clocksource: make CLOCKSOURCE_OF_DECLARE type safe
[cascardo/linux.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
65         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
67         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
68                            efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
74                            (_tx_queue)->queue)
75
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77
78 /**************************************************************************
79  *
80  * Solarstorm hardware access
81  *
82  **************************************************************************/
83
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85                                      unsigned int index)
86 {
87         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88                         value, index);
89 }
90
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93                                      unsigned int index)
94 {
95         return ((efx_qword_t *) (channel->eventq.addr)) +
96                 (index & channel->eventq_mask);
97 }
98
99 /* See if an event is present
100  *
101  * We check both the high and low dword of the event for all ones.  We
102  * wrote all ones when we cleared the event, and no valid event can
103  * have all ones in either its high or low dwords.  This approach is
104  * robust against reordering.
105  *
106  * Note that using a single 64-bit comparison is incorrect; even
107  * though the CPU read will be atomic, the DMA write may not be.
108  */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116                                      const efx_oword_t *mask)
117 {
118         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121
122 int efx_nic_test_registers(struct efx_nic *efx,
123                            const struct efx_nic_register_test *regs,
124                            size_t n_regs)
125 {
126         unsigned address = 0, i, j;
127         efx_oword_t mask, imask, original, reg, buf;
128
129         for (i = 0; i < n_regs; ++i) {
130                 address = regs[i].address;
131                 mask = imask = regs[i].mask;
132                 EFX_INVERT_OWORD(imask);
133
134                 efx_reado(efx, &original, address);
135
136                 /* bit sweep on and off */
137                 for (j = 0; j < 128; j++) {
138                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
139                                 continue;
140
141                         /* Test this testable bit can be set in isolation */
142                         EFX_AND_OWORD(reg, original, mask);
143                         EFX_SET_OWORD32(reg, j, j, 1);
144
145                         efx_writeo(efx, &reg, address);
146                         efx_reado(efx, &buf, address);
147
148                         if (efx_masked_compare_oword(&reg, &buf, &mask))
149                                 goto fail;
150
151                         /* Test this testable bit can be cleared in isolation */
152                         EFX_OR_OWORD(reg, original, mask);
153                         EFX_SET_OWORD32(reg, j, j, 0);
154
155                         efx_writeo(efx, &reg, address);
156                         efx_reado(efx, &buf, address);
157
158                         if (efx_masked_compare_oword(&reg, &buf, &mask))
159                                 goto fail;
160                 }
161
162                 efx_writeo(efx, &original, address);
163         }
164
165         return 0;
166
167 fail:
168         netif_err(efx, hw, efx->net_dev,
169                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172         return -EIO;
173 }
174
175 /**************************************************************************
176  *
177  * Special buffer handling
178  * Special buffers are used for event queues and the TX and RX
179  * descriptor rings.
180  *
181  *************************************************************************/
182
183 /*
184  * Initialise a special buffer
185  *
186  * This will define a buffer (previously allocated via
187  * efx_alloc_special_buffer()) in the buffer table, allowing
188  * it to be used for event queues, descriptor rings etc.
189  */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193         efx_qword_t buf_desc;
194         unsigned int index;
195         dma_addr_t dma_addr;
196         int i;
197
198         EFX_BUG_ON_PARANOID(!buffer->addr);
199
200         /* Write buffer descriptors to NIC */
201         for (i = 0; i < buffer->entries; i++) {
202                 index = buffer->index + i;
203                 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204                 netif_dbg(efx, probe, efx->net_dev,
205                           "mapping special buffer %d at %llx\n",
206                           index, (unsigned long long)dma_addr);
207                 EFX_POPULATE_QWORD_3(buf_desc,
208                                      FRF_AZ_BUF_ADR_REGION, 0,
209                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211                 efx_write_buf_tbl(efx, &buf_desc, index);
212         }
213 }
214
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219         efx_oword_t buf_tbl_upd;
220         unsigned int start = buffer->index;
221         unsigned int end = (buffer->index + buffer->entries - 1);
222
223         if (!buffer->entries)
224                 return;
225
226         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227                   buffer->index, buffer->index + buffer->entries - 1);
228
229         EFX_POPULATE_OWORD_4(buf_tbl_upd,
230                              FRF_AZ_BUF_UPD_CMD, 0,
231                              FRF_AZ_BUF_CLR_CMD, 1,
232                              FRF_AZ_BUF_CLR_END_ID, end,
233                              FRF_AZ_BUF_CLR_START_ID, start);
234         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236
237 /*
238  * Allocate a new special buffer
239  *
240  * This allocates memory for a new buffer, clears it and allocates a
241  * new buffer ID range.  It does not write into the buffer table.
242  *
243  * This call will allocate 4KB buffers, since 8KB buffers can't be
244  * used for event queues and descriptor rings.
245  */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247                                     struct efx_special_buffer *buffer,
248                                     unsigned int len)
249 {
250         len = ALIGN(len, EFX_BUF_SIZE);
251
252         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253                                           &buffer->dma_addr, GFP_KERNEL);
254         if (!buffer->addr)
255                 return -ENOMEM;
256         buffer->len = len;
257         buffer->entries = len / EFX_BUF_SIZE;
258         BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259
260         /* Select new buffer ID */
261         buffer->index = efx->next_buffer_table;
262         efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264         BUG_ON(efx_sriov_enabled(efx) &&
265                efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267
268         netif_dbg(efx, probe, efx->net_dev,
269                   "allocating special buffers %d-%d at %llx+%x "
270                   "(virt %p phys %llx)\n", buffer->index,
271                   buffer->index + buffer->entries - 1,
272                   (u64)buffer->dma_addr, len,
273                   buffer->addr, (u64)virt_to_phys(buffer->addr));
274
275         return 0;
276 }
277
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281         if (!buffer->addr)
282                 return;
283
284         netif_dbg(efx, hw, efx->net_dev,
285                   "deallocating special buffers %d-%d at %llx+%x "
286                   "(virt %p phys %llx)\n", buffer->index,
287                   buffer->index + buffer->entries - 1,
288                   (u64)buffer->dma_addr, buffer->len,
289                   buffer->addr, (u64)virt_to_phys(buffer->addr));
290
291         dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292                           buffer->dma_addr);
293         buffer->addr = NULL;
294         buffer->entries = 0;
295 }
296
297 /**************************************************************************
298  *
299  * Generic buffer handling
300  * These buffers are used for interrupt status, MAC stats, etc.
301  *
302  **************************************************************************/
303
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305                          unsigned int len)
306 {
307         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308                                           &buffer->dma_addr, GFP_ATOMIC);
309         if (!buffer->addr)
310                 return -ENOMEM;
311         buffer->len = len;
312         memset(buffer->addr, 0, len);
313         return 0;
314 }
315
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318         if (buffer->addr) {
319                 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320                                   buffer->addr, buffer->dma_addr);
321                 buffer->addr = NULL;
322         }
323 }
324
325 /**************************************************************************
326  *
327  * TX path
328  *
329  **************************************************************************/
330
331 /* Returns a pointer to the specified transmit descriptor in the TX
332  * descriptor queue belonging to the specified channel.
333  */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337         return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343         unsigned write_ptr;
344         efx_dword_t reg;
345
346         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348         efx_writed_page(tx_queue->efx, &reg,
349                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354                                     const efx_qword_t *txd)
355 {
356         unsigned write_ptr;
357         efx_oword_t reg;
358
359         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364                              FRF_AZ_TX_DESC_WPTR, write_ptr);
365         reg.qword[0] = *txd;
366         efx_writeo_page(tx_queue->efx, &reg,
367                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375         if (empty_read_count == 0)
376                 return false;
377
378         tx_queue->empty_read_count = 0;
379         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
380 }
381
382 /* For each entry inserted into the software descriptor ring, create a
383  * descriptor in the hardware TX descriptor ring (in host memory), and
384  * write a doorbell.
