regulator: max8660: zero-initialize regulator match table array
[cascardo/linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39         return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45         return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51         struct efx_tx_buffer *buffer =
52                 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54         EFX_BUG_ON_PARANOID(buffer->len);
55         EFX_BUG_ON_PARANOID(buffer->flags);
56         EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58         return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62                                struct efx_tx_buffer *buffer,
63                                unsigned int *pkts_compl,
64                                unsigned int *bytes_compl)
65 {
66         if (buffer->unmap_len) {
67                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71                                          DMA_TO_DEVICE);
72                 else
73                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74                                        DMA_TO_DEVICE);
75                 buffer->unmap_len = 0;
76         }
77
78         if (buffer->flags & EFX_TX_BUF_SKB) {
79                 (*pkts_compl)++;
80                 (*bytes_compl) += buffer->skb->len;
81                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
82                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83                            "TX queue %d transmission id %x complete\n",
84                            tx_queue->queue, tx_queue->read_count);
85         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86                 kfree(buffer->heap_buf);
87         }
88
89         buffer->len = 0;
90         buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94                                struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99         /* Depending on the NIC revision, we can use descriptor
100          * lengths up to 8K or 8K-1.  However, since PCI Express
101          * devices must split read requests at 4K boundaries, there is
102          * little benefit from using descriptors that cross those
103          * boundaries and we keep things simple by not doing so.
104          */
105         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107         /* Work around hardware bug for unaligned buffers. */
108         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111         return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116         /* Header and payload descriptor for each output segment, plus
117          * one for every input fragment boundary within a segment
118          */
119         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121         /* Possibly one more per segment for the alignment workaround,
122          * or for option descriptors
123          */
124         if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125                 max_descs += EFX_TSO_MAX_SEGS;
126
127         /* Possibly more for PCIe page boundaries within input fragments */
128         if (PAGE_SIZE > EFX_PAGE_SIZE)
129                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132         return max_descs;
133 }
134
135 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136 {
137         /* We need to consider both queues that the net core sees as one */
138         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139         struct efx_nic *efx = txq1->efx;
140         unsigned int fill_level;
141
142         fill_level = max(txq1->insert_count - txq1->old_read_count,
143                          txq2->insert_count - txq2->old_read_count);
144         if (likely(fill_level < efx->txq_stop_thresh))
145                 return;
146
147         /* We used the stale old_read_count above, which gives us a
148          * pessimistic estimate of the fill level (which may even
149          * validly be >= efx->txq_entries).  Now try again using
150          * read_count (more likely to be a cache miss).
151          *
152          * If we read read_count and then conditionally stop the
153          * queue, it is possible for the completion path to race with
154          * us and complete all outstanding descriptors in the middle,
155          * after which there will be no more completions to wake it.
156          * Therefore we stop the queue first, then read read_count
157          * (with a memory barrier to ensure the ordering), then
158          * restart the queue if the fill level turns out to be low
159          * enough.
160          */
161         netif_tx_stop_queue(txq1->core_txq);
162         smp_mb();
163         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165
166         fill_level = max(txq1->insert_count - txq1->old_read_count,
167                          txq2->insert_count - txq2->old_read_count);
168         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169         if (likely(fill_level < efx->txq_stop_thresh)) {
170                 smp_mb();
171                 if (likely(!efx->loopback_selftest))
172                         netif_tx_start_queue(txq1->core_txq);
173         }
174 }
175
176 #ifdef EFX_USE_PIO
177
178 struct efx_short_copy_buffer {
179         int used;
180         u8 buf[L1_CACHE_BYTES];
181 };
182
183 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184  * Advances piobuf pointer. Leaves additional data in the copy buffer.
185  */
186 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187                                     u8 *data, int len,
188                                     struct efx_short_copy_buffer *copy_buf)
189 {
190         int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191
192         __iowrite64_copy(*piobuf, data, block_len >> 3);
193         *piobuf += block_len;
194         len -= block_len;
195
196         if (len) {
197                 data += block_len;
198                 BUG_ON(copy_buf->used);
199                 BUG_ON(len > sizeof(copy_buf->buf));
200                 memcpy(copy_buf->buf, data, len);
201                 copy_buf->used = len;
202         }
203 }
204
205 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206  * Advances piobuf pointer. Leaves additional data in the copy buffer.
