spi/topcliff-pch: Fix Kconfig dependencies
[cascardo/linux.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include <linux/in.h>
19 #include <linux/jhash.h>
20 #include <linux/wait.h>
21 #include <linux/workqueue.h>
22
23 /* Hardware control for EF10 architecture including 'Huntington'. */
24
25 #define EFX_EF10_DRVGEN_EV              7
26 enum {
27         EFX_EF10_TEST = 1,
28         EFX_EF10_REFILL,
29 };
30
31 /* The reserved RSS context value */
32 #define EFX_EF10_RSS_CONTEXT_INVALID    0xffffffff
33
34 /* The filter table(s) are managed by firmware and we have write-only
35  * access.  When removing filters we must identify them to the
36  * firmware by a 64-bit handle, but this is too wide for Linux kernel
37  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
38  * be able to tell in advance whether a requested insertion will
39  * replace an existing filter.  Therefore we maintain a software hash
40  * table, which should be at least as large as the hardware hash
41  * table.
42  *
43  * Huntington has a single 8K filter table shared between all filter
44  * types and both ports.
45  */
46 #define HUNT_FILTER_TBL_ROWS 8192
47
48 struct efx_ef10_filter_table {
49 /* The RX match field masks supported by this fw & hw, in order of priority */
50         enum efx_filter_match_flags rx_match_flags[
51                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
52         unsigned int rx_match_count;
53
54         struct {
55                 unsigned long spec;     /* pointer to spec plus flag bits */
56 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
57  * used to mark and sweep MAC filters for the device address lists.
58  */
59 #define EFX_EF10_FILTER_FLAG_BUSY       1UL
60 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
61 #define EFX_EF10_FILTER_FLAGS           3UL
62                 u64 handle;             /* firmware handle */
63         } *entry;
64         wait_queue_head_t waitq;
65 /* Shadow of net_device address lists, guarded by mac_lock */
66 #define EFX_EF10_FILTER_DEV_UC_MAX      32
67 #define EFX_EF10_FILTER_DEV_MC_MAX      256
68         struct {
69                 u8 addr[ETH_ALEN];
70                 u16 id;
71         } dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
72           dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
73         int dev_uc_count;               /* negative for PROMISC */
74         int dev_mc_count;               /* negative for PROMISC/ALLMULTI */
75 };
76
77 /* An arbitrary search limit for the software hash table */
78 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
79
80 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
81 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
82 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
83
84 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
85 {
86         efx_dword_t reg;
87
88         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
89         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
90                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
91 }
92
93 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
94 {
95         return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
96 }
97
98 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
99 {
100         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
101         struct efx_ef10_nic_data *nic_data = efx->nic_data;
102         size_t outlen;
103         int rc;
104
105         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
106
107         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
108                           outbuf, sizeof(outbuf), &outlen);
109         if (rc)
110                 return rc;
111         if (outlen < sizeof(outbuf)) {
112                 netif_err(efx, drv, efx->net_dev,
113                           "unable to read datapath firmware capabilities\n");
114                 return -EIO;
115         }
116
117         nic_data->datapath_caps =
118                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
119
120         if (!(nic_data->datapath_caps &
121               (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
122                 netif_err(efx, drv, efx->net_dev,
123                           "current firmware does not support TSO\n");
124                 return -ENODEV;
125         }
126
127         if (!(nic_data->datapath_caps &
128               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
129                 netif_err(efx, probe, efx->net_dev,
130                           "current firmware does not support an RX prefix\n");
131                 return -ENODEV;
132         }
133
134         return 0;
135 }
136
137 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
138 {
139         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
140         int rc;
141
142         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
143                           outbuf, sizeof(outbuf), NULL);
144         if (rc)
145                 return rc;
146         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
147         return rc > 0 ? rc : -ERANGE;
148 }
149
150 static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
151 {
152         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
153         size_t outlen;
154         int rc;
155
156         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
157
158         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
159                           outbuf, sizeof(outbuf), &outlen);
160         if (rc)
161                 return rc;
162         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
163                 return -EIO;
164
165         ether_addr_copy(mac_address,
166                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
167         return 0;
168 }
169
170 static int efx_ef10_probe(struct efx_nic *efx)
171 {
172         struct efx_ef10_nic_data *nic_data;
173         int i, rc;
174
175         /* We can have one VI for each 8K region.  However, until we
176          * use TX option descriptors we need two TX queues per channel.
177          */
178         efx->max_channels =
179                 min_t(unsigned int,
180                       EFX_MAX_CHANNELS,
181                       resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
182                       (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
183         BUG_ON(efx->max_channels == 0);
184
185         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
186         if (!nic_data)
187                 return -ENOMEM;
188         efx->nic_data = nic_data;
189
190         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
191                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
192         if (rc)
193                 goto fail1;
194
195         /* Get the MC's warm boot count.  In case it's rebooting right
196          * now, be prepared to retry.
197          */
198         i = 0;
199         for (;;) {
200                 rc = efx_ef10_get_warm_boot_count(efx);
201                 if (rc >= 0)
202                         break;
203                 if (++i == 5)
204                         goto fail2;
205                 ssleep(1);
206         }
207         nic_data->warm_boot_count = rc;
208
209         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
210
211         /* In case we're recovering from a crash (kexec), we want to
212          * cancel any outstanding request by the previous user of this
213          * function.  We send a special message using the least
214          * significant bits of the 'high' (doorbell) register.
215          */
216         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
217
218         rc = efx_mcdi_init(efx);
219         if (rc)
220                 goto fail2;
221
222         /* Reset (most) configuration for this function */
223         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
224         if (rc)
225                 goto fail3;
226
227         /* Enable event logging */
228         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
229         if (rc)
230                 goto fail3;
231
232         rc = efx_ef10_init_datapath_caps(efx);
233         if (rc < 0)
234                 goto fail3;
235
236         efx->rx_packet_len_offset =
237                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
238
239         rc = efx_mcdi_port_get_number(efx);
240         if (rc < 0)
241                 goto fail3;
242         efx->port_num = rc;
243
244         rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
245         if (rc)
246                 goto fail3;
247
248         rc = efx_ef10_get_sysclk_freq(efx);
249         if (rc < 0)
250                 goto fail3;
251         efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
252
253         /* Check whether firmware supports bug 35388 workaround */
254         rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
255         if (rc == 0)
256                 nic_data->workaround_35388 = true;
257         else if (rc != -ENOSYS && rc != -ENOENT)
258                 goto fail3;
259         netif_dbg(efx, probe, efx->net_dev,
260                   "workaround for bug 35388 is %sabled\n",
261                   nic_data->workaround_35388 ? "en" : "dis");
262
263         rc = efx_mcdi_mon_probe(efx);
264         if (rc)
265                 goto fail3;
266
267         efx_ptp_probe(efx, NULL);
268
269         return 0;
270
271 fail3:
272         efx_mcdi_fini(efx);
273 fail2:
274         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
275 fail1:
276         kfree(nic_data);
277         efx->nic_data = NULL;
278         return rc;
279 }
280
281 static int efx_ef10_free_vis(struct efx_nic *efx)
282 {
283         MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
284         size_t outlen;
285         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
286                                     outbuf, sizeof(outbuf), &outlen);
287
288         /* -EALREADY means nothing to free, so ignore */
289         if (rc == -EALREADY)
290                 rc = 0;
291         if (rc)
292                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
293                                        rc);
294         return rc;
295 }
296
297 #ifdef EFX_USE_PIO
298
299 static void efx_ef10_free_piobufs(struct efx_nic *efx)
300 {
301         struct efx_ef10_nic_data *nic_data = efx->nic_data;
302         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
303         unsigned int i;
304         int rc;
305
306         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
307
308         for (i = 0; i < nic_data->n_piobufs; i++) {
309                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
310                                nic_data->piobuf_handle[i]);
311                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
312                                   NULL, 0, NULL);
313                 WARN_ON(rc);
314         }
315
316         nic_data->n_piobufs = 0;
317 }
318
319 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
320 {
321         struct efx_ef10_nic_data *nic_data = efx->nic_data;
322         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
323         unsigned int i;
324         size_t outlen;
325         int rc = 0;
326
327         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
328
329         for (i = 0; i < n; i++) {
330                 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
331                                   outbuf, sizeof(outbuf), &outlen);
332                 if (rc)
333                         break;
334                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
335                         rc = -EIO;
336                         break;
337                 }
338                 nic_data->piobuf_handle[i] =
339                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
340                 netif_dbg(efx, probe, efx->net_dev,
341                           "allocated PIO buffer %u handle %x\n", i,
342                           nic_data->piobuf_handle[i]);
343         }
344
345         nic_data->n_piobufs = i;
346         if (rc)
347                 efx_ef10_free_piobufs(efx);
348         return rc;
349 }
350
351 static int efx_ef10_link_piobufs(struct efx_nic *efx)
352 {
353         struct efx_ef10_nic_data *nic_data = efx->nic_data;
354         MCDI_DECLARE_BUF(inbuf,
355                          max(MC_CMD_LINK_PIOBUF_IN_LEN,
356                              MC_CMD_UNLINK_PIOBUF_IN_LEN));
357         struct efx_channel *channel;
358         struct efx_tx_queue *tx_queue;
359         unsigned int offset, index;
360         int rc;
361
362         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
363         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
364
365         /* Link a buffer to each VI in the write-combining mapping */
366         for (index = 0; index < nic_data->n_piobufs; ++index) {
367                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
368                                nic_data->piobuf_handle[index]);
369                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
370                                nic_data->pio_write_vi_base + index);
371                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
372                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
373                                   NULL, 0, NULL);
374                 if (rc) {
375                         netif_err(efx, drv, efx->net_dev,
376                                   "failed to link VI %u to PIO buffer %u (%d)\n",
377                                   nic_data->pio_write_vi_base + index, index,
378                                   rc);
379                         goto fail;
380                 }
381                 netif_dbg(efx, probe, efx->net_dev,
382                           "linked VI %u to PIO buffer %u\n",
383                           nic_data->pio_write_vi_base + index, index);
384         }
385
386         /* Link a buffer to each TX queue */
387         efx_for_each_channel(channel, efx) {
388                 efx_for_each_channel_tx_queue(tx_queue, channel) {
389                         /* We assign the PIO buffers to queues in
390                          * reverse order to allow for the following
391                          * special case.
392                          */
393                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
394                                    tx_queue->channel->channel - 1) *
395                                   efx_piobuf_size);
396                         index = offset / ER_DZ_TX_PIOBUF_SIZE;
397                         offset = offset % ER_DZ_TX_PIOBUF_SIZE;
398
399                         /* When the host page size is 4K, the first
400                          * host page in the WC mapping may be within
401                          * the same VI page as the last TX queue.  We
402                          * can only link one buffer to each VI.
403                          */
404                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
405                                 BUG_ON(index != 0);
406                                 rc = 0;
407                         } else {
408                                 MCDI_SET_DWORD(inbuf,
409                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
410                                                nic_data->piobuf_handle[index]);
411                                 MCDI_SET_DWORD(inbuf,
412                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
413                                                tx_queue->queue);
414                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
415                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
416                                                   NULL, 0, NULL);
417                         }
418
419                         if (rc) {
420                                 /* This is non-fatal; the TX path just
421                                  * won't use PIO for this queue
422                                  */
423                                 netif_err(efx, drv, efx->net_dev,
424                                           "failed to link VI %u to PIO buffer %u (%d)\n",
425                                           tx_queue->queue, index, rc);
426                                 tx_queue->piobuf = NULL;
427                         } else {
428                                 tx_queue->piobuf =
429                                         nic_data->pio_write_base +
430                                         index * EFX_VI_PAGE_SIZE + offset;
431                                 tx_queue->piobuf_offset = offset;
432                                 netif_dbg(efx, probe, efx->net_dev,
433                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
434                                           tx_queue->queue, index,
435                                           tx_queue->piobuf_offset,
436                                           tx_queue->piobuf);
437                         }
438                 }
439         }
440
441         return 0;
442
443 fail:
444         while (index--) {
445                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
446                                nic_data->pio_write_vi_base + index);
447                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
448                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
449                              NULL, 0, NULL);
450         }
451         return rc;
452 }
453
454 #else /* !EFX_USE_PIO */
455
456 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
457 {
458         return n == 0 ? 0 : -ENOBUFS;
459 }
460
461 static int efx_ef10_link_piobufs(struct efx_nic *efx)
462 {
463         return 0;
464 }
465
466 static void efx_ef10_free_piobufs(struct efx_nic *efx)
467 {
468 }
469
470 #endif /* EFX_USE_PIO */
471
472 static void efx_ef10_remove(struct efx_nic *efx)
473 {
474         struct efx_ef10_nic_data *nic_data = efx->nic_data;
475         int rc;
476
477         efx_ptp_remove(efx);
478
479         efx_mcdi_mon_remove(efx);
480
481         efx_ef10_rx_free_indir_table(efx);
482
483         if (nic_data->wc_membase)
484                 iounmap(nic_data->wc_membase);
485
486         rc = efx_ef10_free_vis(efx);
487         WARN_ON(rc != 0);
488
489         if (!nic_data->must_restore_piobufs)
490                 efx_ef10_free_piobufs(efx);
491
492         efx_mcdi_fini(efx);
493         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
494         kfree(nic_data);
495 }
496
497 static int efx_ef10_alloc_vis(struct efx_nic *efx,
498                               unsigned int min_vis, unsigned int max_vis)
499 {
500         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
501         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
502         struct efx_ef10_nic_data *nic_data = efx->nic_data;
503         size_t outlen;
504         int rc;
505
506         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
507         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
508         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
509                           outbuf, sizeof(outbuf), &outlen);
510         if (rc != 0)
511                 return rc;
512
513         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
514                 return -EIO;
515
516         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
517                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
518
519         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
520         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
521         return 0;
522 }
523
524 /* Note that the failure path of this function does not free
525  * resources, as this will be done by efx_ef10_remove().