385  */
386 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
387 {
388
389         struct efx_tx_buffer *buffer;
390         efx_qword_t *txd;
391         unsigned write_ptr;
392         unsigned old_write_count = tx_queue->write_count;
393
394         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
395
396         do {
397                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
398                 buffer = &tx_queue->buffer[write_ptr];
399                 txd = efx_tx_desc(tx_queue, write_ptr);
400                 ++tx_queue->write_count;
401
402                 /* Create TX descriptor ring entry */
403                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
404                 EFX_POPULATE_QWORD_4(*txd,
405                                      FSF_AZ_TX_KER_CONT,
406                                      buffer->flags & EFX_TX_BUF_CONT,
407                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
408                                      FSF_AZ_TX_KER_BUF_REGION, 0,
409                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
410         } while (tx_queue->write_count != tx_queue->insert_count);
411
412         wmb(); /* Ensure descriptors are written before they are fetched */
413
414         if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
415                 txd = efx_tx_desc(tx_queue,
416                                   old_write_count & tx_queue->ptr_mask);
417                 efx_push_tx_desc(tx_queue, txd);
418                 ++tx_queue->pushes;
419         } else {
420                 efx_notify_tx_desc(tx_queue);
421         }
422 }
423
424 /* Allocate hardware resources for a TX queue */
425 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
426 {
427         struct efx_nic *efx = tx_queue->efx;
428         unsigned entries;
429
430         entries = tx_queue->ptr_mask + 1;
431         return efx_alloc_special_buffer(efx, &tx_queue->txd,
432                                         entries * sizeof(efx_qword_t));
433 }
434
435 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
436 {
437         struct efx_nic *efx = tx_queue->efx;
438         efx_oword_t reg;
439
440         /* Pin TX descriptor ring */
441         efx_init_special_buffer(efx, &tx_queue->txd);
442
443         /* Push TX descriptor ring to card */
444         EFX_POPULATE_OWORD_10(reg,
445                               FRF_AZ_TX_DESCQ_EN, 1,
446                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
447                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
448                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
449                               FRF_AZ_TX_DESCQ_EVQ_ID,
450                               tx_queue->channel->channel,
451                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
452                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
453                               FRF_AZ_TX_DESCQ_SIZE,
454                               __ffs(tx_queue->txd.entries),
455                               FRF_AZ_TX_DESCQ_TYPE, 0,
456                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
457
458         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
459                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
460                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
461                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
462                                     !csum);
463         }
464
465         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
466                          tx_queue->queue);
467
468         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
469                 /* Only 128 bits in this register */
470                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
471
472                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
473                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
474                         __clear_bit_le(tx_queue->queue, &reg);
475                 else
476                         __set_bit_le(tx_queue->queue, &reg);
477                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
478         }
479
480         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
481                 EFX_POPULATE_OWORD_1(reg,
482                                      FRF_BZ_TX_PACE,
483                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
484                                      FFE_BZ_TX_PACE_OFF :
485                                      FFE_BZ_TX_PACE_RESERVED);
486                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
487                                  tx_queue->queue);
488         }
489 }
490
491 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
492 {
493         struct efx_nic *efx = tx_queue->efx;
494         efx_oword_t tx_flush_descq;
495
496         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
497         atomic_set(&tx_queue->flush_outstanding, 1);
498
499         EFX_POPULATE_OWORD_2(tx_flush_descq,
500                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
501                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
502         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
503 }
504
505 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
506 {
507         struct efx_nic *efx = tx_queue->efx;
508         efx_oword_t tx_desc_ptr;
509
510         /* Remove TX descriptor ring from card */
511         EFX_ZERO_OWORD(tx_desc_ptr);
512         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
513                          tx_queue->queue);
514
515         /* Unpin TX descriptor ring */
516         efx_fini_special_buffer(efx, &tx_queue->txd);
517 }
518
519 /* Free buffers backing TX queue */
520 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
521 {
522         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
523 }
524
525 /**************************************************************************
526  *
527  * RX path
528  *
529  **************************************************************************/
530
531 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
532 static inline efx_qword_t *
533 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
534 {
535         return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
536 }
537
538 /* This creates an entry in the RX descriptor queue */
539 static inline void
540 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
541 {
542         struct efx_rx_buffer *rx_buf;
543         efx_qword_t *rxd;
544
545         rxd = efx_rx_desc(rx_queue, index);
546         rx_buf = efx_rx_buffer(rx_queue, index);
547         EFX_POPULATE_QWORD_3(*rxd,
548                              FSF_AZ_RX_KER_BUF_SIZE,
549                              rx_buf->len -
550                              rx_queue->efx->type->rx_buffer_padding,
551                              FSF_AZ_RX_KER_BUF_REGION, 0,
552                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
553 }
554
555 /* This writes to the RX_DESC_WPTR register for the specified receive
556  * descriptor ring.
557  */
558 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
559 {
560         struct efx_nic *efx = rx_queue->efx;
561         efx_dword_t reg;
562         unsigned write_ptr;
563
564         while (rx_queue->notified_count != rx_queue->added_count) {
565                 efx_build_rx_desc(
566                         rx_queue,
567                         rx_queue->notified_count & rx_queue->ptr_mask);
568                 ++rx_queue->notified_count;
569         }
570
571         wmb();
572         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
573         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
574         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
575                         efx_rx_queue_index(rx_queue));
576 }
577
578 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
579 {
580         struct efx_nic *efx = rx_queue->efx;
581         unsigned entries;
582
583         entries = rx_queue->ptr_mask + 1;
584         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
585                                         entries * sizeof(efx_qword_t));
586 }
587
588 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
589 {
590         efx_oword_t rx_desc_ptr;
591         struct efx_nic *efx = rx_queue->efx;
592         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
593         bool iscsi_digest_en = is_b0;
594
595         netif_dbg(efx, hw, efx->net_dev,
596                   "RX queue %d ring in special buffers %d-%d\n",
597                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
598                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
599
600         /* Pin RX descriptor ring */
601         efx_init_special_buffer(efx, &rx_queue->rxd);
602
603         /* Push RX descriptor ring to card */
604         EFX_POPULATE_OWORD_10(rx_desc_ptr,
605                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
606                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
607                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
608                               FRF_AZ_RX_DESCQ_EVQ_ID,
609                               efx_rx_queue_channel(rx_queue)->channel,
610                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
611                               FRF_AZ_RX_DESCQ_LABEL,
612                               efx_rx_queue_index(rx_queue),
613                               FRF_AZ_RX_DESCQ_SIZE,
614                               __ffs(rx_queue->rxd.entries),
615                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
616                               /* For >=B0 this is scatter so disable */
617                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
618                               FRF_AZ_RX_DESCQ_EN, 1);
619         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
620                          efx_rx_queue_index(rx_queue));
621 }
622
623 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
624 {
625         struct efx_nic *efx = rx_queue->efx;
626         efx_oword_t rx_flush_descq;
627
628         EFX_POPULATE_OWORD_2(rx_flush_descq,
629                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
630                              FRF_AZ_RX_FLUSH_DESCQ,
631                              efx_rx_queue_index(rx_queue));
632         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
633 }
634
635 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
636 {
637         efx_oword_t rx_desc_ptr;
638         struct efx_nic *efx = rx_queue->efx;
639
640         /* Remove RX descriptor ring from card */
641         EFX_ZERO_OWORD(rx_desc_ptr);
642         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
643                          efx_rx_queue_index(rx_queue));
644
645         /* Unpin RX descriptor ring */
646         efx_fini_special_buffer(efx, &rx_queue->rxd);
647 }
648
649 /* Free buffers backing RX queue */
650 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
651 {
652         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
653 }
654
655 /**************************************************************************
656  *
657  * Flush handling
658  *
659  **************************************************************************/
660
661 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
662  * or more RX flushes can be kicked off.