207  */
208 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209                                        u8 *data, int len,
210                                        struct efx_short_copy_buffer *copy_buf)
211 {
212         if (copy_buf->used) {
213                 /* if the copy buffer is partially full, fill it up and write */
214                 int copy_to_buf =
215                         min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216
217                 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218                 copy_buf->used += copy_to_buf;
219
220                 /* if we didn't fill it up then we're done for now */
221                 if (copy_buf->used < sizeof(copy_buf->buf))
222                         return;
223
224                 __iowrite64_copy(*piobuf, copy_buf->buf,
225                                  sizeof(copy_buf->buf) >> 3);
226                 *piobuf += sizeof(copy_buf->buf);
227                 data += copy_to_buf;
228                 len -= copy_to_buf;
229                 copy_buf->used = 0;
230         }
231
232         efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233 }
234
235 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236                                   struct efx_short_copy_buffer *copy_buf)
237 {
238         /* if there's anything in it, write the whole buffer, including junk */
239         if (copy_buf->used)
240                 __iowrite64_copy(piobuf, copy_buf->buf,
241                                  sizeof(copy_buf->buf) >> 3);
242 }
243
244 /* Traverse skb structure and copy fragments in to PIO buffer.
245  * Advances piobuf pointer.
246  */
247 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248                                      u8 __iomem **piobuf,
249                                      struct efx_short_copy_buffer *copy_buf)
250 {
251         int i;
252
253         efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254                                 copy_buf);
255
256         for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258                 u8 *vaddr;
259
260                 vaddr = kmap_atomic(skb_frag_page(f));
261
262                 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263                                            skb_frag_size(f), copy_buf);
264                 kunmap_atomic(vaddr);
265         }
266
267         EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268 }
269
270 static struct efx_tx_buffer *
271 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272 {
273         struct efx_tx_buffer *buffer =
274                 efx_tx_queue_get_insert_buffer(tx_queue);
275         u8 __iomem *piobuf = tx_queue->piobuf;
276
277         /* Copy to PIO buffer. Ensure the writes are padded to the end
278          * of a cache line, as this is required for write-combining to be
279          * effective on at least x86.
280          */
281
282         if (skb_shinfo(skb)->nr_frags) {
283                 /* The size of the copy buffer will ensure all writes
284                  * are the size of a cache line.
285                  */
286                 struct efx_short_copy_buffer copy_buf;
287
288                 copy_buf.used = 0;
289
290                 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291                                          &piobuf, &copy_buf);
292                 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293         } else {
294                 /* Pad the write to the size of a cache line.
295                  * We can do this because we know the skb_shared_info sruct is
296                  * after the source, and the destination buffer is big enough.
297                  */
298                 BUILD_BUG_ON(L1_CACHE_BYTES >
299                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
300                 __iowrite64_copy(tx_queue->piobuf, skb->data,
301                                  ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
302         }
303
304         EFX_POPULATE_QWORD_5(buffer->option,
305                              ESF_DZ_TX_DESC_IS_OPT, 1,
306                              ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307                              ESF_DZ_TX_PIO_CONT, 0,
308                              ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309                              ESF_DZ_TX_PIO_BUF_ADDR,
310                              tx_queue->piobuf_offset);
311         ++tx_queue->pio_packets;
312         ++tx_queue->insert_count;
313         return buffer;
314 }
315 #endif /* EFX_USE_PIO */
316
317 /*
318  * Add a socket buffer to a TX queue
319  *
320  * This maps all fragments of a socket buffer for DMA and adds them to
321  * the TX queue.  The queue's insert pointer will be incremented by
322  * the number of fragments in the socket buffer.
323  *
324  * If any DMA mapping fails, any mapped fragments will be unmapped,
325  * the queue's insert pointer will be restored to its original value.
326  *
327  * This function is split out from efx_hard_start_xmit to allow the
328  * loopback test to direct packets via specific TX queues.
329  *
330  * Returns NETDEV_TX_OK.
331  * You must hold netif_tx_lock() to call this function.
