           DUMP_PREFIX_ADDRESS,
551                                           16, 1,
552                                           page_address(buffer_info->page) +
553                                                       buffer_info->page_offset,
554                                           IGB_RX_BUFSZ, true);
555                                 }
556                         }
557                 }
558         }
559
560 exit:
561         return;
562 }
563
564 /**
565  *  igb_get_i2c_data - Reads the I2C SDA data bit
566  *  @hw: pointer to hardware structure
567  *  @i2cctl: Current value of I2CCTL register
568  *
569  *  Returns the I2C data bit value
570  **/
571 static int igb_get_i2c_data(void *data)
572 {
573         struct igb_adapter *adapter = (struct igb_adapter *)data;
574         struct e1000_hw *hw = &adapter->hw;
575         s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577         return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579
580 /**
581  *  igb_set_i2c_data - Sets the I2C data bit
582  *  @data: pointer to hardware structure
583  *  @state: I2C data value (0 or 1) to set
584  *
585  *  Sets the I2C data bit
586  **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589         struct igb_adapter *adapter = (struct igb_adapter *)data;
590         struct e1000_hw *hw = &adapter->hw;
591         s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593         if (state)
594                 i2cctl |= E1000_I2C_DATA_OUT;
595         else
596                 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598         i2cctl &= ~E1000_I2C_DATA_OE_N;
599         i2cctl |= E1000_I2C_CLK_OE_N;
600         wr32(E1000_I2CPARAMS, i2cctl);
601         wrfl();
602
603 }
604
605 /**
606  *  igb_set_i2c_clk - Sets the I2C SCL clock
607  *  @data: pointer to hardware structure
608  *  @state: state to set clock
609  *
610  *  Sets the I2C clock line to state
611  **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614         struct igb_adapter *adapter = (struct igb_adapter *)data;
615         struct e1000_hw *hw = &adapter->hw;
616         s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618         if (state) {
619                 i2cctl |= E1000_I2C_CLK_OUT;
620                 i2cctl &= ~E1000_I2C_CLK_OE_N;
621         } else {
622                 i2cctl &= ~E1000_I2C_CLK_OUT;
623                 i2cctl &= ~E1000_I2C_CLK_OE_N;
624         }
625         wr32(E1000_I2CPARAMS, i2cctl);
626         wrfl();
627 }
628
629 /**
630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
631  *  @data: pointer to hardware structure
632  *
633  *  Gets the I2C clock state
634  **/
635 static int igb_get_i2c_clk(void *data)
636 {
637         struct igb_adapter *adapter = (struct igb_adapter *)data;
638         struct e1000_hw *hw = &adapter->hw;
639         s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641         return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645         .setsda         = igb_set_i2c_data,
646         .setscl         = igb_set_i2c_clk,
647         .getsda         = igb_get_i2c_data,
648         .getscl         = igb_get_i2c_clk,
649         .udelay         = 5,
650         .timeout        = 20,
651 };
652
653 /**
654  *  igb_get_hw_dev - return device
655  *  @hw: pointer to hardware structure
656  *
657  *  used by hardware layer to print debugging information
658  **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661         struct igb_adapter *adapter = hw->back;
662         return adapter->netdev;
663 }
664
665 /**
666  *  igb_init_module - Driver Registration Routine
667  *
668  *  igb_init_module is the first routine called when the driver is
669  *  loaded. All it does is register with the PCI subsystem.
670  **/
671 static int __init igb_init_module(void)
672 {
673         int ret;
674
675         pr_info("%s - version %s\n",
676                igb_driver_string, igb_driver_version);
677         pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680         dca_register_notify(&dca_notifier);
681 #endif
682         ret = pci_register_driver(&igb_driver);
683         return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689  *  igb_exit_module - Driver Exit Cleanup Routine
690  *
691  *  igb_exit_module is called just before the driver is removed
692  *  from memory.
693  **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697         dca_unregister_notify(&dca_notifier);
698 #endif
699         pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706  *  igb_cache_ring_register - Descriptor ring to register mapping
707  *  @adapter: board private structure to initialize
708  *
709  *  Once we know the feature-set enabled for the device, we'll cache
710  *  the register offset the descriptor ring is assigned to.
711  **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714         int i = 0, j = 0;
715         u32 rbase_offset = adapter->vfs_allocated_count;
716
717         switch (adapter->hw.mac.type) {
718         case e1000_82576:
719                 /* The queues are allocated for virtualization such that VF 0
720                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721                  * In order to avoid collision we start at the first free queue
722                  * and continue consuming queues in the same sequence
723                  */
724                 if (adapter->vfs_allocated_count) {
725                         for (; i < adapter->rss_queues; i++)
726                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
727                                                                Q_IDX_82576(i);
728                 }
729                 /* Fall through */
730         case e1000_82575:
731         case e1000_82580:
732         case e1000_i350:
733         case e1000_i354:
734         case e1000_i210:
735         case e1000_i211:
736                 /* Fall through */
737         default:
738                 for (; i < adapter->num_rx_queues; i++)
739                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740                 for (; j < adapter->num_tx_queues; j++)
741                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742                 break;
743         }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750         u32 value = 0;
751
752         if (E1000_REMOVED(hw_addr))
753                 return ~value;
754
755         value = readl(&hw_addr[reg]);
756
757         /* reads should not return all F's */
758         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759                 struct net_device *netdev = igb->netdev;
760                 hw->hw_addr = NULL;
761                 netif_device_detach(netdev);
762                 netdev_err(netdev, "PCIe link lost, device now detached\n");
763         }
764
765         return value;
766 }
767
768 /**
769  *  igb_write_ivar - configure ivar for given MSI-X vector
770  *  @hw: pointer to the HW structure
771  *  @msix_vector: vector number we are allocating to a given ring
772  *  @index: row index of IVAR register to write within IVAR table
773  *  @offset: column offset of in IVAR, should be multiple of 8
774  *
775  *  This function is intended to handle the writing of the IVAR register
776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777  *  each containing an cause allocation for an Rx and Tx ring, and a
778  *  variable number of rows depending on the number of queues supported.
779  **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781                            int index, int offset)
782 {
783         u32 ivar = array_rd32(E1000_IVAR0, index);
784
785         /* clear any bits that are currently set */
786         ivar &= ~((u32)0xFF << offset);
787
788         /* write vector and valid bit */
789         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791         array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797         struct igb_adapter *adapter = q_vector->adapter;
798         struct e1000_hw *hw = &adapter->hw;
799         int rx_queue = IGB_N0_QUEUE;
800         int tx_queue = IGB_N0_QUEUE;
801         u32 msixbm = 0;
802
803         if (q_vector->rx.ring)
804                 rx_queue = q_vector->rx.ring->reg_idx;
805         if (q_vector->tx.ring)
806                 tx_queue = q_vector->tx.ring->reg_idx;
807
808         switch (hw->mac.type) {
809         case e1000_82575:
810                 /* The 82575 assigns vectors using a bitmask, which matches the
811                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812                  * or more queues to a vector, we write the appropriate bits
813                  * into the MSIXBM register for that vector.
814                  */
815                 if (rx_queue > IGB_N0_QUEUE)
816                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817                 if (tx_queue > IGB_N0_QUEUE)
818                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820                         msixbm |= E1000_EIMS_OTHER;
821                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822                 q_vector->eims_value = msixbm;
823                 break;
824         case e1000_82576:
825                 /* 82576 uses a table that essentially consists of 2 columns
826                  * with 8 rows.  The ordering is column-major so we use the
827                  * lower 3 bits as the row index, and the 4th bit as the
828                  * column offset.
829                  */
830                 if (rx_queue > IGB_N0_QUEUE)
831                         igb_write_ivar(hw, msix_vector,
832                                        rx_queue & 0x7,
833                                        (rx_queue & 0x8) << 1);
834                 if (tx_queue > IGB_N0_QUEUE)
835                         igb_write_ivar(hw, msix_vector,
836                                        tx_queue & 0x7,
837                                        ((tx_queue & 0x8) << 1) + 8);
838                 q_vector->eims_value = 1 << msix_vector;
839                 break;
840         case e1000_82580:
841         case e1000_i350:
842         case e1000_i354:
843         case e1000_i210:
844         case e1000_i211:
845                 /* On 82580 and newer adapters the scheme is similar to 82576
846                  * however instead of ordering column-major we have things
847                  * ordered row-major.  So we traverse the table by using
848                  * bit 0 as the column offset, and the remaining bits as the
849                  * row index.
850                  */
851                 if (rx_queue > IGB_N0_QUEUE)
852                         igb_write_ivar(hw, msix_vector,
853                                        rx_queue >> 1,
854                                        (rx_queue & 0x1) << 4);
855                 if (tx_queue > IGB_N0_QUEUE)
856                         igb_write_ivar(hw, msix_vector,
857                                        tx_queue >> 1,
858                                        ((tx_queue & 0x1) << 4) + 8);
859                 q_vector->eims_value = 1 << msix_vector;
860                 break;
861         default:
862                 BUG();
863                 break;
864         }
865
866         /* add q_vector eims value to global eims_enable_mask */
867         adapter->eims_enable_mask |= q_vector->eims_value;
868
869         /* configure q_vector to set itr on first interrupt */
870         q_vector->set_itr = 1;
871 }
872
873 /**
874  *  igb_configure_msix - Configure MSI-X hardware
875  *  @adapter: board private structure to initialize
876  *
877  *  igb_configure_msix sets up the hardware to properly
878  *  generate MSI-X interrupts.
879  **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882         u32 tmp;
883         int i, vector = 0;
884         struct e1000_hw *hw = &adapter->hw;
885
886         adapter->eims_enable_mask = 0;
887
888         /* set vector for other causes, i.e. link changes */
889         switch (hw->mac.type) {
890         case e1000_82575:
891                 tmp = rd32(E1000_CTRL_EXT);
892                 /* enable MSI-X PBA support*/
893                 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895                 /* Auto-Mask interrupts upon ICR read. */
896                 tmp |= E1000_CTRL_EXT_EIAME;
897                 tmp |= E1000_CTRL_EXT_IRCA;
898
899                 wr32(E1000_CTRL_EXT, tmp);
900
901                 /* enable msix_other interrupt */
902                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903                 adapter->eims_other = E1000_EIMS_OTHER;
904
905                 break;
906
907         case e1000_82576:
908         case e1000_82580:
909         case e1000_i350:
910         case e1000_i354:
911         case e1000_i210:
912         case e1000_i211:
913                 /* Turn on MSI-X capability first, or our settings
914                  * won't stick.  And it will take days to debug.
915                  */
916                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
918                      E1000_GPIE_NSICR);
919
920                 /* enable msix_other interrupt */
921                 adapter->eims_other = 1 << vector;
922                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924                 wr32(E1000_IVAR_MISC, tmp);
925                 break;
926         default:
927                 /* do nothing, since nothing else supports MSI-X */
928                 break;
929         } /* switch (hw->mac.type) */
930
931         adapter->eims_enable_mask |= adapter->eims_other;
932
933         for (i = 0; i < adapter->num_q_vectors; i++)
934                 igb_assign_vector(adapter->q_vector[i], vector++);
935
936         wrfl();
937 }
938
939 /**
940  *  igb_request_msix - Initialize MSI-X interrupts
941  *  @adapter: board private structure to initialize
942  *
943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944  *  kernel.
945  **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948         struct net_device *netdev = adapter->netdev;
949         struct e1000_hw *hw = &adapter->hw;
950         int i, err = 0, vector = 0, free_vector = 0;
951
952         err = request_irq(adapter->msix_entries[vector].vector,
953                           igb_msix_other, 0, netdev->name, adapter);
954         if (err)
955                 goto err_out;
956
957         for (i = 0; i < adapter->num_q_vectors; i++) {
958                 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960                 vector++;
961
962                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964                 if (q_vector->rx.ring && q_vector->tx.ring)
965                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966                                 q_vector->rx.ring->queue_index);
967                 else if (q_vector->tx.ring)
968                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969                                 q_vector->tx.ring->queue_index);
970                 else if (q_vector->rx.ring)
971                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972                                 q_vector->rx.ring->queue_index);
973                 else
974                         sprintf(q_vector->name, "%s-unused", netdev->name);
975
976                 err = request_irq(adapter->msix_entries[vector].vector,
977                                   igb_msix_ring, 0, q_vector->name,
978                                   q_vector);
979                 if (err)
980                         goto err_free;
981         }
982
983         igb_configure_msix(adapter);
984         return 0;
985
986 err_free:
987         /* free already assigned IRQs */
988         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990         vector--;
991         for (i = 0; i < vector; i++) {
992                 free_irq(adapter->msix_entries[free_vector++].vector,
993                          adapter->q_vector[i]);
994         }
995 err_out:
996         return err;
997 }
998
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010         adapter->q_vector[v_idx] = NULL;
1011
1012         /* igb_get_stats64() might access the rings on this vector,
1013          * we must wait a grace period before freeing it.
1014          */
1015         if (q_vector)
1016                 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032          * allocated. So, q_vector is NULL so we should stop here.
1033          */
1034         if (!q_vector)
1035                 return;
1036
1037         if (q_vector->tx.ring)
1038                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040         if (q_vector->rx.ring)
1041                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043         netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049         int v_idx = adapter->num_q_vectors;
1050
1051         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                 pci_disable_msix(adapter->pdev);
1053         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                 pci_disable_msi(adapter->pdev);
1055
1056         while (v_idx--)
1057                 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070         int v_idx = adapter->num_q_vectors;
1071
1072         adapter->num_tx_queues = 0;
1073         adapter->num_rx_queues = 0;
1074         adapter->num_q_vectors = 0;
1075
1076         while (v_idx--) {
1077                 igb_reset_q_vector(adapter, v_idx);
1078                 igb_free_q_vector(adapter, v_idx);
1079         }
1080 }
1081
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091         igb_free_q_vectors(adapter);
1092         igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105         int err;
1106         int numvecs, i;
1107
1108         if (!msix)
1109                 goto msi_only;
1110         adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112         /* Number of supported queues. */
1113         adapter->num_rx_queues = adapter->rss_queues;
1114         if (adapter->vfs_allocated_count)
1115                 adapter->num_tx_queues = 1;
1116         else
1117                 adapter->num_tx_queues = adapter->rss_queues;
1118
1119         /* start with one vector for every Rx queue */
1120         numvecs = adapter->num_rx_queues;
1121
1122         /* if Tx handler is separate add 1 for every Tx queue */
1123         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                 numvecs += adapter->num_tx_queues;
1125
1126         /* store the number of vectors reserved for queues */
1127         adapter->num_q_vectors = numvecs;
1128
1129         /* add 1 vector for link status interrupts */
1130         numvecs++;
1131         for (i = 0; i < numvecs; i++)
1132                 adapter->msix_entries[i].entry = i;
1133
1134         err = pci_enable_msix_range(adapter->pdev,
1135                                     adapter->msix_entries,
1136                                     numvecs,
1137                                     numvecs);
1138         if (err > 0)
1139                 return;
1140
1141         igb_reset_interrupt_capability(adapter);
1142
1143         /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147         /* disable SR-IOV for non MSI-X configurations */
1148         if (adapter->vf_data) {
1149                 struct e1000_hw *hw = &adapter->hw;
1150                 /* disable iov and allow time for transactions to clear */
1151                 pci_disable_sriov(adapter->pdev);
1152                 msleep(500);
1153
1154                 kfree(adapter->vf_data);
1155                 adapter->vf_data = NULL;
1156                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                 wrfl();
1158                 msleep(100);
1159                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160         }
1161 #endif
1162         adapter->vfs_allocated_count = 0;
1163         adapter->rss_queues = 1;
1164         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165         adapter->num_rx_queues = 1;
1166         adapter->num_tx_queues = 1;
1167         adapter->num_q_vectors = 1;
1168         if (!pci_enable_msi(adapter->pdev))
1169                 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173                          struct igb_ring_container *head)
1174 {
1175         head->ring = ring;
1176         head->count++;
1177 }
1178
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                               int v_count, int v_idx,
1193                               int txr_count, int txr_idx,
1194                               int rxr_count, int rxr_idx)
1195 {
1196         struct igb_q_vector *q_vector;
1197         struct igb_ring *ring;
1198         int ring_count, size;
1199
1200         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201         if (txr_count > 1 || rxr_count > 1)
1202                 return -ENOMEM;
1203
1204         ring_count = txr_count + rxr_count;
1205         size = sizeof(struct igb_q_vector) +
1206                (sizeof(struct igb_ring) * ring_count);
1207
1208         /* allocate q_vector and rings */
1209         q_vector = adapter->q_vector[v_idx];
1210         if (!q_vector)
1211                 q_vector = kzalloc(size, GFP_KERNEL);
1212         if (!q_vector)
1213                 return -ENOMEM;
1214
1215         /* initialize NAPI */
1216         netif_napi_add(adapter->netdev, &q_vector->napi,
1217                        igb_poll, 64);
1218
1219         /* tie q_vector and adapter together */
1220         adapter->q_vector[v_idx] = q_vector;
1221         q_vector->adapter = adapter;
1222
1223         /* initialize work limits */
1224         q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226         /* initialize ITR configuration */
1227         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228         q_vector->itr_val = IGB_START_ITR;
1229
1230         /* initialize pointer to rings */
1231         ring = q_vector->ring;
1232
1233         /* intialize ITR */
1234         if (rxr_count) {
1235                 /* rx or rx/tx vector */
1236                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237                         q_vector->itr_val = adapter->rx_itr_setting;
1238         } else {
1239                 /* tx only vector */
1240                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241                         q_vector->itr_val = adapter->tx_itr_setting;
1242         }
1243
1244         if (txr_count) {
1245                 /* assign generic ring traits */
1246                 ring->dev = &adapter->pdev->dev;
1247                 ring->netdev = adapter->netdev;
1248
1249                 /* configure backlink on ring */
1250                 ring->q_vector = q_vector;
1251
1252                 /* update q_vector Tx values */
1253                 igb_add_ring(ring, &q_vector->tx);
1254
1255                 /* For 82575, context index must be unique per ring. */
1256                 if (adapter->hw.mac.type == e1000_82575)
1257                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259                 /* apply Tx specific ring traits */
1260                 ring->count = adapter->tx_ring_count;
1261                 ring->queue_index = txr_idx;
1262
1263                 u64_stats_init(&ring->tx_syncp);
1264                 u64_stats_init(&ring->tx_syncp2);
1265
1266                 /* assign ring to adapter */
1267                 adapter->tx_ring[txr_idx] = ring;
1268
1269                 /* push pointer to next ring */
1270                 ring++;
1271         }
1272
1273         if (rxr_count) {
1274                 /* assign generic ring traits */
1275                 ring->dev = &adapter->pdev->dev;
1276                 ring->netdev = adapter->netdev;
1277
1278                 /* configure backlink on ring */
1279                 ring->q_vector = q_vector;
1280
1281                 /* update q_vector Rx values */
1282                 igb_add_ring(ring, &q_vector->rx);
1283
1284                 /* set flag indicating ring supports SCTP checksum offload */
1285                 if (adapter->hw.mac.type >= e1000_82576)
1286                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288                 /* On i350, i354, i210, and i211, loopback VLAN packets
1289                  * have the tag byte-swapped.
1290                  */
1291                 if (adapter->hw.mac.type >= e1000_i350)
1292                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1293
1294                 /* apply Rx specific ring traits */
1295                 ring->count = adapter->rx_ring_count;
1296                 ring->queue_index = rxr_idx;
1297
1298                 u64_stats_init(&ring->rx_syncp);
1299
1300                 /* assign ring to adapter */
1301                 adapter->rx_ring[rxr_idx] = ring;
1302         }
1303
1304         return 0;
1305 }
1306
1307
1308 /**
1309  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310  *  @adapter: board private structure to initialize
1311  *
1312  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1313  *  return -ENOMEM.
1314  **/
1315 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1316 {
1317         int q_vectors = adapter->num_q_vectors;
1318         int rxr_remaining = adapter->num_rx_queues;
1319         int txr_remaining = adapter->num_tx_queues;
1320         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321         int err;
1322
1323         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324                 for (; rxr_remaining; v_idx++) {
1325                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326                                                  0, 0, 1, rxr_idx);
1327
1328                         if (err)
1329                                 goto err_out;
1330
1331                         /* update counts and index */
1332                         rxr_remaining--;
1333                         rxr_idx++;
1334                 }
1335         }
1336
1337         for (; v_idx < q_vectors; v_idx++) {
1338                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1340
1341                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342                                          tqpv, txr_idx, rqpv, rxr_idx);
1343
1344                 if (err)
1345                         goto err_out;
1346
1347                 /* update counts and index */
1348                 rxr_remaining -= rqpv;
1349                 txr_remaining -= tqpv;
1350                 rxr_idx++;
1351                 txr_idx++;
1352         }
1353
1354         return 0;
1355
1356 err_out:
1357         adapter->num_tx_queues = 0;
1358         adapter->num_rx_queues = 0;
1359         adapter->num_q_vectors = 0;
1360
1361         while (v_idx--)
1362                 igb_free_q_vector(adapter, v_idx);
1363
1364         return -ENOMEM;
1365 }
1366
1367 /**
1368  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369  *  @adapter: board private structure to initialize
1370  *  @msix: boolean value of MSIX capability
1371  *
1372  *  This function initializes the interrupts and allocates all of the queues.
1373  **/
1374 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375 {
1376         struct pci_dev *pdev = adapter->pdev;
1377         int err;
1378
1379         igb_set_interrupt_capability(adapter, msix);
1380
1381         err = igb_alloc_q_vectors(adapter);
1382         if (err) {
1383                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384                 goto err_alloc_q_vectors;
1385         }
1386
1387         igb_cache_ring_register(adapter);
1388
1389         return 0;
1390
1391 err_alloc_q_vectors:
1392         igb_reset_interrupt_capability(adapter);
1393         return err;
1394 }
1395
1396 /**
1397  *  igb_request_irq - initialize interrupts
1398  *  @adapter: board private structure to initialize
1399  *
1400  *  Attempts to configure interrupts using the best available
1401  *  capabilities of the hardware and kernel.
1402  **/
1403 static int igb_request_irq(struct igb_adapter *adapter)
1404 {
1405         struct net_device *netdev = adapter->netdev;
1406         struct pci_dev *pdev = adapter->pdev;
1407         int err = 0;
1408
1409         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410                 err = igb_request_msix(adapter);
1411                 if (!err)
1412                         goto request_done;
1413                 /* fall back to MSI */
1414                 igb_free_all_tx_resources(adapter);
1415                 igb_free_all_rx_resources(adapter);
1416
1417                 igb_clear_interrupt_scheme(adapter);
1418                 err = igb_init_interrupt_scheme(adapter, false);
1419                 if (err)
1420                         goto request_done;
1421
1422                 igb_setup_all_tx_resources(adapter);
1423                 igb_setup_all_rx_resources(adapter);
1424                 igb_configure(adapter);
1425         }
1426
1427         igb_assign_vector(adapter->q_vector[0], 0);
1428
1429         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1431                                   netdev->name, adapter);
1432                 if (!err)
1433                         goto request_done;
1434
1435                 /* fall back to legacy interrupts */
1436                 igb_reset_interrupt_capability(adapter);
1437                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438         }
1439
1440         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441                           netdev->name, adapter);
1442
1443         if (err)
1444                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445                         err);
1446
1447 request_done:
1448         return err;
1449 }
1450
1451 static void igb_free_irq(struct igb_adapter *adapter)
1452 {
1453         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454                 int vector = 0, i;
1455
1456                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458                 for (i = 0; i < adapter->num_q_vectors; i++)
1459                         free_irq(adapter->msix_entries[vector++].vector,
1460                                  adapter->q_vector[i]);
1461         } else {
1462                 free_irq(adapter->pdev->irq, adapter);
1463         }
1464 }
1465
1466 /**
1467  *  igb_irq_disable - Mask off interrupt generation on the NIC
1468  *  @adapter: board private structure
1469  **/
1470 static void igb_irq_disable(struct igb_adapter *adapter)
1471 {
1472         struct e1000_hw *hw = &adapter->hw;
1473
1474         /* we need to be careful when disabling interrupts.  The VFs are also
1475          * mapped into these registers and so clearing the bits can cause
1476          * issues on the VF drivers so we only need to clear what we set
1477          */
1478         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479                 u32 regval = rd32(E1000_EIAM);
1480
1481                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1483                 regval = rd32(E1000_EIAC);
1484                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1485         }
1486
1487         wr32(E1000_IAM, 0);
1488         wr32(E1000_IMC, ~0);
1489         wrfl();
1490         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491                 int i;
1492
1493                 for (i = 0; i < adapter->num_q_vectors; i++)
1494                         synchronize_irq(adapter->msix_entries[i].vector);
1495         } else {
1496                 synchronize_irq(adapter->pdev->irq);
1497         }
1498 }
1499
1500 /**
1501  *  igb_irq_enable - Enable default interrupt generation settings
1502  *  @adapter: board private structure
1503  **/
1504 static void igb_irq_enable(struct igb_adapter *adapter)
1505 {
1506         struct e1000_hw *hw = &adapter->hw;
1507
1508         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1509                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1510                 u32 regval = rd32(E1000_EIAC);
1511
1512                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513                 regval = rd32(E1000_EIAM);
1514                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1515                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1516                 if (adapter->vfs_allocated_count) {
1517                         wr32(E1000_MBVFIMR, 0xFF);
1518                         ims |= E1000_IMS_VMMB;
1519                 }
1520                 wr32(E1000_IMS, ims);
1521         } else {
1522                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1523                                 E1000_IMS_DRSTA);
1524                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1525                                 E1000_IMS_DRSTA);
1526         }
1527 }
1528
1529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1530 {
1531         struct e1000_hw *hw = &adapter->hw;
1532         u16 vid = adapter->hw.mng_cookie.vlan_id;
1533         u16 old_vid = adapter->mng_vlan_id;
1534
1535         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536                 /* add VID to filter table */
1537                 igb_vfta_set(hw, vid, true);
1538                 adapter->mng_vlan_id = vid;
1539         } else {
1540                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541         }
1542
1543         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544             (vid != old_vid) &&
1545             !test_bit(old_vid, adapter->active_vlans)) {
1546                 /* remove VID from filter table */
1547                 igb_vfta_set(hw, old_vid, false);
1548         }
1549 }
1550
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561         struct e1000_hw *hw = &adapter->hw;
1562         u32 ctrl_ext;
1563
1564         /* Let firmware take over control of h/w */
1565         ctrl_ext = rd32(E1000_CTRL_EXT);
1566         wr32(E1000_CTRL_EXT,
1567                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581         u32 ctrl_ext;
1582
1583         /* Let firmware know the driver has taken over */
1584         ctrl_ext = rd32(E1000_CTRL_EXT);
1585         wr32(E1000_CTRL_EXT,
1586                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588
1589 /**
1590  *  igb_configure - configure the hardware for RX and TX
1591  *  @adapter: private board structure
1592  **/
1593 static void igb_configure(struct igb_adapter *adapter)
1594 {
1595         struct net_device *netdev = adapter->netdev;
1596         int i;
1597
1598         igb_get_hw_control(adapter);
1599         igb_set_rx_mode(netdev);
1600
1601         igb_restore_vlan(adapter);
1602
1603         igb_setup_tctl(adapter);
1604         igb_setup_mrqc(adapter);
1605         igb_setup_rctl(adapter);
1606
1607         igb_configure_tx(adapter);
1608         igb_configure_rx(adapter);
1609
1610         igb_rx_fifo_flush_82575(&adapter->hw);
1611
1612         /* call igb_desc_unused which always leaves
1613          * at least 1 descriptor unused to make sure
1614          * next_to_use != next_to_clean
1615          */
1616         for (i = 0; i < adapter->num_rx_queues; i++) {
1617                 struct igb_ring *ring = adapter->rx_ring[i];
1618                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1619         }
1620 }
1621
1622 /**
1623  *  igb_power_up_link - Power up the phy/serdes link
1624  *  @adapter: address of board private structure
1625  **/
1626 void igb_power_up_link(struct igb_adapter *adapter)
1627 {
1628         igb_reset_phy(&adapter->hw);
1629
1630         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631                 igb_power_up_phy_copper(&adapter->hw);
1632         else
1633                 igb_power_up_serdes_link_82575(&adapter->hw);
1634
1635         igb_setup_link(&adapter->hw);
1636 }
1637
1638 /**
1639  *  igb_power_down_link - Power down the phy/serdes link
1640  *  @adapter: address of board private structure
1641  */
1642 static void igb_power_down_link(struct igb_adapter *adapter)
1643 {
1644         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645                 igb_power_down_phy_copper_82575(&adapter->hw);
1646         else
1647                 igb_shutdown_serdes_link_82575(&adapter->hw);
1648 }
1649
1650 /**
1651  * Detect and switch function for Media Auto Sense
1652  * @adapter: address of the board private structure
1653  **/
1654 static void igb_check_swap_media(struct igb_adapter *adapter)
1655 {
1656         struct e1000_hw *hw = &adapter->hw;
1657         u32 ctrl_ext, connsw;
1658         bool swap_now = false;
1659
1660         ctrl_ext = rd32(E1000_CTRL_EXT);
1661         connsw = rd32(E1000_CONNSW);
1662
1663         /* need to live swap if current media is copper and we have fiber/serdes
1664          * to go to.