663  */
664 static bool efx_flush_wake(struct efx_nic *efx)
665 {
666         /* Ensure that all updates are visible to efx_nic_flush_queues() */
667         smp_mb();
668
669         return (atomic_read(&efx->drain_pending) == 0 ||
670                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
671                  && atomic_read(&efx->rxq_flush_pending) > 0));
672 }
673
674 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
675 {
676         bool i = true;
677         efx_oword_t txd_ptr_tbl;
678         struct efx_channel *channel;
679         struct efx_tx_queue *tx_queue;
680
681         efx_for_each_channel(channel, efx) {
682                 efx_for_each_channel_tx_queue(tx_queue, channel) {
683                         efx_reado_table(efx, &txd_ptr_tbl,
684                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
685                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
686                                             FRF_AZ_TX_DESCQ_FLUSH) ||
687                             EFX_OWORD_FIELD(txd_ptr_tbl,
688                                             FRF_AZ_TX_DESCQ_EN)) {
689                                 netif_dbg(efx, hw, efx->net_dev,
690                                           "flush did not complete on TXQ %d\n",
691                                           tx_queue->queue);
692                                 i = false;
693                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
694                                                   1, 0)) {
695                                 /* The flush is complete, but we didn't
696                                  * receive a flush completion event
697                                  */
698                                 netif_dbg(efx, hw, efx->net_dev,
699                                           "flush complete on TXQ %d, so drain "
700                                           "the queue\n", tx_queue->queue);
701                                 /* Don't need to increment drain_pending as it
702                                  * has already been incremented for the queues
703                                  * which did not drain
704                                  */
705                                 efx_magic_event(channel,
706                                                 EFX_CHANNEL_MAGIC_TX_DRAIN(
707                                                         tx_queue));
708                         }
709                 }
710         }
711
712         return i;
713 }
714
715 /* Flush all the transmit queues, and continue flushing receive queues until
716  * they're all flushed. Wait for the DRAIN events to be recieved so that there
717  * are no more RX and TX events left on any channel. */
718 int efx_nic_flush_queues(struct efx_nic *efx)
719 {
720         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
721         struct efx_channel *channel;
722         struct efx_rx_queue *rx_queue;
723         struct efx_tx_queue *tx_queue;
724         int rc = 0;
725
726         efx->type->prepare_flush(efx);
727
728         efx_for_each_channel(channel, efx) {
729                 efx_for_each_channel_tx_queue(tx_queue, channel) {
730                         atomic_inc(&efx->drain_pending);
731                         efx_flush_tx_queue(tx_queue);
732                 }
733                 efx_for_each_channel_rx_queue(rx_queue, channel) {
734                         atomic_inc(&efx->drain_pending);
735                         rx_queue->flush_pending = true;
736                         atomic_inc(&efx->rxq_flush_pending);
737                 }
738         }
739
740         while (timeout && atomic_read(&efx->drain_pending) > 0) {
741                 /* If SRIOV is enabled, then offload receive queue flushing to
742                  * the firmware (though we will still have to poll for
743                  * completion). If that fails, fall back to the old scheme.
744                  */
745                 if (efx_sriov_enabled(efx)) {
746                         rc = efx_mcdi_flush_rxqs(efx);
747                         if (!rc)
748                                 goto wait;
749                 }
750
751                 /* The hardware supports four concurrent rx flushes, each of
752                  * which may need to be retried if there is an outstanding
753                  * descriptor fetch
754                  */
755                 efx_for_each_channel(channel, efx) {
756                         efx_for_each_channel_rx_queue(rx_queue, channel) {
757                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
758                                     EFX_RX_FLUSH_COUNT)
759                                         break;
760
761                                 if (rx_queue->flush_pending) {
762                                         rx_queue->flush_pending = false;
763                                         atomic_dec(&efx->rxq_flush_pending);
764                                         atomic_inc(&efx->rxq_flush_outstanding);
765                                         efx_flush_rx_queue(rx_queue);
766                                 }
767                         }
768                 }
769
770         wait:
771                 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
772                                              timeout);
773         }
774
775         if (atomic_read(&efx->drain_pending) &&
776             !efx_check_tx_flush_complete(efx)) {
777                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
778                           "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
779                           atomic_read(&efx->rxq_flush_outstanding),
780                           atomic_read(&efx->rxq_flush_pending));
781                 rc = -ETIMEDOUT;
782
783                 atomic_set(&efx->drain_pending, 0);
784                 atomic_set(&efx->rxq_flush_pending, 0);
785                 atomic_set(&efx->rxq_flush_outstanding, 0);
786         }
787
788         efx->type->finish_flush(efx);
789
790         return rc;
791 }
792
793 /**************************************************************************
794  *
795  * Event queue processing
796  * Event queues are processed by per-channel tasklets.
797  *
798  **************************************************************************/
799
800 /* Update a channel's event queue's read pointer (RPTR) register
801  *
802  * This writes the EVQ_RPTR_REG register for the specified channel's
803  * event queue.
804  */
805 void efx_nic_eventq_read_ack(struct efx_channel *channel)
806 {
807         efx_dword_t reg;
808         struct efx_nic *efx = channel->efx;
809
810         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
811                              channel->eventq_read_ptr & channel->eventq_mask);
812
813         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
814          * of 4 bytes, but it is really 16 bytes just like later revisions.
815          */
816         efx_writed(efx, &reg,
817                    efx->type->evq_rptr_tbl_base +
818                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
819 }
820
821 /* Use HW to insert a SW defined event */
822 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
823                         efx_qword_t *event)
824 {
825         efx_oword_t drv_ev_reg;
826
827         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
828                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
829         drv_ev_reg.u32[0] = event->u32[0];
830         drv_ev_reg.u32[1] = event->u32[1];
831         drv_ev_reg.u32[2] = 0;
832         drv_ev_reg.u32[3] = 0;
833         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
834         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
835 }
836
837 static void efx_magic_event(struct efx_channel *channel, u32 magic)
838 {
839         efx_qword_t event;
840
841         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
842                              FSE_AZ_EV_CODE_DRV_GEN_EV,
843                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
844         efx_generate_event(channel->efx, channel->channel, &event);
845 }
846
847 /* Handle a transmit completion event
848  *
849  * The NIC batches TX completion events; the message we receive is of
850  * the form "complete all TX events up to this index".
851  */
852 static int
853 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
854 {
855         unsigned int tx_ev_desc_ptr;
856         unsigned int tx_ev_q_label;
857         struct efx_tx_queue *tx_queue;
858         struct efx_nic *efx = channel->efx;
859         int tx_packets = 0;
860
861         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
862                 return 0;
863
864         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
865                 /* Transmit completion */
866                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
867                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
868                 tx_queue = efx_channel_get_tx_queue(
869                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
870                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
871                               tx_queue->ptr_mask);
872                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
873         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
874                 /* Rewrite the FIFO write pointer */
875                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
876                 tx_queue = efx_channel_get_tx_queue(
877                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
878
879                 netif_tx_lock(efx->net_dev);
880                 efx_notify_tx_desc(tx_queue);
881                 netif_tx_unlock(efx->net_dev);
882         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
883                    EFX_WORKAROUND_10727(efx)) {
884                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
885         } else {
886                 netif_err(efx, tx_err, efx->net_dev,
887                           "channel %d unexpected TX event "
888                           EFX_QWORD_FMT"\n", channel->channel,
889                           EFX_QWORD_VAL(*event));
890         }
891
892         return tx_packets;
893 }
894
895 /* Detect errors included in the rx_evt_pkt_ok bit. */
896 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
897                                 const efx_qword_t *event)
898 {
899         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
900         struct efx_nic *efx = rx_queue->efx;
901         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
902         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
903         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
904         bool rx_ev_other_err, rx_ev_pause_frm;
905         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
906         unsigned rx_ev_pkt_type;
907
908         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
909         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
910         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
911         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
912         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
913                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
914         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
915                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
916         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
917                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
918         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
919         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
920         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
921                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
922         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
923
924         /* Every error apart from tobe_disc and pause_frm */
925         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
926                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
927                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
928
929         /* Count errors that are not in MAC stats.  Ignore expected
930          * checksum errors during self-test. */
931         if (rx_ev_frm_trunc)
932                 ++channel->n_rx_frm_trunc;
933         else if (rx_ev_tobe_disc)
934                 ++channel->n_rx_tobe_disc;
935         else if (!efx->loopback_selftest) {
936                 if (rx_ev_ip_hdr_chksum_err)
937                         ++channel->n_rx_ip_hdr_chksum_err;
938                 else if (rx_ev_tcp_udp_chksum_err)
939                         ++channel->n_rx_tcp_udp_chksum_err;
940         }
941
942         /* TOBE_DISC is expected on unicast mismatches; don't print out an
943          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
944          * to a FIFO overflow.