332  */
333 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
334 {
335         struct efx_nic *efx = tx_queue->efx;
336         struct device *dma_dev = &efx->pci_dev->dev;
337         struct efx_tx_buffer *buffer;
338         unsigned int old_insert_count = tx_queue->insert_count;
339         skb_frag_t *fragment;
340         unsigned int len, unmap_len = 0;
341         dma_addr_t dma_addr, unmap_addr = 0;
342         unsigned int dma_len;
343         unsigned short dma_flags;
344         int i = 0;
345
346         EFX_BUG_ON_PARANOID(tx_queue->write_count > tx_queue->insert_count);
347
348         if (skb_shinfo(skb)->gso_size)
349                 return efx_enqueue_skb_tso(tx_queue, skb);
350
351         /* Get size of the initial fragment */
352         len = skb_headlen(skb);
353
354         /* Pad if necessary */
355         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
356                 EFX_BUG_ON_PARANOID(skb->data_len);
357                 len = 32 + 1;
358                 if (skb_pad(skb, len - skb->len))
359                         return NETDEV_TX_OK;
360         }
361
362         /* Consider using PIO for short packets */
363 #ifdef EFX_USE_PIO
364         if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
365             efx_nic_may_tx_pio(tx_queue)) {
366                 buffer = efx_enqueue_skb_pio(tx_queue, skb);
367                 dma_flags = EFX_TX_BUF_OPTION;
368                 goto finish_packet;
369         }
370 #endif
371
372         /* Map for DMA.  Use dma_map_single rather than dma_map_page
373          * since this is more efficient on machines with sparse
374          * memory.
375          */
376         dma_flags = EFX_TX_BUF_MAP_SINGLE;
377         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
378
379         /* Process all fragments */
380         while (1) {
381                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
382                         goto dma_err;
383
384                 /* Store fields for marking in the per-fragment final
385                  * descriptor */
386                 unmap_len = len;
387                 unmap_addr = dma_addr;
388
389                 /* Add to TX queue, splitting across DMA boundaries */
390                 do {
391                         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
392
393                         dma_len = efx_max_tx_len(efx, dma_addr);
394                         if (likely(dma_len >= len))
395                                 dma_len = len;
396
397                         /* Fill out per descriptor fields */
398                         buffer->len = dma_len;
399                         buffer->dma_addr = dma_addr;
400                         buffer->flags = EFX_TX_BUF_CONT;
401                         len -= dma_len;
402                         dma_addr += dma_len;
403                         ++tx_queue->insert_count;
404                 } while (len);
405
406                 /* Transfer ownership of the unmapping to the final buffer */
407                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
408                 buffer->unmap_len = unmap_len;
409                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
410                 unmap_len = 0;
411
412                 /* Get address and size of next fragment */
413                 if (i >= skb_shinfo(skb)->nr_frags)
414                         break;
415                 fragment = &skb_shinfo(skb)->frags[i];
416                 len = skb_frag_size(fragment);
417                 i++;
418                 /* Map for DMA */
419                 dma_flags = 0;
420                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
421                                             DMA_TO_DEVICE);
422         }
423
424         /* Transfer ownership of the skb to the final buffer */
425 #ifdef EFX_USE_PIO
426 finish_packet:
427 #endif
428         buffer->skb = skb;
429         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
430
431         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
432
433         efx_tx_maybe_stop_queue(tx_queue);
434
435         /* Pass off to hardware */
436         if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
437                 efx_nic_push_buffers(tx_queue);
438
439         tx_queue->tx_packets++;
440
441         return NETDEV_TX_OK;
442
443  dma_err:
444         netif_err(efx, tx_err, efx->net_dev,
445                   " TX queue %d could not map skb with %d bytes %d "
446                   "fragments for DMA\n", tx_queue->queue, skb->len,
447                   skb_shinfo(skb)->nr_frags + 1);
448
449         /* Mark the packet as transmitted, and free the SKB ourselves */
450         dev_kfree_skb_any(skb);
451
452         /* Work backwards until we hit the original insert pointer value */
453         while (tx_queue->insert_count != old_insert_count) {
454                 unsigned int pkts_compl = 0, bytes_compl = 0;
455                 --tx_queue->insert_count;
456                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
457                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
458         }
459
460         /* Free the fragment we were mid-way through pushing */
461         if (unmap_len) {
462                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
463                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
464                                          DMA_TO_DEVICE);
465                 else
466                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
467                                        DMA_TO_DEVICE);
468         }
469
470         return NETDEV_TX_OK;
471 }
472
473 /* Remove packets from the TX queue
474  *
475  * This removes packets from the TX queue, up to and including the
476  * specified index.