1665          */
1666
1667         if ((hw->phy.media_type == e1000_media_type_copper) &&
1668             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669                 swap_now = true;
1670         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671                 /* copper signal takes time to appear */
1672                 if (adapter->copper_tries < 4) {
1673                         adapter->copper_tries++;
1674                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675                         wr32(E1000_CONNSW, connsw);
1676                         return;
1677                 } else {
1678                         adapter->copper_tries = 0;
1679                         if ((connsw & E1000_CONNSW_PHYSD) &&
1680                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681                                 swap_now = true;
1682                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683                                 wr32(E1000_CONNSW, connsw);
1684                         }
1685                 }
1686         }
1687
1688         if (!swap_now)
1689                 return;
1690
1691         switch (hw->phy.media_type) {
1692         case e1000_media_type_copper:
1693                 netdev_info(adapter->netdev,
1694                         "MAS: changing media to fiber/serdes\n");
1695                 ctrl_ext |=
1696                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698                 adapter->copper_tries = 0;
1699                 break;
1700         case e1000_media_type_internal_serdes:
1701         case e1000_media_type_fiber:
1702                 netdev_info(adapter->netdev,
1703                         "MAS: changing media to copper\n");
1704                 ctrl_ext &=
1705                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707                 break;
1708         default:
1709                 /* shouldn't get here during regular operation */
1710                 netdev_err(adapter->netdev,
1711                         "AMS: Invalid media type found, returning\n");
1712                 break;
1713         }
1714         wr32(E1000_CTRL_EXT, ctrl_ext);
1715 }
1716
1717 /**
1718  *  igb_up - Open the interface and prepare it to handle traffic
1719  *  @adapter: board private structure
1720  **/
1721 int igb_up(struct igb_adapter *adapter)
1722 {
1723         struct e1000_hw *hw = &adapter->hw;
1724         int i;
1725
1726         /* hardware has been reset, we need to reload some things */
1727         igb_configure(adapter);
1728
1729         clear_bit(__IGB_DOWN, &adapter->state);
1730
1731         for (i = 0; i < adapter->num_q_vectors; i++)
1732                 napi_enable(&(adapter->q_vector[i]->napi));
1733
1734         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1735                 igb_configure_msix(adapter);
1736         else
1737                 igb_assign_vector(adapter->q_vector[0], 0);
1738
1739         /* Clear any pending interrupts. */
1740         rd32(E1000_ICR);
1741         igb_irq_enable(adapter);
1742
1743         /* notify VFs that reset has been completed */
1744         if (adapter->vfs_allocated_count) {
1745                 u32 reg_data = rd32(E1000_CTRL_EXT);
1746
1747                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1748                 wr32(E1000_CTRL_EXT, reg_data);
1749         }
1750
1751         netif_tx_start_all_queues(adapter->netdev);
1752
1753         /* start the watchdog. */
1754         hw->mac.get_link_status = 1;
1755         schedule_work(&adapter->watchdog_task);
1756
1757         if ((adapter->flags & IGB_FLAG_EEE) &&
1758             (!hw->dev_spec._82575.eee_disable))
1759                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1760
1761         return 0;
1762 }
1763
1764 void igb_down(struct igb_adapter *adapter)
1765 {
1766         struct net_device *netdev = adapter->netdev;
1767         struct e1000_hw *hw = &adapter->hw;
1768         u32 tctl, rctl;
1769         int i;
1770
1771         /* signal that we're down so the interrupt handler does not
1772          * reschedule our watchdog timer
1773          */
1774         set_bit(__IGB_DOWN, &adapter->state);
1775
1776         /* disable receives in the hardware */
1777         rctl = rd32(E1000_RCTL);
1778         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779         /* flush and sleep below */
1780
1781         netif_tx_stop_all_queues(netdev);
1782
1783         /* disable transmits in the hardware */
1784         tctl = rd32(E1000_TCTL);
1785         tctl &= ~E1000_TCTL_EN;
1786         wr32(E1000_TCTL, tctl);
1787         /* flush both disables and wait for them to finish */
1788         wrfl();
1789         usleep_range(10000, 11000);
1790
1791         igb_irq_disable(adapter);
1792
1793         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1794
1795         for (i = 0; i < adapter->num_q_vectors; i++) {
1796                 if (adapter->q_vector[i]) {
1797                         napi_synchronize(&adapter->q_vector[i]->napi);
1798                         napi_disable(&adapter->q_vector[i]->napi);
1799                 }
1800         }
1801
1802
1803         del_timer_sync(&adapter->watchdog_timer);
1804         del_timer_sync(&adapter->phy_info_timer);
1805
1806         netif_carrier_off(netdev);
1807
1808         /* record the stats before reset*/
1809         spin_lock(&adapter->stats64_lock);
1810         igb_update_stats(adapter, &adapter->stats64);
1811         spin_unlock(&adapter->stats64_lock);
1812
1813         adapter->link_speed = 0;
1814         adapter->link_duplex = 0;
1815
1816         if (!pci_channel_offline(adapter->pdev))
1817                 igb_reset(adapter);
1818         igb_clean_all_tx_rings(adapter);
1819         igb_clean_all_rx_rings(adapter);
1820 #ifdef CONFIG_IGB_DCA
1821
1822         /* since we reset the hardware DCA settings were cleared */
1823         igb_setup_dca(adapter);
1824 #endif
1825 }
1826
1827 void igb_reinit_locked(struct igb_adapter *adapter)
1828 {
1829         WARN_ON(in_interrupt());
1830         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1831                 usleep_range(1000, 2000);
1832         igb_down(adapter);
1833         igb_up(adapter);
1834         clear_bit(__IGB_RESETTING, &adapter->state);
1835 }
1836
1837 /** igb_enable_mas - Media Autosense re-enable after swap
1838  *
1839  * @adapter: adapter struct
1840  **/
1841 static s32 igb_enable_mas(struct igb_adapter *adapter)
1842 {
1843         struct e1000_hw *hw = &adapter->hw;
1844         u32 connsw;
1845         s32 ret_val = 0;
1846
1847         connsw = rd32(E1000_CONNSW);
1848         if (!(hw->phy.media_type == e1000_media_type_copper))
1849                 return ret_val;
1850
1851         /* configure for SerDes media detect */
1852         if (!(connsw & E1000_CONNSW_SERDESD)) {
1853                 connsw |= E1000_CONNSW_ENRGSRC;
1854                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1855                 wr32(E1000_CONNSW, connsw);
1856                 wrfl();
1857         } else if (connsw & E1000_CONNSW_SERDESD) {
1858                 /* already SerDes, no need to enable anything */
1859                 return ret_val;
1860         } else {
1861                 netdev_info(adapter->netdev,
1862                         "MAS: Unable to configure feature, disabling..\n");
1863                 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1864         }
1865         return ret_val;
1866 }
1867
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870         struct pci_dev *pdev = adapter->pdev;
1871         struct e1000_hw *hw = &adapter->hw;
1872         struct e1000_mac_info *mac = &hw->mac;
1873         struct e1000_fc_info *fc = &hw->fc;
1874         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1875
1876         /* Repartition Pba for greater than 9k mtu
1877          * To take effect CTRL.RST is required.
1878          */
1879         switch (mac->type) {
1880         case e1000_i350:
1881         case e1000_i354:
1882         case e1000_82580:
1883                 pba = rd32(E1000_RXPBS);
1884                 pba = igb_rxpbs_adjust_82580(pba);
1885                 break;
1886         case e1000_82576:
1887                 pba = rd32(E1000_RXPBS);
1888                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1889                 break;
1890         case e1000_82575:
1891         case e1000_i210:
1892         case e1000_i211:
1893         default:
1894                 pba = E1000_PBA_34K;
1895                 break;
1896         }
1897
1898         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1899             (mac->type < e1000_82576)) {
1900                 /* adjust PBA for jumbo frames */
1901                 wr32(E1000_PBA, pba);
1902
1903                 /* To maintain wire speed transmits, the Tx FIFO should be
1904                  * large enough to accommodate two full transmit packets,
1905                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1906                  * the Rx FIFO should be large enough to accommodate at least
1907                  * one full receive packet and is similarly rounded up and
1908                  * expressed in KB.
1909                  */
1910                 pba = rd32(E1000_PBA);
1911                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1912                 tx_space = pba >> 16;
1913                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1914                 pba &= 0xffff;
1915                 /* the Tx fifo also stores 16 bytes of information about the Tx
1916                  * but don't include ethernet FCS because hardware appends it
1917                  */
1918                 min_tx_space = (adapter->max_frame_size +
1919                                 sizeof(union e1000_adv_tx_desc) -
1920                                 ETH_FCS_LEN) * 2;
1921                 min_tx_space = ALIGN(min_tx_space, 1024);
1922                 min_tx_space >>= 10;
1923                 /* software strips receive CRC, so leave room for it */
1924                 min_rx_space = adapter->max_frame_size;
1925                 min_rx_space = ALIGN(min_rx_space, 1024);
1926                 min_rx_space >>= 10;
1927
1928                 /* If current Tx allocation is less than the min Tx FIFO size,
1929                  * and the min Tx FIFO size is less than the current Rx FIFO
1930                  * allocation, take space away from current Rx allocation
1931                  */
1932                 if (tx_space < min_tx_space &&
1933                     ((min_tx_space - tx_space) < pba)) {
1934                         pba = pba - (min_tx_space - tx_space);
1935
1936                         /* if short on Rx space, Rx wins and must trump Tx
1937                          * adjustment
1938                          */
1939                         if (pba < min_rx_space)
1940                                 pba = min_rx_space;
1941                 }
1942                 wr32(E1000_PBA, pba);
1943         }
1944
1945         /* flow control settings */
1946         /* The high water mark must be low enough to fit one full frame
1947          * (or the size used for early receive) above it in the Rx FIFO.
1948          * Set it to the lower of:
1949          * - 90% of the Rx FIFO size, or
1950          * - the full Rx FIFO size minus one full frame
1951          */
1952         hwm = min(((pba << 10) * 9 / 10),
1953                         ((pba << 10) - 2 * adapter->max_frame_size));
1954
1955         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1956         fc->low_water = fc->high_water - 16;
1957         fc->pause_time = 0xFFFF;
1958         fc->send_xon = 1;
1959         fc->current_mode = fc->requested_mode;
1960
1961         /* disable receive for all VFs and wait one second */
1962         if (adapter->vfs_allocated_count) {
1963                 int i;
1964
1965                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1966                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1967
1968                 /* ping all the active vfs to let them know we are going down */
1969                 igb_ping_all_vfs(adapter);
1970
1971                 /* disable transmits and receives */
1972                 wr32(E1000_VFRE, 0);
1973                 wr32(E1000_VFTE, 0);
1974         }
1975
1976         /* Allow time for pending master requests to run */
1977         hw->mac.ops.reset_hw(hw);
1978         wr32(E1000_WUC, 0);
1979
1980         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1981                 /* need to resetup here after media swap */
1982                 adapter->ei.get_invariants(hw);
1983                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1984         }
1985         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1986                 if (igb_enable_mas(adapter))
1987                         dev_err(&pdev->dev,
1988                                 "Error enabling Media Auto Sense\n");
1989         }
1990         if (hw->mac.ops.init_hw(hw))
1991                 dev_err(&pdev->dev, "Hardware Error\n");
1992
1993         /* Flow control settings reset on hardware reset, so guarantee flow
1994          * control is off when forcing speed.
1995          */
1996         if (!hw->mac.autoneg)
1997                 igb_force_mac_fc(hw);
1998
1999         igb_init_dmac(adapter, pba);
2000 #ifdef CONFIG_IGB_HWMON
2001         /* Re-initialize the thermal sensor on i350 devices. */
2002         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2003                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2004                         /* If present, re-initialize the external thermal sensor
2005                          * interface.
2006                          */
2007                         if (adapter->ets)
2008                                 mac->ops.init_thermal_sensor_thresh(hw);
2009                 }
2010         }
2011 #endif
2012         /* Re-establish EEE setting */
2013         if (hw->phy.media_type == e1000_media_type_copper) {
2014                 switch (mac->type) {
2015                 case e1000_i350:
2016                 case e1000_i210:
2017                 case e1000_i211:
2018                         igb_set_eee_i350(hw, true, true);
2019                         break;
2020                 case e1000_i354:
2021                         igb_set_eee_i354(hw, true, true);
2022                         break;
2023                 default:
2024                         break;
2025                 }
2026         }
2027         if (!netif_running(adapter->netdev))
2028                 igb_power_down_link(adapter);
2029
2030         igb_update_mng_vlan(adapter);
2031
2032         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2033         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2034
2035         /* Re-enable PTP, where applicable. */
2036         igb_ptp_reset(adapter);
2037
2038         igb_get_phy_info(hw);
2039 }
2040
2041 static netdev_features_t igb_fix_features(struct net_device *netdev,
2042         netdev_features_t features)
2043 {
2044         /* Since there is no support for separate Rx/Tx vlan accel
2045          * enable/disable make sure Tx flag is always in same state as Rx.
2046          */
2047         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2048                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2049         else
2050                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2051
2052         return features;
2053 }
2054
2055 static int igb_set_features(struct net_device *netdev,
2056         netdev_features_t features)
2057 {
2058         netdev_features_t changed = netdev->features ^ features;
2059         struct igb_adapter *adapter = netdev_priv(netdev);
2060
2061         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2062                 igb_vlan_mode(netdev, features);
2063
2064         if (!(changed & NETIF_F_RXALL))
2065                 return 0;
2066
2067         netdev->features = features;
2068
2069         if (netif_running(netdev))
2070                 igb_reinit_locked(adapter);
2071         else
2072                 igb_reset(adapter);
2073
2074         return 0;
2075 }
2076
2077 static const struct net_device_ops igb_netdev_ops = {
2078         .ndo_open               = igb_open,
2079         .ndo_stop               = igb_close,
2080         .ndo_start_xmit         = igb_xmit_frame,
2081         .ndo_get_stats64        = igb_get_stats64,
2082         .ndo_set_rx_mode        = igb_set_rx_mode,
2083         .ndo_set_mac_address    = igb_set_mac,
2084         .ndo_change_mtu         = igb_change_mtu,
2085         .ndo_do_ioctl           = igb_ioctl,
2086         .ndo_tx_timeout         = igb_tx_timeout,
2087         .ndo_validate_addr      = eth_validate_addr,
2088         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2089         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2090         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2091         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2092         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2093         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2094         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2095 #ifdef CONFIG_NET_POLL_CONTROLLER
2096         .ndo_poll_controller    = igb_netpoll,
2097 #endif
2098         .ndo_fix_features       = igb_fix_features,
2099         .ndo_set_features       = igb_set_features,
2100 };
2101
2102 /**
2103  * igb_set_fw_version - Configure version string for ethtool
2104  * @adapter: adapter struct
2105  **/
2106 void igb_set_fw_version(struct igb_adapter *adapter)
2107 {
2108         struct e1000_hw *hw = &adapter->hw;
2109         struct e1000_fw_version fw;
2110
2111         igb_get_fw_version(hw, &fw);
2112
2113         switch (hw->mac.type) {
2114         case e1000_i210:
2115         case e1000_i211:
2116                 if (!(igb_get_flash_presence_i210(hw))) {
2117                         snprintf(adapter->fw_version,
2118                                  sizeof(adapter->fw_version),
2119                                  "%2d.%2d-%d",
2120                                  fw.invm_major, fw.invm_minor,
2121                                  fw.invm_img_type);
2122                         break;
2123                 }
2124                 /* fall through */
2125         default:
2126                 /* if option is rom valid, display its version too */
2127                 if (fw.or_valid) {
2128                         snprintf(adapter->fw_version,
2129                                  sizeof(adapter->fw_version),
2130                                  "%d.%d, 0x%08x, %d.%d.%d",
2131                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2132                                  fw.or_major, fw.or_build, fw.or_patch);
2133                 /* no option rom */
2134                 } else if (fw.etrack_id != 0X0000) {
2135                         snprintf(adapter->fw_version,
2136                             sizeof(adapter->fw_version),
2137                             "%d.%d, 0x%08x",
2138                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2139                 } else {
2140                 snprintf(adapter->fw_version,
2141                     sizeof(adapter->fw_version),
2142                     "%d.%d.%d",
2143                     fw.eep_major, fw.eep_minor, fw.eep_build);
2144                 }
2145                 break;
2146         }
2147 }
2148
2149 /**
2150  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2151  *
2152  * @adapter: adapter struct
2153  **/
2154 static void igb_init_mas(struct igb_adapter *adapter)
2155 {
2156         struct e1000_hw *hw = &adapter->hw;
2157         u16 eeprom_data;
2158
2159         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2160         switch (hw->bus.func) {
2161         case E1000_FUNC_0:
2162                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2163                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164                         netdev_info(adapter->netdev,
2165                                 "MAS: Enabling Media Autosense for port %d\n",
2166                                 hw->bus.func);
2167                 }
2168                 break;
2169         case E1000_FUNC_1:
2170                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2171                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172                         netdev_info(adapter->netdev,
2173                                 "MAS: Enabling Media Autosense for port %d\n",
2174                                 hw->bus.func);
2175                 }
2176                 break;
2177         case E1000_FUNC_2:
2178                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2179                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180                         netdev_info(adapter->netdev,
2181                                 "MAS: Enabling Media Autosense for port %d\n",
2182                                 hw->bus.func);
2183                 }
2184                 break;
2185         case E1000_FUNC_3:
2186                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2187                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2188                         netdev_info(adapter->netdev,
2189                                 "MAS: Enabling Media Autosense for port %d\n",
2190                                 hw->bus.func);
2191                 }
2192                 break;
2193         default:
2194                 /* Shouldn't get here */
2195                 netdev_err(adapter->netdev,
2196                         "MAS: Invalid port configuration, returning\n");
2197                 break;
2198         }
2199 }
2200
2201 /**
2202  *  igb_init_i2c - Init I2C interface
2203  *  @adapter: pointer to adapter structure
2204  **/
2205 static s32 igb_init_i2c(struct igb_adapter *adapter)
2206 {
2207         s32 status = 0;
2208
2209         /* I2C interface supported on i350 devices */
2210         if (adapter->hw.mac.type != e1000_i350)
2211                 return 0;
2212
2213         /* Initialize the i2c bus which is controlled by the registers.
2214          * This bus will use the i2c_algo_bit structue that implements
2215          * the protocol through toggling of the 4 bits in the register.
2216          */
2217         adapter->i2c_adap.owner = THIS_MODULE;
2218         adapter->i2c_algo = igb_i2c_algo;
2219         adapter->i2c_algo.data = adapter;
2220         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2221         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2222         strlcpy(adapter->i2c_adap.name, "igb BB",
2223                 sizeof(adapter->i2c_adap.name));
2224         status = i2c_bit_add_bus(&adapter->i2c_adap);
2225         return status;
2226 }
2227
2228 /**
2229  *  igb_probe - Device Initialization Routine
2230  *  @pdev: PCI device information struct
2231  *  @ent: entry in igb_pci_tbl
2232  *
2233  *  Returns 0 on success, negative on failure
2234  *
2235  *  igb_probe initializes an adapter identified by a pci_dev structure.
2236  *  The OS initialization, configuring of the adapter private structure,
2237  *  and a hardware reset occur.
2238  **/
2239 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2240 {
2241         struct net_device *netdev;
2242         struct igb_adapter *adapter;
2243         struct e1000_hw *hw;
2244         u16 eeprom_data = 0;
2245         s32 ret_val;
2246         static int global_quad_port_a; /* global quad port a indication */
2247         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2248         int err, pci_using_dac;
2249         u8 part_str[E1000_PBANUM_LENGTH];
2250
2251         /* Catch broken hardware that put the wrong VF device ID in
2252          * the PCIe SR-IOV capability.
2253          */
2254         if (pdev->is_virtfn) {
2255                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2256                         pci_name(pdev), pdev->vendor, pdev->device);
2257                 return -EINVAL;
2258         }
2259
2260         err = pci_enable_device_mem(pdev);
2261         if (err)
2262                 return err;
2263
2264         pci_using_dac = 0;
2265         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2266         if (!err) {
2267                 pci_using_dac = 1;
2268         } else {
2269                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2270                 if (err) {
2271                         dev_err(&pdev->dev,
2272                                 "No usable DMA configuration, aborting\n");
2273                         goto err_dma;
2274                 }
2275         }
2276
2277         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2278                                            IORESOURCE_MEM),
2279                                            igb_driver_name);
2280         if (err)
2281                 goto err_pci_reg;
2282
2283         pci_enable_pcie_error_reporting(pdev);
2284
2285         pci_set_master(pdev);
2286         pci_save_state(pdev);
2287
2288         err = -ENOMEM;
2289         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2290                                    IGB_MAX_TX_QUEUES);
2291         if (!netdev)
2292                 goto err_alloc_etherdev;
2293
2294         SET_NETDEV_DEV(netdev, &pdev->dev);
2295
2296         pci_set_drvdata(pdev, netdev);
2297         adapter = netdev_priv(netdev);
2298         adapter->netdev = netdev;
2299         adapter->pdev = pdev;
2300         hw = &adapter->hw;
2301         hw->back = adapter;
2302         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2303
2304         err = -EIO;
2305         hw->hw_addr = pci_iomap(pdev, 0, 0);
2306         if (!hw->hw_addr)
2307                 goto err_ioremap;
2308
2309         netdev->netdev_ops = &igb_netdev_ops;
2310         igb_set_ethtool_ops(netdev);
2311         netdev->watchdog_timeo = 5 * HZ;
2312
2313         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2314
2315         netdev->mem_start = pci_resource_start(pdev, 0);
2316         netdev->mem_end = pci_resource_end(pdev, 0);
2317
2318         /* PCI config space info */
2319         hw->vendor_id = pdev->vendor;
2320         hw->device_id = pdev->device;
2321         hw->revision_id = pdev->revision;
2322         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2323         hw->subsystem_device_id = pdev->subsystem_device;
2324
2325         /* Copy the default MAC, PHY and NVM function pointers */
2326         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2327         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2328         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2329         /* Initialize skew-specific constants */
2330         err = ei->get_invariants(hw);
2331         if (err)
2332                 goto err_sw_init;
2333
2334         /* setup the private structure */
2335         err = igb_sw_init(adapter);
2336         if (err)
2337                 goto err_sw_init;
2338
2339         igb_get_bus_info_pcie(hw);
2340
2341         hw->phy.autoneg_wait_to_complete = false;
2342
2343         /* Copper options */
2344         if (hw->phy.media_type == e1000_media_type_copper) {
2345                 hw->phy.mdix = AUTO_ALL_MODES;
2346                 hw->phy.disable_polarity_correction = false;
2347                 hw->phy.ms_type = e1000_ms_hw_default;
2348         }
2349
2350         if (igb_check_reset_block(hw))
2351                 dev_info(&pdev->dev,
2352                         "PHY reset is blocked due to SOL/IDER session.\n");
2353
2354         /* features is initialized to 0 in allocation, it might have bits
2355          * set by igb_sw_init so we should use an or instead of an
2356          * assignment.
2357          */
2358         netdev->features |= NETIF_F_SG |
2359                             NETIF_F_IP_CSUM |
2360                             NETIF_F_IPV6_CSUM |
2361                             NETIF_F_TSO |
2362                             NETIF_F_TSO6 |
2363                             NETIF_F_RXHASH |
2364                             NETIF_F_RXCSUM |
2365                             NETIF_F_HW_VLAN_CTAG_RX |
2366                             NETIF_F_HW_VLAN_CTAG_TX;
2367
2368         /* copy netdev features into list of user selectable features */
2369         netdev->hw_features |= netdev->features;
2370         netdev->hw_features |= NETIF_F_RXALL;
2371
2372         /* set this bit last since it cannot be part of hw_features */
2373         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2374
2375         netdev->vlan_features |= NETIF_F_TSO |
2376                                  NETIF_F_TSO6 |
2377                                  NETIF_F_IP_CSUM |
2378                                  NETIF_F_IPV6_CSUM |
2379                                  NETIF_F_SG;
2380
2381         netdev->priv_flags |= IFF_SUPP_NOFCS;
2382
2383         if (pci_using_dac) {
2384                 netdev->features |= NETIF_F_HIGHDMA;
2385                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2386         }
2387
2388         if (hw->mac.type >= e1000_82576) {
2389                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2390                 netdev->features |= NETIF_F_SCTP_CSUM;
2391         }
2392
2393         netdev->priv_flags |= IFF_UNICAST_FLT;
2394
2395         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2396
2397         /* before reading the NVM, reset the controller to put the device in a
2398          * known good starting state
2399          */
2400         hw->mac.ops.reset_hw(hw);
2401
2402         /* make sure the NVM is good , i211/i210 parts can have special NVM
2403          * that doesn't contain a checksum
2404          */
2405         switch (hw->mac.type) {
2406         case e1000_i210:
2407         case e1000_i211:
2408                 if (igb_get_flash_presence_i210(hw)) {
2409                         if (hw->nvm.ops.validate(hw) < 0) {
2410                                 dev_err(&pdev->dev,
2411                                         "The NVM Checksum Is Not Valid\n");
2412                                 err = -EIO;
2413                                 goto err_eeprom;
2414                         }
2415                 }
2416                 break;
2417         default:
2418                 if (hw->nvm.ops.validate(hw) < 0) {
2419                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2420                         err = -EIO;
2421                         goto err_eeprom;
2422                 }
2423                 break;
2424         }
2425
2426         /* copy the MAC address out of the NVM */
2427         if (hw->mac.ops.read_mac_addr(hw))
2428                 dev_err(&pdev->dev, "NVM Read Error\n");
2429
2430         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2431
2432         if (!is_valid_ether_addr(netdev->dev_addr)) {
2433                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2434                 err = -EIO;
2435                 goto err_eeprom;
2436         }
2437
2438         /* get firmware version for ethtool -i */
2439         igb_set_fw_version(adapter);
2440
2441         /* configure RXPBSIZE and TXPBSIZE */
2442         if (hw->mac.type == e1000_i210) {
2443                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2444                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2445         }
2446
2447         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2448                     (unsigned long) adapter);
2449         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2450                     (unsigned long) adapter);
2451
2452         INIT_WORK(&adapter->reset_task, igb_reset_task);
2453         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2454
2455         /* Initialize link properties that are user-changeable */
2456         adapter->fc_autoneg = true;
2457         hw->mac.autoneg = true;
2458         hw->phy.autoneg_advertised = 0x2f;
2459
2460         hw->fc.requested_mode = e1000_fc_default;
2461         hw->fc.current_mode = e1000_fc_default;
2462
2463         igb_validate_mdi_setting(hw);
2464
2465         /* By default, support wake on port A */
2466         if (hw->bus.func == 0)
2467                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2468
2469         /* Check the NVM for wake support on non-port A ports */
2470         if (hw->mac.type >= e1000_82580)
2471                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2472                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2473                                  &eeprom_data);
2474         else if (hw->bus.func == 1)
2475                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2476
2477         if (eeprom_data & IGB_EEPROM_APME)
2478                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2479
2480         /* now that we have the eeprom settings, apply the special cases where
2481          * the eeprom may be wrong or the board simply won't support wake on
2482          * lan on a particular port
2483          */
2484         switch (pdev->device) {
2485         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2486                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2487                 break;
2488         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2489         case E1000_DEV_ID_82576_FIBER:
2490         case E1000_DEV_ID_82576_SERDES:
2491                 /* Wake events only supported on port A for dual fiber
2492                  * regardless of eeprom setting
2493                  */
2494                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2495                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2496                 break;
2497         case E1000_DEV_ID_82576_QUAD_COPPER:
2498         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2499                 /* if quad port adapter, disable WoL on all but port A */
2500                 if (global_quad_port_a != 0)
2501                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2502                 else
2503                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2504                 /* Reset for multiple quad port adapters */
2505                 if (++global_quad_port_a == 4)
2506                         global_quad_port_a = 0;
2507                 break;
2508         default:
2509                 /* If the device can't wake, don't set software support */
2510                 if (!device_can_wakeup(&adapter->pdev->dev))
2511                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2512         }
2513
2514         /* initialize the wol settings based on the eeprom settings */
2515         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2516                 adapter->wol |= E1000_WUFC_MAG;
2517
2518         /* Some vendors want WoL disabled by default, but still supported */
2519         if ((hw->mac.type == e1000_i350) &&
2520             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2521                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2522                 adapter->wol = 0;
2523         }
2524
2525         device_set_wakeup_enable(&adapter->pdev->dev,
2526                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2527
2528         /* reset the hardware with the new settings */
2529         igb_reset(adapter);
2530
2531         /* Init the I2C interface */
2532         err = igb_init_i2c(adapter);
2533         if (err) {
2534                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2535                 goto err_eeprom;
2536         }
2537
2538         /* let the f/w know that the h/w is now under the control of the
2539          * driver.