945          */
946 #ifdef DEBUG
947         if (rx_ev_other_err && net_ratelimit()) {
948                 netif_dbg(efx, rx_err, efx->net_dev,
949                           " RX queue %d unexpected RX event "
950                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
951                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
952                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
953                           rx_ev_ip_hdr_chksum_err ?
954                           " [IP_HDR_CHKSUM_ERR]" : "",
955                           rx_ev_tcp_udp_chksum_err ?
956                           " [TCP_UDP_CHKSUM_ERR]" : "",
957                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
958                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
959                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
960                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
961                           rx_ev_pause_frm ? " [PAUSE]" : "");
962         }
963 #endif
964
965         /* The frame must be discarded if any of these are true. */
966         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
967                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
968                 EFX_RX_PKT_DISCARD : 0;
969 }
970
971 /* Handle receive events that are not in-order. */
972 static void
973 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
974 {
975         struct efx_nic *efx = rx_queue->efx;
976         unsigned expected, dropped;
977
978         expected = rx_queue->removed_count & rx_queue->ptr_mask;
979         dropped = (index - expected) & rx_queue->ptr_mask;
980         netif_info(efx, rx_err, efx->net_dev,
981                    "dropped %d events (index=%d expected=%d)\n",
982                    dropped, index, expected);
983
984         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
985                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
986 }
987
988 /* Handle a packet received event
989  *
990  * The NIC gives a "discard" flag if it's a unicast packet with the
991  * wrong destination address
992  * Also "is multicast" and "matches multicast filter" flags can be used to
993  * discard non-matching multicast packets.
994  */
995 static void
996 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
997 {
998         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
999         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1000         unsigned expected_ptr;
1001         bool rx_ev_pkt_ok;
1002         u16 flags;
1003         struct efx_rx_queue *rx_queue;
1004         struct efx_nic *efx = channel->efx;
1005
1006         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1007                 return;
1008
1009         /* Basic packet information */
1010         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1011         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1012         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1013         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
1014         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
1015         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1016                 channel->channel);
1017
1018         rx_queue = efx_channel_get_rx_queue(channel);
1019
1020         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1021         expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1022         if (unlikely(rx_ev_desc_ptr != expected_ptr))
1023                 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1024
1025         if (likely(rx_ev_pkt_ok)) {
1026                 /* If packet is marked as OK and packet type is TCP/IP or
1027                  * UDP/IP, then we can rely on the hardware checksum.
1028                  */
1029                 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1030                          rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1031                         EFX_RX_PKT_CSUMMED : 0;
1032         } else {
1033                 flags = efx_handle_rx_not_ok(rx_queue, event);
1034         }
1035
1036         /* Detect multicast packets that didn't match the filter */
1037         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1038         if (rx_ev_mcast_pkt) {
1039                 unsigned int rx_ev_mcast_hash_match =
1040                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1041
1042                 if (unlikely(!rx_ev_mcast_hash_match)) {
1043                         ++channel->n_rx_mcast_mismatch;
1044                         flags |= EFX_RX_PKT_DISCARD;
1045                 }
1046         }
1047
1048         channel->irq_mod_score += 2;
1049
1050         /* Handle received packet */
1051         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1052 }
1053
1054 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1055  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1056  * of all transmit completions.
1057  */
1058 static void
1059 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1060 {
1061         struct efx_tx_queue *tx_queue;
1062         int qid;
1063
1064         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1065         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1066                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1067                                             qid % EFX_TXQ_TYPES);
1068                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1069                         efx_magic_event(tx_queue->channel,
1070                                         EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1071                 }
1072         }
1073 }
1074
1075 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1076  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1077  * the RX queue back to the mask of RX queues in need of flushing.
1078  */
1079 static void
1080 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1081 {
1082         struct efx_channel *channel;
1083         struct efx_rx_queue *rx_queue;
1084         int qid;
1085         bool failed;
1086
1087         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1088         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1089         if (qid >= efx->n_channels)
1090                 return;
1091         channel = efx_get_channel(efx, qid);
1092         if (!efx_channel_has_rx_queue(channel))
1093                 return;
1094         rx_queue = efx_channel_get_rx_queue(channel);
1095
1096         if (failed) {
1097                 netif_info(efx, hw, efx->net_dev,
1098                            "RXQ %d flush retry\n", qid);
1099                 rx_queue->flush_pending = true;
1100                 atomic_inc(&efx->rxq_flush_pending);
1101         } else {
1102                 efx_magic_event(efx_rx_queue_channel(rx_queue),
1103                                 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1104         }
1105         atomic_dec(&efx->rxq_flush_outstanding);
1106         if (efx_flush_wake(efx))
1107                 wake_up(&efx->flush_wq);
1108 }
1109
1110 static void
1111 efx_handle_drain_event(struct efx_channel *channel)
1112 {
1113         struct efx_nic *efx = channel->efx;
1114
1115         WARN_ON(atomic_read(&efx->drain_pending) == 0);
1116         atomic_dec(&efx->drain_pending);
1117         if (efx_flush_wake(efx))
1118                 wake_up(&efx->flush_wq);
1119 }
1120
1121 static void
1122 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1123 {
1124         struct efx_nic *efx = channel->efx;
1125         struct efx_rx_queue *rx_queue =
1126                 efx_channel_has_rx_queue(channel) ?
1127                 efx_channel_get_rx_queue(channel) : NULL;
1128         unsigned magic, code;
1129
1130         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1131         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1132
1133         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1134                 channel->event_test_cpu = raw_smp_processor_id();
1135         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1136                 /* The queue must be empty, so we won't receive any rx
1137                  * events, so efx_process_channel() won't refill the
1138                  * queue. Refill it here */
1139                 efx_fast_push_rx_descriptors(rx_queue);
1140         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1141                 rx_queue->enabled = false;
1142                 efx_handle_drain_event(channel);
1143         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1144                 efx_handle_drain_event(channel);
1145         } else {
1146                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1147                           "generated event "EFX_QWORD_FMT"\n",
1148                           channel->channel, EFX_QWORD_VAL(*event));
1149         }
1150 }
1151
1152 static void
1153 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1154 {
1155         struct efx_nic *efx = channel->efx;
1156         unsigned int ev_sub_code;
1157         unsigned int ev_sub_data;
1158
1159         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1160         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1161
1162         switch (ev_sub_code) {
1163         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1164                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1165                            channel->channel, ev_sub_data);
1166                 efx_handle_tx_flush_done(efx, event);
1167                 efx_sriov_tx_flush_done(efx, event);
1168                 break;
1169         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1170                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1171                            channel->channel, ev_sub_data);
1172                 efx_handle_rx_flush_done(efx, event);
1173                 efx_sriov_rx_flush_done(efx, event);
1174                 break;
1175         case FSE_AZ_EVQ_INIT_DONE_EV:
1176                 netif_dbg(efx, hw, efx->net_dev,
1177                           "channel %d EVQ %d initialised\n",
1178                           channel->channel, ev_sub_data);
1179                 break;
1180         case FSE_AZ_SRM_UPD_DONE_EV:
1181                 netif_vdbg(efx, hw, efx->net_dev,
1182                            "channel %d SRAM update done\n", channel->channel);
1183                 break;
1184         case FSE_AZ_WAKE_UP_EV:
1185                 netif_vdbg(efx, hw, efx->net_dev,
1186                            "channel %d RXQ %d wakeup event\n",
1187                            channel->channel, ev_sub_data);
1188                 break;
1189         case FSE_AZ_TIMER_EV:
1190                 netif_vdbg(efx, hw, efx->net_dev,
1191                            "channel %d RX queue %d timer expired\n",
1192                            channel->channel, ev_sub_data);
1193                 break;
1194         case FSE_AA_RX_RECOVER_EV:
1195                 netif_err(efx, rx_err, efx->net_dev,
1196                           "channel %d seen DRIVER RX_RESET event. "
1197                         "Resetting.\n", channel->channel);
1198                 atomic_inc(&efx->rx_reset);