526  */
527 static int efx_ef10_dimension_resources(struct efx_nic *efx)
528 {
529         struct efx_ef10_nic_data *nic_data = efx->nic_data;
530         unsigned int uc_mem_map_size, wc_mem_map_size;
531         unsigned int min_vis, pio_write_vi_base, max_vis;
532         void __iomem *membase;
533         int rc;
534
535         min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
536
537 #ifdef EFX_USE_PIO
538         /* Try to allocate PIO buffers if wanted and if the full
539          * number of PIO buffers would be sufficient to allocate one
540          * copy-buffer per TX channel.  Failure is non-fatal, as there
541          * are only a small number of PIO buffers shared between all
542          * functions of the controller.
543          */
544         if (efx_piobuf_size != 0 &&
545             ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
546             efx->n_tx_channels) {
547                 unsigned int n_piobufs =
548                         DIV_ROUND_UP(efx->n_tx_channels,
549                                      ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
550
551                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
552                 if (rc)
553                         netif_err(efx, probe, efx->net_dev,
554                                   "failed to allocate PIO buffers (%d)\n", rc);
555                 else
556                         netif_dbg(efx, probe, efx->net_dev,
557                                   "allocated %u PIO buffers\n", n_piobufs);
558         }
559 #else
560         nic_data->n_piobufs = 0;
561 #endif
562
563         /* PIO buffers should be mapped with write-combining enabled,
564          * and we want to make single UC and WC mappings rather than
565          * several of each (in fact that's the only option if host
566          * page size is >4K).  So we may allocate some extra VIs just
567          * for writing PIO buffers through.
568          *
569          * The UC mapping contains (min_vis - 1) complete VIs and the
570          * first half of the next VI.  Then the WC mapping begins with
571          * the second half of this last VI.
572          */
573         uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
574                                      ER_DZ_TX_PIOBUF);
575         if (nic_data->n_piobufs) {
576                 /* pio_write_vi_base rounds down to give the number of complete
577                  * VIs inside the UC mapping.
578                  */
579                 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
580                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
581                                                nic_data->n_piobufs) *
582                                               EFX_VI_PAGE_SIZE) -
583                                    uc_mem_map_size);
584                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
585         } else {
586                 pio_write_vi_base = 0;
587                 wc_mem_map_size = 0;
588                 max_vis = min_vis;
589         }
590
591         /* In case the last attached driver failed to free VIs, do it now */
592         rc = efx_ef10_free_vis(efx);
593         if (rc != 0)
594                 return rc;
595
596         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
597         if (rc != 0)
598                 return rc;
599
600         /* If we didn't get enough VIs to map all the PIO buffers, free the
601          * PIO buffers
602          */
603         if (nic_data->n_piobufs &&
604             nic_data->n_allocated_vis <
605             pio_write_vi_base + nic_data->n_piobufs) {
606                 netif_dbg(efx, probe, efx->net_dev,
607                           "%u VIs are not sufficient to map %u PIO buffers\n",
608                           nic_data->n_allocated_vis, nic_data->n_piobufs);
609                 efx_ef10_free_piobufs(efx);
610         }
611
612         /* Shrink the original UC mapping of the memory BAR */
613         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
614         if (!membase) {
615                 netif_err(efx, probe, efx->net_dev,
616                           "could not shrink memory BAR to %x\n",
617                           uc_mem_map_size);
618                 return -ENOMEM;
619         }
620         iounmap(efx->membase);
621         efx->membase = membase;
622
623         /* Set up the WC mapping if needed */
624         if (wc_mem_map_size) {
625                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
626                                                   uc_mem_map_size,
627                                                   wc_mem_map_size);
628                 if (!nic_data->wc_membase) {
629                         netif_err(efx, probe, efx->net_dev,
630                                   "could not allocate WC mapping of size %x\n",
631                                   wc_mem_map_size);
632                         return -ENOMEM;
633                 }
634                 nic_data->pio_write_vi_base = pio_write_vi_base;
635                 nic_data->pio_write_base =
636                         nic_data->wc_membase +
637                         (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
638                          uc_mem_map_size);
639
640                 rc = efx_ef10_link_piobufs(efx);
641                 if (rc)
642                         efx_ef10_free_piobufs(efx);
643         }
644
645         netif_dbg(efx, probe, efx->net_dev,
646                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
647                   &efx->membase_phys, efx->membase, uc_mem_map_size,
648                   nic_data->wc_membase, wc_mem_map_size);
649
650         return 0;
651 }
652
653 static int efx_ef10_init_nic(struct efx_nic *efx)
654 {
655         struct efx_ef10_nic_data *nic_data = efx->nic_data;
656         int rc;
657
658         if (nic_data->must_check_datapath_caps) {
659                 rc = efx_ef10_init_datapath_caps(efx);
660                 if (rc)
661                         return rc;
662                 nic_data->must_check_datapath_caps = false;
663         }
664
665         if (nic_data->must_realloc_vis) {
666                 /* We cannot let the number of VIs change now */
667                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
668                                         nic_data->n_allocated_vis);
669                 if (rc)
670                         return rc;
671                 nic_data->must_realloc_vis = false;
672         }
673
674         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
675                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
676                 if (rc == 0) {
677                         rc = efx_ef10_link_piobufs(efx);
678                         if (rc)
679                                 efx_ef10_free_piobufs(efx);
680                 }
681
682                 /* Log an error on failure, but this is non-fatal */
683                 if (rc)
684                         netif_err(efx, drv, efx->net_dev,
685                                   "failed to restore PIO buffers (%d)\n", rc);
686                 nic_data->must_restore_piobufs = false;
687         }
688
689         efx_ef10_rx_push_rss_config(efx);
690         return 0;
691 }
692
693 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
694 {
695         struct efx_ef10_nic_data *nic_data = efx->nic_data;
696
697         /* All our allocations have been reset */
698         nic_data->must_realloc_vis = true;
699         nic_data->must_restore_filters = true;
700         nic_data->must_restore_piobufs = true;
701         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
702 }
703
704 static int efx_ef10_map_reset_flags(u32 *flags)
705 {
706         enum {
707                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
708                                    ETH_RESET_SHARED_SHIFT),
709                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
710                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
711                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
712                                  ETH_RESET_SHARED_SHIFT)
713         };
714
715         /* We assume for now that our PCI function is permitted to
716          * reset everything.
717          */
718
719         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
720                 *flags &= ~EF10_RESET_MC;
721                 return RESET_TYPE_WORLD;
722         }
723
724         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
725                 *flags &= ~EF10_RESET_PORT;
726                 return RESET_TYPE_ALL;
727         }
728
729         /* no invisible reset implemented */
730
731         return -EINVAL;
732 }
733
734 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
735 {
736         int rc = efx_mcdi_reset(efx, reset_type);
737
738         /* If it was a port reset, trigger reallocation of MC resources.
739          * Note that on an MC reset nothing needs to be done now because we'll
740          * detect the MC reset later and handle it then.
741          */
742         if (reset_type == RESET_TYPE_ALL && !rc)
743                 efx_ef10_reset_mc_allocations(efx);
744         return rc;
745 }
746
747 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
748         [EF10_STAT_ ## ext_name] =                              \
749         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
750 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
751         [EF10_STAT_ ## int_name] =                              \
752         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
753 #define EF10_OTHER_STAT(ext_name)                               \
754         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
755
756 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
757         EF10_DMA_STAT(tx_bytes, TX_BYTES),
758         EF10_DMA_STAT(tx_packets, TX_PKTS),
759         EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
760         EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
761         EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
762         EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
763         EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
764         EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
765         EF10_DMA_STAT(tx_64, TX_64_PKTS),
766         EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
767         EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
768         EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
769         EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
770         EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
771         EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
772         EF10_DMA_STAT(rx_bytes, RX_BYTES),
773         EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
774         EF10_OTHER_STAT(rx_good_bytes),
775         EF10_OTHER_STAT(rx_bad_bytes),
776         EF10_DMA_STAT(rx_packets, RX_PKTS),
777         EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
778         EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
779         EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
780         EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
781         EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
782         EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
783         EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
784         EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
785         EF10_DMA_STAT(rx_64, RX_64_PKTS),
786         EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
787         EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
788         EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
789         EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
790         EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
791         EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
792         EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
793         EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
794         EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
795         EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
796         EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
797         EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
798         EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
799         EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
800         EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
801         EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
802         EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
803         EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
804         EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
805         EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
806         EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
807         EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
808         EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
809         EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
810 };
811
812 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |           \
813                                (1ULL << EF10_STAT_tx_packets) |         \
814                                (1ULL << EF10_STAT_tx_pause) |           \
815                                (1ULL << EF10_STAT_tx_unicast) |         \
816                                (1ULL << EF10_STAT_tx_multicast) |       \
817                                (1ULL << EF10_STAT_tx_broadcast) |       \
818                                (1ULL << EF10_STAT_rx_bytes) |           \
819                                (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
820                                (1ULL << EF10_STAT_rx_good_bytes) |      \
821                                (1ULL << EF10_STAT_rx_bad_bytes) |       \
822                                (1ULL << EF10_STAT_rx_packets) |         \
823                                (1ULL << EF10_STAT_rx_good) |            \
824                                (1ULL << EF10_STAT_rx_bad) |             \
825                                (1ULL << EF10_STAT_rx_pause) |           \
826                                (1ULL << EF10_STAT_rx_control) |         \
827                                (1ULL << EF10_STAT_rx_unicast) |         \
828                                (1ULL << EF10_STAT_rx_multicast) |       \
829                                (1ULL << EF10_STAT_rx_broadcast) |       \
830                                (1ULL << EF10_STAT_rx_lt64) |            \
831                                (1ULL << EF10_STAT_rx_64) |              \
832                                (1ULL << EF10_STAT_rx_65_to_127) |       \
833                                (1ULL << EF10_STAT_rx_128_to_255) |      \
834                                (1ULL << EF10_STAT_rx_256_to_511) |      \
835                                (1ULL << EF10_STAT_rx_512_to_1023) |     \
836                                (1ULL << EF10_STAT_rx_1024_to_15xx) |    \
837                                (1ULL << EF10_STAT_rx_15xx_to_jumbo) |   \
838                                (1ULL << EF10_STAT_rx_gtjumbo) |         \
839                                (1ULL << EF10_STAT_rx_bad_gtjumbo) |     \
840                                (1ULL << EF10_STAT_rx_overflow) |        \
841                                (1ULL << EF10_STAT_rx_nodesc_drops))
842
843 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
844  * switchable port we do not expose these because they might not
845  * include all the packets they should.
846  */
847 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |       \
848                                  (1ULL << EF10_STAT_tx_lt64) |          \
849                                  (1ULL << EF10_STAT_tx_64) |            \
850                                  (1ULL << EF10_STAT_tx_65_to_127) |     \
851                                  (1ULL << EF10_STAT_tx_128_to_255) |    \
852                                  (1ULL << EF10_STAT_tx_256_to_511) |    \
853                                  (1ULL << EF10_STAT_tx_512_to_1023) |   \
854                                  (1ULL << EF10_STAT_tx_1024_to_15xx) |  \
855                                  (1ULL << EF10_STAT_tx_15xx_to_jumbo))
856
857 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
858  * switchable port we do expose these because the errors will otherwise
859  * be silent.
860  */
861 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |  \
862                                   (1ULL << EF10_STAT_rx_length_error))
863
864 /* These statistics are only provided if the firmware supports the
865  * capability PM_AND_RXDP_COUNTERS.