2540          */
2541         igb_get_hw_control(adapter);
2542
2543         strcpy(netdev->name, "eth%d");
2544         err = register_netdev(netdev);
2545         if (err)
2546                 goto err_register;
2547
2548         /* carrier off reporting is important to ethtool even BEFORE open */
2549         netif_carrier_off(netdev);
2550
2551 #ifdef CONFIG_IGB_DCA
2552         if (dca_add_requester(&pdev->dev) == 0) {
2553                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2554                 dev_info(&pdev->dev, "DCA enabled\n");
2555                 igb_setup_dca(adapter);
2556         }
2557
2558 #endif
2559 #ifdef CONFIG_IGB_HWMON
2560         /* Initialize the thermal sensor on i350 devices. */
2561         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2562                 u16 ets_word;
2563
2564                 /* Read the NVM to determine if this i350 device supports an
2565                  * external thermal sensor.
2566                  */
2567                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2568                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2569                         adapter->ets = true;
2570                 else
2571                         adapter->ets = false;
2572                 if (igb_sysfs_init(adapter))
2573                         dev_err(&pdev->dev,
2574                                 "failed to allocate sysfs resources\n");
2575         } else {
2576                 adapter->ets = false;
2577         }
2578 #endif
2579         /* Check if Media Autosense is enabled */
2580         adapter->ei = *ei;
2581         if (hw->dev_spec._82575.mas_capable)
2582                 igb_init_mas(adapter);
2583
2584         /* do hw tstamp init after resetting */
2585         igb_ptp_init(adapter);
2586
2587         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2588         /* print bus type/speed/width info, not applicable to i354 */
2589         if (hw->mac.type != e1000_i354) {
2590                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2591                          netdev->name,
2592                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2593                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2594                            "unknown"),
2595                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2596                           "Width x4" :
2597                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2598                           "Width x2" :
2599                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2600                           "Width x1" : "unknown"), netdev->dev_addr);
2601         }
2602
2603         if ((hw->mac.type >= e1000_i210 ||
2604              igb_get_flash_presence_i210(hw))) {
2605                 ret_val = igb_read_part_string(hw, part_str,
2606                                                E1000_PBANUM_LENGTH);
2607         } else {
2608                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2609         }
2610
2611         if (ret_val)
2612                 strcpy(part_str, "Unknown");
2613         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2614         dev_info(&pdev->dev,
2615                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2616                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2617                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2618                 adapter->num_rx_queues, adapter->num_tx_queues);
2619         if (hw->phy.media_type == e1000_media_type_copper) {
2620                 switch (hw->mac.type) {
2621                 case e1000_i350:
2622                 case e1000_i210:
2623                 case e1000_i211:
2624                         /* Enable EEE for internal copper PHY devices */
2625                         err = igb_set_eee_i350(hw, true, true);
2626                         if ((!err) &&
2627                             (!hw->dev_spec._82575.eee_disable)) {
2628                                 adapter->eee_advert =
2629                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2630                                 adapter->flags |= IGB_FLAG_EEE;
2631                         }
2632                         break;
2633                 case e1000_i354:
2634                         if ((rd32(E1000_CTRL_EXT) &
2635                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2636                                 err = igb_set_eee_i354(hw, true, true);
2637                                 if ((!err) &&
2638                                         (!hw->dev_spec._82575.eee_disable)) {
2639                                         adapter->eee_advert =
2640                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2641                                         adapter->flags |= IGB_FLAG_EEE;
2642                                 }
2643                         }
2644                         break;
2645                 default:
2646                         break;
2647                 }
2648         }
2649         pm_runtime_put_noidle(&pdev->dev);
2650         return 0;
2651
2652 err_register:
2653         igb_release_hw_control(adapter);
2654         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2655 err_eeprom:
2656         if (!igb_check_reset_block(hw))
2657                 igb_reset_phy(hw);
2658
2659         if (hw->flash_address)
2660                 iounmap(hw->flash_address);
2661 err_sw_init:
2662         igb_clear_interrupt_scheme(adapter);
2663         pci_iounmap(pdev, hw->hw_addr);
2664 err_ioremap:
2665         free_netdev(netdev);
2666 err_alloc_etherdev:
2667         pci_release_selected_regions(pdev,
2668                                      pci_select_bars(pdev, IORESOURCE_MEM));
2669 err_pci_reg:
2670 err_dma:
2671         pci_disable_device(pdev);
2672         return err;
2673 }
2674
2675 #ifdef CONFIG_PCI_IOV
2676 static int igb_disable_sriov(struct pci_dev *pdev)
2677 {
2678         struct net_device *netdev = pci_get_drvdata(pdev);
2679         struct igb_adapter *adapter = netdev_priv(netdev);
2680         struct e1000_hw *hw = &adapter->hw;
2681
2682         /* reclaim resources allocated to VFs */
2683         if (adapter->vf_data) {
2684                 /* disable iov and allow time for transactions to clear */
2685                 if (pci_vfs_assigned(pdev)) {
2686                         dev_warn(&pdev->dev,
2687                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2688                         return -EPERM;
2689                 } else {
2690                         pci_disable_sriov(pdev);
2691                         msleep(500);
2692                 }
2693
2694                 kfree(adapter->vf_data);
2695                 adapter->vf_data = NULL;
2696                 adapter->vfs_allocated_count = 0;
2697                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2698                 wrfl();
2699                 msleep(100);
2700                 dev_info(&pdev->dev, "IOV Disabled\n");
2701
2702                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2703                 adapter->flags |= IGB_FLAG_DMAC;
2704         }
2705
2706         return 0;
2707 }
2708
2709 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2710 {
2711         struct net_device *netdev = pci_get_drvdata(pdev);
2712         struct igb_adapter *adapter = netdev_priv(netdev);
2713         int old_vfs = pci_num_vf(pdev);
2714         int err = 0;
2715         int i;
2716
2717         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2718                 err = -EPERM;
2719                 goto out;
2720         }
2721         if (!num_vfs)
2722                 goto out;
2723
2724         if (old_vfs) {
2725                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2726                          old_vfs, max_vfs);
2727                 adapter->vfs_allocated_count = old_vfs;
2728         } else
2729                 adapter->vfs_allocated_count = num_vfs;
2730
2731         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2732                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2733
2734         /* if allocation failed then we do not support SR-IOV */
2735         if (!adapter->vf_data) {
2736                 adapter->vfs_allocated_count = 0;
2737                 dev_err(&pdev->dev,
2738                         "Unable to allocate memory for VF Data Storage\n");
2739                 err = -ENOMEM;
2740                 goto out;
2741         }
2742
2743         /* only call pci_enable_sriov() if no VFs are allocated already */
2744         if (!old_vfs) {
2745                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2746                 if (err)
2747                         goto err_out;
2748         }
2749         dev_info(&pdev->dev, "%d VFs allocated\n",
2750                  adapter->vfs_allocated_count);
2751         for (i = 0; i < adapter->vfs_allocated_count; i++)
2752                 igb_vf_configure(adapter, i);
2753
2754         /* DMA Coalescing is not supported in IOV mode. */
2755         adapter->flags &= ~IGB_FLAG_DMAC;
2756         goto out;
2757
2758 err_out:
2759         kfree(adapter->vf_data);
2760         adapter->vf_data = NULL;
2761         adapter->vfs_allocated_count = 0;
2762 out:
2763         return err;
2764 }
2765
2766 #endif
2767 /**
2768  *  igb_remove_i2c - Cleanup  I2C interface
2769  *  @adapter: pointer to adapter structure
2770  **/
2771 static void igb_remove_i2c(struct igb_adapter *adapter)
2772 {
2773         /* free the adapter bus structure */
2774         i2c_del_adapter(&adapter->i2c_adap);
2775 }
2776
2777 /**
2778  *  igb_remove - Device Removal Routine
2779  *  @pdev: PCI device information struct
2780  *
2781  *  igb_remove is called by the PCI subsystem to alert the driver
2782  *  that it should release a PCI device.  The could be caused by a
2783  *  Hot-Plug event, or because the driver is going to be removed from
2784  *  memory.
2785  **/
2786 static void igb_remove(struct pci_dev *pdev)
2787 {
2788         struct net_device *netdev = pci_get_drvdata(pdev);
2789         struct igb_adapter *adapter = netdev_priv(netdev);
2790         struct e1000_hw *hw = &adapter->hw;
2791
2792         pm_runtime_get_noresume(&pdev->dev);
2793 #ifdef CONFIG_IGB_HWMON
2794         igb_sysfs_exit(adapter);
2795 #endif
2796         igb_remove_i2c(adapter);
2797         igb_ptp_stop(adapter);
2798         /* The watchdog timer may be rescheduled, so explicitly
2799          * disable watchdog from being rescheduled.
2800          */
2801         set_bit(__IGB_DOWN, &adapter->state);
2802         del_timer_sync(&adapter->watchdog_timer);
2803         del_timer_sync(&adapter->phy_info_timer);
2804
2805         cancel_work_sync(&adapter->reset_task);
2806         cancel_work_sync(&adapter->watchdog_task);
2807
2808 #ifdef CONFIG_IGB_DCA
2809         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2810                 dev_info(&pdev->dev, "DCA disabled\n");
2811                 dca_remove_requester(&pdev->dev);
2812                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2813                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2814         }
2815 #endif
2816
2817         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2818          * would have already happened in close and is redundant.
2819          */
2820         igb_release_hw_control(adapter);
2821
2822         unregister_netdev(netdev);
2823
2824         igb_clear_interrupt_scheme(adapter);
2825
2826 #ifdef CONFIG_PCI_IOV
2827         igb_disable_sriov(pdev);
2828 #endif
2829
2830         pci_iounmap(pdev, hw->hw_addr);
2831         if (hw->flash_address)
2832                 iounmap(hw->flash_address);
2833         pci_release_selected_regions(pdev,
2834                                      pci_select_bars(pdev, IORESOURCE_MEM));
2835
2836         kfree(adapter->shadow_vfta);
2837         free_netdev(netdev);
2838
2839         pci_disable_pcie_error_reporting(pdev);
2840
2841         pci_disable_device(pdev);
2842 }
2843
2844 /**
2845  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2846  *  @adapter: board private structure to initialize
2847  *
2848  *  This function initializes the vf specific data storage and then attempts to
2849  *  allocate the VFs.  The reason for ordering it this way is because it is much
2850  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2851  *  the memory for the VFs.
2852  **/
2853 static void igb_probe_vfs(struct igb_adapter *adapter)
2854 {
2855 #ifdef CONFIG_PCI_IOV
2856         struct pci_dev *pdev = adapter->pdev;
2857         struct e1000_hw *hw = &adapter->hw;
2858
2859         /* Virtualization features not supported on i210 family. */
2860         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2861                 return;
2862
2863         pci_sriov_set_totalvfs(pdev, 7);
2864         igb_pci_enable_sriov(pdev, max_vfs);
2865
2866 #endif /* CONFIG_PCI_IOV */
2867 }
2868
2869 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2870 {
2871         struct e1000_hw *hw = &adapter->hw;
2872         u32 max_rss_queues;
2873
2874         /* Determine the maximum number of RSS queues supported. */
2875         switch (hw->mac.type) {
2876         case e1000_i211:
2877                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2878                 break;
2879         case e1000_82575:
2880         case e1000_i210:
2881                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2882                 break;
2883         case e1000_i350:
2884                 /* I350 cannot do RSS and SR-IOV at the same time */
2885                 if (!!adapter->vfs_allocated_count) {
2886                         max_rss_queues = 1;
2887                         break;
2888                 }
2889                 /* fall through */
2890         case e1000_82576:
2891                 if (!!adapter->vfs_allocated_count) {
2892                         max_rss_queues = 2;
2893                         break;
2894                 }
2895                 /* fall through */
2896         case e1000_82580:
2897         case e1000_i354:
2898         default:
2899                 max_rss_queues = IGB_MAX_RX_QUEUES;
2900                 break;
2901         }
2902
2903         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2904
2905         /* Determine if we need to pair queues. */
2906         switch (hw->mac.type) {
2907         case e1000_82575:
2908         case e1000_i211:
2909                 /* Device supports enough interrupts without queue pairing. */
2910                 break;
2911         case e1000_82576:
2912                 /* If VFs are going to be allocated with RSS queues then we
2913                  * should pair the queues in order to conserve interrupts due
2914                  * to limited supply.
2915                  */
2916                 if ((adapter->rss_queues > 1) &&
2917                     (adapter->vfs_allocated_count > 6))
2918                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2919                 /* fall through */
2920         case e1000_82580:
2921         case e1000_i350:
2922         case e1000_i354:
2923         case e1000_i210:
2924         default:
2925                 /* If rss_queues > half of max_rss_queues, pair the queues in
2926                  * order to conserve interrupts due to limited supply.
2927                  */
2928                 if (adapter->rss_queues > (max_rss_queues / 2))
2929                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2930                 break;
2931         }
2932 }
2933
2934 /**
2935  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2936  *  @adapter: board private structure to initialize
2937  *
2938  *  igb_sw_init initializes the Adapter private data structure.
2939  *  Fields are initialized based on PCI device information and
2940  *  OS network device settings (MTU size).
2941  **/
2942 static int igb_sw_init(struct igb_adapter *adapter)
2943 {
2944         struct e1000_hw *hw = &adapter->hw;
2945         struct net_device *netdev = adapter->netdev;
2946         struct pci_dev *pdev = adapter->pdev;
2947
2948         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2949
2950         /* set default ring sizes */
2951         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2952         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2953
2954         /* set default ITR values */
2955         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2956         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2957
2958         /* set default work limits */
2959         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2960
2961         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2962                                   VLAN_HLEN;
2963         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2964
2965         spin_lock_init(&adapter->stats64_lock);
2966 #ifdef CONFIG_PCI_IOV
2967         switch (hw->mac.type) {
2968         case e1000_82576:
2969         case e1000_i350:
2970                 if (max_vfs > 7) {
2971                         dev_warn(&pdev->dev,
2972                                  "Maximum of 7 VFs per PF, using max\n");
2973                         max_vfs = adapter->vfs_allocated_count = 7;
2974                 } else
2975                         adapter->vfs_allocated_count = max_vfs;
2976                 if (adapter->vfs_allocated_count)
2977                         dev_warn(&pdev->dev,
2978                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2979                 break;
2980         default:
2981                 break;
2982         }
2983 #endif /* CONFIG_PCI_IOV */
2984
2985         igb_init_queue_configuration(adapter);
2986
2987         /* Setup and initialize a copy of the hw vlan table array */
2988         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2989                                        GFP_ATOMIC);
2990
2991         /* This call may decrease the number of queues */
2992         if (igb_init_interrupt_scheme(adapter, true)) {
2993                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2994                 return -ENOMEM;
2995         }
2996
2997         igb_probe_vfs(adapter);
2998
2999         /* Explicitly disable IRQ since the NIC can be in any state. */
3000         igb_irq_disable(adapter);
3001
3002         if (hw->mac.type >= e1000_i350)
3003                 adapter->flags &= ~IGB_FLAG_DMAC;
3004
3005         set_bit(__IGB_DOWN, &adapter->state);
3006         return 0;
3007 }
3008
3009 /**
3010  *  igb_open - Called when a network interface is made active
3011  *  @netdev: network interface device structure
3012  *
3013  *  Returns 0 on success, negative value on failure
3014  *
3015  *  The open entry point is called when a network interface is made
3016  *  active by the system (IFF_UP).  At this point all resources needed
3017  *  for transmit and receive operations are allocated, the interrupt
3018  *  handler is registered with the OS, the watchdog timer is started,
3019  *  and the stack is notified that the interface is ready.
3020  **/
3021 static int __igb_open(struct net_device *netdev, bool resuming)
3022 {
3023         struct igb_adapter *adapter = netdev_priv(netdev);
3024         struct e1000_hw *hw = &adapter->hw;
3025         struct pci_dev *pdev = adapter->pdev;
3026         int err;
3027         int i;
3028
3029         /* disallow open during test */
3030         if (test_bit(__IGB_TESTING, &adapter->state)) {
3031                 WARN_ON(resuming);
3032                 return -EBUSY;
3033         }
3034
3035         if (!resuming)
3036                 pm_runtime_get_sync(&pdev->dev);
3037
3038         netif_carrier_off(netdev);
3039
3040         /* allocate transmit descriptors */
3041         err = igb_setup_all_tx_resources(adapter);
3042         if (err)
3043                 goto err_setup_tx;
3044
3045         /* allocate receive descriptors */
3046         err = igb_setup_all_rx_resources(adapter);
3047         if (err)
3048                 goto err_setup_rx;
3049
3050         igb_power_up_link(adapter);
3051
3052         /* before we allocate an interrupt, we must be ready to handle it.
3053          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3054          * as soon as we call pci_request_irq, so we have to setup our
3055          * clean_rx handler before we do so.
3056          */
3057         igb_configure(adapter);
3058
3059         err = igb_request_irq(adapter);
3060         if (err)
3061                 goto err_req_irq;
3062
3063         /* Notify the stack of the actual queue counts. */
3064         err = netif_set_real_num_tx_queues(adapter->netdev,
3065                                            adapter->num_tx_queues);
3066         if (err)
3067                 goto err_set_queues;
3068
3069         err = netif_set_real_num_rx_queues(adapter->netdev,
3070                                            adapter->num_rx_queues);
3071         if (err)
3072                 goto err_set_queues;
3073
3074         /* From here on the code is the same as igb_up() */
3075         clear_bit(__IGB_DOWN, &adapter->state);
3076
3077         for (i = 0; i < adapter->num_q_vectors; i++)
3078                 napi_enable(&(adapter->q_vector[i]->napi));
3079
3080         /* Clear any pending interrupts. */
3081         rd32(E1000_ICR);
3082
3083         igb_irq_enable(adapter);
3084
3085         /* notify VFs that reset has been completed */
3086         if (adapter->vfs_allocated_count) {
3087                 u32 reg_data = rd32(E1000_CTRL_EXT);
3088
3089                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3090                 wr32(E1000_CTRL_EXT, reg_data);
3091         }
3092
3093         netif_tx_start_all_queues(netdev);
3094
3095         if (!resuming)
3096                 pm_runtime_put(&pdev->dev);
3097
3098         /* start the watchdog. */
3099         hw->mac.get_link_status = 1;
3100         schedule_work(&adapter->watchdog_task);
3101
3102         return 0;
3103
3104 err_set_queues:
3105         igb_free_irq(adapter);
3106 err_req_irq:
3107         igb_release_hw_control(adapter);
3108         igb_power_down_link(adapter);
3109         igb_free_all_rx_resources(adapter);
3110 err_setup_rx:
3111         igb_free_all_tx_resources(adapter);
3112 err_setup_tx:
3113         igb_reset(adapter);
3114         if (!resuming)
3115                 pm_runtime_put(&pdev->dev);
3116
3117         return err;
3118 }
3119
3120 static int igb_open(struct net_device *netdev)
3121 {
3122         return __igb_open(netdev, false);
3123 }
3124
3125 /**
3126  *  igb_close - Disables a network interface
3127  *  @netdev: network interface device structure
3128  *
3129  *  Returns 0, this is not allowed to fail
3130  *
3131  *  The close entry point is called when an interface is de-activated
3132  *  by the OS.  The hardware is still under the driver's control, but
3133  *  needs to be disabled.  A global MAC reset is issued to stop the
3134  *  hardware, and all transmit and receive resources are freed.
3135  **/
3136 static int __igb_close(struct net_device *netdev, bool suspending)
3137 {
3138         struct igb_adapter *adapter = netdev_priv(netdev);
3139         struct pci_dev *pdev = adapter->pdev;
3140
3141         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3142
3143         if (!suspending)
3144                 pm_runtime_get_sync(&pdev->dev);
3145
3146         igb_down(adapter);
3147         igb_free_irq(adapter);
3148
3149         igb_free_all_tx_resources(adapter);
3150         igb_free_all_rx_resources(adapter);
3151
3152         if (!suspending)
3153                 pm_runtime_put_sync(&pdev->dev);
3154         return 0;
3155 }
3156
3157 static int igb_close(struct net_device *netdev)
3158 {
3159         return __igb_close(netdev, false);
3160 }
3161
3162 /**
3163  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3164  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3165  *
3166  *  Return 0 on success, negative on failure
3167  **/
3168 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3169 {
3170         struct device *dev = tx_ring->dev;
3171         int size;
3172
3173         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3174
3175         tx_ring->tx_buffer_info = vzalloc(size);
3176         if (!tx_ring->tx_buffer_info)
3177                 goto err;
3178
3179         /* round up to nearest 4K */
3180         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3181         tx_ring->size = ALIGN(tx_ring->size, 4096);
3182
3183         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3184                                            &tx_ring->dma, GFP_KERNEL);
3185         if (!tx_ring->desc)
3186                 goto err;
3187
3188         tx_ring->next_to_use = 0;
3189         tx_ring->next_to_clean = 0;
3190
3191         return 0;
3192
3193 err:
3194         vfree(tx_ring->tx_buffer_info);
3195         tx_ring->tx_buffer_info = NULL;
3196         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3197         return -ENOMEM;
3198 }
3199
3200 /**
3201  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3202  *                               (Descriptors) for all queues
3203  *  @adapter: board private structure
3204  *
3205  *  Return 0 on success, negative on failure
3206  **/
3207 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3208 {
3209         struct pci_dev *pdev = adapter->pdev;
3210         int i, err = 0;
3211
3212         for (i = 0; i < adapter->num_tx_queues; i++) {
3213                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3214                 if (err) {
3215                         dev_err(&pdev->dev,
3216                                 "Allocation for Tx Queue %u failed\n", i);
3217                         for (i--; i >= 0; i--)
3218                                 igb_free_tx_resources(adapter->tx_ring[i]);
3219                         break;
3220                 }
3221         }
3222
3223         return err;
3224 }
3225
3226 /**
3227  *  igb_setup_tctl - configure the transmit control registers
3228  *  @adapter: Board private structure
3229  **/
3230 void igb_setup_tctl(struct igb_adapter *adapter)
3231 {
3232         struct e1000_hw *hw = &adapter->hw;
3233         u32 tctl;
3234
3235         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3236         wr32(E1000_TXDCTL(0), 0);
3237
3238         /* Program the Transmit Control Register */
3239         tctl = rd32(E1000_TCTL);
3240         tctl &= ~E1000_TCTL_CT;
3241         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3242                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3243
3244         igb_config_collision_dist(hw);
3245
3246         /* Enable transmits */
3247         tctl |= E1000_TCTL_EN;
3248
3249         wr32(E1000_TCTL, tctl);
3250 }
3251
3252 /**
3253  *  igb_configure_tx_ring - Configure transmit ring after Reset
3254  *  @adapter: board private structure
3255  *  @ring: tx ring to configure
3256  *
3257  *  Configure a transmit ring after a reset.
3258  **/
3259 void igb_configure_tx_ring(struct igb_adapter *adapter,
3260                            struct igb_ring *ring)
3261 {
3262         struct e1000_hw *hw = &adapter->hw;
3263         u32 txdctl = 0;
3264         u64 tdba = ring->dma;
3265         int reg_idx = ring->reg_idx;
3266
3267         /* disable the queue */
3268         wr32(E1000_TXDCTL(reg_idx), 0);
3269         wrfl();
3270         mdelay(10);
3271
3272         wr32(E1000_TDLEN(reg_idx),
3273              ring->count * sizeof(union e1000_adv_tx_desc));
3274         wr32(E1000_TDBAL(reg_idx),
3275              tdba & 0x00000000ffffffffULL);
3276         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3277
3278         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3279         wr32(E1000_TDH(reg_idx), 0);
3280         writel(0, ring->tail);
3281
3282         txdctl |= IGB_TX_PTHRESH;
3283         txdctl |= IGB_TX_HTHRESH << 8;
3284         txdctl |= IGB_TX_WTHRESH << 16;
3285
3286         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3287         wr32(E1000_TXDCTL(reg_idx), txdctl);
3288 }
3289
3290 /**
3291  *  igb_configure_tx - Configure transmit Unit after Reset
3292  *  @adapter: board private structure
3293  *
3294  *  Configure the Tx unit of the MAC after a reset.
3295  **/
3296 static void igb_configure_tx(struct igb_adapter *adapter)
3297 {
3298         int i;
3299
3300         for (i = 0; i < adapter->num_tx_queues; i++)
3301                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3302 }
3303
3304 /**
3305  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3306  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3307  *
3308  *  Returns 0 on success, negative on failure
3309  **/
3310 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3311 {
3312         struct device *dev = rx_ring->dev;
3313         int size;
3314
3315         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3316
3317         rx_ring->rx_buffer_info = vzalloc(size);
3318         if (!rx_ring->rx_buffer_info)
3319                 goto err;
3320
3321         /* Round up to nearest 4K */
3322         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3323         rx_ring->size = ALIGN(rx_ring->size, 4096);
3324
3325         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3326                                            &rx_ring->dma, GFP_KERNEL);
3327         if (!rx_ring->desc)
3328                 goto err;
3329
3330         rx_ring->next_to_alloc = 0;
3331         rx_ring->next_to_clean = 0;
3332         rx_ring->next_to_use = 0;
3333
3334         return 0;
3335
3336 err:
3337         vfree(rx_ring->rx_buffer_info);
3338         rx_ring->rx_buffer_info = NULL;
3339         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3340         return -ENOMEM;
3341 }
3342
3343 /**
3344  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3345  *                               (Descriptors) for all queues
3346  *  @adapter: board private structure
3347  *
3348  *  Return 0 on success, negative on failure
3349  **/
3350 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3351 {
3352         struct pci_dev *pdev = adapter->pdev;
3353         int i, err = 0;
3354
3355         for (i = 0; i < adapter->num_rx_queues; i++) {
3356                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3357                 if (err) {
3358                         dev_err(&pdev->dev,
3359                                 "Allocation for Rx Queue %u failed\n", i);
3360                         for (i--; i >= 0; i--)
3361                                 igb_free_rx_resources(adapter->rx_ring[i]);
3362                         break;
3363                 }
3364         }
3365
3366         return err;
3367 }
3368
3369 /**
3370  *  igb_setup_mrqc - configure the multiple receive queue control registers
3371  *  @adapter: Board private structure
3372  **/
3373 static void igb_setup_mrqc(struct igb_adapter *adapter)
3374 {
3375         struct e1000_hw *hw = &adapter->hw;
3376         u32 mrqc, rxcsum;
3377         u32 j, num_rx_queues;
3378         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3379                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3380                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3381                                         0xFA01ACBE };
3382
3383         /* Fill out hash function seeds */
3384         for (j = 0; j < 10; j++)
3385                 wr32(E1000_RSSRK(j), rsskey[j]);
3386
3387         num_rx_queues = adapter->rss_queues;
3388
3389         switch (hw->mac.type) {
3390         case e1000_82576:
3391                 /* 82576 supports 2 RSS queues for SR-IOV */
3392                 if (adapter->vfs_allocated_count)
3393                         num_rx_queues = 2;
3394                 break;
3395         default:
3396                 break;
3397         }
3398
3399         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3400                 for (j = 0; j < IGB_RETA_SIZE; j++)
3401                         adapter->rss_indir_tbl[j] =
3402                         (j * num_rx_queues) / IGB_RETA_SIZE;
3403                 adapter->rss_indir_tbl_init = num_rx_queues;
3404         }
3405         igb_write_rss_indir_tbl(adapter);
3406
3407         /* Disable raw packet checksumming so that RSS hash is placed in
3408          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3409          * offloads as they are enabled by default
3410          */
3411         rxcsum = rd32(E1000_RXCSUM);
3412         rxcsum |= E1000_RXCSUM_PCSD;
3413
3414         if (adapter->hw.mac.type >= e1000_82576)
3415                 /* Enable Receive Checksum Offload for SCTP */
3416                 rxcsum |= E1000_RXCSUM_CRCOFL;
3417
3418         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3419         wr32(E1000_RXCSUM, rxcsum);
3420
3421         /* Generate RSS hash based on packet types, TCP/UDP
3422          * port numbers and/or IPv4/v6 src and dst addresses
3423          */
3424         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3425                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3426                E1000_MRQC_RSS_FIELD_IPV6 |
3427                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3428                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3429
3430         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3431                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3432         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3433                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3434
3435         /* If VMDq is enabled then we set the appropriate mode for that, else
3436          * we default to RSS so that an RSS hash is calculated per packet even
3437          * if we are only using one queue
3438          */
3439         if (adapter->vfs_allocated_count) {
3440                 if (hw->mac.type > e1000_82575) {
3441                         /* Set the default pool for the PF's first queue */
3442                         u32 vtctl = rd32(E1000_VT_CTL);
3443
3444                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3445                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3446                         vtctl |= adapter->vfs_allocated_count <<
3447                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3448                         wr32(E1000_VT_CTL, vtctl);
3449                 }
3450                 if (adapter->rss_queues > 1)
3451                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3452                 else
3453                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3454         } else {
3455                 if (hw->mac.type != e1000_i211)
3456                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3457         }
3458         igb_vmm_control(adapter);
3459
3460         wr32(E1000_MRQC, mrqc);
3461 }
3462
3463 /**
3464  *  igb_setup_rctl - configure the receive control registers
3465  *  @adapter: Board private structure
3466  **/
3467 void igb_setup_rctl(struct igb_adapter *adapter)
3468 {
3469         struct e1000_hw *hw = &adapter->hw;
3470         u32 rctl;
3471
3472         rctl = rd32(E1000_RCTL);
3473
3474         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3475         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3476
3477         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3478                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3479
3480         /* enable stripping of CRC. It's unlikely this will break BMC
3481          * redirection as it did with e1000. Newer features require
3482          * that the HW strips the CRC.