1199                 efx_schedule_reset(efx,
1200                                    EFX_WORKAROUND_6555(efx) ?
1201                                    RESET_TYPE_RX_RECOVERY :
1202                                    RESET_TYPE_DISABLE);
1203                 break;
1204         case FSE_BZ_RX_DSC_ERROR_EV:
1205                 if (ev_sub_data < EFX_VI_BASE) {
1206                         netif_err(efx, rx_err, efx->net_dev,
1207                                   "RX DMA Q %d reports descriptor fetch error."
1208                                   " RX Q %d is disabled.\n", ev_sub_data,
1209                                   ev_sub_data);
1210                         efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1211                 } else
1212                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1213                 break;
1214         case FSE_BZ_TX_DSC_ERROR_EV:
1215                 if (ev_sub_data < EFX_VI_BASE) {
1216                         netif_err(efx, tx_err, efx->net_dev,
1217                                   "TX DMA Q %d reports descriptor fetch error."
1218                                   " TX Q %d is disabled.\n", ev_sub_data,
1219                                   ev_sub_data);
1220                         efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1221                 } else
1222                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1223                 break;
1224         default:
1225                 netif_vdbg(efx, hw, efx->net_dev,
1226                            "channel %d unknown driver event code %d "
1227                            "data %04x\n", channel->channel, ev_sub_code,
1228                            ev_sub_data);
1229                 break;
1230         }
1231 }
1232
1233 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1234 {
1235         struct efx_nic *efx = channel->efx;
1236         unsigned int read_ptr;
1237         efx_qword_t event, *p_event;
1238         int ev_code;
1239         int tx_packets = 0;
1240         int spent = 0;
1241
1242         read_ptr = channel->eventq_read_ptr;
1243
1244         for (;;) {
1245                 p_event = efx_event(channel, read_ptr);
1246                 event = *p_event;
1247
1248                 if (!efx_event_present(&event))
1249                         /* End of events */
1250                         break;
1251
1252                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1253                            "channel %d event is "EFX_QWORD_FMT"\n",
1254                            channel->channel, EFX_QWORD_VAL(event));
1255
1256                 /* Clear this event by marking it all ones */
1257                 EFX_SET_QWORD(*p_event);
1258
1259                 ++read_ptr;
1260
1261                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1262
1263                 switch (ev_code) {
1264                 case FSE_AZ_EV_CODE_RX_EV:
1265                         efx_handle_rx_event(channel, &event);
1266                         if (++spent == budget)
1267                                 goto out;
1268                         break;
1269                 case FSE_AZ_EV_CODE_TX_EV:
1270                         tx_packets += efx_handle_tx_event(channel, &event);
1271                         if (tx_packets > efx->txq_entries) {
1272                                 spent = budget;
1273                                 goto out;
1274                         }
1275                         break;
1276                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1277                         efx_handle_generated_event(channel, &event);
1278                         break;
1279                 case FSE_AZ_EV_CODE_DRIVER_EV:
1280                         efx_handle_driver_event(channel, &event);
1281                         break;
1282                 case FSE_CZ_EV_CODE_USER_EV:
1283                         efx_sriov_event(channel, &event);
1284                         break;
1285                 case FSE_CZ_EV_CODE_MCDI_EV:
1286                         efx_mcdi_process_event(channel, &event);
1287                         break;
1288                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1289                         if (efx->type->handle_global_event &&
1290                             efx->type->handle_global_event(channel, &event))
1291                                 break;
1292                         /* else fall through */
1293                 default:
1294                         netif_err(channel->efx, hw, channel->efx->net_dev,
1295                                   "channel %d unknown event type %d (data "
1296                                   EFX_QWORD_FMT ")\n", channel->channel,
1297                                   ev_code, EFX_QWORD_VAL(event));
1298                 }
1299         }
1300
1301 out:
1302         channel->eventq_read_ptr = read_ptr;
1303         return spent;
1304 }
1305
1306 /* Check whether an event is present in the eventq at the current
1307  * read pointer.  Only useful for self-test.
1308  */
1309 bool efx_nic_event_present(struct efx_channel *channel)
1310 {
1311         return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1312 }
1313
1314 /* Allocate buffer table entries for event queue */
1315 int efx_nic_probe_eventq(struct efx_channel *channel)
1316 {
1317         struct efx_nic *efx = channel->efx;
1318         unsigned entries;
1319
1320         entries = channel->eventq_mask + 1;
1321         return efx_alloc_special_buffer(efx, &channel->eventq,
1322                                         entries * sizeof(efx_qword_t));
1323 }
1324
1325 void efx_nic_init_eventq(struct efx_channel *channel)
1326 {
1327         efx_oword_t reg;
1328         struct efx_nic *efx = channel->efx;
1329
1330         netif_dbg(efx, hw, efx->net_dev,
1331                   "channel %d event queue in special buffers %d-%d\n",
1332                   channel->channel, channel->eventq.index,
1333                   channel->eventq.index + channel->eventq.entries - 1);
1334
1335         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1336                 EFX_POPULATE_OWORD_3(reg,
1337                                      FRF_CZ_TIMER_Q_EN, 1,
1338                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1339                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1340                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1341         }
1342
1343         /* Pin event queue buffer */
1344         efx_init_special_buffer(efx, &channel->eventq);
1345
1346         /* Fill event queue with all ones (i.e. empty events) */
1347         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1348
1349         /* Push event queue to card */
1350         EFX_POPULATE_OWORD_3(reg,
1351                              FRF_AZ_EVQ_EN, 1,
1352                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1353                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1354         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1355                          channel->channel);
1356
1357         efx->type->push_irq_moderation(channel);
1358 }
1359
1360 void efx_nic_fini_eventq(struct efx_channel *channel)
1361 {
1362         efx_oword_t reg;
1363         struct efx_nic *efx = channel->efx;
1364
1365         /* Remove event queue from card */
1366         EFX_ZERO_OWORD(reg);
1367         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1368                          channel->channel);
1369         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1370                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1371
1372         /* Unpin event queue */
1373         efx_fini_special_buffer(efx, &channel->eventq);
1374 }
1375
1376 /* Free buffers backing event queue */
1377 void efx_nic_remove_eventq(struct efx_channel *channel)
1378 {
1379         efx_free_special_buffer(channel->efx, &channel->eventq);
1380 }
1381
1382
1383 void efx_nic_event_test_start(struct efx_channel *channel)
1384 {
1385         channel->event_test_cpu = -1;
1386         smp_wmb();
1387         efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1388 }
1389
1390 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1391 {
1392         efx_magic_event(efx_rx_queue_channel(rx_queue),
1393                         EFX_CHANNEL_MAGIC_FILL(rx_queue));
1394 }
1395
1396 /**************************************************************************
1397  *
1398  * Hardware interrupts
1399  * The hardware interrupt handler does very little work; all the event
1400  * queue processing is carried out by per-channel tasklets.