477  */
478 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
479                                 unsigned int index,
480                                 unsigned int *pkts_compl,
481                                 unsigned int *bytes_compl)
482 {
483         struct efx_nic *efx = tx_queue->efx;
484         unsigned int stop_index, read_ptr;
485
486         stop_index = (index + 1) & tx_queue->ptr_mask;
487         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
488
489         while (read_ptr != stop_index) {
490                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
491
492                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
493                     unlikely(buffer->len == 0)) {
494                         netif_err(efx, tx_err, efx->net_dev,
495                                   "TX queue %d spurious TX completion id %x\n",
496                                   tx_queue->queue, read_ptr);
497                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
498                         return;
499                 }
500
501                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
502
503                 ++tx_queue->read_count;
504                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
505         }
506 }
507
508 /* Initiate a packet transmission.  We use one channel per CPU
509  * (sharing when we have more CPUs than channels).  On Falcon, the TX
510  * completion events will be directed back to the CPU that transmitted
511  * the packet, which should be cache-efficient.
512  *
513  * Context: non-blocking.
514  * Note that returning anything other than NETDEV_TX_OK will cause the
515  * OS to free the skb.
516  */
517 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
518                                 struct net_device *net_dev)
519 {
520         struct efx_nic *efx = netdev_priv(net_dev);
521         struct efx_tx_queue *tx_queue;
522         unsigned index, type;
523
524         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
525
526         /* PTP "event" packet */
527         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
528             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
529                 return efx_ptp_tx(efx, skb);
530         }
531
532         index = skb_get_queue_mapping(skb);
533         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
534         if (index >= efx->n_tx_channels) {
535                 index -= efx->n_tx_channels;
536                 type |= EFX_TXQ_TYPE_HIGHPRI;
537         }
538         tx_queue = efx_get_tx_queue(efx, index, type);
539
540         return efx_enqueue_skb(tx_queue, skb);
541 }
542
543 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
544 {
545         struct efx_nic *efx = tx_queue->efx;
546
547         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
548         tx_queue->core_txq =
549                 netdev_get_tx_queue(efx->net_dev,
550                                     tx_queue->queue / EFX_TXQ_TYPES +
551                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
552                                      efx->n_tx_channels : 0));
553 }
554
555 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
556 {
557         struct efx_nic *efx = netdev_priv(net_dev);
558         struct efx_channel *channel;
559         struct efx_tx_queue *tx_queue;
560         unsigned tc;
561         int rc;
562
563         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
564                 return -EINVAL;
565
566         if (num_tc == net_dev->num_tc)
567                 return 0;
568
569         for (tc = 0; tc < num_tc; tc++) {
570                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
571                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
572         }
573
574         if (num_tc > net_dev->num_tc) {
575                 /* Initialise high-priority queues as necessary */
576                 efx_for_each_channel(channel, efx) {
577                         efx_for_each_possible_channel_tx_queue(tx_queue,
578                                                                channel) {
579                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
580                                         continue;
581                                 if (!tx_queue->buffer) {
582                                         rc = efx_probe_tx_queue(tx_queue);
583                                         if (rc)
584                                                 return rc;
585                                 }
586                                 if (!tx_queue->initialised)
587                                         efx_init_tx_queue(tx_queue);
588                                 efx_init_tx_queue_core_txq(tx_queue);
589                         }
590                 }
591         } else {
592                 /* Reduce number of classes before number of queues */
593                 net_dev->num_tc = num_tc;
594         }
595
596         rc = netif_set_real_num_tx_queues(net_dev,
597                                           max_t(int, num_tc, 1) *
598                                           efx->n_tx_channels);
599         if (rc)
600                 return rc;
601
602         /* Do not destroy high-priority queues when they become
603          * unused.  We would have to flush them first, and it is
604          * fairly difficult to flush a subset of TX queues.  Leave
605          * it to efx_fini_channels().