3483          */
3484         rctl |= E1000_RCTL_SECRC;
3485
3486         /* disable store bad packets and clear size bits. */
3487         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3488
3489         /* enable LPE to prevent packets larger than max_frame_size */
3490         rctl |= E1000_RCTL_LPE;
3491
3492         /* disable queue 0 to prevent tail write w/o re-config */
3493         wr32(E1000_RXDCTL(0), 0);
3494
3495         /* Attention!!!  For SR-IOV PF driver operations you must enable
3496          * queue drop for all VF and PF queues to prevent head of line blocking
3497          * if an un-trusted VF does not provide descriptors to hardware.
3498          */
3499         if (adapter->vfs_allocated_count) {
3500                 /* set all queue drop enable bits */
3501                 wr32(E1000_QDE, ALL_QUEUES);
3502         }
3503
3504         /* This is useful for sniffing bad packets. */
3505         if (adapter->netdev->features & NETIF_F_RXALL) {
3506                 /* UPE and MPE will be handled by normal PROMISC logic
3507                  * in e1000e_set_rx_mode
3508                  */
3509                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3510                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3511                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3512
3513                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3514                           E1000_RCTL_DPF | /* Allow filtered pause */
3515                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3516                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3517                  * and that breaks VLANs.
3518                  */
3519         }
3520
3521         wr32(E1000_RCTL, rctl);
3522 }
3523
3524 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3525                                    int vfn)
3526 {
3527         struct e1000_hw *hw = &adapter->hw;
3528         u32 vmolr;
3529
3530         /* if it isn't the PF check to see if VFs are enabled and
3531          * increase the size to support vlan tags
3532          */
3533         if (vfn < adapter->vfs_allocated_count &&
3534             adapter->vf_data[vfn].vlans_enabled)
3535                 size += VLAN_TAG_SIZE;
3536
3537         vmolr = rd32(E1000_VMOLR(vfn));
3538         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3539         vmolr |= size | E1000_VMOLR_LPE;
3540         wr32(E1000_VMOLR(vfn), vmolr);
3541
3542         return 0;
3543 }
3544
3545 /**
3546  *  igb_rlpml_set - set maximum receive packet size
3547  *  @adapter: board private structure
3548  *
3549  *  Configure maximum receivable packet size.
3550  **/
3551 static void igb_rlpml_set(struct igb_adapter *adapter)
3552 {
3553         u32 max_frame_size = adapter->max_frame_size;
3554         struct e1000_hw *hw = &adapter->hw;
3555         u16 pf_id = adapter->vfs_allocated_count;
3556
3557         if (pf_id) {
3558                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3559                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3560                  * to our max jumbo frame size, in case we need to enable
3561                  * jumbo frames on one of the rings later.
3562                  * This will not pass over-length frames into the default
3563                  * queue because it's gated by the VMOLR.RLPML.
3564                  */
3565                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3566         }
3567
3568         wr32(E1000_RLPML, max_frame_size);
3569 }
3570
3571 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3572                                  int vfn, bool aupe)
3573 {
3574         struct e1000_hw *hw = &adapter->hw;
3575         u32 vmolr;
3576
3577         /* This register exists only on 82576 and newer so if we are older then
3578          * we should exit and do nothing
3579          */
3580         if (hw->mac.type < e1000_82576)
3581                 return;
3582
3583         vmolr = rd32(E1000_VMOLR(vfn));
3584         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3585         if (hw->mac.type == e1000_i350) {
3586                 u32 dvmolr;
3587
3588                 dvmolr = rd32(E1000_DVMOLR(vfn));
3589                 dvmolr |= E1000_DVMOLR_STRVLAN;
3590                 wr32(E1000_DVMOLR(vfn), dvmolr);
3591         }
3592         if (aupe)
3593                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3594         else
3595                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3596
3597         /* clear all bits that might not be set */
3598         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3599
3600         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3601                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3602         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3603          * multicast packets
3604          */
3605         if (vfn <= adapter->vfs_allocated_count)
3606                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3607
3608         wr32(E1000_VMOLR(vfn), vmolr);
3609 }
3610
3611 /**
3612  *  igb_configure_rx_ring - Configure a receive ring after Reset
3613  *  @adapter: board private structure
3614  *  @ring: receive ring to be configured
3615  *
3616  *  Configure the Rx unit of the MAC after a reset.
3617  **/
3618 void igb_configure_rx_ring(struct igb_adapter *adapter,
3619                            struct igb_ring *ring)
3620 {
3621         struct e1000_hw *hw = &adapter->hw;
3622         u64 rdba = ring->dma;
3623         int reg_idx = ring->reg_idx;
3624         u32 srrctl = 0, rxdctl = 0;
3625
3626         /* disable the queue */
3627         wr32(E1000_RXDCTL(reg_idx), 0);
3628
3629         /* Set DMA base address registers */
3630         wr32(E1000_RDBAL(reg_idx),
3631              rdba & 0x00000000ffffffffULL);
3632         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3633         wr32(E1000_RDLEN(reg_idx),
3634              ring->count * sizeof(union e1000_adv_rx_desc));
3635
3636         /* initialize head and tail */
3637         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3638         wr32(E1000_RDH(reg_idx), 0);
3639         writel(0, ring->tail);
3640
3641         /* set descriptor configuration */
3642         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3643         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3644         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3645         if (hw->mac.type >= e1000_82580)
3646                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3647         /* Only set Drop Enable if we are supporting multiple queues */
3648         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3649                 srrctl |= E1000_SRRCTL_DROP_EN;
3650
3651         wr32(E1000_SRRCTL(reg_idx), srrctl);
3652
3653         /* set filtering for VMDQ pools */
3654         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3655
3656         rxdctl |= IGB_RX_PTHRESH;
3657         rxdctl |= IGB_RX_HTHRESH << 8;
3658         rxdctl |= IGB_RX_WTHRESH << 16;
3659
3660         /* enable receive descriptor fetching */
3661         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3662         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3663 }
3664
3665 /**
3666  *  igb_configure_rx - Configure receive Unit after Reset
3667  *  @adapter: board private structure
3668  *
3669  *  Configure the Rx unit of the MAC after a reset.
3670  **/
3671 static void igb_configure_rx(struct igb_adapter *adapter)
3672 {
3673         int i;
3674
3675         /* set UTA to appropriate mode */
3676         igb_set_uta(adapter);
3677
3678         /* set the correct pool for the PF default MAC address in entry 0 */
3679         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3680                          adapter->vfs_allocated_count);
3681
3682         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3683          * the Base and Length of the Rx Descriptor Ring
3684          */
3685         for (i = 0; i < adapter->num_rx_queues; i++)
3686                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3687 }
3688
3689 /**
3690  *  igb_free_tx_resources - Free Tx Resources per Queue
3691  *  @tx_ring: Tx descriptor ring for a specific queue
3692  *
3693  *  Free all transmit software resources
3694  **/
3695 void igb_free_tx_resources(struct igb_ring *tx_ring)
3696 {
3697         igb_clean_tx_ring(tx_ring);
3698
3699         vfree(tx_ring->tx_buffer_info);
3700         tx_ring->tx_buffer_info = NULL;
3701
3702         /* if not set, then don't free */
3703         if (!tx_ring->desc)
3704                 return;
3705
3706         dma_free_coherent(tx_ring->dev, tx_ring->size,
3707                           tx_ring->desc, tx_ring->dma);
3708
3709         tx_ring->desc = NULL;
3710 }
3711
3712 /**
3713  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3714  *  @adapter: board private structure
3715  *
3716  *  Free all transmit software resources
3717  **/
3718 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3719 {
3720         int i;
3721
3722         for (i = 0; i < adapter->num_tx_queues; i++)
3723                 if (adapter->tx_ring[i])
3724                         igb_free_tx_resources(adapter->tx_ring[i]);
3725 }
3726
3727 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3728                                     struct igb_tx_buffer *tx_buffer)
3729 {
3730         if (tx_buffer->skb) {
3731                 dev_kfree_skb_any(tx_buffer->skb);
3732                 if (dma_unmap_len(tx_buffer, len))
3733                         dma_unmap_single(ring->dev,
3734                                          dma_unmap_addr(tx_buffer, dma),
3735                                          dma_unmap_len(tx_buffer, len),
3736                                          DMA_TO_DEVICE);
3737         } else if (dma_unmap_len(tx_buffer, len)) {
3738                 dma_unmap_page(ring->dev,
3739                                dma_unmap_addr(tx_buffer, dma),
3740                                dma_unmap_len(tx_buffer, len),
3741                                DMA_TO_DEVICE);
3742         }
3743         tx_buffer->next_to_watch = NULL;
3744         tx_buffer->skb = NULL;
3745         dma_unmap_len_set(tx_buffer, len, 0);
3746         /* buffer_info must be completely set up in the transmit path */
3747 }
3748
3749 /**
3750  *  igb_clean_tx_ring - Free Tx Buffers
3751  *  @tx_ring: ring to be cleaned
3752  **/
3753 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3754 {
3755         struct igb_tx_buffer *buffer_info;
3756         unsigned long size;
3757         u16 i;
3758
3759         if (!tx_ring->tx_buffer_info)
3760                 return;
3761         /* Free all the Tx ring sk_buffs */
3762
3763         for (i = 0; i < tx_ring->count; i++) {
3764                 buffer_info = &tx_ring->tx_buffer_info[i];
3765                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3766         }
3767
3768         netdev_tx_reset_queue(txring_txq(tx_ring));
3769
3770         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3771         memset(tx_ring->tx_buffer_info, 0, size);
3772
3773         /* Zero out the descriptor ring */
3774         memset(tx_ring->desc, 0, tx_ring->size);
3775
3776         tx_ring->next_to_use = 0;
3777         tx_ring->next_to_clean = 0;
3778 }
3779
3780 /**
3781  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3782  *  @adapter: board private structure
3783  **/
3784 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3785 {
3786         int i;
3787
3788         for (i = 0; i < adapter->num_tx_queues; i++)
3789                 if (adapter->tx_ring[i])
3790                         igb_clean_tx_ring(adapter->tx_ring[i]);
3791 }
3792
3793 /**
3794  *  igb_free_rx_resources - Free Rx Resources
3795  *  @rx_ring: ring to clean the resources from
3796  *
3797  *  Free all receive software resources
3798  **/
3799 void igb_free_rx_resources(struct igb_ring *rx_ring)
3800 {
3801         igb_clean_rx_ring(rx_ring);
3802
3803         vfree(rx_ring->rx_buffer_info);
3804         rx_ring->rx_buffer_info = NULL;
3805
3806         /* if not set, then don't free */
3807         if (!rx_ring->desc)
3808                 return;
3809
3810         dma_free_coherent(rx_ring->dev, rx_ring->size,
3811                           rx_ring->desc, rx_ring->dma);
3812
3813         rx_ring->desc = NULL;
3814 }
3815
3816 /**
3817  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3818  *  @adapter: board private structure
3819  *
3820  *  Free all receive software resources
3821  **/
3822 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3823 {
3824         int i;
3825
3826         for (i = 0; i < adapter->num_rx_queues; i++)
3827                 if (adapter->rx_ring[i])
3828                         igb_free_rx_resources(adapter->rx_ring[i]);
3829 }
3830
3831 /**
3832  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3833  *  @rx_ring: ring to free buffers from
3834  **/
3835 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3836 {
3837         unsigned long size;
3838         u16 i;
3839
3840         if (rx_ring->skb)
3841                 dev_kfree_skb(rx_ring->skb);
3842         rx_ring->skb = NULL;
3843
3844         if (!rx_ring->rx_buffer_info)
3845                 return;
3846
3847         /* Free all the Rx ring sk_buffs */
3848         for (i = 0; i < rx_ring->count; i++) {
3849                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3850
3851                 if (!buffer_info->page)
3852                         continue;
3853
3854                 dma_unmap_page(rx_ring->dev,
3855                                buffer_info->dma,
3856                                PAGE_SIZE,
3857                                DMA_FROM_DEVICE);
3858                 __free_page(buffer_info->page);
3859
3860                 buffer_info->page = NULL;
3861         }
3862
3863         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3864         memset(rx_ring->rx_buffer_info, 0, size);
3865
3866         /* Zero out the descriptor ring */
3867         memset(rx_ring->desc, 0, rx_ring->size);
3868
3869         rx_ring->next_to_alloc = 0;
3870         rx_ring->next_to_clean = 0;
3871         rx_ring->next_to_use = 0;
3872 }
3873
3874 /**
3875  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3876  *  @adapter: board private structure
3877  **/
3878 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3879 {
3880         int i;
3881
3882         for (i = 0; i < adapter->num_rx_queues; i++)
3883                 if (adapter->rx_ring[i])
3884                         igb_clean_rx_ring(adapter->rx_ring[i]);
3885 }
3886
3887 /**
3888  *  igb_set_mac - Change the Ethernet Address of the NIC
3889  *  @netdev: network interface device structure
3890  *  @p: pointer to an address structure
3891  *
3892  *  Returns 0 on success, negative on failure
3893  **/
3894 static int igb_set_mac(struct net_device *netdev, void *p)
3895 {
3896         struct igb_adapter *adapter = netdev_priv(netdev);
3897         struct e1000_hw *hw = &adapter->hw;
3898         struct sockaddr *addr = p;
3899
3900         if (!is_valid_ether_addr(addr->sa_data))
3901                 return -EADDRNOTAVAIL;
3902
3903         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3904         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3905
3906         /* set the correct pool for the new PF MAC address in entry 0 */
3907         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3908                          adapter->vfs_allocated_count);
3909
3910         return 0;
3911 }
3912
3913 /**
3914  *  igb_write_mc_addr_list - write multicast addresses to MTA
3915  *  @netdev: network interface device structure
3916  *
3917  *  Writes multicast address list to the MTA hash table.
3918  *  Returns: -ENOMEM on failure
3919  *           0 on no addresses written
3920  *           X on writing X addresses to MTA
3921  **/
3922 static int igb_write_mc_addr_list(struct net_device *netdev)
3923 {
3924         struct igb_adapter *adapter = netdev_priv(netdev);
3925         struct e1000_hw *hw = &adapter->hw;
3926         struct netdev_hw_addr *ha;
3927         u8  *mta_list;
3928         int i;
3929
3930         if (netdev_mc_empty(netdev)) {
3931                 /* nothing to program, so clear mc list */
3932                 igb_update_mc_addr_list(hw, NULL, 0);
3933                 igb_restore_vf_multicasts(adapter);
3934                 return 0;
3935         }
3936
3937         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3938         if (!mta_list)
3939                 return -ENOMEM;
3940
3941         /* The shared function expects a packed array of only addresses. */
3942         i = 0;
3943         netdev_for_each_mc_addr(ha, netdev)
3944                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3945
3946         igb_update_mc_addr_list(hw, mta_list, i);
3947         kfree(mta_list);
3948
3949         return netdev_mc_count(netdev);
3950 }
3951
3952 /**
3953  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3954  *  @netdev: network interface device structure
3955  *
3956  *  Writes unicast address list to the RAR table.
3957  *  Returns: -ENOMEM on failure/insufficient address space
3958  *           0 on no addresses written
3959  *           X on writing X addresses to the RAR table
3960  **/
3961 static int igb_write_uc_addr_list(struct net_device *netdev)
3962 {
3963         struct igb_adapter *adapter = netdev_priv(netdev);
3964         struct e1000_hw *hw = &adapter->hw;
3965         unsigned int vfn = adapter->vfs_allocated_count;
3966         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3967         int count = 0;
3968
3969         /* return ENOMEM indicating insufficient memory for addresses */
3970         if (netdev_uc_count(netdev) > rar_entries)
3971                 return -ENOMEM;
3972
3973         if (!netdev_uc_empty(netdev) && rar_entries) {
3974                 struct netdev_hw_addr *ha;
3975
3976                 netdev_for_each_uc_addr(ha, netdev) {
3977                         if (!rar_entries)
3978                                 break;
3979                         igb_rar_set_qsel(adapter, ha->addr,
3980                                          rar_entries--,
3981                                          vfn);
3982                         count++;
3983                 }
3984         }
3985         /* write the addresses in reverse order to avoid write combining */
3986         for (; rar_entries > 0 ; rar_entries--) {
3987                 wr32(E1000_RAH(rar_entries), 0);
3988                 wr32(E1000_RAL(rar_entries), 0);
3989         }
3990         wrfl();
3991
3992         return count;
3993 }
3994
3995 /**
3996  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3997  *  @netdev: network interface device structure
3998  *
3999  *  The set_rx_mode entry point is called whenever the unicast or multicast
4000  *  address lists or the network interface flags are updated.  This routine is
4001  *  responsible for configuring the hardware for proper unicast, multicast,
4002  *  promiscuous mode, and all-multi behavior.
4003  **/
4004 static void igb_set_rx_mode(struct net_device *netdev)
4005 {
4006         struct igb_adapter *adapter = netdev_priv(netdev);
4007         struct e1000_hw *hw = &adapter->hw;
4008         unsigned int vfn = adapter->vfs_allocated_count;
4009         u32 rctl, vmolr = 0;
4010         int count;
4011
4012         /* Check for Promiscuous and All Multicast modes */
4013         rctl = rd32(E1000_RCTL);
4014
4015         /* clear the effected bits */
4016         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4017
4018         if (netdev->flags & IFF_PROMISC) {
4019                 /* retain VLAN HW filtering if in VT mode */
4020                 if (adapter->vfs_allocated_count)
4021                         rctl |= E1000_RCTL_VFE;
4022                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4023                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4024         } else {
4025                 if (netdev->flags & IFF_ALLMULTI) {
4026                         rctl |= E1000_RCTL_MPE;
4027                         vmolr |= E1000_VMOLR_MPME;
4028                 } else {
4029                         /* Write addresses to the MTA, if the attempt fails
4030                          * then we should just turn on promiscuous mode so
4031                          * that we can at least receive multicast traffic
4032                          */
4033                         count = igb_write_mc_addr_list(netdev);
4034                         if (count < 0) {
4035                                 rctl |= E1000_RCTL_MPE;
4036                                 vmolr |= E1000_VMOLR_MPME;
4037                         } else if (count) {
4038                                 vmolr |= E1000_VMOLR_ROMPE;
4039                         }
4040                 }
4041                 /* Write addresses to available RAR registers, if there is not
4042                  * sufficient space to store all the addresses then enable
4043                  * unicast promiscuous mode
4044                  */
4045                 count = igb_write_uc_addr_list(netdev);
4046                 if (count < 0) {
4047                         rctl |= E1000_RCTL_UPE;
4048                         vmolr |= E1000_VMOLR_ROPE;
4049                 }
4050                 rctl |= E1000_RCTL_VFE;
4051         }
4052         wr32(E1000_RCTL, rctl);
4053
4054         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4055          * the VMOLR to enable the appropriate modes.  Without this workaround
4056          * we will have issues with VLAN tag stripping not being done for frames
4057          * that are only arriving because we are the default pool
4058          */
4059         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4060                 return;
4061
4062         vmolr |= rd32(E1000_VMOLR(vfn)) &
4063                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4064         wr32(E1000_VMOLR(vfn), vmolr);
4065         igb_restore_vf_multicasts(adapter);
4066 }
4067
4068 static void igb_check_wvbr(struct igb_adapter *adapter)
4069 {
4070         struct e1000_hw *hw = &adapter->hw;
4071         u32 wvbr = 0;
4072
4073         switch (hw->mac.type) {
4074         case e1000_82576:
4075         case e1000_i350:
4076                 wvbr = rd32(E1000_WVBR);
4077                 if (!wvbr)
4078                         return;
4079                 break;
4080         default:
4081                 break;
4082         }
4083
4084         adapter->wvbr |= wvbr;
4085 }
4086
4087 #define IGB_STAGGERED_QUEUE_OFFSET 8
4088
4089 static void igb_spoof_check(struct igb_adapter *adapter)
4090 {
4091         int j;
4092
4093         if (!adapter->wvbr)
4094                 return;
4095
4096         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4097                 if (adapter->wvbr & (1 << j) ||
4098                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4099                         dev_warn(&adapter->pdev->dev,
4100                                 "Spoof event(s) detected on VF %d\n", j);
4101                         adapter->wvbr &=
4102                                 ~((1 << j) |
4103                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4104                 }
4105         }
4106 }
4107
4108 /* Need to wait a few seconds after link up to get diagnostic information from
4109  * the phy
4110  */
4111 static void igb_update_phy_info(unsigned long data)
4112 {
4113         struct igb_adapter *adapter = (struct igb_adapter *) data;
4114         igb_get_phy_info(&adapter->hw);
4115 }
4116
4117 /**
4118  *  igb_has_link - check shared code for link and determine up/down
4119  *  @adapter: pointer to driver private info
4120  **/
4121 bool igb_has_link(struct igb_adapter *adapter)
4122 {
4123         struct e1000_hw *hw = &adapter->hw;
4124         bool link_active = false;
4125
4126         /* get_link_status is set on LSC (link status) interrupt or
4127          * rx sequence error interrupt.  get_link_status will stay
4128          * false until the e1000_check_for_link establishes link
4129          * for copper adapters ONLY
4130          */
4131         switch (hw->phy.media_type) {
4132         case e1000_media_type_copper:
4133                 if (!hw->mac.get_link_status)
4134                         return true;
4135         case e1000_media_type_internal_serdes:
4136                 hw->mac.ops.check_for_link(hw);
4137                 link_active = !hw->mac.get_link_status;
4138                 break;
4139         default:
4140         case e1000_media_type_unknown:
4141                 break;
4142         }
4143
4144         if (((hw->mac.type == e1000_i210) ||
4145              (hw->mac.type == e1000_i211)) &&
4146              (hw->phy.id == I210_I_PHY_ID)) {
4147                 if (!netif_carrier_ok(adapter->netdev)) {
4148                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4149                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4150                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4151                         adapter->link_check_timeout = jiffies;
4152                 }
4153         }
4154
4155         return link_active;
4156 }
4157
4158 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4159 {
4160         bool ret = false;
4161         u32 ctrl_ext, thstat;
4162
4163         /* check for thermal sensor event on i350 copper only */
4164         if (hw->mac.type == e1000_i350) {
4165                 thstat = rd32(E1000_THSTAT);
4166                 ctrl_ext = rd32(E1000_CTRL_EXT);
4167
4168                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4169                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4170                         ret = !!(thstat & event);
4171         }
4172
4173         return ret;
4174 }
4175
4176 /**
4177  *  igb_check_lvmmc - check for malformed packets received
4178  *  and indicated in LVMMC register
4179  *  @adapter: pointer to adapter
4180  **/
4181 static void igb_check_lvmmc(struct igb_adapter *adapter)
4182 {
4183         struct e1000_hw *hw = &adapter->hw;
4184         u32 lvmmc;
4185
4186         lvmmc = rd32(E1000_LVMMC);
4187         if (lvmmc) {
4188                 if (unlikely(net_ratelimit())) {
4189                         netdev_warn(adapter->netdev,
4190                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4191                                     lvmmc);
4192                 }
4193         }
4194 }
4195
4196 /**
4197  *  igb_watchdog - Timer Call-back
4198  *  @data: pointer to adapter cast into an unsigned long
4199  **/
4200 static void igb_watchdog(unsigned long data)
4201 {
4202         struct igb_adapter *adapter = (struct igb_adapter *)data;
4203         /* Do the rest outside of interrupt context */
4204         schedule_work(&adapter->watchdog_task);
4205 }
4206
4207 static void igb_watchdog_task(struct work_struct *work)
4208 {
4209         struct igb_adapter *adapter = container_of(work,
4210                                                    struct igb_adapter,
4211                                                    watchdog_task);
4212         struct e1000_hw *hw = &adapter->hw;
4213         struct e1000_phy_info *phy = &hw->phy;
4214         struct net_device *netdev = adapter->netdev;
4215         u32 link;
4216         int i;
4217         u32 connsw;
4218
4219         link = igb_has_link(adapter);
4220
4221         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4222                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4223                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4224                 else
4225                         link = false;
4226         }
4227
4228         /* Force link down if we have fiber to swap to */
4229         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4230                 if (hw->phy.media_type == e1000_media_type_copper) {
4231                         connsw = rd32(E1000_CONNSW);
4232                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4233                                 link = 0;
4234                 }
4235         }
4236         if (link) {
4237                 /* Perform a reset if the media type changed. */
4238                 if (hw->dev_spec._82575.media_changed) {
4239                         hw->dev_spec._82575.media_changed = false;
4240                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4241                         igb_reset(adapter);
4242                 }
4243                 /* Cancel scheduled suspend requests. */
4244                 pm_runtime_resume(netdev->dev.parent);
4245
4246                 if (!netif_carrier_ok(netdev)) {
4247                         u32 ctrl;
4248
4249                         hw->mac.ops.get_speed_and_duplex(hw,
4250                                                          &adapter->link_speed,
4251                                                          &adapter->link_duplex);
4252
4253                         ctrl = rd32(E1000_CTRL);
4254                         /* Links status message must follow this format */
4255                         netdev_info(netdev,
4256                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4257                                netdev->name,
4258                                adapter->link_speed,
4259                                adapter->link_duplex == FULL_DUPLEX ?
4260                                "Full" : "Half",
4261                                (ctrl & E1000_CTRL_TFCE) &&
4262                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4263                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4264                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4265
4266                         /* disable EEE if enabled */
4267                         if ((adapter->flags & IGB_FLAG_EEE) &&
4268                                 (adapter->link_duplex == HALF_DUPLEX)) {
4269                                 dev_info(&adapter->pdev->dev,
4270                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4271                                 adapter->hw.dev_spec._82575.eee_disable = true;
4272                                 adapter->flags &= ~IGB_FLAG_EEE;
4273                         }
4274
4275                         /* check if SmartSpeed worked */
4276                         igb_check_downshift(hw);
4277                         if (phy->speed_downgraded)
4278                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4279
4280                         /* check for thermal sensor event */
4281                         if (igb_thermal_sensor_event(hw,
4282                             E1000_THSTAT_LINK_THROTTLE))
4283                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4284
4285                         /* adjust timeout factor according to speed/duplex */
4286                         adapter->tx_timeout_factor = 1;
4287                         switch (adapter->link_speed) {
4288                         case SPEED_10:
4289                                 adapter->tx_timeout_factor = 14;
4290                                 break;
4291                         case SPEED_100:
4292                                 /* maybe add some timeout factor ? */
4293                                 break;
4294                         }
4295
4296                         netif_carrier_on(netdev);
4297
4298                         igb_ping_all_vfs(adapter);
4299                         igb_check_vf_rate_limit(adapter);
4300
4301                         /* link state has changed, schedule phy info update */
4302                         if (!test_bit(__IGB_DOWN, &adapter->state))
4303                                 mod_timer(&adapter->phy_info_timer,
4304                                           round_jiffies(jiffies + 2 * HZ));
4305                 }
4306         } else {
4307                 if (netif_carrier_ok(netdev)) {
4308                         adapter->link_speed = 0;
4309                         adapter->link_duplex = 0;
4310
4311                         /* check for thermal sensor event */
4312                         if (igb_thermal_sensor_event(hw,
4313                             E1000_THSTAT_PWR_DOWN)) {
4314                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4315                         }
4316
4317                         /* Links status message must follow this format */
4318                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4319                                netdev->name);
4320                         netif_carrier_off(netdev);
4321
4322                         igb_ping_all_vfs(adapter);
4323
4324                         /* link state has changed, schedule phy info update */
4325                         if (!test_bit(__IGB_DOWN, &adapter->state))
4326                                 mod_timer(&adapter->phy_info_timer,
4327                                           round_jiffies(jiffies + 2 * HZ));
4328
4329                         /* link is down, time to check for alternate media */
4330                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4331                                 igb_check_swap_media(adapter);
4332                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4333                                         schedule_work(&adapter->reset_task);
4334                                         /* return immediately */
4335                                         return;
4336                                 }
4337                         }
4338                         pm_schedule_suspend(netdev->dev.parent,
4339                                             MSEC_PER_SEC * 5);
4340
4341                 /* also check for alternate media here */
4342                 } else if (!netif_carrier_ok(netdev) &&
4343                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4344                         igb_check_swap_media(adapter);
4345                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4346                                 schedule_work(&adapter->reset_task);
4347                                 /* return immediately */
4348                                 return;
4349                         }
4350                 }
4351         }
4352
4353         spin_lock(&adapter->stats64_lock);
4354         igb_update_stats(adapter, &adapter->stats64);
4355         spin_unlock(&adapter->stats64_lock);
4356
4357         for (i = 0; i < adapter->num_tx_queues; i++) {
4358                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4359                 if (!netif_carrier_ok(netdev)) {
4360                         /* We've lost link, so the controller stops DMA,
4361                          * but we've got queued Tx work that's never going
4362                          * to get done, so reset controller to flush Tx.
4363                          * (Do the reset outside of interrupt context).