1401  *
1402  **************************************************************************/
1403
1404 /* Enable/disable/generate interrupts */
1405 static inline void efx_nic_interrupts(struct efx_nic *efx,
1406                                       bool enabled, bool force)
1407 {
1408         efx_oword_t int_en_reg_ker;
1409
1410         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1411                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412                              FRF_AZ_KER_INT_KER, force,
1413                              FRF_AZ_DRV_INT_EN_KER, enabled);
1414         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415 }
1416
1417 void efx_nic_enable_interrupts(struct efx_nic *efx)
1418 {
1419         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1420         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421
1422         efx_nic_interrupts(efx, true, false);
1423 }
1424
1425 void efx_nic_disable_interrupts(struct efx_nic *efx)
1426 {
1427         /* Disable interrupts */
1428         efx_nic_interrupts(efx, false, false);
1429 }
1430
1431 /* Generate a test interrupt
1432  * Interrupt must already have been enabled, otherwise nasty things
1433  * may happen.
1434  */
1435 void efx_nic_irq_test_start(struct efx_nic *efx)
1436 {
1437         efx->last_irq_cpu = -1;
1438         smp_wmb();
1439         efx_nic_interrupts(efx, true, true);
1440 }
1441
1442 /* Process a fatal interrupt
1443  * Disable bus mastering ASAP and schedule a reset
1444  */
1445 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1446 {
1447         struct falcon_nic_data *nic_data = efx->nic_data;
1448         efx_oword_t *int_ker = efx->irq_status.addr;
1449         efx_oword_t fatal_intr;
1450         int error, mem_perr;
1451
1452         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1453         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1454
1455         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1456                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1457                   EFX_OWORD_VAL(fatal_intr),
1458                   error ? "disabling bus mastering" : "no recognised error");
1459
1460         /* If this is a memory parity error dump which blocks are offending */
1461         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1462                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1463         if (mem_perr) {
1464                 efx_oword_t reg;
1465                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1466                 netif_err(efx, hw, efx->net_dev,
1467                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1468                           EFX_OWORD_VAL(reg));
1469         }
1470
1471         /* Disable both devices */
1472         pci_clear_master(efx->pci_dev);
1473         if (efx_nic_is_dual_func(efx))
1474                 pci_clear_master(nic_data->pci_dev2);
1475         efx_nic_disable_interrupts(efx);
1476
1477         /* Count errors and reset or disable the NIC accordingly */
1478         if (efx->int_error_count == 0 ||
1479             time_after(jiffies, efx->int_error_expire)) {
1480                 efx->int_error_count = 0;
1481                 efx->int_error_expire =
1482                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1483         }
1484         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1485                 netif_err(efx, hw, efx->net_dev,
1486                           "SYSTEM ERROR - reset scheduled\n");
1487                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1488         } else {
1489                 netif_err(efx, hw, efx->net_dev,
1490                           "SYSTEM ERROR - max number of errors seen."
1491                           "NIC will be disabled\n");
1492                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1493         }
1494
1495         return IRQ_HANDLED;
1496 }
1497
1498 /* Handle a legacy interrupt
1499  * Acknowledges the interrupt and schedule event queue processing.
1500  */
1501 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1502 {
1503         struct efx_nic *efx = dev_id;
1504         efx_oword_t *int_ker = efx->irq_status.addr;
1505         irqreturn_t result = IRQ_NONE;
1506         struct efx_channel *channel;
1507         efx_dword_t reg;
1508         u32 queues;
1509         int syserr;
1510
1511         /* Could this be ours?  If interrupts are disabled then the
1512          * channel state may not be valid.
1513          */
1514         if (!efx->legacy_irq_enabled)
1515                 return result;
1516
1517         /* Read the ISR which also ACKs the interrupts */
1518         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1519         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1520
1521         /* Handle non-event-queue sources */
1522         if (queues & (1U << efx->irq_level)) {
1523                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1524                 if (unlikely(syserr))
1525                         return efx_nic_fatal_interrupt(efx);
1526                 efx->last_irq_cpu = raw_smp_processor_id();
1527         }
1528
1529         if (queues != 0) {
1530                 if (EFX_WORKAROUND_15783(efx))
1531                         efx->irq_zero_count = 0;
1532
1533                 /* Schedule processing of any interrupting queues */
1534                 efx_for_each_channel(channel, efx) {
1535                         if (queues & 1)
1536                                 efx_schedule_channel_irq(channel);
1537                         queues >>= 1;
1538                 }
1539                 result = IRQ_HANDLED;
1540
1541         } else if (EFX_WORKAROUND_15783(efx)) {
1542                 efx_qword_t *event;
1543
1544                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1545                  * because this might be a shared interrupt. */
1546                 if (efx->irq_zero_count++ == 0)
1547                         result = IRQ_HANDLED;
1548
1549                 /* Ensure we schedule or rearm all event queues */
1550                 efx_for_each_channel(channel, efx) {
1551                         event = efx_event(channel, channel->eventq_read_ptr);
1552                         if (efx_event_present(event))
1553                                 efx_schedule_channel_irq(channel);
1554                         else
1555                                 efx_nic_eventq_read_ack(channel);
1556                 }
1557         }
1558
1559         if (result == IRQ_HANDLED)
1560                 netif_vdbg(efx, intr, efx->net_dev,
1561                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1562                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1563
1564         return result;
1565 }
1566
1567 /* Handle an MSI interrupt
1568  *
1569  * Handle an MSI hardware interrupt.  This routine schedules event
1570  * queue processing.  No interrupt acknowledgement cycle is necessary.
1571  * Also, we never need to check that the interrupt is for us, since
1572  * MSI interrupts cannot be shared.
1573  */
1574 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1575 {
1576         struct efx_channel *channel = *(struct efx_channel **)dev_id;
1577         struct efx_nic *efx = channel->efx;
1578         efx_oword_t *int_ker = efx->irq_status.addr;
1579         int syserr;
1580
1581         netif_vdbg(efx, intr, efx->net_dev,
1582                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1583                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1584
1585         /* Handle non-event-queue sources */
1586         if (channel->channel == efx->irq_level) {
1587                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1588                 if (unlikely(syserr))
1589                         return efx_nic_fatal_interrupt(efx);
1590                 efx->last_irq_cpu = raw_smp_processor_id();
1591         }
1592
1593         /* Schedule processing of the channel */
1594         efx_schedule_channel_irq(channel);
1595
1596         return IRQ_HANDLED;
1597 }
1598
1599
1600 /* Setup RSS indirection table.
1601  * This maps from the hash value of the packet to RXQ
1602  */
1603 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1604 {
1605         size_t i = 0;
1606         efx_dword_t dword;
1607
1608         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1609                 return;
1610
1611         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1612                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1613
1614         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1615                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1616                                      efx->rx_indir_table[i]);
1617                 efx_writed(efx, &dword,
1618                            FR_BZ_RX_INDIRECTION_TBL +
1619                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1620         }
1621 }
1622
1623 /* Hook interrupt handler(s)
1624  * Try MSI and then legacy interrupts.
1625  */
1626 int efx_nic_init_interrupt(struct efx_nic *efx)
1627 {
1628         struct efx_channel *channel;
1629         int rc;
1630
1631         if (!EFX_INT_MODE_USE_MSI(efx)) {
1632                 irq_handler_t handler;
1633                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1634                         handler = efx_legacy_interrupt;
1635                 else
1636                         handler = falcon_legacy_interrupt_a1;
1637
1638                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1639                                  efx->name, efx);
1640                 if (rc) {
1641                         netif_err(efx, drv, efx->net_dev,
1642                                   "failed to hook legacy IRQ %d\n",
1643                                   efx->pci_dev->irq);
1644                         goto fail1;
1645                 }
1646                 return 0;
1647         }
1648
1649         /* Hook MSI or MSI-X interrupt */
1650         efx_for_each_channel(channel, efx) {
1651                 rc = request_irq(channel->irq, efx_msi_interrupt,
1652                                  IRQF_PROBE_SHARED, /* Not shared */
1653                                  efx->channel_name[channel->channel],
1654                                  &efx->channel[channel->channel]);
1655                 if (rc) {
1656                         netif_err(efx, drv, efx->net_dev,
1657                                   "failed to hook IRQ %d\n", channel->irq);
1658                         goto fail2;
1659                 }
1660         }
1661
1662         return 0;
1663
1664  fail2:
1665         efx_for_each_channel(channel, efx)
1666                 free_irq(channel->irq, &efx->channel[channel->channel]);
1667  fail1:
1668         return rc;
1669 }
1670
1671 void efx_nic_fini_interrupt(struct efx_nic *efx)
1672 {
1673         struct efx_channel *channel;
1674         efx_oword_t reg;
1675
1676         /* Disable MSI/MSI-X interrupts */
1677         efx_for_each_channel(channel, efx) {
1678                 if (channel->irq)
1679                         free_irq(channel->irq, &efx->channel[channel->channel]);
1680         }
1681
1682         /* ACK legacy interrupt */
1683         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1684                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1685         else
1686                 falcon_irq_ack_a1(efx);
1687
1688         /* Disable legacy interrupt */
1689         if (efx->legacy_irq)
1690                 free_irq(efx->legacy_irq, efx);
1691 }
1692
1693 /* Looks at available SRAM resources and works out how many queues we
1694  * can support, and where things like descriptor caches should live.