866  */
867 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
868         (1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |                   \
869         (1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |                 \
870         (1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |                    \
871         (1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |                  \
872         (1ULL << EF10_STAT_rx_pm_trunc_qbb) |                           \
873         (1ULL << EF10_STAT_rx_pm_discard_qbb) |                         \
874         (1ULL << EF10_STAT_rx_pm_discard_mapping) |                     \
875         (1ULL << EF10_STAT_rx_dp_q_disabled_packets) |                  \
876         (1ULL << EF10_STAT_rx_dp_di_dropped_packets) |                  \
877         (1ULL << EF10_STAT_rx_dp_streaming_packets) |                   \
878         (1ULL << EF10_STAT_rx_dp_hlb_fetch) |                           \
879         (1ULL << EF10_STAT_rx_dp_hlb_wait))
880
881 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
882 {
883         u64 raw_mask = HUNT_COMMON_STAT_MASK;
884         u32 port_caps = efx_mcdi_phy_get_caps(efx);
885         struct efx_ef10_nic_data *nic_data = efx->nic_data;
886
887         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
888                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
889         else
890                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
891
892         if (nic_data->datapath_caps &
893             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
894                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
895
896         return raw_mask;
897 }
898
899 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
900 {
901         u64 raw_mask = efx_ef10_raw_stat_mask(efx);
902
903 #if BITS_PER_LONG == 64
904         mask[0] = raw_mask;
905 #else
906         mask[0] = raw_mask & 0xffffffff;
907         mask[1] = raw_mask >> 32;
908 #endif
909 }
910
911 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
912 {
913         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
914
915         efx_ef10_get_stat_mask(efx, mask);
916         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
917                                       mask, names);
918 }
919
920 static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
921 {
922         struct efx_ef10_nic_data *nic_data = efx->nic_data;
923         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
924         __le64 generation_start, generation_end;
925         u64 *stats = nic_data->stats;
926         __le64 *dma_stats;
927
928         efx_ef10_get_stat_mask(efx, mask);
929
930         dma_stats = efx->stats_buffer.addr;
931         nic_data = efx->nic_data;
932
933         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
934         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
935                 return 0;
936         rmb();
937         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
938                              stats, efx->stats_buffer.addr, false);
939         rmb();
940         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
941         if (generation_end != generation_start)
942                 return -EAGAIN;
943
944         /* Update derived statistics */
945         efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
946         stats[EF10_STAT_rx_good_bytes] =
947                 stats[EF10_STAT_rx_bytes] -
948                 stats[EF10_STAT_rx_bytes_minus_good_bytes];
949         efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
950                              stats[EF10_STAT_rx_bytes_minus_good_bytes]);
951
952         return 0;
953 }
954
955
956 static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
957                                     struct rtnl_link_stats64 *core_stats)
958 {
959         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
960         struct efx_ef10_nic_data *nic_data = efx->nic_data;
961         u64 *stats = nic_data->stats;
962         size_t stats_count = 0, index;
963         int retry;
964
965         efx_ef10_get_stat_mask(efx, mask);
966
967         /* If we're unlucky enough to read statistics during the DMA, wait
968          * up to 10ms for it to finish (typically takes <500us)
969          */
970         for (retry = 0; retry < 100; ++retry) {
971                 if (efx_ef10_try_update_nic_stats(efx) == 0)
972                         break;
973                 udelay(100);
974         }
975
976         if (full_stats) {
977                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
978                         if (efx_ef10_stat_desc[index].name) {
979                                 *full_stats++ = stats[index];
980                                 ++stats_count;
981                         }
982                 }
983         }
984
985         if (core_stats) {
986                 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
987                 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
988                 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
989                 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
990                 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
991                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
992                 core_stats->rx_length_errors =
993                         stats[EF10_STAT_rx_gtjumbo] +
994                         stats[EF10_STAT_rx_length_error];
995                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
996                 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
997                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
998                 core_stats->rx_errors = (core_stats->rx_length_errors +
999                                          core_stats->rx_crc_errors +
1000                                          core_stats->rx_frame_errors);
1001         }
1002
1003         return stats_count;
1004 }
1005
1006 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1007 {
1008         struct efx_nic *efx = channel->efx;
1009         unsigned int mode, value;
1010         efx_dword_t timer_cmd;
1011
1012         if (channel->irq_moderation) {
1013                 mode = 3;
1014                 value = channel->irq_moderation - 1;
1015         } else {
1016                 mode = 0;
1017                 value = 0;
1018         }
1019
1020         if (EFX_EF10_WORKAROUND_35388(efx)) {
1021                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1022                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
1023                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
1024                                      ERF_DD_EVQ_IND_TIMER_VAL, value);
1025                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1026                                 channel->channel);
1027         } else {
1028                 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1029                                      ERF_DZ_TC_TIMER_VAL, value);
1030                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1031                                 channel->channel);
1032         }
1033 }
1034
1035 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1036 {
1037         wol->supported = 0;
1038         wol->wolopts = 0;
1039         memset(&wol->sopass, 0, sizeof(wol->sopass));
1040 }
1041
1042 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1043 {
1044         if (type != 0)
1045                 return -EINVAL;
1046         return 0;
1047 }
1048
1049 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1050                                   const efx_dword_t *hdr, size_t hdr_len,
1051                                   const efx_dword_t *sdu, size_t sdu_len)
1052 {
1053         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1054         u8 *pdu = nic_data->mcdi_buf.addr;
1055
1056         memcpy(pdu, hdr, hdr_len);
1057         memcpy(pdu + hdr_len, sdu, sdu_len);
1058         wmb();
1059
1060         /* The hardware provides 'low' and 'high' (doorbell) registers
1061          * for passing the 64-bit address of an MCDI request to
1062          * firmware.  However the dwords are swapped by firmware.  The
1063          * least significant bits of the doorbell are then 0 for all
1064          * MCDI requests due to alignment.
1065          */
1066         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1067                     ER_DZ_MC_DB_LWRD);
1068         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1069                     ER_DZ_MC_DB_HWRD);
1070 }
1071
1072 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1073 {
1074         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1075         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1076
1077         rmb();
1078         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1079 }
1080
1081 static void
1082 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1083                             size_t offset, size_t outlen)
1084 {
1085         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1086         const u8 *pdu = nic_data->mcdi_buf.addr;
1087
1088         memcpy(outbuf, pdu + offset, outlen);
1089 }
1090
1091 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1092 {
1093         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1094         int rc;
1095
1096         rc = efx_ef10_get_warm_boot_count(efx);
1097         if (rc < 0) {
1098                 /* The firmware is presumably in the process of
1099                  * rebooting.  However, we are supposed to report each
1100                  * reboot just once, so we must only do that once we
1101                  * can read and store the updated warm boot count.
1102                  */
1103                 return 0;
1104         }
1105
1106         if (rc == nic_data->warm_boot_count)
1107                 return 0;
1108
1109         nic_data->warm_boot_count = rc;
1110
1111         /* All our allocations have been reset */
1112         efx_ef10_reset_mc_allocations(efx);
1113
1114         /* The datapath firmware might have been changed */
1115         nic_data->must_check_datapath_caps = true;
1116
1117         /* MAC statistics have been cleared on the NIC; clear the local
1118          * statistic that we update with efx_update_diff_stat().
1119          */
1120         nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1121
1122         return -EIO;
1123 }
1124
1125 /* Handle an MSI interrupt
1126  *
1127  * Handle an MSI hardware interrupt.  This routine schedules event
1128  * queue processing.  No interrupt acknowledgement cycle is necessary.
1129  * Also, we never need to check that the interrupt is for us, since
1130  * MSI interrupts cannot be shared.
1131  */
1132 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1133 {
1134         struct efx_msi_context *context = dev_id;
1135         struct efx_nic *efx = context->efx;
1136
1137         netif_vdbg(efx, intr, efx->net_dev,
1138                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1139
1140         if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1141                 /* Note test interrupts */
1142                 if (context->index == efx->irq_level)
1143                         efx->last_irq_cpu = raw_smp_processor_id();
1144
1145                 /* Schedule processing of the channel */
1146                 efx_schedule_channel_irq(efx->channel[context->index]);
1147         }
1148
1149         return IRQ_HANDLED;
1150 }
1151
1152 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1153 {
1154         struct efx_nic *efx = dev_id;
1155         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1156         struct efx_channel *channel;
1157         efx_dword_t reg;
1158         u32 queues;
1159
1160         /* Read the ISR which also ACKs the interrupts */
1161         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1162         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1163
1164         if (queues == 0)
1165                 return IRQ_NONE;
1166
1167         if (likely(soft_enabled)) {
1168                 /* Note test interrupts */
1169                 if (queues & (1U << efx->irq_level))
1170                         efx->last_irq_cpu = raw_smp_processor_id();
1171
1172                 efx_for_each_channel(channel, efx) {
1173                         if (queues & 1)
1174                                 efx_schedule_channel_irq(channel);
1175                         queues >>= 1;
1176                 }
1177         }
1178
1179         netif_vdbg(efx, intr, efx->net_dev,
1180                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1181                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1182
1183         return IRQ_HANDLED;
1184 }
1185
1186 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1187 {
1188         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1189
1190         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1191
1192         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1193         (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1194                             inbuf, sizeof(inbuf), NULL, 0, NULL);
1195 }
1196
1197 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1198 {
1199         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1200                                     (tx_queue->ptr_mask + 1) *
1201                                     sizeof(efx_qword_t),
1202                                     GFP_KERNEL);
1203 }
1204
1205 /* This writes to the TX_DESC_WPTR and also pushes data */
1206 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1207                                          const efx_qword_t *txd)
1208 {
1209         unsigned int write_ptr;
1210         efx_oword_t reg;
1211
1212         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1213         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1214         reg.qword[0] = *txd;
1215         efx_writeo_page(tx_queue->efx, &reg,
1216                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
1217 }
1218
1219 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1220 {
1221         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1222                                                        EFX_BUF_SIZE));
1223         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1224         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1225         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1226         struct efx_channel *channel = tx_queue->channel;
1227         struct efx_nic *efx = tx_queue->efx;
1228         size_t inlen, outlen;
1229         dma_addr_t dma_addr;
1230         efx_qword_t *txd;
1231         int rc;
1232         int i;
1233
1234         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1235         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1236         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1237         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1238         MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1239                               INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1240                               INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1241         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1242         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1243
1244         dma_addr = tx_queue->txd.buf.dma_addr;
1245
1246         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1247                   tx_queue->queue, entries, (u64)dma_addr);
1248
1249         for (i = 0; i < entries; ++i) {
1250                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1251                 dma_addr += EFX_BUF_SIZE;
1252         }
1253
1254         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1255
1256         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1257                           outbuf, sizeof(outbuf), &outlen);
1258         if (rc)
1259                 goto fail;
1260
1261         /* A previous user of this TX queue might have set us up the
1262          * bomb by writing a descriptor to the TX push collector but
1263          * not the doorbell.  (Each collector belongs to a port, not a
1264          * queue or function, so cannot easily be reset.)  We must
1265          * attempt to push a no-op descriptor in its place.