4364                          */
4365                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4366                                 adapter->tx_timeout_count++;
4367                                 schedule_work(&adapter->reset_task);
4368                                 /* return immediately since reset is imminent */
4369                                 return;
4370                         }
4371                 }
4372
4373                 /* Force detection of hung controller every watchdog period */
4374                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4375         }
4376
4377         /* Cause software interrupt to ensure Rx ring is cleaned */
4378         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4379                 u32 eics = 0;
4380
4381                 for (i = 0; i < adapter->num_q_vectors; i++)
4382                         eics |= adapter->q_vector[i]->eims_value;
4383                 wr32(E1000_EICS, eics);
4384         } else {
4385                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4386         }
4387
4388         igb_spoof_check(adapter);
4389         igb_ptp_rx_hang(adapter);
4390
4391         /* Check LVMMC register on i350/i354 only */
4392         if ((adapter->hw.mac.type == e1000_i350) ||
4393             (adapter->hw.mac.type == e1000_i354))
4394                 igb_check_lvmmc(adapter);
4395
4396         /* Reset the timer */
4397         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4398                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4399                         mod_timer(&adapter->watchdog_timer,
4400                                   round_jiffies(jiffies +  HZ));
4401                 else
4402                         mod_timer(&adapter->watchdog_timer,
4403                                   round_jiffies(jiffies + 2 * HZ));
4404         }
4405 }
4406
4407 enum latency_range {
4408         lowest_latency = 0,
4409         low_latency = 1,
4410         bulk_latency = 2,
4411         latency_invalid = 255
4412 };
4413
4414 /**
4415  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4416  *  @q_vector: pointer to q_vector
4417  *
4418  *  Stores a new ITR value based on strictly on packet size.  This
4419  *  algorithm is less sophisticated than that used in igb_update_itr,
4420  *  due to the difficulty of synchronizing statistics across multiple
4421  *  receive rings.  The divisors and thresholds used by this function
4422  *  were determined based on theoretical maximum wire speed and testing
4423  *  data, in order to minimize response time while increasing bulk
4424  *  throughput.
4425  *  This functionality is controlled by ethtool's coalescing settings.
4426  *  NOTE:  This function is called only when operating in a multiqueue
4427  *         receive environment.
4428  **/
4429 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4430 {
4431         int new_val = q_vector->itr_val;
4432         int avg_wire_size = 0;
4433         struct igb_adapter *adapter = q_vector->adapter;
4434         unsigned int packets;
4435
4436         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4437          * ints/sec - ITR timer value of 120 ticks.
4438          */
4439         if (adapter->link_speed != SPEED_1000) {
4440                 new_val = IGB_4K_ITR;
4441                 goto set_itr_val;
4442         }
4443
4444         packets = q_vector->rx.total_packets;
4445         if (packets)
4446                 avg_wire_size = q_vector->rx.total_bytes / packets;
4447
4448         packets = q_vector->tx.total_packets;
4449         if (packets)
4450                 avg_wire_size = max_t(u32, avg_wire_size,
4451                                       q_vector->tx.total_bytes / packets);
4452
4453         /* if avg_wire_size isn't set no work was done */
4454         if (!avg_wire_size)
4455                 goto clear_counts;
4456
4457         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4458         avg_wire_size += 24;
4459
4460         /* Don't starve jumbo frames */
4461         avg_wire_size = min(avg_wire_size, 3000);
4462
4463         /* Give a little boost to mid-size frames */
4464         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4465                 new_val = avg_wire_size / 3;
4466         else
4467                 new_val = avg_wire_size / 2;
4468
4469         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4470         if (new_val < IGB_20K_ITR &&
4471             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4472              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4473                 new_val = IGB_20K_ITR;
4474
4475 set_itr_val:
4476         if (new_val != q_vector->itr_val) {
4477                 q_vector->itr_val = new_val;
4478                 q_vector->set_itr = 1;
4479         }
4480 clear_counts:
4481         q_vector->rx.total_bytes = 0;
4482         q_vector->rx.total_packets = 0;
4483         q_vector->tx.total_bytes = 0;
4484         q_vector->tx.total_packets = 0;
4485 }
4486
4487 /**
4488  *  igb_update_itr - update the dynamic ITR value based on statistics
4489  *  @q_vector: pointer to q_vector
4490  *  @ring_container: ring info to update the itr for
4491  *
4492  *  Stores a new ITR value based on packets and byte
4493  *  counts during the last interrupt.  The advantage of per interrupt
4494  *  computation is faster updates and more accurate ITR for the current
4495  *  traffic pattern.  Constants in this function were computed
4496  *  based on theoretical maximum wire speed and thresholds were set based
4497  *  on testing data as well as attempting to minimize response time
4498  *  while increasing bulk throughput.
4499  *  This functionality is controlled by ethtool's coalescing settings.
4500  *  NOTE:  These calculations are only valid when operating in a single-
4501  *         queue environment.
4502  **/
4503 static void igb_update_itr(struct igb_q_vector *q_vector,
4504                            struct igb_ring_container *ring_container)
4505 {
4506         unsigned int packets = ring_container->total_packets;
4507         unsigned int bytes = ring_container->total_bytes;
4508         u8 itrval = ring_container->itr;
4509
4510         /* no packets, exit with status unchanged */
4511         if (packets == 0)
4512                 return;
4513
4514         switch (itrval) {
4515         case lowest_latency:
4516                 /* handle TSO and jumbo frames */
4517                 if (bytes/packets > 8000)
4518                         itrval = bulk_latency;
4519                 else if ((packets < 5) && (bytes > 512))
4520                         itrval = low_latency;
4521                 break;
4522         case low_latency:  /* 50 usec aka 20000 ints/s */
4523                 if (bytes > 10000) {
4524                         /* this if handles the TSO accounting */
4525                         if (bytes/packets > 8000)
4526                                 itrval = bulk_latency;
4527                         else if ((packets < 10) || ((bytes/packets) > 1200))
4528                                 itrval = bulk_latency;
4529                         else if ((packets > 35))
4530                                 itrval = lowest_latency;
4531                 } else if (bytes/packets > 2000) {
4532                         itrval = bulk_latency;
4533                 } else if (packets <= 2 && bytes < 512) {
4534                         itrval = lowest_latency;
4535                 }
4536                 break;
4537         case bulk_latency: /* 250 usec aka 4000 ints/s */
4538                 if (bytes > 25000) {
4539                         if (packets > 35)
4540                                 itrval = low_latency;
4541                 } else if (bytes < 1500) {
4542                         itrval = low_latency;
4543                 }
4544                 break;
4545         }
4546
4547         /* clear work counters since we have the values we need */
4548         ring_container->total_bytes = 0;
4549         ring_container->total_packets = 0;
4550
4551         /* write updated itr to ring container */
4552         ring_container->itr = itrval;
4553 }
4554
4555 static void igb_set_itr(struct igb_q_vector *q_vector)
4556 {
4557         struct igb_adapter *adapter = q_vector->adapter;
4558         u32 new_itr = q_vector->itr_val;
4559         u8 current_itr = 0;
4560
4561         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4562         if (adapter->link_speed != SPEED_1000) {
4563                 current_itr = 0;
4564                 new_itr = IGB_4K_ITR;
4565                 goto set_itr_now;
4566         }
4567
4568         igb_update_itr(q_vector, &q_vector->tx);
4569         igb_update_itr(q_vector, &q_vector->rx);
4570
4571         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4572
4573         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4574         if (current_itr == lowest_latency &&
4575             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4576              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4577                 current_itr = low_latency;
4578
4579         switch (current_itr) {
4580         /* counts and packets in update_itr are dependent on these numbers */
4581         case lowest_latency:
4582                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4583                 break;
4584         case low_latency:
4585                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4586                 break;
4587         case bulk_latency:
4588                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4589                 break;
4590         default:
4591                 break;
4592         }
4593
4594 set_itr_now:
4595         if (new_itr != q_vector->itr_val) {
4596                 /* this attempts to bias the interrupt rate towards Bulk
4597                  * by adding intermediate steps when interrupt rate is
4598                  * increasing
4599                  */
4600                 new_itr = new_itr > q_vector->itr_val ?
4601                           max((new_itr * q_vector->itr_val) /
4602                           (new_itr + (q_vector->itr_val >> 2)),
4603                           new_itr) : new_itr;
4604                 /* Don't write the value here; it resets the adapter's
4605                  * internal timer, and causes us to delay far longer than
4606                  * we should between interrupts.  Instead, we write the ITR
4607                  * value at the beginning of the next interrupt so the timing
4608                  * ends up being correct.
4609                  */
4610                 q_vector->itr_val = new_itr;
4611                 q_vector->set_itr = 1;
4612         }
4613 }
4614
4615 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4616                             u32 type_tucmd, u32 mss_l4len_idx)
4617 {
4618         struct e1000_adv_tx_context_desc *context_desc;
4619         u16 i = tx_ring->next_to_use;
4620
4621         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4622
4623         i++;
4624         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4625
4626         /* set bits to identify this as an advanced context descriptor */
4627         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4628
4629         /* For 82575, context index must be unique per ring. */
4630         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4631                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4632
4633         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4634         context_desc->seqnum_seed       = 0;
4635         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4636         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4637 }
4638
4639 static int igb_tso(struct igb_ring *tx_ring,
4640                    struct igb_tx_buffer *first,
4641                    u8 *hdr_len)
4642 {
4643         struct sk_buff *skb = first->skb;
4644         u32 vlan_macip_lens, type_tucmd;
4645         u32 mss_l4len_idx, l4len;
4646         int err;
4647
4648         if (skb->ip_summed != CHECKSUM_PARTIAL)
4649                 return 0;
4650
4651         if (!skb_is_gso(skb))
4652                 return 0;
4653
4654         err = skb_cow_head(skb, 0);
4655         if (err < 0)
4656                 return err;
4657
4658         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4659         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4660
4661         if (first->protocol == htons(ETH_P_IP)) {
4662                 struct iphdr *iph = ip_hdr(skb);
4663                 iph->tot_len = 0;
4664                 iph->check = 0;
4665                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4666                                                          iph->daddr, 0,
4667                                                          IPPROTO_TCP,
4668                                                          0);
4669                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4670                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4671                                    IGB_TX_FLAGS_CSUM |
4672                                    IGB_TX_FLAGS_IPV4;
4673         } else if (skb_is_gso_v6(skb)) {
4674                 ipv6_hdr(skb)->payload_len = 0;
4675                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4676                                                        &ipv6_hdr(skb)->daddr,
4677                                                        0, IPPROTO_TCP, 0);
4678                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4679                                    IGB_TX_FLAGS_CSUM;
4680         }
4681
4682         /* compute header lengths */
4683         l4len = tcp_hdrlen(skb);
4684         *hdr_len = skb_transport_offset(skb) + l4len;
4685
4686         /* update gso size and bytecount with header size */
4687         first->gso_segs = skb_shinfo(skb)->gso_segs;
4688         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4689
4690         /* MSS L4LEN IDX */
4691         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4692         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4693
4694         /* VLAN MACLEN IPLEN */
4695         vlan_macip_lens = skb_network_header_len(skb);
4696         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4697         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4698
4699         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4700
4701         return 1;
4702 }
4703
4704 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4705 {
4706         struct sk_buff *skb = first->skb;
4707         u32 vlan_macip_lens = 0;
4708         u32 mss_l4len_idx = 0;
4709         u32 type_tucmd = 0;
4710
4711         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4712                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4713                         return;
4714         } else {
4715                 u8 l4_hdr = 0;
4716
4717                 switch (first->protocol) {
4718                 case htons(ETH_P_IP):
4719                         vlan_macip_lens |= skb_network_header_len(skb);
4720                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4721                         l4_hdr = ip_hdr(skb)->protocol;
4722                         break;
4723                 case htons(ETH_P_IPV6):
4724                         vlan_macip_lens |= skb_network_header_len(skb);
4725                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4726                         break;
4727                 default:
4728                         if (unlikely(net_ratelimit())) {
4729                                 dev_warn(tx_ring->dev,
4730                                          "partial checksum but proto=%x!\n",
4731                                          first->protocol);
4732                         }
4733                         break;
4734                 }
4735
4736                 switch (l4_hdr) {
4737                 case IPPROTO_TCP:
4738                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4739                         mss_l4len_idx = tcp_hdrlen(skb) <<
4740                                         E1000_ADVTXD_L4LEN_SHIFT;
4741                         break;
4742                 case IPPROTO_SCTP:
4743                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4744                         mss_l4len_idx = sizeof(struct sctphdr) <<
4745                                         E1000_ADVTXD_L4LEN_SHIFT;
4746                         break;
4747                 case IPPROTO_UDP:
4748                         mss_l4len_idx = sizeof(struct udphdr) <<
4749                                         E1000_ADVTXD_L4LEN_SHIFT;
4750                         break;
4751                 default:
4752                         if (unlikely(net_ratelimit())) {
4753                                 dev_warn(tx_ring->dev,
4754                                          "partial checksum but l4 proto=%x!\n",
4755                                          l4_hdr);
4756                         }
4757                         break;
4758                 }
4759
4760                 /* update TX checksum flag */
4761                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4762         }
4763
4764         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4765         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4766
4767         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4768 }
4769
4770 #define IGB_SET_FLAG(_input, _flag, _result) \
4771         ((_flag <= _result) ? \
4772          ((u32)(_input & _flag) * (_result / _flag)) : \
4773          ((u32)(_input & _flag) / (_flag / _result)))
4774
4775 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4776 {
4777         /* set type for advanced descriptor with frame checksum insertion */
4778         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4779                        E1000_ADVTXD_DCMD_DEXT |
4780                        E1000_ADVTXD_DCMD_IFCS;
4781
4782         /* set HW vlan bit if vlan is present */
4783         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4784                                  (E1000_ADVTXD_DCMD_VLE));
4785
4786         /* set segmentation bits for TSO */
4787         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4788                                  (E1000_ADVTXD_DCMD_TSE));
4789
4790         /* set timestamp bit if present */
4791         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4792                                  (E1000_ADVTXD_MAC_TSTAMP));
4793
4794         /* insert frame checksum */
4795         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4796
4797         return cmd_type;
4798 }
4799
4800 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4801                                  union e1000_adv_tx_desc *tx_desc,
4802                                  u32 tx_flags, unsigned int paylen)
4803 {
4804         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4805
4806         /* 82575 requires a unique index per ring */
4807         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4808                 olinfo_status |= tx_ring->reg_idx << 4;
4809
4810         /* insert L4 checksum */
4811         olinfo_status |= IGB_SET_FLAG(tx_flags,
4812                                       IGB_TX_FLAGS_CSUM,
4813                                       (E1000_TXD_POPTS_TXSM << 8));
4814
4815         /* insert IPv4 checksum */
4816         olinfo_status |= IGB_SET_FLAG(tx_flags,
4817                                       IGB_TX_FLAGS_IPV4,
4818                                       (E1000_TXD_POPTS_IXSM << 8));
4819
4820         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4821 }
4822
4823 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4824 {
4825         struct net_device *netdev = tx_ring->netdev;
4826
4827         netif_stop_subqueue(netdev, tx_ring->queue_index);
4828
4829         /* Herbert's original patch had:
4830          *  smp_mb__after_netif_stop_queue();
4831          * but since that doesn't exist yet, just open code it.
4832          */
4833         smp_mb();
4834
4835         /* We need to check again in a case another CPU has just
4836          * made room available.
4837          */
4838         if (igb_desc_unused(tx_ring) < size)
4839                 return -EBUSY;
4840
4841         /* A reprieve! */
4842         netif_wake_subqueue(netdev, tx_ring->queue_index);
4843
4844         u64_stats_update_begin(&tx_ring->tx_syncp2);
4845         tx_ring->tx_stats.restart_queue2++;
4846         u64_stats_update_end(&tx_ring->tx_syncp2);
4847
4848         return 0;
4849 }
4850
4851 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4852 {
4853         if (igb_desc_unused(tx_ring) >= size)
4854                 return 0;
4855         return __igb_maybe_stop_tx(tx_ring, size);
4856 }
4857
4858 static void igb_tx_map(struct igb_ring *tx_ring,
4859                        struct igb_tx_buffer *first,
4860                        const u8 hdr_len)
4861 {
4862         struct sk_buff *skb = first->skb;
4863         struct igb_tx_buffer *tx_buffer;
4864         union e1000_adv_tx_desc *tx_desc;
4865         struct skb_frag_struct *frag;
4866         dma_addr_t dma;
4867         unsigned int data_len, size;
4868         u32 tx_flags = first->tx_flags;
4869         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4870         u16 i = tx_ring->next_to_use;
4871
4872         tx_desc = IGB_TX_DESC(tx_ring, i);
4873
4874         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4875
4876         size = skb_headlen(skb);
4877         data_len = skb->data_len;
4878
4879         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4880
4881         tx_buffer = first;
4882
4883         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4884                 if (dma_mapping_error(tx_ring->dev, dma))
4885                         goto dma_error;
4886
4887                 /* record length, and DMA address */
4888                 dma_unmap_len_set(tx_buffer, len, size);
4889                 dma_unmap_addr_set(tx_buffer, dma, dma);
4890
4891                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4892
4893                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4894                         tx_desc->read.cmd_type_len =
4895                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4896
4897                         i++;
4898                         tx_desc++;
4899                         if (i == tx_ring->count) {
4900                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4901                                 i = 0;
4902                         }
4903                         tx_desc->read.olinfo_status = 0;
4904
4905                         dma += IGB_MAX_DATA_PER_TXD;
4906                         size -= IGB_MAX_DATA_PER_TXD;
4907
4908                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4909                 }
4910
4911                 if (likely(!data_len))
4912                         break;
4913
4914                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4915
4916                 i++;
4917                 tx_desc++;
4918                 if (i == tx_ring->count) {
4919                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4920                         i = 0;
4921                 }
4922                 tx_desc->read.olinfo_status = 0;
4923
4924                 size = skb_frag_size(frag);
4925                 data_len -= size;
4926
4927                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4928                                        size, DMA_TO_DEVICE);
4929
4930                 tx_buffer = &tx_ring->tx_buffer_info[i];
4931         }
4932
4933         /* write last descriptor with RS and EOP bits */
4934         cmd_type |= size | IGB_TXD_DCMD;
4935         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4936
4937         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4938
4939         /* set the timestamp */
4940         first->time_stamp = jiffies;
4941
4942         /* Force memory writes to complete before letting h/w know there
4943          * are new descriptors to fetch.  (Only applicable for weak-ordered
4944          * memory model archs, such as IA-64).
4945          *
4946          * We also need this memory barrier to make certain all of the
4947          * status bits have been updated before next_to_watch is written.
4948          */
4949         wmb();
4950
4951         /* set next_to_watch value indicating a packet is present */
4952         first->next_to_watch = tx_desc;
4953
4954         i++;
4955         if (i == tx_ring->count)
4956                 i = 0;
4957
4958         tx_ring->next_to_use = i;
4959
4960         /* Make sure there is space in the ring for the next send. */
4961         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4962
4963         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4964                 writel(i, tx_ring->tail);
4965
4966                 /* we need this if more than one processor can write to our tail
4967                  * at a time, it synchronizes IO on IA64/Altix systems
4968                  */
4969                 mmiowb();
4970         }
4971         return;
4972
4973 dma_error:
4974         dev_err(tx_ring->dev, "TX DMA map failed\n");
4975
4976         /* clear dma mappings for failed tx_buffer_info map */
4977         for (;;) {
4978                 tx_buffer = &tx_ring->tx_buffer_info[i];
4979                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4980                 if (tx_buffer == first)
4981                         break;
4982                 if (i == 0)
4983                         i = tx_ring->count;
4984                 i--;
4985         }
4986
4987         tx_ring->next_to_use = i;
4988 }
4989
4990 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4991                                 struct igb_ring *tx_ring)
4992 {
4993         struct igb_tx_buffer *first;
4994         int tso;
4995         u32 tx_flags = 0;
4996         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4997         __be16 protocol = vlan_get_protocol(skb);
4998         u8 hdr_len = 0;
4999
5000         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5001          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5002          *       + 2 desc gap to keep tail from touching head,
5003          *       + 1 desc for context descriptor,
5004          * otherwise try next time
5005          */
5006         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5007                 unsigned short f;
5008
5009                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5010                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5011         } else {
5012                 count += skb_shinfo(skb)->nr_frags;
5013         }
5014
5015         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5016                 /* this is a hard error */
5017                 return NETDEV_TX_BUSY;
5018         }
5019
5020         /* record the location of the first descriptor for this packet */
5021         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5022         first->skb = skb;
5023         first->bytecount = skb->len;
5024         first->gso_segs = 1;
5025
5026         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5027                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5028
5029                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5030                                            &adapter->state)) {
5031                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5032                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5033
5034                         adapter->ptp_tx_skb = skb_get(skb);
5035                         adapter->ptp_tx_start = jiffies;
5036                         if (adapter->hw.mac.type == e1000_82576)
5037                                 schedule_work(&adapter->ptp_tx_work);
5038                 }
5039         }
5040
5041         skb_tx_timestamp(skb);
5042
5043         if (vlan_tx_tag_present(skb)) {
5044                 tx_flags |= IGB_TX_FLAGS_VLAN;
5045                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5046         }
5047
5048         /* record initial flags and protocol */
5049         first->tx_flags = tx_flags;
5050         first->protocol = protocol;
5051
5052         tso = igb_tso(tx_ring, first, &hdr_len);
5053         if (tso < 0)
5054                 goto out_drop;
5055         else if (!tso)
5056                 igb_tx_csum(tx_ring, first);
5057
5058         igb_tx_map(tx_ring, first, hdr_len);
5059
5060         return NETDEV_TX_OK;
5061
5062 out_drop:
5063         igb_unmap_and_free_tx_resource(tx_ring, first);
5064
5065         return NETDEV_TX_OK;
5066 }
5067
5068 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5069                                                     struct sk_buff *skb)
5070 {
5071         unsigned int r_idx = skb->queue_mapping;
5072
5073         if (r_idx >= adapter->num_tx_queues)
5074                 r_idx = r_idx % adapter->num_tx_queues;
5075
5076         return adapter->tx_ring[r_idx];
5077 }
5078
5079 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5080                                   struct net_device *netdev)
5081 {
5082         struct igb_adapter *adapter = netdev_priv(netdev);
5083
5084         if (test_bit(__IGB_DOWN, &adapter->state)) {
5085                 dev_kfree_skb_any(skb);
5086                 return NETDEV_TX_OK;
5087         }
5088
5089         if (skb->len <= 0) {
5090                 dev_kfree_skb_any(skb);
5091                 return NETDEV_TX_OK;
5092         }
5093
5094         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5095          * in order to meet this minimum size requirement.
5096          */
5097         if (unlikely(skb->len < 17)) {
5098                 if (skb_pad(skb, 17 - skb->len))
5099                         return NETDEV_TX_OK;
5100                 skb->len = 17;
5101                 skb_set_tail_pointer(skb, 17);
5102         }
5103
5104         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5105 }
5106
5107 /**
5108  *  igb_tx_timeout - Respond to a Tx Hang
5109  *  @netdev: network interface device structure
5110  **/
5111 static void igb_tx_timeout(struct net_device *netdev)
5112 {
5113         struct igb_adapter *adapter = netdev_priv(netdev);
5114         struct e1000_hw *hw = &adapter->hw;
5115
5116         /* Do the reset outside of interrupt context */
5117         adapter->tx_timeout_count++;
5118
5119         if (hw->mac.type >= e1000_82580)
5120                 hw->dev_spec._82575.global_device_reset = true;
5121
5122         schedule_work(&adapter->reset_task);
5123         wr32(E1000_EICS,
5124              (adapter->eims_enable_mask & ~adapter->eims_other));
5125 }
5126
5127 static void igb_reset_task(struct work_struct *work)
5128 {
5129         struct igb_adapter *adapter;
5130         adapter = container_of(work, struct igb_adapter, reset_task);
5131
5132         igb_dump(adapter);
5133         netdev_err(adapter->netdev, "Reset adapter\n");
5134         igb_reinit_locked(adapter);
5135 }
5136
5137 /**
5138  *  igb_get_stats64 - Get System Network Statistics
5139  *  @netdev: network interface device structure
5140  *  @stats: rtnl_link_stats64 pointer
5141  **/
5142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5143                                                 struct rtnl_link_stats64 *stats)
5144 {
5145         struct igb_adapter *adapter = netdev_priv(netdev);
5146
5147         spin_lock(&adapter->stats64_lock);
5148         igb_update_stats(adapter, &adapter->stats64);
5149         memcpy(stats, &adapter->stats64, sizeof(*stats));
5150         spin_unlock(&adapter->stats64_lock);
5151
5152         return stats;
5153 }
5154
5155 /**
5156  *  igb_change_mtu - Change the Maximum Transfer Unit
5157  *  @netdev: network interface device structure
5158  *  @new_mtu: new value for maximum frame size
5159  *
5160  *  Returns 0 on success, negative on failure
5161  **/
5162 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5163 {
5164         struct igb_adapter *adapter = netdev_priv(netdev);
5165         struct pci_dev *pdev = adapter->pdev;
5166         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5167
5168         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5169                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5170                 return -EINVAL;
5171         }
5172
5173 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5174         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5175                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5176                 return -EINVAL;
5177         }
5178
5179         /* adjust max frame to be at least the size of a standard frame */
5180         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5181                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5182
5183         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5184                 usleep_range(1000, 2000);
5185
5186         /* igb_down has a dependency on max_frame_size */
5187         adapter->max_frame_size = max_frame;
5188
5189         if (netif_running(netdev))
5190                 igb_down(adapter);
5191
5192         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5193                  netdev->mtu, new_mtu);
5194         netdev->mtu = new_mtu;
5195
5196         if (netif_running(netdev))
5197                 igb_up(adapter);
5198         else
5199                 igb_reset(adapter);
5200
5201         clear_bit(__IGB_RESETTING, &adapter->state);
5202
5203         return 0;
5204 }
5205
5206 /**
5207  *  igb_update_stats - Update the board statistics counters
5208  *  @adapter: board private structure
5209  **/
5210 void igb_update_stats(struct igb_adapter *adapter,
5211                       struct rtnl_link_stats64 *net_stats)
5212 {
5213         struct e1000_hw *hw = &adapter->hw;
5214         struct pci_dev *pdev = adapter->pdev;
5215         u32 reg, mpc;
5216         int i;
5217         u64 bytes, packets;
5218         unsigned int start;
5219         u64 _bytes, _packets;
5220
5221         /* Prevent stats update while adapter is being reset, or if the pci
5222          * connection is down.