1695  *
1696  * SRAM is split up as follows:
1697  * 0                          buftbl entries for channels
1698  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1699  * efx->rx_dc_base            RX descriptor caches
1700  * efx->tx_dc_base            TX descriptor caches
1701  */
1702 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1703 {
1704         unsigned vi_count, buftbl_min;
1705
1706         /* Account for the buffer table entries backing the datapath channels
1707          * and the descriptor caches for those channels.
1708          */
1709         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1710                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1711                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1712                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1713         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1714
1715 #ifdef CONFIG_SFC_SRIOV
1716         if (efx_sriov_wanted(efx)) {
1717                 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1718
1719                 efx->vf_buftbl_base = buftbl_min;
1720
1721                 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1722                 vi_count = max(vi_count, EFX_VI_BASE);
1723                 buftbl_free = (sram_lim_qw - buftbl_min -
1724                                vi_count * vi_dc_entries);
1725
1726                 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1727                                   efx_vf_size(efx));
1728                 vf_limit = min(buftbl_free / entries_per_vf,
1729                                (1024U - EFX_VI_BASE) >> efx->vi_scale);
1730
1731                 if (efx->vf_count > vf_limit) {
1732                         netif_err(efx, probe, efx->net_dev,
1733                                   "Reducing VF count from from %d to %d\n",
1734                                   efx->vf_count, vf_limit);
1735                         efx->vf_count = vf_limit;
1736                 }
1737                 vi_count += efx->vf_count * efx_vf_size(efx);
1738         }
1739 #endif
1740
1741         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1742         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1743 }
1744
1745 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1746 {
1747         efx_oword_t altera_build;
1748         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1749         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1750 }
1751
1752 void efx_nic_init_common(struct efx_nic *efx)
1753 {
1754         efx_oword_t temp;
1755
1756         /* Set positions of descriptor caches in SRAM. */
1757         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1758         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1759         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1760         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1761
1762         /* Set TX descriptor cache size. */
1763         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1764         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1765         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1766
1767         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1768          * this allows most efficient prefetching.
1769          */
1770         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1771         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1772         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1773         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1774         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1775
1776         /* Program INT_KER address */
1777         EFX_POPULATE_OWORD_2(temp,
1778                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1779                              EFX_INT_MODE_USE_MSI(efx),
1780                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1781         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1782
1783         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1784                 /* Use an interrupt level unused by event queues */
1785                 efx->irq_level = 0x1f;
1786         else
1787                 /* Use a valid MSI-X vector */
1788                 efx->irq_level = 0;
1789
1790         /* Enable all the genuinely fatal interrupts.  (They are still
1791          * masked by the overall interrupt mask, controlled by
1792          * falcon_interrupts()).
1793          *
1794          * Note: All other fatal interrupts are enabled
1795          */
1796         EFX_POPULATE_OWORD_3(temp,
1797                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1798                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1799                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1800         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1801                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1802         EFX_INVERT_OWORD(temp);
1803         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1804
1805         efx_nic_push_rx_indir_table(efx);
1806
1807         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1808          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1809          */
1810         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1811         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1812         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1813         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1814         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1815         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1816         /* Enable SW_EV to inherit in char driver - assume harmless here */
1817         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1818         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1819         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1820         /* Disable hardware watchdog which can misfire */
1821         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1822         /* Squash TX of packets of 16 bytes or less */
1823         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1824                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1825         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1826
1827         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1828                 EFX_POPULATE_OWORD_4(temp,
1829                                      /* Default values */
1830                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1831                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1832                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1833                                      /* Allow large pace values in the
1834                                       * fast bin. */
1835                                      FRF_BZ_TX_PACE_BIN_TH,
1836                                      FFE_BZ_TX_PACE_RESERVED);
1837                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1838         }
1839 }
1840
1841 /* Register dump */
1842
1843 #define REGISTER_REVISION_A     1
1844 #define REGISTER_REVISION_B     2
1845 #define REGISTER_REVISION_C     3
1846 #define REGISTER_REVISION_Z     3       /* latest revision */
1847
1848 struct efx_nic_reg {
1849         u32 offset:24;
1850         u32 min_revision:2, max_revision:2;
1851 };
1852
1853 #define REGISTER(name, min_rev, max_rev) {                              \
1854         FR_ ## min_rev ## max_rev ## _ ## name,                         \
1855         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev    \
1856 }
1857 #define REGISTER_AA(name) REGISTER(name, A, A)
1858 #define REGISTER_AB(name) REGISTER(name, A, B)
1859 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1860 #define REGISTER_BB(name) REGISTER(name, B, B)
1861 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1862 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1863
1864 static const struct efx_nic_reg efx_nic_regs[] = {
1865         REGISTER_AZ(ADR_REGION),
1866         REGISTER_AZ(INT_EN_KER),
1867         REGISTER_BZ(INT_EN_CHAR),
1868         REGISTER_AZ(INT_ADR_KER),
1869         REGISTER_BZ(INT_ADR_CHAR),
1870         /* INT_ACK_KER is WO */
1871         /* INT_ISR0 is RC */
1872         REGISTER_AZ(HW_INIT),
1873         REGISTER_CZ(USR_EV_CFG),
1874         REGISTER_AB(EE_SPI_HCMD),
1875         REGISTER_AB(EE_SPI_HADR),
1876         REGISTER_AB(EE_SPI_HDATA),
1877         REGISTER_AB(EE_BASE_PAGE),
1878         REGISTER_AB(EE_VPD_CFG0),
1879         /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1880         /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1881         /* PCIE_CORE_INDIRECT is indirect */
1882         REGISTER_AB(NIC_STAT),
1883         REGISTER_AB(GPIO_CTL),
1884         REGISTER_AB(GLB_CTL),
1885         /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1886         REGISTER_BZ(DP_CTRL),
1887         REGISTER_AZ(MEM_STAT),
1888         REGISTER_AZ(CS_DEBUG),
1889         REGISTER_AZ(ALTERA_BUILD),
1890         REGISTER_AZ(CSR_SPARE),
1891         REGISTER_AB(PCIE_SD_CTL0123),
1892         REGISTER_AB(PCIE_SD_CTL45),
1893         REGISTER_AB(PCIE_PCS_CTL_STAT),
1894         /* DEBUG_DATA_OUT is not used */
1895         /* DRV_EV is WO */
1896         REGISTER_AZ(EVQ_CTL),
1897         REGISTER_AZ(EVQ_CNT1),
1898         REGISTER_AZ(EVQ_CNT2),
1899         REGISTER_AZ(BUF_TBL_CFG),