1266          */
1267         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1268         tx_queue->insert_count = 1;
1269         txd = efx_tx_desc(tx_queue, 0);
1270         EFX_POPULATE_QWORD_4(*txd,
1271                              ESF_DZ_TX_DESC_IS_OPT, true,
1272                              ESF_DZ_TX_OPTION_TYPE,
1273                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1274                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1275                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1276         tx_queue->write_count = 1;
1277         wmb();
1278         efx_ef10_push_tx_desc(tx_queue, txd);
1279
1280         return;
1281
1282 fail:
1283         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1284                     tx_queue->queue);
1285 }
1286
1287 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1288 {
1289         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1290         MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1291         struct efx_nic *efx = tx_queue->efx;
1292         size_t outlen;
1293         int rc;
1294
1295         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1296                        tx_queue->queue);
1297
1298         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1299                           outbuf, sizeof(outbuf), &outlen);
1300
1301         if (rc && rc != -EALREADY)
1302                 goto fail;
1303
1304         return;
1305
1306 fail:
1307         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1308                                outbuf, outlen, rc);
1309 }
1310
1311 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1312 {
1313         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1314 }
1315
1316 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1317 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1318 {
1319         unsigned int write_ptr;
1320         efx_dword_t reg;
1321
1322         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1323         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1324         efx_writed_page(tx_queue->efx, &reg,
1325                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1326 }
1327
1328 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1329 {
1330         unsigned int old_write_count = tx_queue->write_count;
1331         struct efx_tx_buffer *buffer;
1332         unsigned int write_ptr;
1333         efx_qword_t *txd;
1334
1335         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1336
1337         do {
1338                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1339                 buffer = &tx_queue->buffer[write_ptr];
1340                 txd = efx_tx_desc(tx_queue, write_ptr);
1341                 ++tx_queue->write_count;
1342
1343                 /* Create TX descriptor ring entry */
1344                 if (buffer->flags & EFX_TX_BUF_OPTION) {
1345                         *txd = buffer->option;
1346                 } else {
1347                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1348                         EFX_POPULATE_QWORD_3(
1349                                 *txd,
1350                                 ESF_DZ_TX_KER_CONT,
1351                                 buffer->flags & EFX_TX_BUF_CONT,
1352                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1353                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1354                 }
1355         } while (tx_queue->write_count != tx_queue->insert_count);
1356
1357         wmb(); /* Ensure descriptors are written before they are fetched */
1358
1359         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1360                 txd = efx_tx_desc(tx_queue,
1361                                   old_write_count & tx_queue->ptr_mask);
1362                 efx_ef10_push_tx_desc(tx_queue, txd);
1363                 ++tx_queue->pushes;
1364         } else {
1365                 efx_ef10_notify_tx_desc(tx_queue);
1366         }
1367 }
1368
1369 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1370 {
1371         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1372         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1373         size_t outlen;
1374         int rc;
1375
1376         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1377                        EVB_PORT_ID_ASSIGNED);
1378         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1379                        MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1380         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1381                        EFX_MAX_CHANNELS);
1382
1383         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1384                 outbuf, sizeof(outbuf), &outlen);
1385         if (rc != 0)
1386                 return rc;
1387
1388         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1389                 return -EIO;
1390
1391         *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1392
1393         return 0;
1394 }
1395
1396 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1397 {
1398         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1399         int rc;
1400
1401         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1402                        context);
1403
1404         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1405                             NULL, 0, NULL);
1406         WARN_ON(rc != 0);
1407 }
1408
1409 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1410 {
1411         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1412         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1413         int i, rc;
1414
1415         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1416                        context);
1417         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1418                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1419
1420         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1421                 MCDI_PTR(tablebuf,
1422                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1423                                 (u8) efx->rx_indir_table[i];
1424
1425         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1426                           sizeof(tablebuf), NULL, 0, NULL);
1427         if (rc != 0)
1428                 return rc;
1429
1430         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1431                        context);
1432         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1433                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1434         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1435                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1436                         efx->rx_hash_key[i];
1437
1438         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1439                             sizeof(keybuf), NULL, 0, NULL);
1440 }
1441
1442 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1443 {
1444         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1445
1446         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1447                 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1448         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1449 }
1450
1451 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1452 {
1453         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1454         int rc;
1455
1456         netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1457
1458         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1459                 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1460                 if (rc != 0)
1461                         goto fail;
1462         }
1463
1464         rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1465         if (rc != 0)
1466                 goto fail;
1467
1468         return;
1469
1470 fail:
1471         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1472 }
1473
1474 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1475 {
1476         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1477                                     (rx_queue->ptr_mask + 1) *
1478                                     sizeof(efx_qword_t),
1479                                     GFP_KERNEL);
1480 }
1481
1482 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1483 {
1484         MCDI_DECLARE_BUF(inbuf,
1485                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1486                                                 EFX_BUF_SIZE));
1487         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1488         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1489         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1490         struct efx_nic *efx = rx_queue->efx;
1491         size_t inlen, outlen;
1492         dma_addr_t dma_addr;
1493         int rc;
1494         int i;
1495
1496         rx_queue->scatter_n = 0;
1497         rx_queue->scatter_len = 0;
1498
1499         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1500         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1501         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1502         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1503                        efx_rx_queue_index(rx_queue));
1504         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1505                               INIT_RXQ_IN_FLAG_PREFIX, 1,
1506                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1507         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1508         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1509
1510         dma_addr = rx_queue->rxd.buf.dma_addr;
1511
1512         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1513                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1514
1515         for (i = 0; i < entries; ++i) {
1516                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1517                 dma_addr += EFX_BUF_SIZE;
1518         }
1519
1520         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1521
1522         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1523                           outbuf, sizeof(outbuf), &outlen);
1524         if (rc)
1525                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1526                             efx_rx_queue_index(rx_queue));
1527 }
1528
1529 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1530 {
1531         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1532         MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1533         struct efx_nic *efx = rx_queue->efx;
1534         size_t outlen;
1535         int rc;
1536
1537         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1538                        efx_rx_queue_index(rx_queue));
1539
1540         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1541                           outbuf, sizeof(outbuf), &outlen);
1542
1543         if (rc && rc != -EALREADY)
1544                 goto fail;
1545
1546         return;
1547
1548 fail:
1549         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1550                                outbuf, outlen, rc);
1551 }
1552
1553 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1554 {
1555         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1556 }
1557
1558 /* This creates an entry in the RX descriptor queue */
1559 static inline void
1560 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1561 {
1562         struct efx_rx_buffer *rx_buf;
1563         efx_qword_t *rxd;
1564
1565         rxd = efx_rx_desc(rx_queue, index);
1566         rx_buf = efx_rx_buffer(rx_queue, index);
1567         EFX_POPULATE_QWORD_2(*rxd,
1568                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1569                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1570 }
1571
1572 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1573 {
1574         struct efx_nic *efx = rx_queue->efx;
1575         unsigned int write_count;
1576         efx_dword_t reg;
1577
1578         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1579         write_count = rx_queue->added_count & ~7;
1580         if (rx_queue->notified_count == write_count)
1581                 return;
1582
1583         do
1584                 efx_ef10_build_rx_desc(
1585                         rx_queue,
1586                         rx_queue->notified_count & rx_queue->ptr_mask);
1587         while (++rx_queue->notified_count != write_count);
1588
1589         wmb();
1590         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1591                              write_count & rx_queue->ptr_mask);
1592         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1593                         efx_rx_queue_index(rx_queue));
1594 }
1595
1596 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1597
1598 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1599 {
1600         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1601         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1602         efx_qword_t event;
1603
1604         EFX_POPULATE_QWORD_2(event,
1605                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1606                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1607
1608         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1609
1610         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1611          * already swapped the data to little-endian order.
1612          */
1613         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1614                sizeof(efx_qword_t));
1615
1616         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1617                            inbuf, sizeof(inbuf), 0,
1618                            efx_ef10_rx_defer_refill_complete, 0);
1619 }
1620
1621 static void
1622 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1623                                   int rc, efx_dword_t *outbuf,
1624                                   size_t outlen_actual)
1625 {
1626         /* nothing to do */
1627 }
1628
1629 static int efx_ef10_ev_probe(struct efx_channel *channel)
1630 {
1631         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1632                                     (channel->eventq_mask + 1) *
1633                                     sizeof(efx_qword_t),
1634                                     GFP_KERNEL);
1635 }
1636
1637 static int efx_ef10_ev_init(struct efx_channel *channel)
1638 {
1639         MCDI_DECLARE_BUF(inbuf,
1640                          MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1641                                                 EFX_BUF_SIZE));
1642         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1643         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1644         struct efx_nic *efx = channel->efx;
1645         struct efx_ef10_nic_data *nic_data;
1646         bool supports_rx_merge;
1647         size_t inlen, outlen;
1648         dma_addr_t dma_addr;
1649         int rc;
1650         int i;
1651
1652         nic_data = efx->nic_data;
1653         supports_rx_merge =
1654                 !!(nic_data->datapath_caps &
1655                    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1656
1657         /* Fill event queue with all ones (i.e. empty events) */
1658         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1659
1660         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1661         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1662         /* INIT_EVQ expects index in vector table, not absolute */
1663         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1664         MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1665                               INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1666                               INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1667                               INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1668                               INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1669         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1670                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1671         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1672         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1673         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1674                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1675         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1676
1677         dma_addr = channel->eventq.buf.dma_addr;
1678         for (i = 0; i < entries; ++i) {
1679                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1680                 dma_addr += EFX_BUF_SIZE;
1681         }
1682
1683         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1684
1685         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1686                           outbuf, sizeof(outbuf), &outlen);
1687         /* IRQ return is ignored */
1688         return rc;
1689 }
1690
1691 static void efx_ef10_ev_fini(struct efx_channel *channel)
1692 {
1693         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1694         MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1695         struct efx_nic *efx = channel->efx;
1696         size_t outlen;
1697         int rc;
1698
1699         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1700
1701         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1702                           outbuf, sizeof(outbuf), &outlen);
1703
1704         if (rc && rc != -EALREADY)
1705                 goto fail;
1706
1707         return;
1708
1709 fail:
1710         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1711                                outbuf, outlen, rc);
1712 }
1713
1714 static void efx_ef10_ev_remove(struct efx_channel *channel)
1715 {
1716         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1717 }
1718
1719 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1720                                            unsigned int rx_queue_label)
1721 {
1722         struct efx_nic *efx = rx_queue->efx;
1723
1724         netif_info(efx, hw, efx->net_dev,
1725                    "rx event arrived on queue %d labeled as queue %u\n",
1726                    efx_rx_queue_index(rx_queue), rx_queue_label);
1727
1728         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1729 }
1730
1731 static void
1732 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1733                              unsigned int actual, unsigned int expected)
1734 {
1735         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1736         struct efx_nic *efx = rx_queue->efx;
1737
1738         netif_info(efx, hw, efx->net_dev,
1739                    "dropped %d events (index=%d expected=%d)\n",
1740                    dropped, actual, expected);
1741
1742         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1743 }
1744
1745 /* partially received RX was aborted. clean up. */
1746 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1747 {
1748         unsigned int rx_desc_ptr;
1749
1750         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1751                   "scattered RX aborted (dropping %u buffers)\n",
1752                   rx_queue->scatter_n);
1753
1754         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1755
1756         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1757                       0, EFX_RX_PKT_DISCARD);
1758
1759         rx_queue->removed_count += rx_queue->scatter_n;
1760         rx_queue->scatter_n = 0;
1761         rx_queue->scatter_len = 0;
1762         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1763 }
1764
1765 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1766                                     const efx_qword_t *event)
1767 {
1768         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1769         unsigned int n_descs, n_packets, i;
1770         struct efx_nic *efx = channel->efx;
1771         struct efx_rx_queue *rx_queue;
1772         bool rx_cont;
1773         u16 flags = 0;
1774
1775         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1776                 return 0;
1777
1778         /* Basic packet information */
1779         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1780         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1781         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1782         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1783         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1784
1785         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1786                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1787                             EFX_QWORD_FMT "\n",
1788                             EFX_QWORD_VAL(*event));
1789
1790         rx_queue = efx_channel_get_rx_queue(channel);
1791
1792         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1793                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1794
1795         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1796                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1797
1798         if (n_descs != rx_queue->scatter_n + 1) {
1799                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1800
1801                 /* detect rx abort */
1802                 if (unlikely(n_descs == rx_queue->scatter_n)) {
1803                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1804                                 netdev_WARN(efx->net_dev,
1805                                             "invalid RX abort: scatter_n=%u event="
1806                                             EFX_QWORD_FMT "\n",
1807                                             rx_queue->scatter_n,
1808                                             EFX_QWORD_VAL(*event));
1809                         efx_ef10_handle_rx_abort(rx_queue);
1810                         return 0;
1811                 }
1812
1813                 /* Check that RX completion merging is valid, i.e.
1814                  * the current firmware supports it and this is a
1815                  * non-scattered packet.
1816                  */
1817                 if (!(nic_data->datapath_caps &
1818                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1819                     rx_queue->scatter_n != 0 || rx_cont) {
1820                         efx_ef10_handle_rx_bad_lbits(
1821                                 rx_queue, next_ptr_lbits,
1822                                 (rx_queue->removed_count +
1823                                  rx_queue->scatter_n + 1) &
1824                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1825                         return 0;
1826                 }
1827
1828                 /* Merged completion for multiple non-scattered packets */
1829                 rx_queue->scatter_n = 1;
1830                 rx_queue->scatter_len = 0;
1831                 n_packets = n_descs;
1832                 ++channel->n_rx_merge_events;
1833                 channel->n_rx_merge_packets += n_packets;
1834                 flags |= EFX_RX_PKT_PREFIX_LEN;
1835         } else {
1836                 ++rx_queue->scatter_n;
1837                 rx_queue->scatter_len += rx_bytes;
1838                 if (rx_cont)
1839                         return 0;
1840                 n_packets = 1;
1841         }
1842
1843         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1844                 flags |= EFX_RX_PKT_DISCARD;
1845
1846         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1847                 channel->n_rx_ip_hdr_chksum_err += n_packets;
1848         } else if (unlikely(EFX_QWORD_FIELD(*event,
1849                                             ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1850                 channel->n_rx_tcp_udp_chksum_err += n_packets;
1851         } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1852                    rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1853                 flags |= EFX_RX_PKT_CSUMMED;
1854         }
1855
1856         if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1857                 flags |= EFX_RX_PKT_TCP;
1858
1859         channel->irq_mod_score += 2 * n_packets;
1860
1861         /* Handle received packet(s) */
1862         for (i = 0; i < n_packets; i++) {
1863                 efx_rx_packet(rx_queue,
1864                               rx_queue->removed_count & rx_queue->ptr_mask,
1865                               rx_queue->scatter_n, rx_queue->scatter_len,
1866                               flags);
1867                 rx_queue->removed_count += rx_queue->scatter_n;
1868         }
1869
1870         rx_queue->scatter_n = 0;
1871         rx_queue->scatter_len = 0;
1872
1873         return n_packets;
1874 }
1875
1876 static int
1877 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1878 {
1879         struct efx_nic *efx = channel->efx;
1880         struct efx_tx_queue *tx_queue;
1881         unsigned int tx_ev_desc_ptr;
1882         unsigned int tx_ev_q_label;
1883         int tx_descs = 0;
1884
1885         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1886                 return 0;
1887
1888         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1889                 return 0;
1890
1891         /* Transmit completion */
1892         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1893         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1894         tx_queue = efx_channel_get_tx_queue(channel,
1895                                             tx_ev_q_label % EFX_TXQ_TYPES);
1896         tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1897                     tx_queue->ptr_mask);
1898         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1899
1900         return tx_descs;
1901 }
1902
1903 static void
1904 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1905 {
1906         struct efx_nic *efx = channel->efx;
1907         int subcode;
1908
1909         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1910
1911         switch (subcode) {
1912         case ESE_DZ_DRV_TIMER_EV:
1913         case ESE_DZ_DRV_WAKE_UP_EV:
1914                 break;
1915         case ESE_DZ_DRV_START_UP_EV:
1916                 /* event queue init complete. ok. */
1917                 break;
1918         default:
1919                 netif_err(efx, hw, efx->net_dev,
1920                           "channel %d unknown driver event type %d"
1921                           " (data " EFX_QWORD_FMT ")\n",
1922                           channel->channel, subcode,
1923                           EFX_QWORD_VAL(*event));
1924
1925         }
1926 }
1927
1928 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1929                                                    efx_qword_t *event)
1930 {
1931         struct efx_nic *efx = channel->efx;
1932         u32 subcode;
1933
1934         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1935
1936         switch (subcode) {
1937         case EFX_EF10_TEST:
1938                 channel->event_test_cpu = raw_smp_processor_id();
1939                 break;
1940         case EFX_EF10_REFILL:
1941                 /* The queue must be empty, so we won't receive any rx
1942                  * events, so efx_process_channel() won't refill the
1943                  * queue. Refill it here
1944                  */
1945                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1946                 break;
1947         default:
1948                 netif_err(efx, hw, efx->net_dev,
1949                           "channel %d unknown driver event type %u"
1950                           " (data " EFX_QWORD_FMT ")\n",
1951                           channel->channel, (unsigned) subcode,
1952                           EFX_QWORD_VAL(*event));
1953         }
1954 }
1955
1956 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1957 {
1958         struct efx_nic *efx = channel->efx;
1959         efx_qword_t event, *p_event;
1960         unsigned int read_ptr;
1961         int ev_code;
1962         int tx_descs = 0;
1963         int spent = 0;
1964
1965         if (quota <= 0)
1966                 return spent;
1967
1968         read_ptr = channel->eventq_read_ptr;
1969
1970         for (;;) {
1971                 p_event = efx_event(channel, read_ptr);
1972                 event = *p_event;
1973
1974                 if (!efx_event_present(&event))
1975                         break;
1976
1977                 EFX_SET_QWORD(*p_event);
1978
1979                 ++read_ptr;
1980
1981                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1982
1983                 netif_vdbg(efx, drv, efx->net_dev,
1984                            "processing event on %d " EFX_QWORD_FMT "\n",
1985                            channel->channel, EFX_QWORD_VAL(event));
1986
1987                 switch (ev_code) {
1988                 case ESE_DZ_EV_CODE_MCDI_EV:
1989                         efx_mcdi_process_event(channel, &event);
1990                         break;
1991                 case ESE_DZ_EV_CODE_RX_EV:
1992                         spent += efx_ef10_handle_rx_event(channel, &event);
1993                         if (spent >= quota) {
1994                                 /* XXX can we split a merged event to
1995                                  * avoid going over-quota?