5223          */
5224         if (adapter->link_speed == 0)
5225                 return;
5226         if (pci_channel_offline(pdev))
5227                 return;
5228
5229         bytes = 0;
5230         packets = 0;
5231
5232         rcu_read_lock();
5233         for (i = 0; i < adapter->num_rx_queues; i++) {
5234                 struct igb_ring *ring = adapter->rx_ring[i];
5235                 u32 rqdpc = rd32(E1000_RQDPC(i));
5236                 if (hw->mac.type >= e1000_i210)
5237                         wr32(E1000_RQDPC(i), 0);
5238
5239                 if (rqdpc) {
5240                         ring->rx_stats.drops += rqdpc;
5241                         net_stats->rx_fifo_errors += rqdpc;
5242                 }
5243
5244                 do {
5245                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5246                         _bytes = ring->rx_stats.bytes;
5247                         _packets = ring->rx_stats.packets;
5248                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5249                 bytes += _bytes;
5250                 packets += _packets;
5251         }
5252
5253         net_stats->rx_bytes = bytes;
5254         net_stats->rx_packets = packets;
5255
5256         bytes = 0;
5257         packets = 0;
5258         for (i = 0; i < adapter->num_tx_queues; i++) {
5259                 struct igb_ring *ring = adapter->tx_ring[i];
5260                 do {
5261                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5262                         _bytes = ring->tx_stats.bytes;
5263                         _packets = ring->tx_stats.packets;
5264                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5265                 bytes += _bytes;
5266                 packets += _packets;
5267         }
5268         net_stats->tx_bytes = bytes;
5269         net_stats->tx_packets = packets;
5270         rcu_read_unlock();
5271
5272         /* read stats registers */
5273         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5274         adapter->stats.gprc += rd32(E1000_GPRC);
5275         adapter->stats.gorc += rd32(E1000_GORCL);
5276         rd32(E1000_GORCH); /* clear GORCL */
5277         adapter->stats.bprc += rd32(E1000_BPRC);
5278         adapter->stats.mprc += rd32(E1000_MPRC);
5279         adapter->stats.roc += rd32(E1000_ROC);
5280
5281         adapter->stats.prc64 += rd32(E1000_PRC64);
5282         adapter->stats.prc127 += rd32(E1000_PRC127);
5283         adapter->stats.prc255 += rd32(E1000_PRC255);
5284         adapter->stats.prc511 += rd32(E1000_PRC511);
5285         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5286         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5287         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5288         adapter->stats.sec += rd32(E1000_SEC);
5289
5290         mpc = rd32(E1000_MPC);
5291         adapter->stats.mpc += mpc;
5292         net_stats->rx_fifo_errors += mpc;
5293         adapter->stats.scc += rd32(E1000_SCC);
5294         adapter->stats.ecol += rd32(E1000_ECOL);
5295         adapter->stats.mcc += rd32(E1000_MCC);
5296         adapter->stats.latecol += rd32(E1000_LATECOL);
5297         adapter->stats.dc += rd32(E1000_DC);
5298         adapter->stats.rlec += rd32(E1000_RLEC);
5299         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5300         adapter->stats.xontxc += rd32(E1000_XONTXC);
5301         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5302         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5303         adapter->stats.fcruc += rd32(E1000_FCRUC);
5304         adapter->stats.gptc += rd32(E1000_GPTC);
5305         adapter->stats.gotc += rd32(E1000_GOTCL);
5306         rd32(E1000_GOTCH); /* clear GOTCL */
5307         adapter->stats.rnbc += rd32(E1000_RNBC);
5308         adapter->stats.ruc += rd32(E1000_RUC);
5309         adapter->stats.rfc += rd32(E1000_RFC);
5310         adapter->stats.rjc += rd32(E1000_RJC);
5311         adapter->stats.tor += rd32(E1000_TORH);
5312         adapter->stats.tot += rd32(E1000_TOTH);
5313         adapter->stats.tpr += rd32(E1000_TPR);
5314
5315         adapter->stats.ptc64 += rd32(E1000_PTC64);
5316         adapter->stats.ptc127 += rd32(E1000_PTC127);
5317         adapter->stats.ptc255 += rd32(E1000_PTC255);
5318         adapter->stats.ptc511 += rd32(E1000_PTC511);
5319         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5320         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5321
5322         adapter->stats.mptc += rd32(E1000_MPTC);
5323         adapter->stats.bptc += rd32(E1000_BPTC);
5324
5325         adapter->stats.tpt += rd32(E1000_TPT);
5326         adapter->stats.colc += rd32(E1000_COLC);
5327
5328         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5329         /* read internal phy specific stats */
5330         reg = rd32(E1000_CTRL_EXT);
5331         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5332                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5333
5334                 /* this stat has invalid values on i210/i211 */
5335                 if ((hw->mac.type != e1000_i210) &&
5336                     (hw->mac.type != e1000_i211))
5337                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5338         }
5339
5340         adapter->stats.tsctc += rd32(E1000_TSCTC);
5341         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5342
5343         adapter->stats.iac += rd32(E1000_IAC);
5344         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5345         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5346         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5347         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5348         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5349         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5350         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5351         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5352
5353         /* Fill out the OS statistics structure */
5354         net_stats->multicast = adapter->stats.mprc;
5355         net_stats->collisions = adapter->stats.colc;
5356
5357         /* Rx Errors */
5358
5359         /* RLEC on some newer hardware can be incorrect so build
5360          * our own version based on RUC and ROC
5361          */
5362         net_stats->rx_errors = adapter->stats.rxerrc +
5363                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5364                 adapter->stats.ruc + adapter->stats.roc +
5365                 adapter->stats.cexterr;
5366         net_stats->rx_length_errors = adapter->stats.ruc +
5367                                       adapter->stats.roc;
5368         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5369         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5370         net_stats->rx_missed_errors = adapter->stats.mpc;
5371
5372         /* Tx Errors */
5373         net_stats->tx_errors = adapter->stats.ecol +
5374                                adapter->stats.latecol;
5375         net_stats->tx_aborted_errors = adapter->stats.ecol;
5376         net_stats->tx_window_errors = adapter->stats.latecol;
5377         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5378
5379         /* Tx Dropped needs to be maintained elsewhere */
5380
5381         /* Management Stats */
5382         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5383         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5384         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5385
5386         /* OS2BMC Stats */
5387         reg = rd32(E1000_MANC);
5388         if (reg & E1000_MANC_EN_BMC2OS) {
5389                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5390                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5391                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5392                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5393         }
5394 }
5395
5396 static irqreturn_t igb_msix_other(int irq, void *data)
5397 {
5398         struct igb_adapter *adapter = data;
5399         struct e1000_hw *hw = &adapter->hw;
5400         u32 icr = rd32(E1000_ICR);
5401         /* reading ICR causes bit 31 of EICR to be cleared */
5402
5403         if (icr & E1000_ICR_DRSTA)
5404                 schedule_work(&adapter->reset_task);
5405
5406         if (icr & E1000_ICR_DOUTSYNC) {
5407                 /* HW is reporting DMA is out of sync */
5408                 adapter->stats.doosync++;
5409                 /* The DMA Out of Sync is also indication of a spoof event
5410                  * in IOV mode. Check the Wrong VM Behavior register to
5411                  * see if it is really a spoof event.
5412                  */
5413                 igb_check_wvbr(adapter);
5414         }
5415
5416         /* Check for a mailbox event */
5417         if (icr & E1000_ICR_VMMB)
5418                 igb_msg_task(adapter);
5419
5420         if (icr & E1000_ICR_LSC) {
5421                 hw->mac.get_link_status = 1;
5422                 /* guard against interrupt when we're going down */
5423                 if (!test_bit(__IGB_DOWN, &adapter->state))
5424                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5425         }
5426
5427         if (icr & E1000_ICR_TS) {
5428                 u32 tsicr = rd32(E1000_TSICR);
5429
5430                 if (tsicr & E1000_TSICR_TXTS) {
5431                         /* acknowledge the interrupt */
5432                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5433                         /* retrieve hardware timestamp */
5434                         schedule_work(&adapter->ptp_tx_work);
5435                 }
5436         }
5437
5438         wr32(E1000_EIMS, adapter->eims_other);
5439
5440         return IRQ_HANDLED;
5441 }
5442
5443 static void igb_write_itr(struct igb_q_vector *q_vector)
5444 {
5445         struct igb_adapter *adapter = q_vector->adapter;
5446         u32 itr_val = q_vector->itr_val & 0x7FFC;
5447
5448         if (!q_vector->set_itr)
5449                 return;
5450
5451         if (!itr_val)
5452                 itr_val = 0x4;
5453
5454         if (adapter->hw.mac.type == e1000_82575)
5455                 itr_val |= itr_val << 16;
5456         else
5457                 itr_val |= E1000_EITR_CNT_IGNR;
5458
5459         writel(itr_val, q_vector->itr_register);
5460         q_vector->set_itr = 0;
5461 }
5462
5463 static irqreturn_t igb_msix_ring(int irq, void *data)
5464 {
5465         struct igb_q_vector *q_vector = data;
5466
5467         /* Write the ITR value calculated from the previous interrupt. */
5468         igb_write_itr(q_vector);
5469
5470         napi_schedule(&q_vector->napi);
5471
5472         return IRQ_HANDLED;
5473 }
5474
5475 #ifdef CONFIG_IGB_DCA
5476 static void igb_update_tx_dca(struct igb_adapter *adapter,
5477                               struct igb_ring *tx_ring,
5478                               int cpu)
5479 {
5480         struct e1000_hw *hw = &adapter->hw;
5481         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5482
5483         if (hw->mac.type != e1000_82575)
5484                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5485
5486         /* We can enable relaxed ordering for reads, but not writes when
5487          * DCA is enabled.  This is due to a known issue in some chipsets
5488          * which will cause the DCA tag to be cleared.
5489          */
5490         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5491                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5492                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5493
5494         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5495 }
5496
5497 static void igb_update_rx_dca(struct igb_adapter *adapter,
5498                               struct igb_ring *rx_ring,
5499                               int cpu)
5500 {
5501         struct e1000_hw *hw = &adapter->hw;
5502         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5503
5504         if (hw->mac.type != e1000_82575)
5505                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5506
5507         /* We can enable relaxed ordering for reads, but not writes when
5508          * DCA is enabled.  This is due to a known issue in some chipsets
5509          * which will cause the DCA tag to be cleared.
5510          */
5511         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5512                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5513
5514         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5515 }
5516
5517 static void igb_update_dca(struct igb_q_vector *q_vector)
5518 {
5519         struct igb_adapter *adapter = q_vector->adapter;
5520         int cpu = get_cpu();
5521
5522         if (q_vector->cpu == cpu)
5523                 goto out_no_update;
5524
5525         if (q_vector->tx.ring)
5526                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5527
5528         if (q_vector->rx.ring)
5529                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5530
5531         q_vector->cpu = cpu;
5532 out_no_update:
5533         put_cpu();
5534 }
5535
5536 static void igb_setup_dca(struct igb_adapter *adapter)
5537 {
5538         struct e1000_hw *hw = &adapter->hw;
5539         int i;
5540
5541         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5542                 return;
5543
5544         /* Always use CB2 mode, difference is masked in the CB driver. */
5545         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5546
5547         for (i = 0; i < adapter->num_q_vectors; i++) {
5548                 adapter->q_vector[i]->cpu = -1;
5549                 igb_update_dca(adapter->q_vector[i]);
5550         }
5551 }
5552
5553 static int __igb_notify_dca(struct device *dev, void *data)
5554 {
5555         struct net_device *netdev = dev_get_drvdata(dev);
5556         struct igb_adapter *adapter = netdev_priv(netdev);
5557         struct pci_dev *pdev = adapter->pdev;
5558         struct e1000_hw *hw = &adapter->hw;
5559         unsigned long event = *(unsigned long *)data;
5560
5561         switch (event) {
5562         case DCA_PROVIDER_ADD:
5563                 /* if already enabled, don't do it again */
5564                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5565                         break;
5566                 if (dca_add_requester(dev) == 0) {
5567                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5568                         dev_info(&pdev->dev, "DCA enabled\n");
5569                         igb_setup_dca(adapter);
5570                         break;
5571                 }
5572                 /* Fall Through since DCA is disabled. */
5573         case DCA_PROVIDER_REMOVE:
5574                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5575                         /* without this a class_device is left
5576                          * hanging around in the sysfs model
5577                          */
5578                         dca_remove_requester(dev);
5579                         dev_info(&pdev->dev, "DCA disabled\n");
5580                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5581                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5582                 }
5583                 break;
5584         }
5585
5586         return 0;
5587 }
5588
5589 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5590                           void *p)
5591 {
5592         int ret_val;
5593
5594         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5595                                          __igb_notify_dca);
5596
5597         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5598 }
5599 #endif /* CONFIG_IGB_DCA */
5600
5601 #ifdef CONFIG_PCI_IOV
5602 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5603 {
5604         unsigned char mac_addr[ETH_ALEN];
5605
5606         eth_zero_addr(mac_addr);
5607         igb_set_vf_mac(adapter, vf, mac_addr);
5608
5609         /* By default spoof check is enabled for all VFs */
5610         adapter->vf_data[vf].spoofchk_enabled = true;
5611
5612         return 0;
5613 }
5614
5615 #endif
5616 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5617 {
5618         struct e1000_hw *hw = &adapter->hw;
5619         u32 ping;
5620         int i;
5621
5622         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5623                 ping = E1000_PF_CONTROL_MSG;
5624                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5625                         ping |= E1000_VT_MSGTYPE_CTS;
5626                 igb_write_mbx(hw, &ping, 1, i);
5627         }
5628 }
5629
5630 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5631 {
5632         struct e1000_hw *hw = &adapter->hw;
5633         u32 vmolr = rd32(E1000_VMOLR(vf));
5634         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5635
5636         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5637                             IGB_VF_FLAG_MULTI_PROMISC);
5638         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5639
5640         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5641                 vmolr |= E1000_VMOLR_MPME;
5642                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5643                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5644         } else {
5645                 /* if we have hashes and we are clearing a multicast promisc
5646                  * flag we need to write the hashes to the MTA as this step
5647                  * was previously skipped
5648                  */
5649                 if (vf_data->num_vf_mc_hashes > 30) {
5650                         vmolr |= E1000_VMOLR_MPME;
5651                 } else if (vf_data->num_vf_mc_hashes) {
5652                         int j;
5653
5654                         vmolr |= E1000_VMOLR_ROMPE;
5655                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5656                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5657                 }
5658         }
5659
5660         wr32(E1000_VMOLR(vf), vmolr);
5661
5662         /* there are flags left unprocessed, likely not supported */
5663         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5664                 return -EINVAL;
5665
5666         return 0;
5667 }
5668
5669 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5670                                   u32 *msgbuf, u32 vf)
5671 {
5672         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5673         u16 *hash_list = (u16 *)&msgbuf[1];
5674         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675         int i;
5676
5677         /* salt away the number of multicast addresses assigned
5678          * to this VF for later use to restore when the PF multi cast
5679          * list changes
5680          */
5681         vf_data->num_vf_mc_hashes = n;
5682
5683         /* only up to 30 hash values supported */
5684         if (n > 30)
5685                 n = 30;
5686
5687         /* store the hashes for later use */
5688         for (i = 0; i < n; i++)
5689                 vf_data->vf_mc_hashes[i] = hash_list[i];
5690
5691         /* Flush and reset the mta with the new values */
5692         igb_set_rx_mode(adapter->netdev);
5693
5694         return 0;
5695 }
5696
5697 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5698 {
5699         struct e1000_hw *hw = &adapter->hw;
5700         struct vf_data_storage *vf_data;
5701         int i, j;
5702
5703         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5704                 u32 vmolr = rd32(E1000_VMOLR(i));
5705
5706                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5707
5708                 vf_data = &adapter->vf_data[i];
5709
5710                 if ((vf_data->num_vf_mc_hashes > 30) ||
5711                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5712                         vmolr |= E1000_VMOLR_MPME;
5713                 } else if (vf_data->num_vf_mc_hashes) {
5714                         vmolr |= E1000_VMOLR_ROMPE;
5715                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5716                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5717                 }
5718                 wr32(E1000_VMOLR(i), vmolr);
5719         }
5720 }
5721
5722 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5723 {
5724         struct e1000_hw *hw = &adapter->hw;
5725         u32 pool_mask, reg, vid;
5726         int i;
5727
5728         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5729
5730         /* Find the vlan filter for this id */
5731         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5732                 reg = rd32(E1000_VLVF(i));
5733
5734                 /* remove the vf from the pool */
5735                 reg &= ~pool_mask;
5736
5737                 /* if pool is empty then remove entry from vfta */
5738                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5739                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5740                         reg = 0;
5741                         vid = reg & E1000_VLVF_VLANID_MASK;
5742                         igb_vfta_set(hw, vid, false);
5743                 }
5744
5745                 wr32(E1000_VLVF(i), reg);
5746         }
5747
5748         adapter->vf_data[vf].vlans_enabled = 0;
5749 }
5750
5751 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5752 {
5753         struct e1000_hw *hw = &adapter->hw;
5754         u32 reg, i;
5755
5756         /* The vlvf table only exists on 82576 hardware and newer */
5757         if (hw->mac.type < e1000_82576)
5758                 return -1;
5759
5760         /* we only need to do this if VMDq is enabled */
5761         if (!adapter->vfs_allocated_count)
5762                 return -1;
5763
5764         /* Find the vlan filter for this id */
5765         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5766                 reg = rd32(E1000_VLVF(i));
5767                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5768                     vid == (reg & E1000_VLVF_VLANID_MASK))
5769                         break;
5770         }
5771
5772         if (add) {
5773                 if (i == E1000_VLVF_ARRAY_SIZE) {
5774                         /* Did not find a matching VLAN ID entry that was
5775                          * enabled.  Search for a free filter entry, i.e.
5776                          * one without the enable bit set
5777                          */
5778                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5779                                 reg = rd32(E1000_VLVF(i));
5780                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5781                                         break;
5782                         }
5783                 }
5784                 if (i < E1000_VLVF_ARRAY_SIZE) {
5785                         /* Found an enabled/available entry */
5786                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5787
5788                         /* if !enabled we need to set this up in vfta */
5789                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5790                                 /* add VID to filter table */
5791                                 igb_vfta_set(hw, vid, true);
5792                                 reg |= E1000_VLVF_VLANID_ENABLE;
5793                         }
5794                         reg &= ~E1000_VLVF_VLANID_MASK;
5795                         reg |= vid;
5796                         wr32(E1000_VLVF(i), reg);
5797
5798                         /* do not modify RLPML for PF devices */
5799                         if (vf >= adapter->vfs_allocated_count)
5800                                 return 0;
5801
5802                         if (!adapter->vf_data[vf].vlans_enabled) {
5803                                 u32 size;
5804
5805                                 reg = rd32(E1000_VMOLR(vf));
5806                                 size = reg & E1000_VMOLR_RLPML_MASK;
5807                                 size += 4;
5808                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5809                                 reg |= size;
5810                                 wr32(E1000_VMOLR(vf), reg);
5811                         }
5812
5813                         adapter->vf_data[vf].vlans_enabled++;
5814                 }
5815         } else {
5816                 if (i < E1000_VLVF_ARRAY_SIZE) {
5817                         /* remove vf from the pool */
5818                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5819                         /* if pool is empty then remove entry from vfta */
5820                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5821                                 reg = 0;
5822                                 igb_vfta_set(hw, vid, false);
5823                         }
5824                         wr32(E1000_VLVF(i), reg);
5825
5826                         /* do not modify RLPML for PF devices */
5827                         if (vf >= adapter->vfs_allocated_count)
5828                                 return 0;
5829
5830                         adapter->vf_data[vf].vlans_enabled--;
5831                         if (!adapter->vf_data[vf].vlans_enabled) {
5832                                 u32 size;
5833
5834                                 reg = rd32(E1000_VMOLR(vf));
5835                                 size = reg & E1000_VMOLR_RLPML_MASK;
5836                                 size -= 4;
5837                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5838                                 reg |= size;
5839                                 wr32(E1000_VMOLR(vf), reg);
5840                         }
5841                 }
5842         }
5843         return 0;
5844 }
5845
5846 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5847 {
5848         struct e1000_hw *hw = &adapter->hw;
5849
5850         if (vid)
5851                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5852         else
5853                 wr32(E1000_VMVIR(vf), 0);
5854 }
5855
5856 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5857                                int vf, u16 vlan, u8 qos)
5858 {
5859         int err = 0;
5860         struct igb_adapter *adapter = netdev_priv(netdev);
5861
5862         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5863                 return -EINVAL;
5864         if (vlan || qos) {
5865                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5866                 if (err)
5867                         goto out;
5868                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5869                 igb_set_vmolr(adapter, vf, !vlan);
5870                 adapter->vf_data[vf].pf_vlan = vlan;
5871                 adapter->vf_data[vf].pf_qos = qos;
5872                 dev_info(&adapter->pdev->dev,
5873                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5874                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5875                         dev_warn(&adapter->pdev->dev,
5876                                  "The VF VLAN has been set, but the PF device is not up.\n");
5877                         dev_warn(&adapter->pdev->dev,
5878                                  "Bring the PF device up before attempting to use the VF device.\n");
5879                 }
5880         } else {
5881                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5882                              false, vf);
5883                 igb_set_vmvir(adapter, vlan, vf);
5884                 igb_set_vmolr(adapter, vf, true);
5885                 adapter->vf_data[vf].pf_vlan = 0;
5886                 adapter->vf_data[vf].pf_qos = 0;
5887         }
5888 out:
5889         return err;
5890 }
5891
5892 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5893 {
5894         struct e1000_hw *hw = &adapter->hw;
5895         int i;
5896         u32 reg;
5897
5898         /* Find the vlan filter for this id */
5899         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5900                 reg = rd32(E1000_VLVF(i));
5901                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5902                     vid == (reg & E1000_VLVF_VLANID_MASK))
5903                         break;
5904         }
5905
5906         if (i >= E1000_VLVF_ARRAY_SIZE)
5907                 i = -1;
5908
5909         return i;
5910 }
5911
5912 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5913 {
5914         struct e1000_hw *hw = &adapter->hw;
5915         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5916         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5917         int err = 0;
5918
5919         /* If in promiscuous mode we need to make sure the PF also has
5920          * the VLAN filter set.
5921          */
5922         if (add && (adapter->netdev->flags & IFF_PROMISC))
5923                 err = igb_vlvf_set(adapter, vid, add,
5924                                    adapter->vfs_allocated_count);
5925         if (err)
5926                 goto out;
5927
5928         err = igb_vlvf_set(adapter, vid, add, vf);
5929
5930         if (err)
5931                 goto out;
5932
5933         /* Go through all the checks to see if the VLAN filter should
5934          * be wiped completely.
5935          */
5936         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5937                 u32 vlvf, bits;
5938                 int regndx = igb_find_vlvf_entry(adapter, vid);
5939
5940                 if (regndx < 0)
5941                         goto out;
5942                 /* See if any other pools are set for this VLAN filter
5943                  * entry other than the PF.
5944                  */
5945                 vlvf = bits = rd32(E1000_VLVF(regndx));
5946                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5947                               adapter->vfs_allocated_count);
5948                 /* If the filter was removed then ensure PF pool bit
5949                  * is cleared if the PF only added itself to the pool
5950                  * because the PF is in promiscuous mode.
5951                  */
5952                 if ((vlvf & VLAN_VID_MASK) == vid &&
5953                     !test_bit(vid, adapter->active_vlans) &&
5954                     !bits)
5955                         igb_vlvf_set(adapter, vid, add,
5956                                      adapter->vfs_allocated_count);
5957         }
5958
5959 out:
5960         return err;
5961 }
5962
5963 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5964 {
5965         /* clear flags - except flag that indicates PF has set the MAC */
5966         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5967         adapter->vf_data[vf].last_nack = jiffies;
5968
5969         /* reset offloads to defaults */
5970         igb_set_vmolr(adapter, vf, true);
5971
5972         /* reset vlans for device */
5973         igb_clear_vf_vfta(adapter, vf);
5974         if (adapter->vf_data[vf].pf_vlan)
5975                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5976                                     adapter->vf_data[vf].pf_vlan,
5977                                     adapter->vf_data[vf].pf_qos);
5978         else
5979                 igb_clear_vf_vfta(adapter, vf);
5980
5981         /* reset multicast table array for vf */
5982         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5983
5984         /* Flush and reset the mta with the new values */
5985         igb_set_rx_mode(adapter->netdev);
5986 }
5987
5988 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5989 {
5990         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5991
5992         /* clear mac address as we were hotplug removed/added */
5993         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5994                 eth_zero_addr(vf_mac);
5995
5996         /* process remaining reset events */
5997         igb_vf_reset(adapter, vf);
5998 }
5999
6000 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6001 {
6002         struct e1000_hw *hw = &adapter->hw;
6003         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6004         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6005         u32 reg, msgbuf[3];
6006         u8 *addr = (u8 *)(&msgbuf[1]);
6007
6008         /* process all the same items cleared in a function level reset */
6009         igb_vf_reset(adapter, vf);
6010
6011         /* set vf mac address */
6012         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6013
6014         /* enable transmit and receive for vf */
6015         reg = rd32(E1000_VFTE);
6016         wr32(E1000_VFTE, reg | (1 << vf));
6017         reg = rd32(E1000_VFRE);
6018         wr32(E1000_VFRE, reg | (1 << vf));
6019
6020         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6021
6022         /* reply to reset with ack and vf mac address */
6023         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6024         memcpy(addr, vf_mac, ETH_ALEN);
6025         igb_write_mbx(hw, msgbuf, 3, vf);
6026 }
6027
6028 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6029 {
6030         /* The VF MAC Address is stored in a packed array of bytes
6031          * starting at the second 32 bit word of the msg array
6032          */
6033         unsigned char *addr = (char *)&msg[1];
6034         int err = -1;
6035
6036         if (is_valid_ether_addr(addr))
6037                 err = igb_set_vf_mac(adapter, vf, addr);
6038
6039         return err;
6040 }
6041
6042 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6043 {
6044         struct e1000_hw *hw = &adapter->hw;
6045         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6046         u32 msg = E1000_VT_MSGTYPE_NACK;
6047
6048         /* if device isn't clear to send it shouldn't be reading either */
6049         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6050             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6051                 igb_write_mbx(hw, &msg, 1, vf);
6052                 vf_data->last_nack = jiffies;
6053         }
6054 }
6055
6056 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6057 {
6058         struct pci_dev *pdev = adapter->pdev;
6059         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6060         struct e1000_hw *hw = &adapter->hw;
6061         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6062         s32 retval;
6063
6064         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6065
6066         if (retval) {
6067                 /* if receive failed revoke VF CTS stats and restart init */
6068                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6069                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6070                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6071                         return;
6072                 goto out;
6073         }
6074
6075         /* this is a message we already processed, do nothing */
6076         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6077                 return;
6078
6079         /* until the vf completes a reset it should not be
6080          * allowed to start any configuration.
6081          */
6082         if (msgbuf[0] == E1000_VF_RESET) {
6083                 igb_vf_reset_msg(adapter, vf);
6084                 return;
6085         }
6086
6087         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6088                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6089                         return;
6090                 retval = -1;
6091                 goto out;
6092         }
6093
6094         switch ((msgbuf[0] & 0xFFFF)) {
6095         case E1000_VF_SET_MAC_ADDR:
6096                 retval = -EINVAL;
6097                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6098                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6099                 else
6100                         dev_warn(&pdev->dev,
6101                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6102                                  vf);
6103                 break;
6104         case E1000_VF_SET_PROMISC:
6105                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6106                 break;
6107         case E1000_VF_SET_MULTICAST:
6108                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6109                 break;
6110         case E1000_VF_SET_LPE:
6111                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6112                 break;
6113         case E1000_VF_SET_VLAN:
6114                 retval = -1;
6115                 if (vf_data->pf_vlan)
6116                         dev_warn(&pdev->dev,
6117                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6118                                  vf);
6119                 else
6120                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6121                 break;
6122         default:
6123                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6124                 retval = -1;
6125                 break;
6126         }
6127
6128         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6129 out:
6130         /* notify the VF of the results of what it sent us */
6131         if (retval)
6132                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6133         else
6134                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6135
6136         igb_write_mbx(hw, msgbuf, 1, vf);
6137 }
6138
6139 static void igb_msg_task(struct igb_adapter *adapter)
6140 {
6141         struct e1000_hw *hw = &adapter->hw;
6142         u32 vf;
6143
6144         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6145                 /* process any reset requests */
6146                 if (!igb_check_for_rst(hw, vf))
6147                         igb_vf_reset_event(adapter, vf);
6148
6149                 /* process any messages pending */
6150                 if (!igb_check_for_msg(hw, vf))
6151                         igb_rcv_msg_from_vf(adapter, vf);
6152
6153                 /* process any acks */
6154                 if (!igb_check_for_ack(hw, vf))
6155                         igb_rcv_ack_from_vf(adapter, vf);
6156         }
6157 }
6158
6159 /**
6160  *  igb_set_uta - Set unicast filter table address
6161  *  @adapter: board private structure
6162  *
6163  *  The unicast table address is a register array of 32-bit registers.