1900         REGISTER_AZ(SRM_RX_DC_CFG),
1901         REGISTER_AZ(SRM_TX_DC_CFG),
1902         REGISTER_AZ(SRM_CFG),
1903         /* BUF_TBL_UPD is WO */
1904         REGISTER_AZ(SRM_UPD_EVQ),
1905         REGISTER_AZ(SRAM_PARITY),
1906         REGISTER_AZ(RX_CFG),
1907         REGISTER_BZ(RX_FILTER_CTL),
1908         /* RX_FLUSH_DESCQ is WO */
1909         REGISTER_AZ(RX_DC_CFG),
1910         REGISTER_AZ(RX_DC_PF_WM),
1911         REGISTER_BZ(RX_RSS_TKEY),
1912         /* RX_NODESC_DROP is RC */
1913         REGISTER_AA(RX_SELF_RST),
1914         /* RX_DEBUG, RX_PUSH_DROP are not used */
1915         REGISTER_CZ(RX_RSS_IPV6_REG1),
1916         REGISTER_CZ(RX_RSS_IPV6_REG2),
1917         REGISTER_CZ(RX_RSS_IPV6_REG3),
1918         /* TX_FLUSH_DESCQ is WO */
1919         REGISTER_AZ(TX_DC_CFG),
1920         REGISTER_AA(TX_CHKSM_CFG),
1921         REGISTER_AZ(TX_CFG),
1922         /* TX_PUSH_DROP is not used */
1923         REGISTER_AZ(TX_RESERVED),
1924         REGISTER_BZ(TX_PACE),
1925         /* TX_PACE_DROP_QID is RC */
1926         REGISTER_BB(TX_VLAN),
1927         REGISTER_BZ(TX_IPFIL_PORTEN),
1928         REGISTER_AB(MD_TXD),
1929         REGISTER_AB(MD_RXD),
1930         REGISTER_AB(MD_CS),
1931         REGISTER_AB(MD_PHY_ADR),
1932         REGISTER_AB(MD_ID),
1933         /* MD_STAT is RC */
1934         REGISTER_AB(MAC_STAT_DMA),
1935         REGISTER_AB(MAC_CTRL),
1936         REGISTER_BB(GEN_MODE),
1937         REGISTER_AB(MAC_MC_HASH_REG0),
1938         REGISTER_AB(MAC_MC_HASH_REG1),
1939         REGISTER_AB(GM_CFG1),
1940         REGISTER_AB(GM_CFG2),
1941         /* GM_IPG and GM_HD are not used */
1942         REGISTER_AB(GM_MAX_FLEN),
1943         /* GM_TEST is not used */
1944         REGISTER_AB(GM_ADR1),
1945         REGISTER_AB(GM_ADR2),
1946         REGISTER_AB(GMF_CFG0),
1947         REGISTER_AB(GMF_CFG1),
1948         REGISTER_AB(GMF_CFG2),
1949         REGISTER_AB(GMF_CFG3),
1950         REGISTER_AB(GMF_CFG4),
1951         REGISTER_AB(GMF_CFG5),
1952         REGISTER_BB(TX_SRC_MAC_CTL),
1953         REGISTER_AB(XM_ADR_LO),
1954         REGISTER_AB(XM_ADR_HI),
1955         REGISTER_AB(XM_GLB_CFG),
1956         REGISTER_AB(XM_TX_CFG),
1957         REGISTER_AB(XM_RX_CFG),
1958         REGISTER_AB(XM_MGT_INT_MASK),
1959         REGISTER_AB(XM_FC),
1960         REGISTER_AB(XM_PAUSE_TIME),
1961         REGISTER_AB(XM_TX_PARAM),
1962         REGISTER_AB(XM_RX_PARAM),
1963         /* XM_MGT_INT_MSK (note no 'A') is RC */
1964         REGISTER_AB(XX_PWR_RST),
1965         REGISTER_AB(XX_SD_CTL),
1966         REGISTER_AB(XX_TXDRV_CTL),
1967         /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1968         /* XX_CORE_STAT is partly RC */
1969 };
1970
1971 struct efx_nic_reg_table {
1972         u32 offset:24;
1973         u32 min_revision:2, max_revision:2;
1974         u32 step:6, rows:21;
1975 };
1976
1977 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1978         offset,                                                         \
1979         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,   \
1980         step, rows                                                      \
1981 }
1982 #define REGISTER_TABLE(name, min_rev, max_rev)                          \
1983         REGISTER_TABLE_DIMENSIONS(                                      \
1984                 name, FR_ ## min_rev ## max_rev ## _ ## name,           \
1985                 min_rev, max_rev,                                       \
1986                 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,        \
1987                 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1988 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1989 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1990 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1991 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1992 #define REGISTER_TABLE_BB_CZ(name)                                      \
1993         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,           \
1994                                   FR_BZ_ ## name ## _STEP,              \
1995                                   FR_BB_ ## name ## _ROWS),             \
1996         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,           \
1997                                   FR_BZ_ ## name ## _STEP,              \
1998                                   FR_CZ_ ## name ## _ROWS)
1999 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2000
2001 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2002         /* DRIVER is not used */
2003         /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2004         REGISTER_TABLE_BB(TX_IPFIL_TBL),
2005         REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2006         REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2007         REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2008         REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2009         REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2010         REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2011         REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2012         /* We can't reasonably read all of the buffer table (up to 8MB!).
2013          * However this driver will only use a few entries.  Reading
2014          * 1K entries allows for some expansion of queue count and
2015          * size before we need to change the version. */
2016         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2017                                   A, A, 8, 1024),
2018         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2019                                   B, Z, 8, 1024),
2020         REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2021         REGISTER_TABLE_BB_CZ(TIMER_TBL),
2022         REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2023         REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2024         /* TX_FILTER_TBL0 is huge and not used by this driver */
2025         REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2026         REGISTER_TABLE_CZ(MC_TREG_SMEM),
2027         /* MSIX_PBA_TABLE is not mapped */
2028         /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2029         REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2030 };
2031
2032 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2033 {
2034         const struct efx_nic_reg *reg;
2035         const struct efx_nic_reg_table *table;
2036         size_t len = 0;
2037
2038         for (reg = efx_nic_regs;
2039              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2040              reg++)
2041                 if (efx->type->revision >= reg->min_revision &&
2042                     efx->type->revision <= reg->max_revision)
2043                         len += sizeof(efx_oword_t);
2044
2045         for (table = efx_nic_reg_tables;
2046              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2047              table++)
2048                 if (efx->type->revision >= table->min_revision &&
2049                     efx->type->revision <= table->max_revision)
2050                         len += table->rows * min_t(size_t, table->step, 16);
2051
2052         return len;
2053 }
2054
2055 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2056 {
2057         const struct efx_nic_reg *reg;
2058         const struct efx_nic_reg_table *table;
2059
2060         for (reg = efx_nic_regs;
2061              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2062              reg++) {
2063                 if (efx->type->revision >= reg->min_revision &&
2064                     efx->type->revision <= reg->max_revision) {
2065                         efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2066                         buf += sizeof(efx_oword_t);
2067                 }
2068         }
2069
2070         for (table = efx_nic_reg_tables;
2071              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2072              table++) {
2073                 size_t size, i;
2074
2075                 if (!(efx->type->revision >= table->min_revision &&
2076                       efx->type->revision <= table->max_revision))
2077                         continue;
2078
2079                 size = min_t(size_t, table->step, 16);
2080
2081                 for (i = 0; i < table->rows; i++) {
2082                         switch (table->step) {
2083                         case 4: /* 32-bit SRAM */
2084                                 efx_readd(efx, buf, table->offset + 4 * i);
2085                                 break;
2086                         case 8: /* 64-bit SRAM */
2087                                 efx_sram_readq(efx,
2088                                                efx->membase + table->offset,
2089                                                buf, i);
2090                                 break;
2091                         case 16: /* 128-bit-readable register */
2092                                 efx_reado_table(efx, buf, table->offset, i);
2093                                 break;
2094                         case 32: /* 128-bit register, interleaved */
2095                                 efx_reado_table(efx, buf, table->offset, 2 * i);
2096                                 break;
2097                         default:
2098                                 WARN_ON(1);
2099                                 return;
2100                         }
2101                         buf += size;
2102                 }
2103         }
2104 }