1996                                  */
1997                                 spent = quota;
1998                                 goto out;
1999                         }
2000                         break;
2001                 case ESE_DZ_EV_CODE_TX_EV:
2002                         tx_descs += efx_ef10_handle_tx_event(channel, &event);
2003                         if (tx_descs > efx->txq_entries) {
2004                                 spent = quota;
2005                                 goto out;
2006                         } else if (++spent == quota) {
2007                                 goto out;
2008                         }
2009                         break;
2010                 case ESE_DZ_EV_CODE_DRIVER_EV:
2011                         efx_ef10_handle_driver_event(channel, &event);
2012                         if (++spent == quota)
2013                                 goto out;
2014                         break;
2015                 case EFX_EF10_DRVGEN_EV:
2016                         efx_ef10_handle_driver_generated_event(channel, &event);
2017                         break;
2018                 default:
2019                         netif_err(efx, hw, efx->net_dev,
2020                                   "channel %d unknown event type %d"
2021                                   " (data " EFX_QWORD_FMT ")\n",
2022                                   channel->channel, ev_code,
2023                                   EFX_QWORD_VAL(event));
2024                 }
2025         }
2026
2027 out:
2028         channel->eventq_read_ptr = read_ptr;
2029         return spent;
2030 }
2031
2032 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2033 {
2034         struct efx_nic *efx = channel->efx;
2035         efx_dword_t rptr;
2036
2037         if (EFX_EF10_WORKAROUND_35388(efx)) {
2038                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2039                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2040                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2041                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2042
2043                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2044                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2045                                      ERF_DD_EVQ_IND_RPTR,
2046                                      (channel->eventq_read_ptr &
2047                                       channel->eventq_mask) >>
2048                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
2049                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2050                                 channel->channel);
2051                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2052                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2053                                      ERF_DD_EVQ_IND_RPTR,
2054                                      channel->eventq_read_ptr &
2055                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2056                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2057                                 channel->channel);
2058         } else {
2059                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2060                                      channel->eventq_read_ptr &
2061                                      channel->eventq_mask);
2062                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2063         }
2064 }
2065
2066 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2067 {
2068         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2069         struct efx_nic *efx = channel->efx;
2070         efx_qword_t event;
2071         int rc;
2072
2073         EFX_POPULATE_QWORD_2(event,
2074                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2075                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
2076
2077         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2078
2079         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2080          * already swapped the data to little-endian order.
2081          */
2082         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2083                sizeof(efx_qword_t));
2084
2085         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2086                           NULL, 0, NULL);
2087         if (rc != 0)
2088                 goto fail;
2089
2090         return;
2091
2092 fail:
2093         WARN_ON(true);
2094         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2095 }
2096
2097 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2098 {
2099         if (atomic_dec_and_test(&efx->active_queues))
2100                 wake_up(&efx->flush_wq);
2101
2102         WARN_ON(atomic_read(&efx->active_queues) < 0);
2103 }
2104
2105 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2106 {
2107         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2108         struct efx_channel *channel;
2109         struct efx_tx_queue *tx_queue;
2110         struct efx_rx_queue *rx_queue;
2111         int pending;
2112
2113         /* If the MC has just rebooted, the TX/RX queues will have already been
2114          * torn down, but efx->active_queues needs to be set to zero.
2115          */
2116         if (nic_data->must_realloc_vis) {
2117                 atomic_set(&efx->active_queues, 0);
2118                 return 0;
2119         }
2120
2121         /* Do not attempt to write to the NIC during EEH recovery */
2122         if (efx->state != STATE_RECOVERY) {
2123                 efx_for_each_channel(channel, efx) {
2124                         efx_for_each_channel_rx_queue(rx_queue, channel)
2125                                 efx_ef10_rx_fini(rx_queue);
2126                         efx_for_each_channel_tx_queue(tx_queue, channel)
2127                                 efx_ef10_tx_fini(tx_queue);
2128                 }
2129
2130                 wait_event_timeout(efx->flush_wq,
2131                                    atomic_read(&efx->active_queues) == 0,
2132                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2133                 pending = atomic_read(&efx->active_queues);
2134                 if (pending) {
2135                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2136                                   pending);
2137                         return -ETIMEDOUT;
2138                 }
2139         }
2140
2141         return 0;
2142 }
2143
2144 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2145                                   const struct efx_filter_spec *right)
2146 {
2147         if ((left->match_flags ^ right->match_flags) |
2148             ((left->flags ^ right->flags) &
2149              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2150                 return false;
2151
2152         return memcmp(&left->outer_vid, &right->outer_vid,
2153                       sizeof(struct efx_filter_spec) -
2154                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
2155 }
2156
2157 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2158 {
2159         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2160         return jhash2((const u32 *)&spec->outer_vid,
2161                       (sizeof(struct efx_filter_spec) -
2162                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
2163                       0);
2164         /* XXX should we randomise the initval? */
2165 }
2166
2167 /* Decide whether a filter should be exclusive or else should allow
2168  * delivery to additional recipients.  Currently we decide that
2169  * filters for specific local unicast MAC and IP addresses are
2170  * exclusive.
2171  */
2172 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2173 {
2174         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2175             !is_multicast_ether_addr(spec->loc_mac))
2176                 return true;
2177
2178         if ((spec->match_flags &
2179              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2180             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2181                 if (spec->ether_type == htons(ETH_P_IP) &&
2182                     !ipv4_is_multicast(spec->loc_host[0]))
2183                         return true;
2184                 if (spec->ether_type == htons(ETH_P_IPV6) &&
2185                     ((const u8 *)spec->loc_host)[0] != 0xff)
2186                         return true;
2187         }
2188
2189         return false;
2190 }
2191
2192 static struct efx_filter_spec *
2193 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2194                            unsigned int filter_idx)
2195 {
2196         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2197                                           ~EFX_EF10_FILTER_FLAGS);
2198 }
2199
2200 static unsigned int
2201 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2202                            unsigned int filter_idx)
2203 {
2204         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2205 }
2206
2207 static void
2208 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2209                           unsigned int filter_idx,
2210                           const struct efx_filter_spec *spec,
2211                           unsigned int flags)
2212 {
2213         table->entry[filter_idx].spec = (unsigned long)spec | flags;
2214 }
2215
2216 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2217                                       const struct efx_filter_spec *spec,
2218                                       efx_dword_t *inbuf, u64 handle,
2219                                       bool replacing)
2220 {
2221         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2222
2223         memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2224
2225         if (replacing) {
2226                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2227                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
2228                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2229         } else {
2230                 u32 match_fields = 0;
2231
2232                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2233                                efx_ef10_filter_is_exclusive(spec) ?
2234                                MC_CMD_FILTER_OP_IN_OP_INSERT :
2235                                MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2236
2237                 /* Convert match flags and values.  Unlike almost
2238                  * everything else in MCDI, these fields are in
2239                  * network byte order.
2240                  */
2241                 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2242                         match_fields |=
2243                                 is_multicast_ether_addr(spec->loc_mac) ?
2244                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2245                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2246 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
2247                 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2248                         match_fields |=                                      \
2249                                 1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
2250                                 mcdi_field ## _LBN;                          \
2251                         BUILD_BUG_ON(                                        \
2252                                 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2253                                 sizeof(spec->gen_field));                    \
2254                         memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2255                                &spec->gen_field, sizeof(spec->gen_field));   \
2256                 }
2257                 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2258                 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2259                 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2260                 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2261                 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2262                 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2263                 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2264                 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2265                 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2266                 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2267 #undef COPY_FIELD
2268                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2269                                match_fields);
2270         }
2271
2272         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2273         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2274                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2275                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2276                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2277         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2278                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2279         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2280                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2281                        0 : spec->dmaq_id);
2282         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2283                        (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2284                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2285                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2286         if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2287                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2288                                spec->rss_context !=
2289                                EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2290                                spec->rss_context : nic_data->rx_rss_context);
2291 }
2292
2293 static int efx_ef10_filter_push(struct efx_nic *efx,
2294                                 const struct efx_filter_spec *spec,
2295                                 u64 *handle, bool replacing)
2296 {
2297         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2298         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2299         int rc;
2300
2301         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2302         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2303                           outbuf, sizeof(outbuf), NULL);
2304         if (rc == 0)
2305                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2306         if (rc == -ENOSPC)
2307                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
2308         return rc;
2309 }
2310
2311 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2312                                         enum efx_filter_match_flags match_flags)
2313 {
2314         unsigned int match_pri;
2315
2316         for (match_pri = 0;
2317              match_pri < table->rx_match_count;
2318              match_pri++)
2319                 if (table->rx_match_flags[match_pri] == match_flags)
2320                         return match_pri;
2321
2322         return -EPROTONOSUPPORT;
2323 }
2324
2325 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2326                                   struct efx_filter_spec *spec,
2327                                   bool replace_equal)
2328 {
2329         struct efx_ef10_filter_table *table = efx->filter_state;
2330         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2331         struct efx_filter_spec *saved_spec;
2332         unsigned int match_pri, hash;
2333         unsigned int priv_flags;
2334         bool replacing = false;
2335         int ins_index = -1;
2336         DEFINE_WAIT(wait);
2337         bool is_mc_recip;
2338         s32 rc;
2339
2340         /* For now, only support RX filters */
2341         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2342             EFX_FILTER_FLAG_RX)
2343                 return -EINVAL;
2344
2345         rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2346         if (rc < 0)
2347                 return rc;
2348         match_pri = rc;
2349
2350         hash = efx_ef10_filter_hash(spec);
2351         is_mc_recip = efx_filter_is_mc_recipient(spec);
2352         if (is_mc_recip)
2353                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2354
2355         /* Find any existing filters with the same match tuple or
2356          * else a free slot to insert at.  If any of them are busy,
2357          * we have to wait and retry.