6164  *  The table is meant to be used in a way similar to how the MTA is used
6165  *  however due to certain limitations in the hardware it is necessary to
6166  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6167  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6168  **/
6169 static void igb_set_uta(struct igb_adapter *adapter)
6170 {
6171         struct e1000_hw *hw = &adapter->hw;
6172         int i;
6173
6174         /* The UTA table only exists on 82576 hardware and newer */
6175         if (hw->mac.type < e1000_82576)
6176                 return;
6177
6178         /* we only need to do this if VMDq is enabled */
6179         if (!adapter->vfs_allocated_count)
6180                 return;
6181
6182         for (i = 0; i < hw->mac.uta_reg_count; i++)
6183                 array_wr32(E1000_UTA, i, ~0);
6184 }
6185
6186 /**
6187  *  igb_intr_msi - Interrupt Handler
6188  *  @irq: interrupt number
6189  *  @data: pointer to a network interface device structure
6190  **/
6191 static irqreturn_t igb_intr_msi(int irq, void *data)
6192 {
6193         struct igb_adapter *adapter = data;
6194         struct igb_q_vector *q_vector = adapter->q_vector[0];
6195         struct e1000_hw *hw = &adapter->hw;
6196         /* read ICR disables interrupts using IAM */
6197         u32 icr = rd32(E1000_ICR);
6198
6199         igb_write_itr(q_vector);
6200
6201         if (icr & E1000_ICR_DRSTA)
6202                 schedule_work(&adapter->reset_task);
6203
6204         if (icr & E1000_ICR_DOUTSYNC) {
6205                 /* HW is reporting DMA is out of sync */
6206                 adapter->stats.doosync++;
6207         }
6208
6209         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6210                 hw->mac.get_link_status = 1;
6211                 if (!test_bit(__IGB_DOWN, &adapter->state))
6212                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6213         }
6214
6215         if (icr & E1000_ICR_TS) {
6216                 u32 tsicr = rd32(E1000_TSICR);
6217
6218                 if (tsicr & E1000_TSICR_TXTS) {
6219                         /* acknowledge the interrupt */
6220                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6221                         /* retrieve hardware timestamp */
6222                         schedule_work(&adapter->ptp_tx_work);
6223                 }
6224         }
6225
6226         napi_schedule(&q_vector->napi);
6227
6228         return IRQ_HANDLED;
6229 }
6230
6231 /**
6232  *  igb_intr - Legacy Interrupt Handler
6233  *  @irq: interrupt number
6234  *  @data: pointer to a network interface device structure
6235  **/
6236 static irqreturn_t igb_intr(int irq, void *data)
6237 {
6238         struct igb_adapter *adapter = data;
6239         struct igb_q_vector *q_vector = adapter->q_vector[0];
6240         struct e1000_hw *hw = &adapter->hw;
6241         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6242          * need for the IMC write
6243          */
6244         u32 icr = rd32(E1000_ICR);
6245
6246         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6247          * not set, then the adapter didn't send an interrupt
6248          */
6249         if (!(icr & E1000_ICR_INT_ASSERTED))
6250                 return IRQ_NONE;
6251
6252         igb_write_itr(q_vector);
6253
6254         if (icr & E1000_ICR_DRSTA)
6255                 schedule_work(&adapter->reset_task);
6256
6257         if (icr & E1000_ICR_DOUTSYNC) {
6258                 /* HW is reporting DMA is out of sync */
6259                 adapter->stats.doosync++;
6260         }
6261
6262         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6263                 hw->mac.get_link_status = 1;
6264                 /* guard against interrupt when we're going down */
6265                 if (!test_bit(__IGB_DOWN, &adapter->state))
6266                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6267         }
6268
6269         if (icr & E1000_ICR_TS) {
6270                 u32 tsicr = rd32(E1000_TSICR);
6271
6272                 if (tsicr & E1000_TSICR_TXTS) {
6273                         /* acknowledge the interrupt */
6274                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6275                         /* retrieve hardware timestamp */
6276                         schedule_work(&adapter->ptp_tx_work);
6277                 }
6278         }
6279
6280         napi_schedule(&q_vector->napi);
6281
6282         return IRQ_HANDLED;
6283 }
6284
6285 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6286 {
6287         struct igb_adapter *adapter = q_vector->adapter;
6288         struct e1000_hw *hw = &adapter->hw;
6289
6290         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6291             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6292                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6293                         igb_set_itr(q_vector);
6294                 else
6295                         igb_update_ring_itr(q_vector);
6296         }
6297
6298         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6299                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6300                         wr32(E1000_EIMS, q_vector->eims_value);
6301                 else
6302                         igb_irq_enable(adapter);
6303         }
6304 }
6305
6306 /**
6307  *  igb_poll - NAPI Rx polling callback
6308  *  @napi: napi polling structure
6309  *  @budget: count of how many packets we should handle
6310  **/
6311 static int igb_poll(struct napi_struct *napi, int budget)
6312 {
6313         struct igb_q_vector *q_vector = container_of(napi,
6314                                                      struct igb_q_vector,
6315                                                      napi);
6316         bool clean_complete = true;
6317
6318 #ifdef CONFIG_IGB_DCA
6319         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6320                 igb_update_dca(q_vector);
6321 #endif
6322         if (q_vector->tx.ring)
6323                 clean_complete = igb_clean_tx_irq(q_vector);
6324
6325         if (q_vector->rx.ring)
6326                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6327
6328         /* If all work not completed, return budget and keep polling */
6329         if (!clean_complete)
6330                 return budget;
6331
6332         /* If not enough Rx work done, exit the polling mode */
6333         napi_complete(napi);
6334         igb_ring_irq_enable(q_vector);
6335
6336         return 0;
6337 }
6338
6339 /**
6340  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6341  *  @q_vector: pointer to q_vector containing needed info
6342  *
6343  *  returns true if ring is completely cleaned
6344  **/
6345 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6346 {
6347         struct igb_adapter *adapter = q_vector->adapter;
6348         struct igb_ring *tx_ring = q_vector->tx.ring;
6349         struct igb_tx_buffer *tx_buffer;
6350         union e1000_adv_tx_desc *tx_desc;
6351         unsigned int total_bytes = 0, total_packets = 0;
6352         unsigned int budget = q_vector->tx.work_limit;
6353         unsigned int i = tx_ring->next_to_clean;
6354
6355         if (test_bit(__IGB_DOWN, &adapter->state))
6356                 return true;
6357
6358         tx_buffer = &tx_ring->tx_buffer_info[i];
6359         tx_desc = IGB_TX_DESC(tx_ring, i);
6360         i -= tx_ring->count;
6361
6362         do {
6363                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6364
6365                 /* if next_to_watch is not set then there is no work pending */
6366                 if (!eop_desc)
6367                         break;
6368
6369                 /* prevent any other reads prior to eop_desc */
6370                 read_barrier_depends();
6371
6372                 /* if DD is not set pending work has not been completed */
6373                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6374                         break;
6375
6376                 /* clear next_to_watch to prevent false hangs */
6377                 tx_buffer->next_to_watch = NULL;
6378
6379                 /* update the statistics for this packet */
6380                 total_bytes += tx_buffer->bytecount;
6381                 total_packets += tx_buffer->gso_segs;
6382
6383                 /* free the skb */
6384                 dev_consume_skb_any(tx_buffer->skb);
6385
6386                 /* unmap skb header data */
6387                 dma_unmap_single(tx_ring->dev,
6388                                  dma_unmap_addr(tx_buffer, dma),
6389                                  dma_unmap_len(tx_buffer, len),
6390                                  DMA_TO_DEVICE);
6391
6392                 /* clear tx_buffer data */
6393                 tx_buffer->skb = NULL;
6394                 dma_unmap_len_set(tx_buffer, len, 0);
6395
6396                 /* clear last DMA location and unmap remaining buffers */
6397                 while (tx_desc != eop_desc) {
6398                         tx_buffer++;
6399                         tx_desc++;
6400                         i++;
6401                         if (unlikely(!i)) {
6402                                 i -= tx_ring->count;
6403                                 tx_buffer = tx_ring->tx_buffer_info;
6404                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6405                         }
6406
6407                         /* unmap any remaining paged data */
6408                         if (dma_unmap_len(tx_buffer, len)) {
6409                                 dma_unmap_page(tx_ring->dev,
6410                                                dma_unmap_addr(tx_buffer, dma),
6411                                                dma_unmap_len(tx_buffer, len),
6412                                                DMA_TO_DEVICE);
6413                                 dma_unmap_len_set(tx_buffer, len, 0);
6414                         }
6415                 }
6416
6417                 /* move us one more past the eop_desc for start of next pkt */
6418                 tx_buffer++;
6419                 tx_desc++;
6420                 i++;
6421                 if (unlikely(!i)) {
6422                         i -= tx_ring->count;
6423                         tx_buffer = tx_ring->tx_buffer_info;
6424                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6425                 }
6426
6427                 /* issue prefetch for next Tx descriptor */
6428                 prefetch(tx_desc);
6429
6430                 /* update budget accounting */
6431                 budget--;
6432         } while (likely(budget));
6433
6434         netdev_tx_completed_queue(txring_txq(tx_ring),
6435                                   total_packets, total_bytes);
6436         i += tx_ring->count;
6437         tx_ring->next_to_clean = i;
6438         u64_stats_update_begin(&tx_ring->tx_syncp);
6439         tx_ring->tx_stats.bytes += total_bytes;
6440         tx_ring->tx_stats.packets += total_packets;
6441         u64_stats_update_end(&tx_ring->tx_syncp);
6442         q_vector->tx.total_bytes += total_bytes;
6443         q_vector->tx.total_packets += total_packets;
6444
6445         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6446                 struct e1000_hw *hw = &adapter->hw;
6447
6448                 /* Detect a transmit hang in hardware, this serializes the
6449                  * check with the clearing of time_stamp and movement of i
6450                  */
6451                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6452                 if (tx_buffer->next_to_watch &&
6453                     time_after(jiffies, tx_buffer->time_stamp +
6454                                (adapter->tx_timeout_factor * HZ)) &&
6455                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6456
6457                         /* detected Tx unit hang */
6458                         dev_err(tx_ring->dev,
6459                                 "Detected Tx Unit Hang\n"
6460                                 "  Tx Queue             <%d>\n"
6461                                 "  TDH                  <%x>\n"
6462                                 "  TDT                  <%x>\n"
6463                                 "  next_to_use          <%x>\n"
6464                                 "  next_to_clean        <%x>\n"
6465                                 "buffer_info[next_to_clean]\n"
6466                                 "  time_stamp           <%lx>\n"
6467                                 "  next_to_watch        <%p>\n"
6468                                 "  jiffies              <%lx>\n"
6469                                 "  desc.status          <%x>\n",
6470                                 tx_ring->queue_index,
6471                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6472                                 readl(tx_ring->tail),
6473                                 tx_ring->next_to_use,
6474                                 tx_ring->next_to_clean,
6475                                 tx_buffer->time_stamp,
6476                                 tx_buffer->next_to_watch,
6477                                 jiffies,
6478                                 tx_buffer->next_to_watch->wb.status);
6479                         netif_stop_subqueue(tx_ring->netdev,
6480                                             tx_ring->queue_index);
6481
6482                         /* we are about to reset, no point in enabling stuff */
6483                         return true;
6484                 }
6485         }
6486
6487 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6488         if (unlikely(total_packets &&
6489             netif_carrier_ok(tx_ring->netdev) &&
6490             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6491                 /* Make sure that anybody stopping the queue after this
6492                  * sees the new next_to_clean.
6493                  */
6494                 smp_mb();
6495                 if (__netif_subqueue_stopped(tx_ring->netdev,
6496                                              tx_ring->queue_index) &&
6497                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6498                         netif_wake_subqueue(tx_ring->netdev,
6499                                             tx_ring->queue_index);
6500
6501                         u64_stats_update_begin(&tx_ring->tx_syncp);
6502                         tx_ring->tx_stats.restart_queue++;
6503                         u64_stats_update_end(&tx_ring->tx_syncp);
6504                 }
6505         }
6506
6507         return !!budget;
6508 }
6509
6510 /**
6511  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6512  *  @rx_ring: rx descriptor ring to store buffers on
6513  *  @old_buff: donor buffer to have page reused
6514  *
6515  *  Synchronizes page for reuse by the adapter
6516  **/
6517 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6518                               struct igb_rx_buffer *old_buff)
6519 {
6520         struct igb_rx_buffer *new_buff;
6521         u16 nta = rx_ring->next_to_alloc;
6522
6523         new_buff = &rx_ring->rx_buffer_info[nta];
6524
6525         /* update, and store next to alloc */
6526         nta++;
6527         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6528
6529         /* transfer page from old buffer to new buffer */
6530         *new_buff = *old_buff;
6531
6532         /* sync the buffer for use by the device */
6533         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6534                                          old_buff->page_offset,
6535                                          IGB_RX_BUFSZ,
6536                                          DMA_FROM_DEVICE);
6537 }
6538
6539 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6540                                   struct page *page,
6541                                   unsigned int truesize)
6542 {
6543         /* avoid re-using remote pages */
6544         if (unlikely(page_to_nid(page) != numa_node_id()))
6545                 return false;
6546
6547         if (unlikely(page->pfmemalloc))
6548                 return false;
6549
6550 #if (PAGE_SIZE < 8192)
6551         /* if we are only owner of page we can reuse it */
6552         if (unlikely(page_count(page) != 1))
6553                 return false;
6554
6555         /* flip page offset to other buffer */
6556         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6557
6558         /* Even if we own the page, we are not allowed to use atomic_set()
6559          * This would break get_page_unless_zero() users.
6560          */
6561         atomic_inc(&page->_count);
6562 #else
6563         /* move offset up to the next cache line */
6564         rx_buffer->page_offset += truesize;
6565
6566         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6567                 return false;
6568
6569         /* bump ref count on page before it is given to the stack */
6570         get_page(page);
6571 #endif
6572
6573         return true;
6574 }
6575
6576 /**
6577  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6578  *  @rx_ring: rx descriptor ring to transact packets on
6579  *  @rx_buffer: buffer containing page to add
6580  *  @rx_desc: descriptor containing length of buffer written by hardware
6581  *  @skb: sk_buff to place the data into
6582  *
6583  *  This function will add the data contained in rx_buffer->page to the skb.
6584  *  This is done either through a direct copy if the data in the buffer is
6585  *  less than the skb header size, otherwise it will just attach the page as
6586  *  a frag to the skb.
6587  *
6588  *  The function will then update the page offset if necessary and return
6589  *  true if the buffer can be reused by the adapter.
6590  **/
6591 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6592                             struct igb_rx_buffer *rx_buffer,
6593                             union e1000_adv_rx_desc *rx_desc,
6594                             struct sk_buff *skb)
6595 {
6596         struct page *page = rx_buffer->page;
6597         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6598 #if (PAGE_SIZE < 8192)
6599         unsigned int truesize = IGB_RX_BUFSZ;
6600 #else
6601         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6602 #endif
6603
6604         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6605                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6606
6607                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6608                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6609                         va += IGB_TS_HDR_LEN;
6610                         size -= IGB_TS_HDR_LEN;
6611                 }
6612
6613                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6614
6615                 /* we can reuse buffer as-is, just make sure it is local */
6616                 if (likely((page_to_nid(page) == numa_node_id()) &&
6617                            !page->pfmemalloc))
6618                         return true;
6619
6620                 /* this page cannot be reused so discard it */
6621                 put_page(page);
6622                 return false;
6623         }
6624
6625         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6626                         rx_buffer->page_offset, size, truesize);
6627
6628         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6629 }
6630
6631 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6632                                            union e1000_adv_rx_desc *rx_desc,
6633                                            struct sk_buff *skb)
6634 {
6635         struct igb_rx_buffer *rx_buffer;
6636         struct page *page;
6637
6638         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6639
6640         page = rx_buffer->page;
6641         prefetchw(page);
6642
6643         if (likely(!skb)) {
6644                 void *page_addr = page_address(page) +
6645                                   rx_buffer->page_offset;
6646
6647                 /* prefetch first cache line of first page */
6648                 prefetch(page_addr);
6649 #if L1_CACHE_BYTES < 128
6650                 prefetch(page_addr + L1_CACHE_BYTES);
6651 #endif
6652
6653                 /* allocate a skb to store the frags */
6654                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6655                                                 IGB_RX_HDR_LEN);
6656                 if (unlikely(!skb)) {
6657                         rx_ring->rx_stats.alloc_failed++;
6658                         return NULL;
6659                 }
6660
6661                 /* we will be copying header into skb->data in
6662                  * pskb_may_pull so it is in our interest to prefetch
6663                  * it now to avoid a possible cache miss
6664                  */
6665                 prefetchw(skb->data);
6666         }
6667
6668         /* we are reusing so sync this buffer for CPU use */
6669         dma_sync_single_range_for_cpu(rx_ring->dev,
6670                                       rx_buffer->dma,
6671                                       rx_buffer->page_offset,
6672                                       IGB_RX_BUFSZ,
6673                                       DMA_FROM_DEVICE);
6674
6675         /* pull page into skb */
6676         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6677                 /* hand second half of page back to the ring */
6678                 igb_reuse_rx_page(rx_ring, rx_buffer);
6679         } else {
6680                 /* we are not reusing the buffer so unmap it */
6681                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6682                                PAGE_SIZE, DMA_FROM_DEVICE);
6683         }
6684
6685         /* clear contents of rx_buffer */
6686         rx_buffer->page = NULL;
6687
6688         return skb;
6689 }
6690
6691 static inline void igb_rx_checksum(struct igb_ring *ring,
6692                                    union e1000_adv_rx_desc *rx_desc,
6693                                    struct sk_buff *skb)
6694 {
6695         skb_checksum_none_assert(skb);
6696
6697         /* Ignore Checksum bit is set */
6698         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6699                 return;
6700
6701         /* Rx checksum disabled via ethtool */
6702         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6703                 return;
6704
6705         /* TCP/UDP checksum error bit is set */
6706         if (igb_test_staterr(rx_desc,
6707                              E1000_RXDEXT_STATERR_TCPE |
6708                              E1000_RXDEXT_STATERR_IPE)) {
6709                 /* work around errata with sctp packets where the TCPE aka
6710                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6711                  * packets, (aka let the stack check the crc32c)
6712                  */
6713                 if (!((skb->len == 60) &&
6714                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6715                         u64_stats_update_begin(&ring->rx_syncp);
6716                         ring->rx_stats.csum_err++;
6717                         u64_stats_update_end(&ring->rx_syncp);
6718                 }
6719                 /* let the stack verify checksum errors */
6720                 return;
6721         }
6722         /* It must be a TCP or UDP packet with a valid checksum */
6723         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6724                                       E1000_RXD_STAT_UDPCS))
6725                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6726
6727         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6728                 le32_to_cpu(rx_desc->wb.upper.status_error));
6729 }
6730
6731 static inline void igb_rx_hash(struct igb_ring *ring,
6732                                union e1000_adv_rx_desc *rx_desc,
6733                                struct sk_buff *skb)
6734 {
6735         if (ring->netdev->features & NETIF_F_RXHASH)
6736                 skb_set_hash(skb,
6737                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6738                              PKT_HASH_TYPE_L3);
6739 }
6740
6741 /**
6742  *  igb_is_non_eop - process handling of non-EOP buffers
6743  *  @rx_ring: Rx ring being processed
6744  *  @rx_desc: Rx descriptor for current buffer
6745  *  @skb: current socket buffer containing buffer in progress
6746  *
6747  *  This function updates next to clean.  If the buffer is an EOP buffer
6748  *  this function exits returning false, otherwise it will place the
6749  *  sk_buff in the next buffer to be chained and return true indicating
6750  *  that this is in fact a non-EOP buffer.
6751  **/
6752 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6753                            union e1000_adv_rx_desc *rx_desc)
6754 {
6755         u32 ntc = rx_ring->next_to_clean + 1;
6756
6757         /* fetch, update, and store next to clean */
6758         ntc = (ntc < rx_ring->count) ? ntc : 0;
6759         rx_ring->next_to_clean = ntc;
6760
6761         prefetch(IGB_RX_DESC(rx_ring, ntc));
6762
6763         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6764                 return false;
6765
6766         return true;
6767 }
6768
6769 /**
6770  *  igb_pull_tail - igb specific version of skb_pull_tail
6771  *  @rx_ring: rx descriptor ring packet is being transacted on
6772  *  @rx_desc: pointer to the EOP Rx descriptor
6773  *  @skb: pointer to current skb being adjusted
6774  *
6775  *  This function is an igb specific version of __pskb_pull_tail.  The
6776  *  main difference between this version and the original function is that
6777  *  this function can make several assumptions about the state of things
6778  *  that allow for significant optimizations versus the standard function.
6779  *  As a result we can do things like drop a frag and maintain an accurate
6780  *  truesize for the skb.
6781  */
6782 static void igb_pull_tail(struct igb_ring *rx_ring,
6783                           union e1000_adv_rx_desc *rx_desc,
6784                           struct sk_buff *skb)
6785 {
6786         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6787         unsigned char *va;
6788         unsigned int pull_len;
6789
6790         /* it is valid to use page_address instead of kmap since we are
6791          * working with pages allocated out of the lomem pool per
6792          * alloc_page(GFP_ATOMIC)
6793          */
6794         va = skb_frag_address(frag);
6795
6796         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6797                 /* retrieve timestamp from buffer */
6798                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6799
6800                 /* update pointers to remove timestamp header */
6801                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6802                 frag->page_offset += IGB_TS_HDR_LEN;
6803                 skb->data_len -= IGB_TS_HDR_LEN;
6804                 skb->len -= IGB_TS_HDR_LEN;
6805
6806                 /* move va to start of packet data */
6807                 va += IGB_TS_HDR_LEN;
6808         }
6809
6810         /* we need the header to contain the greater of either ETH_HLEN or
6811          * 60 bytes if the skb->len is less than 60 for skb_pad.
6812          */
6813         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6814
6815         /* align pull length to size of long to optimize memcpy performance */
6816         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6817
6818         /* update all of the pointers */
6819         skb_frag_size_sub(frag, pull_len);
6820         frag->page_offset += pull_len;
6821         skb->data_len -= pull_len;
6822         skb->tail += pull_len;
6823 }
6824
6825 /**
6826  *  igb_cleanup_headers - Correct corrupted or empty headers
6827  *  @rx_ring: rx descriptor ring packet is being transacted on
6828  *  @rx_desc: pointer to the EOP Rx descriptor
6829  *  @skb: pointer to current skb being fixed
6830  *
6831  *  Address the case where we are pulling data in on pages only
6832  *  and as such no data is present in the skb header.
6833  *
6834  *  In addition if skb is not at least 60 bytes we need to pad it so that
6835  *  it is large enough to qualify as a valid Ethernet frame.
6836  *
6837  *  Returns true if an error was encountered and skb was freed.
6838  **/
6839 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6840                                 union e1000_adv_rx_desc *rx_desc,
6841                                 struct sk_buff *skb)
6842 {
6843         if (unlikely((igb_test_staterr(rx_desc,
6844                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6845                 struct net_device *netdev = rx_ring->netdev;
6846                 if (!(netdev->features & NETIF_F_RXALL)) {
6847                         dev_kfree_skb_any(skb);
6848                         return true;
6849                 }
6850         }
6851
6852         /* place header in linear portion of buffer */
6853         if (skb_is_nonlinear(skb))
6854                 igb_pull_tail(rx_ring, rx_desc, skb);
6855
6856         /* if skb_pad returns an error the skb was freed */
6857         if (unlikely(skb->len < 60)) {
6858                 int pad_len = 60 - skb->len;
6859
6860                 if (skb_pad(skb, pad_len))
6861                         return true;
6862                 __skb_put(skb, pad_len);
6863         }
6864
6865         return false;
6866 }
6867
6868 /**
6869  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6870  *  @rx_ring: rx descriptor ring packet is being transacted on
6871  *  @rx_desc: pointer to the EOP Rx descriptor
6872  *  @skb: pointer to current skb being populated
6873  *
6874  *  This function checks the ring, descriptor, and packet information in
6875  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6876  *  other fields within the skb.
6877  **/
6878 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6879                                    union e1000_adv_rx_desc *rx_desc,
6880                                    struct sk_buff *skb)
6881 {
6882         struct net_device *dev = rx_ring->netdev;
6883
6884         igb_rx_hash(rx_ring, rx_desc, skb);
6885
6886         igb_rx_checksum(rx_ring, rx_desc, skb);
6887
6888         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6889             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6890                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6891
6892         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6893             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6894                 u16 vid;
6895
6896                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6897                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6898                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6899                 else
6900                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6901
6902                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6903         }
6904
6905         skb_record_rx_queue(skb, rx_ring->queue_index);
6906
6907         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6908 }
6909
6910 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6911 {
6912         struct igb_ring *rx_ring = q_vector->rx.ring;
6913         struct sk_buff *skb = rx_ring->skb;
6914         unsigned int total_bytes = 0, total_packets = 0;
6915         u16 cleaned_count = igb_desc_unused(rx_ring);
6916
6917         while (likely(total_packets < budget)) {
6918                 union e1000_adv_rx_desc *rx_desc;
6919
6920                 /* return some buffers to hardware, one at a time is too slow */
6921                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6922                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6923                         cleaned_count = 0;
6924                 }
6925
6926                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6927
6928                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6929                         break;
6930
6931                 /* This memory barrier is needed to keep us from reading
6932                  * any other fields out of the rx_desc until we know the
6933                  * RXD_STAT_DD bit is set
6934                  */
6935                 rmb();
6936
6937                 /* retrieve a buffer from the ring */
6938                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6939
6940                 /* exit if we failed to retrieve a buffer */
6941                 if (!skb)
6942                         break;
6943
6944                 cleaned_count++;
6945
6946                 /* fetch next buffer in frame if non-eop */
6947                 if (igb_is_non_eop(rx_ring, rx_desc))
6948                         continue;
6949
6950                 /* verify the packet layout is correct */
6951                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6952                         skb = NULL;
6953                         continue;
6954                 }
6955
6956                 /* probably a little skewed due to removing CRC */
6957                 total_bytes += skb->len;
6958
6959                 /* populate checksum, timestamp, VLAN, and protocol */
6960                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6961
6962                 napi_gro_receive(&q_vector->napi, skb);
6963
6964                 /* reset skb pointer */
6965                 skb = NULL;
6966
6967                 /* update budget accounting */
6968                 total_packets++;
6969         }
6970
6971         /* place incomplete frames back on ring for completion */
6972         rx_ring->skb = skb;
6973
6974         u64_stats_update_begin(&rx_ring->rx_syncp);
6975         rx_ring->rx_stats.packets += total_packets;
6976         rx_ring->rx_stats.bytes += total_bytes;
6977         u64_stats_update_end(&rx_ring->rx_syncp);
6978         q_vector->rx.total_packets += total_packets;
6979         q_vector->rx.total_bytes += total_bytes;
6980
6981         if (cleaned_count)
6982                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6983
6984         return total_packets < budget;
6985 }
6986
6987 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6988                                   struct igb_rx_buffer *bi)
6989 {
6990         struct page *page = bi->page;
6991         dma_addr_t dma;
6992
6993         /* since we are recycling buffers we should seldom need to alloc */
6994         if (likely(page))
6995                 return true;
6996
6997         /* alloc new page for storage */
6998         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6999         if (unlikely(!page)) {
7000                 rx_ring->rx_stats.alloc_failed++;
7001                 return false;
7002         }
7003
7004         /* map page for use */
7005         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7006
7007         /* if mapping failed free memory back to system since
7008          * there isn't much point in holding memory we can't use
7009          */
7010         if (dma_mapping_error(rx_ring->dev, dma)) {
7011                 __free_page(page);
7012
7013                 rx_ring->rx_stats.alloc_failed++;
7014                 return false;
7015         }
7016
7017         bi->dma = dma;
7018         bi->page = page;
7019         bi->page_offset = 0;
7020
7021         return true;
7022 }
7023
7024 /**
7025  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7026  *  @adapter: address of board private structure
7027  **/
7028 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7029 {
7030         union e1000_adv_rx_desc *rx_desc;
7031         struct igb_rx_buffer *bi;
7032         u16 i = rx_ring->next_to_use;
7033
7034         /* nothing to do */
7035         if (!cleaned_count)
7036                 return;
7037
7038         rx_desc = IGB_RX_DESC(rx_ring, i);
7039         bi = &rx_ring->rx_buffer_info[i];
7040         i -= rx_ring->count;
7041
7042         do {
7043                 if (!igb_alloc_mapped_page(rx_ring, bi))
7044                         break;
7045
7046                 /* Refresh the desc even if buffer_addrs didn't change
7047                  * because each write-back erases this info.
7048                  */
7049                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7050
7051                 rx_desc++;
7052                 bi++;
7053                 i++;
7054                 if (unlikely(!i)) {
7055                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7056                         bi = rx_ring->rx_buffer_info;
7057                         i -= rx_ring->count;
7058                 }
7059
7060                 /* clear the hdr_addr for the next_to_use descriptor */
7061                 rx_desc->read.hdr_addr = 0;
7062
7063                 cleaned_count--;
7064         } while (cleaned_count);
7065
7066         i += rx_ring->count;
7067
7068         if (rx_ring->next_to_use != i) {
7069                 /* record the next descriptor to use */
7070                 rx_ring->next_to_use = i;
7071
7072                 /* update next to alloc since we have filled the ring */
7073                 rx_ring->next_to_alloc = i;
7074
7075                 /* Force memory writes to complete before letting h/w
7076                  * know there are new descriptors to fetch.  (Only
7077                  * applicable for weak-ordered memory model archs,
7078                  * such as IA-64).