2358          */
2359         for (;;) {
2360                 unsigned int depth = 1;
2361                 unsigned int i;
2362
2363                 spin_lock_bh(&efx->filter_lock);
2364
2365                 for (;;) {
2366                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2367                         saved_spec = efx_ef10_filter_entry_spec(table, i);
2368
2369                         if (!saved_spec) {
2370                                 if (ins_index < 0)
2371                                         ins_index = i;
2372                         } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2373                                 if (table->entry[i].spec &
2374                                     EFX_EF10_FILTER_FLAG_BUSY)
2375                                         break;
2376                                 if (spec->priority < saved_spec->priority &&
2377                                     spec->priority != EFX_FILTER_PRI_AUTO) {
2378                                         rc = -EPERM;
2379                                         goto out_unlock;
2380                                 }
2381                                 if (!is_mc_recip) {
2382                                         /* This is the only one */
2383                                         if (spec->priority ==
2384                                             saved_spec->priority &&
2385                                             !replace_equal) {
2386                                                 rc = -EEXIST;
2387                                                 goto out_unlock;
2388                                         }
2389                                         ins_index = i;
2390                                         goto found;
2391                                 } else if (spec->priority >
2392                                            saved_spec->priority ||
2393                                            (spec->priority ==
2394                                             saved_spec->priority &&
2395                                             replace_equal)) {
2396                                         if (ins_index < 0)
2397                                                 ins_index = i;
2398                                         else
2399                                                 __set_bit(depth, mc_rem_map);
2400                                 }
2401                         }
2402
2403                         /* Once we reach the maximum search depth, use
2404                          * the first suitable slot or return -EBUSY if
2405                          * there was none
2406                          */
2407                         if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2408                                 if (ins_index < 0) {
2409                                         rc = -EBUSY;
2410                                         goto out_unlock;
2411                                 }
2412                                 goto found;
2413                         }
2414
2415                         ++depth;
2416                 }
2417
2418                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2419                 spin_unlock_bh(&efx->filter_lock);
2420                 schedule();
2421         }
2422
2423 found:
2424         /* Create a software table entry if necessary, and mark it
2425          * busy.  We might yet fail to insert, but any attempt to
2426          * insert a conflicting filter while we're waiting for the
2427          * firmware must find the busy entry.
2428          */
2429         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2430         if (saved_spec) {
2431                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
2432                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2433                         /* Just make sure it won't be removed */
2434                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2435                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2436                         table->entry[ins_index].spec &=
2437                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2438                         rc = ins_index;
2439                         goto out_unlock;
2440                 }
2441                 replacing = true;
2442                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2443         } else {
2444                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2445                 if (!saved_spec) {
2446                         rc = -ENOMEM;
2447                         goto out_unlock;
2448                 }
2449                 *saved_spec = *spec;
2450                 priv_flags = 0;
2451         }
2452         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2453                                   priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2454
2455         /* Mark lower-priority multicast recipients busy prior to removal */
2456         if (is_mc_recip) {
2457                 unsigned int depth, i;
2458
2459                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2460                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2461                         if (test_bit(depth, mc_rem_map))
2462                                 table->entry[i].spec |=
2463                                         EFX_EF10_FILTER_FLAG_BUSY;
2464                 }
2465         }
2466
2467         spin_unlock_bh(&efx->filter_lock);
2468
2469         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2470                                   replacing);
2471
2472         /* Finalise the software table entry */
2473         spin_lock_bh(&efx->filter_lock);
2474         if (rc == 0) {
2475                 if (replacing) {
2476                         /* Update the fields that may differ */
2477                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2478                                 saved_spec->flags |=
2479                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
2480                         saved_spec->priority = spec->priority;
2481                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2482                         saved_spec->flags |= spec->flags;
2483                         saved_spec->rss_context = spec->rss_context;
2484                         saved_spec->dmaq_id = spec->dmaq_id;
2485                 }
2486         } else if (!replacing) {
2487                 kfree(saved_spec);
2488                 saved_spec = NULL;
2489         }
2490         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2491
2492         /* Remove and finalise entries for lower-priority multicast
2493          * recipients
2494          */
2495         if (is_mc_recip) {
2496                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2497                 unsigned int depth, i;
2498
2499                 memset(inbuf, 0, sizeof(inbuf));
2500
2501                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2502                         if (!test_bit(depth, mc_rem_map))
2503                                 continue;
2504
2505                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2506                         saved_spec = efx_ef10_filter_entry_spec(table, i);
2507                         priv_flags = efx_ef10_filter_entry_flags(table, i);
2508
2509                         if (rc == 0) {
2510                                 spin_unlock_bh(&efx->filter_lock);
2511                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2512                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2513                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2514                                                table->entry[i].handle);
2515                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2516                                                   inbuf, sizeof(inbuf),
2517                                                   NULL, 0, NULL);
2518                                 spin_lock_bh(&efx->filter_lock);
2519                         }
2520
2521                         if (rc == 0) {
2522                                 kfree(saved_spec);
2523                                 saved_spec = NULL;
2524                                 priv_flags = 0;
2525                         } else {
2526                                 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2527                         }
2528                         efx_ef10_filter_set_entry(table, i, saved_spec,
2529                                                   priv_flags);
2530                 }
2531         }
2532
2533         /* If successful, return the inserted filter ID */
2534         if (rc == 0)
2535                 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2536
2537         wake_up_all(&table->waitq);
2538 out_unlock:
2539         spin_unlock_bh(&efx->filter_lock);
2540         finish_wait(&table->waitq, &wait);
2541         return rc;
2542 }
2543
2544 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2545 {
2546         /* no need to do anything here on EF10 */
2547 }
2548
2549 /* Remove a filter.
2550  * If !by_index, remove by ID
2551  * If by_index, remove by index
2552  * Filter ID may come from userland and must be range-checked.
2553  */
2554 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2555                                            unsigned int priority_mask,
2556                                            u32 filter_id, bool by_index)
2557 {
2558         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2559         struct efx_ef10_filter_table *table = efx->filter_state;
2560         MCDI_DECLARE_BUF(inbuf,
2561                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2562                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2563         struct efx_filter_spec *spec;
2564         DEFINE_WAIT(wait);
2565         int rc;
2566
2567         /* Find the software table entry and mark it busy.  Don't
2568          * remove it yet; any attempt to update while we're waiting
2569          * for the firmware must find the busy entry.
2570          */
2571         for (;;) {
2572                 spin_lock_bh(&efx->filter_lock);
2573                 if (!(table->entry[filter_idx].spec &
2574                       EFX_EF10_FILTER_FLAG_BUSY))
2575                         break;
2576                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2577                 spin_unlock_bh(&efx->filter_lock);
2578                 schedule();
2579         }
2580
2581         spec = efx_ef10_filter_entry_spec(table, filter_idx);
2582         if (!spec ||
2583             (!by_index &&
2584              efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2585              filter_id / HUNT_FILTER_TBL_ROWS)) {
2586                 rc = -ENOENT;
2587                 goto out_unlock;
2588         }
2589
2590         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2591             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2592                 /* Just remove flags */
2593                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2594                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2595                 rc = 0;
2596                 goto out_unlock;
2597         }
2598
2599         if (!(priority_mask & (1U << spec->priority))) {
2600                 rc = -ENOENT;
2601                 goto out_unlock;
2602         }
2603
2604         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2605         spin_unlock_bh(&efx->filter_lock);
2606
2607         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2608                 /* Reset to an automatic filter */
2609
2610                 struct efx_filter_spec new_spec = *spec;
2611
2612                 new_spec.priority = EFX_FILTER_PRI_AUTO;
2613                 new_spec.flags = (EFX_FILTER_FLAG_RX |
2614                                   EFX_FILTER_FLAG_RX_RSS);
2615                 new_spec.dmaq_id = 0;
2616                 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2617                 rc = efx_ef10_filter_push(efx, &new_spec,
2618                                           &table->entry[filter_idx].handle,
2619                                           true);
2620
2621                 spin_lock_bh(&efx->filter_lock);
2622                 if (rc == 0)
2623                         *spec = new_spec;
2624         } else {
2625                 /* Really remove the filter */
2626
2627                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2628                                efx_ef10_filter_is_exclusive(spec) ?
2629                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
2630                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2631                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2632                                table->entry[filter_idx].handle);
2633                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2634                                   inbuf, sizeof(inbuf), NULL, 0, NULL);
2635
2636                 spin_lock_bh(&efx->filter_lock);
2637                 if (rc == 0) {
2638                         kfree(spec);
2639                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2640                 }
2641         }
2642
2643         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2644         wake_up_all(&table->waitq);
2645 out_unlock:
2646         spin_unlock_bh(&efx->filter_lock);
2647         finish_wait(&table->waitq, &wait);
2648         return rc;
2649 }
2650
2651 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2652                                        enum efx_filter_priority priority,
2653                                        u32 filter_id)
2654 {
2655         return efx_ef10_filter_remove_internal(efx, 1U << priority,
2656                                                filter_id, false);
2657 }
2658
2659 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2660                                     enum efx_filter_priority priority,
2661                                     u32 filter_id, struct efx_filter_spec *spec)
2662 {
2663         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2664         struct efx_ef10_filter_table *table = efx->filter_state;
2665         const struct efx_filter_spec *saved_spec;
2666         int rc;
2667
2668         spin_lock_bh(&efx->filter_lock);
2669         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2670         if (saved_spec && saved_spec->priority == priority &&
2671             efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2672             filter_id / HUNT_FILTER_TBL_ROWS) {
2673                 *spec = *saved_spec;
2674                 rc = 0;
2675         } else {
2676                 rc = -ENOENT;
2677         }
2678         spin_unlock_bh(&efx->filter_lock);
2679         return rc;
2680 }
2681
2682 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2683                                      enum efx_filter_priority priority)
2684 {
2685         unsigned int priority_mask;
2686         unsigned int i;
2687         int rc;
2688
2689         priority_mask = (((1U << (priority + 1)) - 1) &
2690                          ~(1U << EFX_FILTER_PRI_AUTO));
2691
2692         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2693                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2694                                                      i, true);
2695                 if (rc && rc != -ENOENT)
2696                         return rc;
2697         }
2698
2699         return 0;
2700 }
2701
2702 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2703                                          enum efx_filter_priority priority)
2704 {
2705         struct efx_ef10_filter_table *table = efx->filter_state;
2706         unsigned int filter_idx;
2707         s32 count = 0;
2708
2709         spin_lock_bh(&efx->filter_lock);
2710         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2711                 if (table->entry[filter_idx].spec &&
2712                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2713                     priority)
2714                         ++count;
2715         }
2716         spin_unlock_bh(&efx->filter_lock);
2717         return count;
2718 }
2719
2720 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2721 {
2722         struct efx_ef10_filter_table *table = efx->filter_state;
2723
2724         return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2725 }
2726
2727 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2728                                       enum efx_filter_priority priority,
2729                                       u32 *buf, u32 size)
2730 {
2731         struct efx_ef10_filter_table *table = efx->filter_state;
2732         struct efx_filter_spec *spec;
2733         unsigned int filter_idx;
2734         s32 count = 0;
2735
2736         spin_lock_bh(&efx->filter_lock);
2737         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2738                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2739                 if (spec && spec->priority == priority) {
2740                         if (count == size) {
2741                                 count = -EMSGSIZE;
2742                                 break;
2743                         }
2744                         buf[count++] = (efx_ef10_filter_rx_match_pri(
2745                                                 table, spec->match_flags) *
2746                                         HUNT_FILTER_TBL_ROWS +
2747                                         filter_idx);
2748                 }
2749         }
2750         spin_unlock_bh(&efx->filter_lock);
2751         return count;
2752 }
2753
2754 #ifdef CONFIG_RFS_ACCEL
2755
2756 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2757
2758 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2759                                       struct efx_filter_spec *spec)
2760 {
2761         struct efx_ef10_filter_table *table = efx->filter_state;
2762         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2763         struct efx_filter_spec *saved_spec;
2764         unsigned int hash, i, depth = 1;
2765         bool replacing = false;
2766         int ins_index = -1;
2767         u64 cookie;
2768         s32 rc;
2769
2770         /* Must be an RX filter without RSS and not for a multicast
2771          * destination address (RFS only works for connected sockets).
2772          * These restrictions allow us to pass only a tiny amount of
2773          * data through to the completion function.
2774          */
2775         EFX_WARN_ON_PARANOID(spec->flags !=
2776                              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2777         EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2778         EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2779
2780         hash = efx_ef10_filter_hash(spec);
2781
2782         spin_lock_bh(&efx->filter_lock);
2783
2784         /* Find any existing filter with the same match tuple or else
2785          * a free slot to insert at.  If an existing filter is busy,
2786          * we have to give up.
2787          */
2788         for (;;) {
2789                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2790                 saved_spec = efx_ef10_filter_entry_spec(table, i);
2791
2792                 if (!saved_spec) {
2793                         if (ins_index < 0)
2794                                 ins_index = i;
2795                 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2796                         if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2797                                 rc = -EBUSY;
2798                                 goto fail_unlock;
2799                         }
2800                         if (spec->priority < saved_spec->priority) {
2801                                 rc = -EPERM;
2802                                 goto fail_unlock;
2803                         }
2804                         ins_index = i;
2805                         break;
2806                 }
2807
2808                 /* Once we reach the maximum search depth, use the
2809                  * first suitable slot or return -EBUSY if there was
2810                  * none
2811                  */
2812                 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2813                         if (ins_index < 0) {
2814                                 rc = -EBUSY;
2815                                 goto fail_unlock;
2816                         }
2817                         break;
2818                 }
2819
2820                 ++depth;
2821         }
2822
2823         /* Create a software table entry if necessary, and mark it
2824          * busy.  We might yet fail to insert, but any attempt to
2825          * insert a conflicting filter while we're waiting for the
2826          * firmware must find the busy entry.
2827          */
2828         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2829         if (saved_spec) {
2830                 replacing = true;
2831         } else {
2832                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2833                 if (!saved_spec) {
2834                         rc = -ENOMEM;
2835                         goto fail_unlock;
2836                 }
2837                 *saved_spec = *spec;
2838         }
2839         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2840                                   EFX_EF10_FILTER_FLAG_BUSY);
2841
2842         spin_unlock_bh(&efx->filter_lock);
2843
2844         /* Pack up the variables needed on completion */
2845         cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2846
2847         efx_ef10_filter_push_prep(efx, spec, inbuf,
2848                                   table->entry[ins_index].handle, replacing);
2849         efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2850                            MC_CMD_FILTER_OP_OUT_LEN,
2851                            efx_ef10_filter_rfs_insert_complete, cookie);
2852
2853         return ins_index;
2854
2855 fail_unlock:
2856         spin_unlock_bh(&efx->filter_lock);
2857         return rc;
2858 }
2859
2860 static void
2861 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2862                                     int rc, efx_dword_t *outbuf,
2863                                     size_t outlen_actual)
2864 {
2865         struct efx_ef10_filter_table *table = efx->filter_state;
2866         unsigned int ins_index, dmaq_id;
2867         struct efx_filter_spec *spec;
2868         bool replacing;
2869
2870         /* Unpack the cookie */
2871         replacing = cookie >> 31;
2872         ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2873         dmaq_id = cookie & 0xffff;
2874
2875         spin_lock_bh(&efx->filter_lock);
2876         spec = efx_ef10_filter_entry_spec(table, ins_index);
2877         if (rc == 0) {
2878                 table->entry[ins_index].handle =
2879                         MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2880                 if (replacing)
2881                         spec->dmaq_id = dmaq_id;
2882         } else if (!replacing) {
2883                 kfree(spec);
2884                 spec = NULL;
2885         }
2886         efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2887         spin_unlock_bh(&efx->filter_lock);
2888
2889         wake_up_all(&table->waitq);
2890 }
2891
2892 static void
2893 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2894                                     unsigned long filter_idx,
2895                                     int rc, efx_dword_t *outbuf,
2896                                     size_t outlen_actual);
2897
2898 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2899                                            unsigned int filter_idx)
2900 {
2901         struct efx_ef10_filter_table *table = efx->filter_state;
2902         struct efx_filter_spec *spec =
2903                 efx_ef10_filter_entry_spec(table, filter_idx);
2904         MCDI_DECLARE_BUF(inbuf,
2905                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2906                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2907
2908         if (!spec ||
2909             (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2910             spec->priority != EFX_FILTER_PRI_HINT ||
2911             !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2912                                  flow_id, filter_idx))
2913                 return false;
2914
2915         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2916                        MC_CMD_FILTER_OP_IN_OP_REMOVE);
2917         MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2918                        table->entry[filter_idx].handle);
2919         if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2920                                efx_ef10_filter_rfs_expire_complete, filter_idx))
2921                 return false;
2922
2923         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2924         return true;
2925 }
2926
2927 static void
2928 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2929                                     unsigned long filter_idx,
2930                                     int rc, efx_dword_t *outbuf,
2931                                     size_t outlen_actual)
2932 {
2933         struct efx_ef10_filter_table *table = efx->filter_state;
2934         struct efx_filter_spec *spec =
2935                 efx_ef10_filter_entry_spec(table, filter_idx);
2936
2937         spin_lock_bh(&efx->filter_lock);
2938         if (rc == 0) {
2939                 kfree(spec);
2940                 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2941         }
2942         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2943         wake_up_all(&table->waitq);
2944         spin_unlock_bh(&efx->filter_lock);
2945 }
2946
2947 #endif /* CONFIG_RFS_ACCEL */
2948
2949 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2950 {
2951         int match_flags = 0;
2952
2953 #define MAP_FLAG(gen_flag, mcdi_field) {                                \
2954                 u32 old_mcdi_flags = mcdi_flags;                        \
2955                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##      \
2956                                 mcdi_field ## _LBN);                    \
2957                 if (mcdi_flags != old_mcdi_flags)                       \
2958                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
2959         }
2960         MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2961         MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2962         MAP_FLAG(REM_HOST, SRC_IP);
2963         MAP_FLAG(LOC_HOST, DST_IP);
2964         MAP_FLAG(REM_MAC, SRC_MAC);
2965         MAP_FLAG(REM_PORT, SRC_PORT);
2966         MAP_FLAG(LOC_MAC, DST_MAC);
2967         MAP_FLAG(LOC_PORT, DST_PORT);
2968         MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2969         MAP_FLAG(INNER_VID, INNER_VLAN);
2970         MAP_FLAG(OUTER_VID, OUTER_VLAN);
2971         MAP_FLAG(IP_PROTO, IP_PROTO);
2972 #undef MAP_FLAG
2973
2974         /* Did we map them all? */
2975         if (mcdi_flags)
2976                 return -EINVAL;
2977
2978         return match_flags;
2979 }
2980
2981 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2982 {
2983         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2984         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2985         unsigned int pd_match_pri, pd_match_count;
2986         struct efx_ef10_filter_table *table;
2987         size_t outlen;
2988         int rc;
2989
2990         table = kzalloc(sizeof(*table), GFP_KERNEL);
2991         if (!table)
2992                 return -ENOMEM;
2993
2994         /* Find out which RX filter types are supported, and their priorities */
2995         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2996                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2997         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2998                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2999                           &outlen);
3000         if (rc)
3001                 goto fail;
3002         pd_match_count = MCDI_VAR_ARRAY_LEN(
3003                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3004         table->rx_match_count = 0;
3005
3006         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3007                 u32 mcdi_flags =
3008                         MCDI_ARRAY_DWORD(
3009                                 outbuf,
3010                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3011                                 pd_match_pri);
3012                 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3013                 if (rc < 0) {
3014                         netif_dbg(efx, probe, efx->net_dev,
3015                                   "%s: fw flags %#x pri %u not supported in driver\n",
3016                                   __func__, mcdi_flags, pd_match_pri);
3017                 } else {
3018                         netif_dbg(efx, probe, efx->net_dev,
3019                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3020                                   __func__, mcdi_flags, pd_match_pri,
3021                                   rc, table->rx_match_count);
3022                         table->rx_match_flags[table->rx_match_count++] = rc;
3023                 }
3024         }
3025
3026         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3027         if (!table->entry) {
3028                 rc = -ENOMEM;
3029                 goto fail;
3030         }
3031
3032         efx->filter_state = table;
3033         init_waitqueue_head(&table->waitq);
3034         return 0;
3035
3036 fail:
3037         kfree(table);
3038         return rc;
3039 }
3040
3041 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3042 {
3043         struct efx_ef10_filter_table *table = efx->filter_state;
3044         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3045         struct efx_filter_spec *spec;
3046         unsigned int filter_idx;
3047         bool failed = false;
3048         int rc;
3049
3050         if (!nic_data->must_restore_filters)
3051                 return;
3052
3053         spin_lock_bh(&efx->filter_lock);
3054
3055         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3056                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3057                 if (!spec)
3058                         continue;
3059
3060                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3061                 spin_unlock_bh(&efx->filter_lock);
3062
3063                 rc = efx_ef10_filter_push(efx, spec,
3064                                           &table->entry[filter_idx].handle,
3065                                           false);
3066                 if (rc)
3067                         failed = true;
3068
3069                 spin_lock_bh(&efx->filter_lock);
3070                 if (rc) {
3071                         kfree(spec);
3072                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3073                 } else {
3074                         table->entry[filter_idx].spec &=
3075                                 ~EFX_EF10_FILTER_FLAG_BUSY;
3076                 }
3077         }
3078
3079         spin_unlock_bh(&efx->filter_lock);
3080
3081         if (failed)
3082                 netif_err(efx, hw, efx->net_dev,
3083                           "unable to restore all filters\n");
3084         else
3085                 nic_data->must_restore_filters = false;
3086 }
3087
3088 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3089 {
3090         struct efx_ef10_filter_table *table = efx->filter_state;
3091         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3092         struct efx_filter_spec *spec;
3093         unsigned int filter_idx;
3094         int rc;
3095
3096         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3097                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3098                 if (!spec)
3099                         continue;
3100
3101                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3102                                efx_ef10_filter_is_exclusive(spec) ?
3103                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
3104                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3105                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3106                                table->entry[filter_idx].handle);
3107                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3108                                   NULL, 0, NULL);
3109                 if (rc)
3110                         netdev_WARN(efx->net_dev,
3111                                     "filter_idx=%#x handle=%#llx\n",
3112                                     filter_idx,
3113                                     table->entry[filter_idx].handle);
3114                 kfree(spec);
3115         }
3116
3117         vfree(table->entry);
3118         kfree(table);
3119 }
3120
3121 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3122 {
3123         struct efx_ef10_filter_table *table = efx->filter_state;
3124         struct net_device *net_dev = efx->net_dev;
3125         struct efx_filter_spec spec;
3126         bool remove_failed = false;
3127         struct netdev_hw_addr *uc;
3128         struct netdev_hw_addr *mc;
3129         unsigned int filter_idx;
3130         int i, n, rc;
3131
3132         if (!efx_dev_registered(efx))
3133                 return;
3134
3135         /* Mark old filters that may need to be removed */
3136         spin_lock_bh(&efx->filter_lock);
3137         n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3138         for (i = 0; i < n; i++) {
3139                 filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3140                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3141         }
3142         n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3143         for (i = 0; i < n; i++) {
3144                 filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3145                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3146         }
3147         spin_unlock_bh(&efx->filter_lock);
3148
3149         /* Copy/convert the address lists; add the primary station
3150          * address and broadcast address
3151          */
3152         netif_addr_lock_bh(net_dev);
3153         if (net_dev->flags & IFF_PROMISC ||
3154             netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3155                 table->dev_uc_count = -1;
3156         } else {
3157                 table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3158                 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3159                 i = 1;
3160                 netdev_for_each_uc_addr(uc, net_dev) {
3161                         ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3162                         i++;
3163                 }
3164         }
3165         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3166             netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3167                 table->dev_mc_count = -1;
3168         } else {
3169                 table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3170                 eth_broadcast_addr(table->dev_mc_list[0].addr);
3171                 i = 1;
3172                 netdev_for_each_mc_addr(mc, net_dev) {
3173                         ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3174                         i++;
3175                 }
3176         }
3177         netif_addr_unlock_bh(net_dev);
3178
3179         /* Insert/renew unicast filters */
3180         if (table->dev_uc_count >= 0) {
3181                 for (i = 0; i < table->dev_uc_count; i++) {
3182                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3183                                            EFX_FILTER_FLAG_RX_RSS,
3184                                            0);
3185                         efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3186                                                  table->dev_uc_list[i].addr);
3187                         rc = efx_ef10_filter_insert(efx, &spec, true);
3188                         if (rc < 0) {
3189                                 /* Fall back to unicast-promisc */
3190                                 while (i--)
3191                                         efx_ef10_filter_remove_safe(
3192                                                 efx, EFX_FILTER_PRI_AUTO,
3193                                                 table->dev_uc_list[i].id);
3194                                 table->dev_uc_count = -1;
3195                                 break;
3196                         }
3197                         table->dev_uc_list[i].id = rc;
3198                 }
3199         }
3200         if (table->dev_uc_count < 0) {
3201                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3202                                    EFX_FILTER_FLAG_RX_RSS,
3203                                    0);
3204                 efx_filter_set_uc_def(&spec);
3205                 rc = efx_ef10_filter_insert(efx, &spec, true);
3206                 if (rc < 0) {
3207                         WARN_ON(1);
3208                         table->dev_uc_count = 0;
3209                 } else {
3210                         table->dev_uc_list[0].id = rc;
3211                 }
3212         }
3213
3214         /* Insert/renew multicast filters */
3215         if (table->dev_mc_count >= 0) {
3216                 for (i = 0; i < table->dev_mc_count; i++) {
3217                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3218                                            EFX_FILTER_FLAG_RX_RSS,
3219                                            0);
3220                         efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3221                                                  table->dev_mc_list[i].addr);
3222                         rc = efx_ef10_filter_insert(efx, &spec, true);
3223                         if (rc < 0) {
3224                                 /* Fall back to multicast-promisc */
3225                                 while (i--)
3226                                         efx_ef10_filter_remove_safe(
3227                                                 efx, EFX_FILTER_PRI_AUTO,
3228                                                 table->dev_mc_list[i].id);
3229                                 table->dev_mc_count = -1;
3230                                 break;
3231                         }
3232                         table->dev_mc_list[i].id = rc;
3233                 }
3234         }
3235         if (table->dev_mc_count < 0) {
3236                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3237                                    EFX_FILTER_FLAG_RX_RSS,
3238                                    0);
3239                 efx_filter_set_mc_def(&spec);
3240                 rc = efx_ef10_filter_insert(efx, &spec, true);
3241                 if (rc < 0) {
3242                         WARN_ON(1);
3243                         table->dev_mc_count = 0;
3244                 } else {
3245                         table->dev_mc_list[0].id = rc;
3246                 }
3247         }
3248
3249         /* Remove filters that weren't renewed.  Since nothing else
3250          * changes the AUTO_OLD flag or removes these filters, we
3251          * don't need to hold the filter_lock while scanning for
3252          * these filters.