7079                  */
7080                 wmb();
7081                 writel(i, rx_ring->tail);
7082         }
7083 }
7084
7085 /**
7086  * igb_mii_ioctl -
7087  * @netdev:
7088  * @ifreq:
7089  * @cmd:
7090  **/
7091 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7092 {
7093         struct igb_adapter *adapter = netdev_priv(netdev);
7094         struct mii_ioctl_data *data = if_mii(ifr);
7095
7096         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7097                 return -EOPNOTSUPP;
7098
7099         switch (cmd) {
7100         case SIOCGMIIPHY:
7101                 data->phy_id = adapter->hw.phy.addr;
7102                 break;
7103         case SIOCGMIIREG:
7104                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7105                                      &data->val_out))
7106                         return -EIO;
7107                 break;
7108         case SIOCSMIIREG:
7109         default:
7110                 return -EOPNOTSUPP;
7111         }
7112         return 0;
7113 }
7114
7115 /**
7116  * igb_ioctl -
7117  * @netdev:
7118  * @ifreq:
7119  * @cmd:
7120  **/
7121 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7122 {
7123         switch (cmd) {
7124         case SIOCGMIIPHY:
7125         case SIOCGMIIREG:
7126         case SIOCSMIIREG:
7127                 return igb_mii_ioctl(netdev, ifr, cmd);
7128         case SIOCGHWTSTAMP:
7129                 return igb_ptp_get_ts_config(netdev, ifr);
7130         case SIOCSHWTSTAMP:
7131                 return igb_ptp_set_ts_config(netdev, ifr);
7132         default:
7133                 return -EOPNOTSUPP;
7134         }
7135 }
7136
7137 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7138 {
7139         struct igb_adapter *adapter = hw->back;
7140
7141         pci_read_config_word(adapter->pdev, reg, value);
7142 }
7143
7144 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7145 {
7146         struct igb_adapter *adapter = hw->back;
7147
7148         pci_write_config_word(adapter->pdev, reg, *value);
7149 }
7150
7151 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7152 {
7153         struct igb_adapter *adapter = hw->back;
7154
7155         if (pcie_capability_read_word(adapter->pdev, reg, value))
7156                 return -E1000_ERR_CONFIG;
7157
7158         return 0;
7159 }
7160
7161 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7162 {
7163         struct igb_adapter *adapter = hw->back;
7164
7165         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7166                 return -E1000_ERR_CONFIG;
7167
7168         return 0;
7169 }
7170
7171 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7172 {
7173         struct igb_adapter *adapter = netdev_priv(netdev);
7174         struct e1000_hw *hw = &adapter->hw;
7175         u32 ctrl, rctl;
7176         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7177
7178         if (enable) {
7179                 /* enable VLAN tag insert/strip */
7180                 ctrl = rd32(E1000_CTRL);
7181                 ctrl |= E1000_CTRL_VME;
7182                 wr32(E1000_CTRL, ctrl);
7183
7184                 /* Disable CFI check */
7185                 rctl = rd32(E1000_RCTL);
7186                 rctl &= ~E1000_RCTL_CFIEN;
7187                 wr32(E1000_RCTL, rctl);
7188         } else {
7189                 /* disable VLAN tag insert/strip */
7190                 ctrl = rd32(E1000_CTRL);
7191                 ctrl &= ~E1000_CTRL_VME;
7192                 wr32(E1000_CTRL, ctrl);
7193         }
7194
7195         igb_rlpml_set(adapter);
7196 }
7197
7198 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7199                                __be16 proto, u16 vid)
7200 {
7201         struct igb_adapter *adapter = netdev_priv(netdev);
7202         struct e1000_hw *hw = &adapter->hw;
7203         int pf_id = adapter->vfs_allocated_count;
7204
7205         /* attempt to add filter to vlvf array */
7206         igb_vlvf_set(adapter, vid, true, pf_id);
7207
7208         /* add the filter since PF can receive vlans w/o entry in vlvf */
7209         igb_vfta_set(hw, vid, true);
7210
7211         set_bit(vid, adapter->active_vlans);
7212
7213         return 0;
7214 }
7215
7216 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7217                                 __be16 proto, u16 vid)
7218 {
7219         struct igb_adapter *adapter = netdev_priv(netdev);
7220         struct e1000_hw *hw = &adapter->hw;
7221         int pf_id = adapter->vfs_allocated_count;
7222         s32 err;
7223
7224         /* remove vlan from VLVF table array */
7225         err = igb_vlvf_set(adapter, vid, false, pf_id);
7226
7227         /* if vid was not present in VLVF just remove it from table */
7228         if (err)
7229                 igb_vfta_set(hw, vid, false);
7230
7231         clear_bit(vid, adapter->active_vlans);
7232
7233         return 0;
7234 }
7235
7236 static void igb_restore_vlan(struct igb_adapter *adapter)
7237 {
7238         u16 vid;
7239
7240         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7241
7242         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7243                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7244 }
7245
7246 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7247 {
7248         struct pci_dev *pdev = adapter->pdev;
7249         struct e1000_mac_info *mac = &adapter->hw.mac;
7250
7251         mac->autoneg = 0;
7252
7253         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7254          * for the switch() below to work
7255          */
7256         if ((spd & 1) || (dplx & ~1))
7257                 goto err_inval;
7258
7259         /* Fiber NIC's only allow 1000 gbps Full duplex
7260          * and 100Mbps Full duplex for 100baseFx sfp
7261          */
7262         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7263                 switch (spd + dplx) {
7264                 case SPEED_10 + DUPLEX_HALF:
7265                 case SPEED_10 + DUPLEX_FULL:
7266                 case SPEED_100 + DUPLEX_HALF:
7267                         goto err_inval;
7268                 default:
7269                         break;
7270                 }
7271         }
7272
7273         switch (spd + dplx) {
7274         case SPEED_10 + DUPLEX_HALF:
7275                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7276                 break;
7277         case SPEED_10 + DUPLEX_FULL:
7278                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7279                 break;
7280         case SPEED_100 + DUPLEX_HALF:
7281                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7282                 break;
7283         case SPEED_100 + DUPLEX_FULL:
7284                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7285                 break;
7286         case SPEED_1000 + DUPLEX_FULL:
7287                 mac->autoneg = 1;
7288                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7289                 break;
7290         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7291         default:
7292                 goto err_inval;
7293         }
7294
7295         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7296         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7297
7298         return 0;
7299
7300 err_inval:
7301         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7302         return -EINVAL;
7303 }
7304
7305 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7306                           bool runtime)
7307 {
7308         struct net_device *netdev = pci_get_drvdata(pdev);
7309         struct igb_adapter *adapter = netdev_priv(netdev);
7310         struct e1000_hw *hw = &adapter->hw;
7311         u32 ctrl, rctl, status;
7312         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7313 #ifdef CONFIG_PM
7314         int retval = 0;
7315 #endif
7316
7317         netif_device_detach(netdev);
7318
7319         if (netif_running(netdev))
7320                 __igb_close(netdev, true);
7321
7322         igb_clear_interrupt_scheme(adapter);
7323
7324 #ifdef CONFIG_PM
7325         retval = pci_save_state(pdev);
7326         if (retval)
7327                 return retval;
7328 #endif
7329
7330         status = rd32(E1000_STATUS);
7331         if (status & E1000_STATUS_LU)
7332                 wufc &= ~E1000_WUFC_LNKC;
7333
7334         if (wufc) {
7335                 igb_setup_rctl(adapter);
7336                 igb_set_rx_mode(netdev);
7337
7338                 /* turn on all-multi mode if wake on multicast is enabled */
7339                 if (wufc & E1000_WUFC_MC) {
7340                         rctl = rd32(E1000_RCTL);
7341                         rctl |= E1000_RCTL_MPE;
7342                         wr32(E1000_RCTL, rctl);
7343                 }
7344
7345                 ctrl = rd32(E1000_CTRL);
7346                 /* advertise wake from D3Cold */
7347                 #define E1000_CTRL_ADVD3WUC 0x00100000
7348                 /* phy power management enable */
7349                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7350                 ctrl |= E1000_CTRL_ADVD3WUC;
7351                 wr32(E1000_CTRL, ctrl);
7352
7353                 /* Allow time for pending master requests to run */
7354                 igb_disable_pcie_master(hw);
7355
7356                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7357                 wr32(E1000_WUFC, wufc);
7358         } else {
7359                 wr32(E1000_WUC, 0);
7360                 wr32(E1000_WUFC, 0);
7361         }
7362
7363         *enable_wake = wufc || adapter->en_mng_pt;
7364         if (!*enable_wake)
7365                 igb_power_down_link(adapter);
7366         else
7367                 igb_power_up_link(adapter);
7368
7369         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7370          * would have already happened in close and is redundant.
7371          */
7372         igb_release_hw_control(adapter);
7373
7374         pci_disable_device(pdev);
7375
7376         return 0;
7377 }
7378
7379 #ifdef CONFIG_PM
7380 #ifdef CONFIG_PM_SLEEP
7381 static int igb_suspend(struct device *dev)
7382 {
7383         int retval;
7384         bool wake;
7385         struct pci_dev *pdev = to_pci_dev(dev);
7386
7387         retval = __igb_shutdown(pdev, &wake, 0);
7388         if (retval)
7389                 return retval;
7390
7391         if (wake) {
7392                 pci_prepare_to_sleep(pdev);
7393         } else {
7394                 pci_wake_from_d3(pdev, false);
7395                 pci_set_power_state(pdev, PCI_D3hot);
7396         }
7397
7398         return 0;
7399 }
7400 #endif /* CONFIG_PM_SLEEP */
7401
7402 static int igb_resume(struct device *dev)
7403 {
7404         struct pci_dev *pdev = to_pci_dev(dev);
7405         struct net_device *netdev = pci_get_drvdata(pdev);
7406         struct igb_adapter *adapter = netdev_priv(netdev);
7407         struct e1000_hw *hw = &adapter->hw;
7408         u32 err;
7409
7410         pci_set_power_state(pdev, PCI_D0);
7411         pci_restore_state(pdev);
7412         pci_save_state(pdev);
7413
7414         if (!pci_device_is_present(pdev))
7415                 return -ENODEV;
7416         err = pci_enable_device_mem(pdev);
7417         if (err) {
7418                 dev_err(&pdev->dev,
7419                         "igb: Cannot enable PCI device from suspend\n");
7420                 return err;
7421         }
7422         pci_set_master(pdev);
7423
7424         pci_enable_wake(pdev, PCI_D3hot, 0);
7425         pci_enable_wake(pdev, PCI_D3cold, 0);
7426
7427         if (igb_init_interrupt_scheme(adapter, true)) {
7428                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7429                 return -ENOMEM;
7430         }
7431
7432         igb_reset(adapter);
7433
7434         /* let the f/w know that the h/w is now under the control of the
7435          * driver.
7436          */
7437         igb_get_hw_control(adapter);
7438
7439         wr32(E1000_WUS, ~0);
7440
7441         if (netdev->flags & IFF_UP) {
7442                 rtnl_lock();
7443                 err = __igb_open(netdev, true);
7444                 rtnl_unlock();
7445                 if (err)
7446                         return err;
7447         }
7448
7449         netif_device_attach(netdev);
7450         return 0;
7451 }
7452
7453 #ifdef CONFIG_PM_RUNTIME
7454 static int igb_runtime_idle(struct device *dev)
7455 {
7456         struct pci_dev *pdev = to_pci_dev(dev);
7457         struct net_device *netdev = pci_get_drvdata(pdev);
7458         struct igb_adapter *adapter = netdev_priv(netdev);
7459
7460         if (!igb_has_link(adapter))
7461                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7462
7463         return -EBUSY;
7464 }
7465
7466 static int igb_runtime_suspend(struct device *dev)
7467 {
7468         struct pci_dev *pdev = to_pci_dev(dev);
7469         int retval;
7470         bool wake;
7471
7472         retval = __igb_shutdown(pdev, &wake, 1);
7473         if (retval)
7474                 return retval;
7475
7476         if (wake) {
7477                 pci_prepare_to_sleep(pdev);
7478         } else {
7479                 pci_wake_from_d3(pdev, false);
7480                 pci_set_power_state(pdev, PCI_D3hot);
7481         }
7482
7483         return 0;
7484 }
7485
7486 static int igb_runtime_resume(struct device *dev)
7487 {
7488         return igb_resume(dev);
7489 }
7490 #endif /* CONFIG_PM_RUNTIME */
7491 #endif
7492
7493 static void igb_shutdown(struct pci_dev *pdev)
7494 {
7495         bool wake;
7496
7497         __igb_shutdown(pdev, &wake, 0);
7498
7499         if (system_state == SYSTEM_POWER_OFF) {
7500                 pci_wake_from_d3(pdev, wake);
7501                 pci_set_power_state(pdev, PCI_D3hot);
7502         }
7503 }
7504
7505 #ifdef CONFIG_PCI_IOV
7506 static int igb_sriov_reinit(struct pci_dev *dev)
7507 {
7508         struct net_device *netdev = pci_get_drvdata(dev);
7509         struct igb_adapter *adapter = netdev_priv(netdev);
7510         struct pci_dev *pdev = adapter->pdev;
7511
7512         rtnl_lock();
7513
7514         if (netif_running(netdev))
7515                 igb_close(netdev);
7516         else
7517                 igb_reset(adapter);
7518
7519         igb_clear_interrupt_scheme(adapter);
7520
7521         igb_init_queue_configuration(adapter);
7522
7523         if (igb_init_interrupt_scheme(adapter, true)) {
7524                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7525                 return -ENOMEM;
7526         }
7527
7528         if (netif_running(netdev))
7529                 igb_open(netdev);
7530
7531         rtnl_unlock();
7532
7533         return 0;
7534 }
7535
7536 static int igb_pci_disable_sriov(struct pci_dev *dev)
7537 {
7538         int err = igb_disable_sriov(dev);
7539
7540         if (!err)
7541                 err = igb_sriov_reinit(dev);
7542
7543         return err;
7544 }
7545
7546 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7547 {
7548         int err = igb_enable_sriov(dev, num_vfs);
7549
7550         if (err)
7551                 goto out;
7552
7553         err = igb_sriov_reinit(dev);
7554         if (!err)
7555                 return num_vfs;
7556
7557 out:
7558         return err;
7559 }
7560
7561 #endif
7562 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7563 {
7564 #ifdef CONFIG_PCI_IOV
7565         if (num_vfs == 0)
7566                 return igb_pci_disable_sriov(dev);
7567         else
7568                 return igb_pci_enable_sriov(dev, num_vfs);
7569 #endif
7570         return 0;
7571 }
7572
7573 #ifdef CONFIG_NET_POLL_CONTROLLER
7574 /* Polling 'interrupt' - used by things like netconsole to send skbs
7575  * without having to re-enable interrupts. It's not called while
7576  * the interrupt routine is executing.
7577  */
7578 static void igb_netpoll(struct net_device *netdev)
7579 {
7580         struct igb_adapter *adapter = netdev_priv(netdev);
7581         struct e1000_hw *hw = &adapter->hw;
7582         struct igb_q_vector *q_vector;
7583         int i;
7584
7585         for (i = 0; i < adapter->num_q_vectors; i++) {
7586                 q_vector = adapter->q_vector[i];
7587                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7588                         wr32(E1000_EIMC, q_vector->eims_value);
7589                 else
7590                         igb_irq_disable(adapter);
7591                 napi_schedule(&q_vector->napi);
7592         }
7593 }
7594 #endif /* CONFIG_NET_POLL_CONTROLLER */
7595
7596 /**
7597  *  igb_io_error_detected - called when PCI error is detected
7598  *  @pdev: Pointer to PCI device
7599  *  @state: The current pci connection state
7600  *
7601  *  This function is called after a PCI bus error affecting
7602  *  this device has been detected.
7603  **/
7604 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7605                                               pci_channel_state_t state)
7606 {
7607         struct net_device *netdev = pci_get_drvdata(pdev);
7608         struct igb_adapter *adapter = netdev_priv(netdev);
7609
7610         netif_device_detach(netdev);
7611
7612         if (state == pci_channel_io_perm_failure)
7613                 return PCI_ERS_RESULT_DISCONNECT;
7614
7615         if (netif_running(netdev))
7616                 igb_down(adapter);
7617         pci_disable_device(pdev);
7618
7619         /* Request a slot slot reset. */
7620         return PCI_ERS_RESULT_NEED_RESET;
7621 }
7622
7623 /**
7624  *  igb_io_slot_reset - called after the pci bus has been reset.
7625  *  @pdev: Pointer to PCI device
7626  *
7627  *  Restart the card from scratch, as if from a cold-boot. Implementation
7628  *  resembles the first-half of the igb_resume routine.
7629  **/
7630 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7631 {
7632         struct net_device *netdev = pci_get_drvdata(pdev);
7633         struct igb_adapter *adapter = netdev_priv(netdev);
7634         struct e1000_hw *hw = &adapter->hw;
7635         pci_ers_result_t result;
7636         int err;
7637
7638         if (pci_enable_device_mem(pdev)) {
7639                 dev_err(&pdev->dev,
7640                         "Cannot re-enable PCI device after reset.\n");
7641                 result = PCI_ERS_RESULT_DISCONNECT;
7642         } else {
7643                 pci_set_master(pdev);
7644                 pci_restore_state(pdev);
7645                 pci_save_state(pdev);
7646
7647                 pci_enable_wake(pdev, PCI_D3hot, 0);
7648                 pci_enable_wake(pdev, PCI_D3cold, 0);
7649
7650                 igb_reset(adapter);
7651                 wr32(E1000_WUS, ~0);
7652                 result = PCI_ERS_RESULT_RECOVERED;
7653         }
7654
7655         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7656         if (err) {
7657                 dev_err(&pdev->dev,
7658                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7659                         err);
7660                 /* non-fatal, continue */
7661         }
7662
7663         return result;
7664 }
7665
7666 /**
7667  *  igb_io_resume - called when traffic can start flowing again.
7668  *  @pdev: Pointer to PCI device
7669  *
7670  *  This callback is called when the error recovery driver tells us that
7671  *  its OK to resume normal operation. Implementation resembles the
7672  *  second-half of the igb_resume routine.
7673  */
7674 static void igb_io_resume(struct pci_dev *pdev)
7675 {
7676         struct net_device *netdev = pci_get_drvdata(pdev);
7677         struct igb_adapter *adapter = netdev_priv(netdev);
7678
7679         if (netif_running(netdev)) {
7680                 if (igb_up(adapter)) {
7681                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7682                         return;
7683                 }
7684         }
7685
7686         netif_device_attach(netdev);
7687
7688         /* let the f/w know that the h/w is now under the control of the
7689          * driver.
7690          */
7691         igb_get_hw_control(adapter);
7692 }
7693
7694 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7695                              u8 qsel)
7696 {
7697         u32 rar_low, rar_high;
7698         struct e1000_hw *hw = &adapter->hw;
7699
7700         /* HW expects these in little endian so we reverse the byte order
7701          * from network order (big endian) to little endian
7702          */
7703         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7704                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7705         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7706
7707         /* Indicate to hardware the Address is Valid. */
7708         rar_high |= E1000_RAH_AV;
7709
7710         if (hw->mac.type == e1000_82575)
7711                 rar_high |= E1000_RAH_POOL_1 * qsel;
7712         else
7713                 rar_high |= E1000_RAH_POOL_1 << qsel;
7714
7715         wr32(E1000_RAL(index), rar_low);
7716         wrfl();
7717         wr32(E1000_RAH(index), rar_high);
7718         wrfl();
7719 }
7720
7721 static int igb_set_vf_mac(struct igb_adapter *adapter,
7722                           int vf, unsigned char *mac_addr)
7723 {
7724         struct e1000_hw *hw = &adapter->hw;
7725         /* VF MAC addresses start at end of receive addresses and moves
7726          * towards the first, as a result a collision should not be possible
7727          */
7728         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7729
7730         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7731
7732         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7733
7734         return 0;
7735 }
7736
7737 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7738 {
7739         struct igb_adapter *adapter = netdev_priv(netdev);
7740         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7741                 return -EINVAL;
7742         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7743         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7744         dev_info(&adapter->pdev->dev,
7745                  "Reload the VF driver to make this change effective.");
7746         if (test_bit(__IGB_DOWN, &adapter->state)) {
7747                 dev_warn(&adapter->pdev->dev,
7748                          "The VF MAC address has been set, but the PF device is not up.\n");
7749                 dev_warn(&adapter->pdev->dev,
7750                          "Bring the PF device up before attempting to use the VF device.\n");
7751         }
7752         return igb_set_vf_mac(adapter, vf, mac);
7753 }
7754
7755 static int igb_link_mbps(int internal_link_speed)
7756 {
7757         switch (internal_link_speed) {
7758         case SPEED_100:
7759                 return 100;
7760         case SPEED_1000:
7761                 return 1000;
7762         default:
7763                 return 0;
7764         }
7765 }
7766
7767 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7768                                   int link_speed)
7769 {
7770         int rf_dec, rf_int;
7771         u32 bcnrc_val;
7772
7773         if (tx_rate != 0) {
7774                 /* Calculate the rate factor values to set */
7775                 rf_int = link_speed / tx_rate;
7776                 rf_dec = (link_speed - (rf_int * tx_rate));
7777                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7778                          tx_rate;
7779
7780                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7781                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7782                               E1000_RTTBCNRC_RF_INT_MASK);
7783                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7784         } else {
7785                 bcnrc_val = 0;
7786         }
7787
7788         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7789         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7790          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7791          */
7792         wr32(E1000_RTTBCNRM, 0x14);
7793         wr32(E1000_RTTBCNRC, bcnrc_val);
7794 }
7795
7796 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7797 {
7798         int actual_link_speed, i;
7799         bool reset_rate = false;
7800
7801         /* VF TX rate limit was not set or not supported */
7802         if ((adapter->vf_rate_link_speed == 0) ||
7803             (adapter->hw.mac.type != e1000_82576))
7804                 return;
7805
7806         actual_link_speed = igb_link_mbps(adapter->link_speed);
7807         if (actual_link_speed != adapter->vf_rate_link_speed) {
7808                 reset_rate = true;
7809                 adapter->vf_rate_link_speed = 0;
7810                 dev_info(&adapter->pdev->dev,
7811                          "Link speed has been changed. VF Transmit rate is disabled\n");
7812         }
7813
7814         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7815                 if (reset_rate)
7816                         adapter->vf_data[i].tx_rate = 0;
7817
7818                 igb_set_vf_rate_limit(&adapter->hw, i,
7819                                       adapter->vf_data[i].tx_rate,
7820                                       actual_link_speed);
7821         }
7822 }
7823
7824 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7825                              int min_tx_rate, int max_tx_rate)
7826 {
7827         struct igb_adapter *adapter = netdev_priv(netdev);
7828         struct e1000_hw *hw = &adapter->hw;
7829         int actual_link_speed;
7830
7831         if (hw->mac.type != e1000_82576)
7832                 return -EOPNOTSUPP;
7833
7834         if (min_tx_rate)
7835                 return -EINVAL;
7836
7837         actual_link_speed = igb_link_mbps(adapter->link_speed);
7838         if ((vf >= adapter->vfs_allocated_count) ||
7839             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7840             (max_tx_rate < 0) ||
7841             (max_tx_rate > actual_link_speed))
7842                 return -EINVAL;
7843
7844         adapter->vf_rate_link_speed = actual_link_speed;
7845         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7846         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7847
7848         return 0;
7849 }
7850
7851 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7852                                    bool setting)
7853 {
7854         struct igb_adapter *adapter = netdev_priv(netdev);
7855         struct e1000_hw *hw = &adapter->hw;
7856         u32 reg_val, reg_offset;
7857
7858         if (!adapter->vfs_allocated_count)
7859                 return -EOPNOTSUPP;
7860
7861         if (vf >= adapter->vfs_allocated_count)
7862                 return -EINVAL;
7863
7864         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7865         reg_val = rd32(reg_offset);
7866         if (setting)
7867                 reg_val |= ((1 << vf) |
7868                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7869         else
7870                 reg_val &= ~((1 << vf) |
7871                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7872         wr32(reg_offset, reg_val);
7873
7874         adapter->vf_data[vf].spoofchk_enabled = setting;
7875         return 0;
7876 }
7877
7878 static int igb_ndo_get_vf_config(struct net_device *netdev,
7879                                  int vf, struct ifla_vf_info *ivi)
7880 {
7881         struct igb_adapter *adapter = netdev_priv(netdev);
7882         if (vf >= adapter->vfs_allocated_count)
7883                 return -EINVAL;
7884         ivi->vf = vf;
7885         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7886         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7887         ivi->min_tx_rate = 0;
7888         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7889         ivi->qos = adapter->vf_data[vf].pf_qos;
7890         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7891         return 0;
7892 }
7893
7894 static void igb_vmm_control(struct igb_adapter *adapter)
7895 {
7896         struct e1000_hw *hw = &adapter->hw;
7897         u32 reg;
7898
7899         switch (hw->mac.type) {
7900         case e1000_82575:
7901         case e1000_i210:
7902         case e1000_i211:
7903         case e1000_i354:
7904         default:
7905                 /* replication is not supported for 82575 */
7906                 return;
7907         case e1000_82576:
7908                 /* notify HW that the MAC is adding vlan tags */
7909                 reg = rd32(E1000_DTXCTL);
7910                 reg |= E1000_DTXCTL_VLAN_ADDED;
7911                 wr32(E1000_DTXCTL, reg);
7912                 /* Fall through */
7913         case e1000_82580:
7914                 /* enable replication vlan tag stripping */
7915                 reg = rd32(E1000_RPLOLR);
7916                 reg |= E1000_RPLOLR_STRVLAN;
7917                 wr32(E1000_RPLOLR, reg);
7918                 /* Fall through */
7919         case e1000_i350:
7920                 /* none of the above registers are supported by i350 */
7921                 break;
7922         }
7923
7924         if (adapter->vfs_allocated_count) {
7925                 igb_vmdq_set_loopback_pf(hw, true);
7926                 igb_vmdq_set_replication_pf(hw, true);
7927                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7928                                               adapter->vfs_allocated_count);
7929         } else {
7930                 igb_vmdq_set_loopback_pf(hw, false);
7931                 igb_vmdq_set_replication_pf(hw, false);
7932         }
7933 }
7934
7935 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7936 {
7937         struct e1000_hw *hw = &adapter->hw;
7938         u32 dmac_thr;
7939         u16 hwm;
7940
7941         if (hw->mac.type > e1000_82580) {
7942                 if (adapter->flags & IGB_FLAG_DMAC) {
7943                         u32 reg;
7944
7945                         /* force threshold to 0. */
7946                         wr32(E1000_DMCTXTH, 0);
7947
7948                         /* DMA Coalescing high water mark needs to be greater
7949                          * than the Rx threshold. Set hwm to PBA - max frame
7950                          * size in 16B units, capping it at PBA - 6KB.
7951                          */
7952                         hwm = 64 * pba - adapter->max_frame_size / 16;
7953                         if (hwm < 64 * (pba - 6))
7954                                 hwm = 64 * (pba - 6);
7955                         reg = rd32(E1000_FCRTC);
7956                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7957                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7958                                 & E1000_FCRTC_RTH_COAL_MASK);
7959                         wr32(E1000_FCRTC, reg);
7960
7961                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7962                          * frame size, capping it at PBA - 10KB.
7963                          */
7964                         dmac_thr = pba - adapter->max_frame_size / 512;
7965                         if (dmac_thr < pba - 10)
7966                                 dmac_thr = pba - 10;
7967                         reg = rd32(E1000_DMACR);
7968                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7969                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7970                                 & E1000_DMACR_DMACTHR_MASK);
7971
7972                         /* transition to L0x or L1 if available..*/
7973                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7974
7975                         /* watchdog timer= +-1000 usec in 32usec intervals */
7976                         reg |= (1000 >> 5);
7977
7978                         /* Disable BMC-to-OS Watchdog Enable */
7979                         if (hw->mac.type != e1000_i354)
7980                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7981
7982                         wr32(E1000_DMACR, reg);
7983
7984                         /* no lower threshold to disable
7985                          * coalescing(smart fifb)-UTRESH=0
7986                          */
7987                         wr32(E1000_DMCRTRH, 0);
7988
7989                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7990
7991                         wr32(E1000_DMCTLX, reg);
7992
7993                         /* free space in tx packet buffer to wake from
7994                          * DMA coal
7995                          */
7996                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7997                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7998
7999                         /* make low power state decision controlled
8000                          * by DMA coal
8001                          */
8002                         reg = rd32(E1000_PCIEMISC);
8003                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8004                         wr32(E1000_PCIEMISC, reg);
8005                 } /* endif adapter->dmac is not disabled */
8006         } else if (hw->mac.type == e1000_82580) {
8007                 u32 reg = rd32(E1000_PCIEMISC);
8008
8009                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8010                 wr32(E1000_DMACR, 0);
8011         }
8012 }
8013
8014 /**
8015  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8016  *  @hw: pointer to hardware structure
8017  *  @byte_offset: byte offset to read
8018  *  @dev_addr: device address
8019  *  @data: value read
8020  *
8021  *  Performs byte read operation over I2C interface at
8022  *  a specified device address.
8023  **/
8024 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8025                       u8 dev_addr, u8 *data)
8026 {
8027         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8028         struct i2c_client *this_client = adapter->i2c_client;
8029         s32 status;
8030         u16 swfw_mask = 0;
8031
8032         if (!this_client)
8033                 return E1000_ERR_I2C;
8034
8035         swfw_mask = E1000_SWFW_PHY0_SM;
8036
8037         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8038                 return E1000_ERR_SWFW_SYNC;
8039
8040         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8041         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8042
8043         if (status < 0)
8044                 return E1000_ERR_I2C;
8045         else {
8046                 *data = status;
8047                 return 0;
8048         }
8049 }
8050
8051 /**
8052  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8053  *  @hw: pointer to hardware structure
8054  *  @byte_offset: byte offset to write
8055  *  @dev_addr: device address
8056  *  @data: value to write
8057  *
8058  *  Performs byte write operation over I2C interface at
8059  *  a specified device address.
8060  **/
8061 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8062                        u8 dev_addr, u8 data)
8063 {
8064         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8065         struct i2c_client *this_client = adapter->i2c_client;
8066         s32 status;
8067         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8068
8069         if (!this_client)
8070                 return E1000_ERR_I2C;
8071
8072         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8073                 return E1000_ERR_SWFW_SYNC;
8074         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8075         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8076
8077         if (status)
8078                 return E1000_ERR_I2C;
8079         else
8080                 return 0;
8081
8082 }
8083
8084 int igb_reinit_queues(struct igb_adapter *adapter)
8085 {
8086         struct net_device *netdev = adapter->netdev;
8087         struct pci_dev *pdev = adapter->pdev;
8088         int err = 0;
8089
8090         if (netif_running(netdev))
8091                 igb_close(netdev);
8092
8093         igb_reset_interrupt_capability(adapter);
8094
8095         if (igb_init_interrupt_scheme(adapter, true)) {
8096                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8097                 return -ENOMEM;
8098         }
8099
8100         if (netif_running(netdev))
8101                 err = igb_open(netdev);
8102
8103         return err;
8104 }
8105 /* igb_main.c */