3253          */
3254         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3255                 if (ACCESS_ONCE(table->entry[i].spec) &
3256                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3257                         if (efx_ef10_filter_remove_internal(
3258                                     efx, 1U << EFX_FILTER_PRI_AUTO,
3259                                     i, true) < 0)
3260                                 remove_failed = true;
3261                 }
3262         }
3263         WARN_ON(remove_failed);
3264 }
3265
3266 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3267 {
3268         efx_ef10_filter_sync_rx_mode(efx);
3269
3270         return efx_mcdi_set_mac(efx);
3271 }
3272
3273 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3274 {
3275         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3276
3277         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3278         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3279                             NULL, 0, NULL);
3280 }
3281
3282 /* MC BISTs follow a different poll mechanism to phy BISTs.
3283  * The BIST is done in the poll handler on the MC, and the MCDI command
3284  * will block until the BIST is done.
3285  */
3286 static int efx_ef10_poll_bist(struct efx_nic *efx)
3287 {
3288         int rc;
3289         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3290         size_t outlen;
3291         u32 result;
3292
3293         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3294                            outbuf, sizeof(outbuf), &outlen);
3295         if (rc != 0)
3296                 return rc;
3297
3298         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3299                 return -EIO;
3300
3301         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3302         switch (result) {
3303         case MC_CMD_POLL_BIST_PASSED:
3304                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3305                 return 0;
3306         case MC_CMD_POLL_BIST_TIMEOUT:
3307                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3308                 return -EIO;
3309         case MC_CMD_POLL_BIST_FAILED:
3310                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3311                 return -EIO;
3312         default:
3313                 netif_err(efx, hw, efx->net_dev,
3314                           "BIST returned unknown result %u", result);
3315                 return -EIO;
3316         }
3317 }
3318
3319 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3320 {
3321         int rc;
3322
3323         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3324
3325         rc = efx_ef10_start_bist(efx, bist_type);
3326         if (rc != 0)
3327                 return rc;
3328
3329         return efx_ef10_poll_bist(efx);
3330 }
3331
3332 static int
3333 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3334 {
3335         int rc, rc2;
3336
3337         efx_reset_down(efx, RESET_TYPE_WORLD);
3338
3339         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3340                           NULL, 0, NULL, 0, NULL);
3341         if (rc != 0)
3342                 goto out;
3343
3344         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3345         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3346
3347         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3348
3349 out:
3350         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3351         return rc ? rc : rc2;
3352 }
3353
3354 #ifdef CONFIG_SFC_MTD
3355
3356 struct efx_ef10_nvram_type_info {
3357         u16 type, type_mask;
3358         u8 port;
3359         const char *name;
3360 };
3361
3362 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3363         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
3364         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3365         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
3366         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
3367         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
3368         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3369         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3370         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3371         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3372         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
3373         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
3374 };
3375
3376 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3377                                         struct efx_mcdi_mtd_partition *part,
3378                                         unsigned int type)
3379 {
3380         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3381         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3382         const struct efx_ef10_nvram_type_info *info;
3383         size_t size, erase_size, outlen;
3384         bool protected;
3385         int rc;
3386
3387         for (info = efx_ef10_nvram_types; ; info++) {
3388                 if (info ==
3389                     efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3390                         return -ENODEV;
3391                 if ((type & ~info->type_mask) == info->type)
3392                         break;
3393         }
3394         if (info->port != efx_port_num(efx))
3395                 return -ENODEV;
3396
3397         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3398         if (rc)
3399                 return rc;
3400         if (protected)
3401                 return -ENODEV; /* hide it */
3402
3403         part->nvram_type = type;
3404
3405         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3406         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3407                           outbuf, sizeof(outbuf), &outlen);
3408         if (rc)
3409                 return rc;
3410         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3411                 return -EIO;
3412         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3413             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3414                 part->fw_subtype = MCDI_DWORD(outbuf,
3415                                               NVRAM_METADATA_OUT_SUBTYPE);
3416
3417         part->common.dev_type_name = "EF10 NVRAM manager";
3418         part->common.type_name = info->name;
3419
3420         part->common.mtd.type = MTD_NORFLASH;
3421         part->common.mtd.flags = MTD_CAP_NORFLASH;
3422         part->common.mtd.size = size;
3423         part->common.mtd.erasesize = erase_size;
3424
3425         return 0;
3426 }
3427
3428 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3429 {
3430         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3431         struct efx_mcdi_mtd_partition *parts;
3432         size_t outlen, n_parts_total, i, n_parts;
3433         unsigned int type;
3434         int rc;
3435
3436         ASSERT_RTNL();
3437
3438         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3439         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3440                           outbuf, sizeof(outbuf), &outlen);
3441         if (rc)
3442                 return rc;
3443         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3444                 return -EIO;
3445
3446         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3447         if (n_parts_total >
3448             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3449                 return -EIO;
3450
3451         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3452         if (!parts)
3453                 return -ENOMEM;
3454
3455         n_parts = 0;
3456         for (i = 0; i < n_parts_total; i++) {
3457                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3458                                         i);
3459                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3460                 if (rc == 0)
3461                         n_parts++;
3462                 else if (rc != -ENODEV)
3463                         goto fail;
3464         }
3465
3466         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3467 fail:
3468         if (rc)
3469                 kfree(parts);
3470         return rc;
3471 }
3472
3473 #endif /* CONFIG_SFC_MTD */
3474
3475 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3476 {
3477         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3478 }
3479
3480 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3481                                            bool temp)
3482 {
3483         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3484         int rc;
3485
3486         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3487             channel->sync_events_state == SYNC_EVENTS_VALID ||
3488             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3489                 return 0;
3490         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3491
3492         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3493         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3494         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3495                        channel->channel);
3496
3497         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3498                           inbuf, sizeof(inbuf), NULL, 0, NULL);
3499
3500         if (rc != 0)
3501                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3502                                                     SYNC_EVENTS_DISABLED;
3503
3504         return rc;
3505 }
3506
3507 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3508                                             bool temp)
3509 {
3510         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3511         int rc;
3512
3513         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3514             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3515                 return 0;
3516         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3517                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3518                 return 0;
3519         }
3520         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3521                                             SYNC_EVENTS_DISABLED;
3522
3523         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3524         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3525         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3526                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3527         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3528                        channel->channel);
3529
3530         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3531                           inbuf, sizeof(inbuf), NULL, 0, NULL);
3532
3533         return rc;
3534 }
3535
3536 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3537                                            bool temp)
3538 {
3539         int (*set)(struct efx_channel *channel, bool temp);
3540         struct efx_channel *channel;
3541
3542         set = en ?
3543               efx_ef10_rx_enable_timestamping :
3544               efx_ef10_rx_disable_timestamping;
3545
3546         efx_for_each_channel(channel, efx) {
3547                 int rc = set(channel, temp);
3548                 if (en && rc != 0) {
3549                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3550                         return rc;
3551                 }
3552         }
3553
3554         return 0;
3555 }
3556
3557 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3558                                       struct hwtstamp_config *init)
3559 {
3560         int rc;
3561
3562         switch (init->rx_filter) {
3563         case HWTSTAMP_FILTER_NONE:
3564                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3565                 /* if TX timestamping is still requested then leave PTP on */
3566                 return efx_ptp_change_mode(efx,
3567                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
3568         case HWTSTAMP_FILTER_ALL:
3569         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3570         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3571         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3572         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3573         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3574         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3575         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3576         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3577         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3578         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3579         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3580         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3581                 init->rx_filter = HWTSTAMP_FILTER_ALL;
3582                 rc = efx_ptp_change_mode(efx, true, 0);
3583                 if (!rc)
3584                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3585                 if (rc)
3586                         efx_ptp_change_mode(efx, false, 0);
3587                 return rc;
3588         default:
3589                 return -ERANGE;
3590         }
3591 }
3592
3593 const struct efx_nic_type efx_hunt_a0_nic_type = {
3594         .mem_map_size = efx_ef10_mem_map_size,
3595         .probe = efx_ef10_probe,
3596         .remove = efx_ef10_remove,
3597         .dimension_resources = efx_ef10_dimension_resources,
3598         .init = efx_ef10_init_nic,
3599         .fini = efx_port_dummy_op_void,
3600         .map_reset_reason = efx_mcdi_map_reset_reason,
3601         .map_reset_flags = efx_ef10_map_reset_flags,
3602         .reset = efx_ef10_reset,
3603         .probe_port = efx_mcdi_port_probe,
3604         .remove_port = efx_mcdi_port_remove,
3605         .fini_dmaq = efx_ef10_fini_dmaq,
3606         .describe_stats = efx_ef10_describe_stats,
3607         .update_stats = efx_ef10_update_stats,
3608         .start_stats = efx_mcdi_mac_start_stats,
3609         .pull_stats = efx_mcdi_mac_pull_stats,
3610         .stop_stats = efx_mcdi_mac_stop_stats,
3611         .set_id_led = efx_mcdi_set_id_led,
3612         .push_irq_moderation = efx_ef10_push_irq_moderation,
3613         .reconfigure_mac = efx_ef10_mac_reconfigure,
3614         .check_mac_fault = efx_mcdi_mac_check_fault,
3615         .reconfigure_port = efx_mcdi_port_reconfigure,
3616         .get_wol = efx_ef10_get_wol,
3617         .set_wol = efx_ef10_set_wol,
3618         .resume_wol = efx_port_dummy_op_void,
3619         .test_chip = efx_ef10_test_chip,
3620         .test_nvram = efx_mcdi_nvram_test_all,
3621         .mcdi_request = efx_ef10_mcdi_request,
3622         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
3623         .mcdi_read_response = efx_ef10_mcdi_read_response,
3624         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3625         .irq_enable_master = efx_port_dummy_op_void,
3626         .irq_test_generate = efx_ef10_irq_test_generate,
3627         .irq_disable_non_ev = efx_port_dummy_op_void,
3628         .irq_handle_msi = efx_ef10_msi_interrupt,
3629         .irq_handle_legacy = efx_ef10_legacy_interrupt,
3630         .tx_probe = efx_ef10_tx_probe,
3631         .tx_init = efx_ef10_tx_init,
3632         .tx_remove = efx_ef10_tx_remove,
3633         .tx_write = efx_ef10_tx_write,
3634         .rx_push_rss_config = efx_ef10_rx_push_rss_config,
3635         .rx_probe = efx_ef10_rx_probe,
3636         .rx_init = efx_ef10_rx_init,
3637         .rx_remove = efx_ef10_rx_remove,
3638         .rx_write = efx_ef10_rx_write,
3639         .rx_defer_refill = efx_ef10_rx_defer_refill,
3640         .ev_probe = efx_ef10_ev_probe,
3641         .ev_init = efx_ef10_ev_init,
3642         .ev_fini = efx_ef10_ev_fini,
3643         .ev_remove = efx_ef10_ev_remove,
3644         .ev_process = efx_ef10_ev_process,
3645         .ev_read_ack = efx_ef10_ev_read_ack,
3646         .ev_test_generate = efx_ef10_ev_test_generate,
3647         .filter_table_probe = efx_ef10_filter_table_probe,
3648         .filter_table_restore = efx_ef10_filter_table_restore,
3649         .filter_table_remove = efx_ef10_filter_table_remove,
3650         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3651         .filter_insert = efx_ef10_filter_insert,
3652         .filter_remove_safe = efx_ef10_filter_remove_safe,
3653         .filter_get_safe = efx_ef10_filter_get_safe,
3654         .filter_clear_rx = efx_ef10_filter_clear_rx,
3655         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3656         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3657         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3658 #ifdef CONFIG_RFS_ACCEL
3659         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3660         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3661 #endif
3662 #ifdef CONFIG_SFC_MTD
3663         .mtd_probe = efx_ef10_mtd_probe,
3664         .mtd_rename = efx_mcdi_mtd_rename,
3665         .mtd_read = efx_mcdi_mtd_read,
3666         .mtd_erase = efx_mcdi_mtd_erase,
3667         .mtd_write = efx_mcdi_mtd_write,
3668         .mtd_sync = efx_mcdi_mtd_sync,
3669 #endif
3670         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3671         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3672         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
3673
3674         .revision = EFX_REV_HUNT_A0,
3675         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3676         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3677         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3678         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3679         .can_rx_scatter = true,
3680         .always_rx_scatter = true,
3681         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3682         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3683         .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3684                              NETIF_F_RXHASH | NETIF_F_NTUPLE),
3685         .mcdi_max_ver = 2,
3686         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3687         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3688                             1 << HWTSTAMP_FILTER_ALL,
3689 };