606          */
607
608         net_dev->num_tc = num_tc;
609         return 0;
610 }
611
612 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
613 {
614         unsigned fill_level;
615         struct efx_nic *efx = tx_queue->efx;
616         struct efx_tx_queue *txq2;
617         unsigned int pkts_compl = 0, bytes_compl = 0;
618
619         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
620
621         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
622         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
623
624         if (pkts_compl > 1)
625                 ++tx_queue->merge_events;
626
627         /* See if we need to restart the netif queue.  This memory
628          * barrier ensures that we write read_count (inside
629          * efx_dequeue_buffers()) before reading the queue status.
630          */
631         smp_mb();
632         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
633             likely(efx->port_enabled) &&
634             likely(netif_device_present(efx->net_dev))) {
635                 txq2 = efx_tx_queue_partner(tx_queue);
636                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
637                                  txq2->insert_count - txq2->read_count);
638                 if (fill_level <= efx->txq_wake_thresh)
639                         netif_tx_wake_queue(tx_queue->core_txq);
640         }
641
642         /* Check whether the hardware queue is now empty */
643         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
644                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
645                 if (tx_queue->read_count == tx_queue->old_write_count) {
646                         smp_mb();
647                         tx_queue->empty_read_count =
648                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
649                 }
650         }
651 }
652
653 /* Size of page-based TSO header buffers.  Larger blocks must be
654  * allocated from the heap.
655  */
656 #define TSOH_STD_SIZE   128
657 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
658
659 /* At most half the descriptors in the queue at any time will refer to
660  * a TSO header buffer, since they must always be followed by a
661  * payload descriptor referring to an skb.
662  */
663 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
664 {
665         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
666 }
667
668 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
669 {
670         struct efx_nic *efx = tx_queue->efx;
671         unsigned int entries;
672         int rc;
673
674         /* Create the smallest power-of-two aligned ring */
675         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
676         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
677         tx_queue->ptr_mask = entries - 1;
678
679         netif_dbg(efx, probe, efx->net_dev,
680                   "creating TX queue %d size %#x mask %#x\n",
681                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
682
683         /* Allocate software ring */
684         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
685                                    GFP_KERNEL);
686         if (!tx_queue->buffer)
687                 return -ENOMEM;
688
689         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
690                 tx_queue->tsoh_page =
691                         kcalloc(efx_tsoh_page_count(tx_queue),
692                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
693                 if (!tx_queue->tsoh_page) {
694                         rc = -ENOMEM;
695                         goto fail1;
696                 }
697         }
698
699         /* Allocate hardware ring */
700         rc = efx_nic_probe_tx(tx_queue);
701         if (rc)
702                 goto fail2;
703
704         return 0;
705
706 fail2:
707         kfree(tx_queue->tsoh_page);
708         tx_queue->tsoh_page = NULL;
709 fail1:
710         kfree(tx_queue->buffer);
711         tx_queue->buffer = NULL;
712         return rc;
713 }
714
715 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
716 {
717         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
718                   "initialising TX queue %d\n", tx_queue->queue);
719
720         tx_queue->insert_count = 0;
721         tx_queue->write_count = 0;
722         tx_queue->old_write_count = 0;
723         tx_queue->read_count = 0;
724         tx_queue->old_read_count = 0;
725         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
726
727         /* Set up TX descriptor ring */
728         efx_nic_init_tx(tx_queue);
729
730         tx_queue->initialised = true;
731 }
732
733 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
734 {
735         struct efx_tx_buffer *buffer;
736
737         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
738                   "shutting down TX queue %d\n", tx_queue->queue);
739
740         if (!tx_queue->buffer)
741                 return;
742
743         /* Free any buffers left in the ring */
744         while (tx_queue->read_count != tx_queue->write_count) {
745                 unsigned int pkts_compl = 0, bytes_compl = 0;
746                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
747                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
748
749                 ++tx_queue->read_count;
750         }
751         netdev_tx_reset_queue(tx_queue->core_txq);
752 }
753
754 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
755 {
756         int i;
757
758         if (!tx_queue->buffer)
759                 return;
760
761         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
762                   "destroying TX queue %d\n", tx_queue->queue);
763         efx_nic_remove_tx(tx_queue);
764
765         if (tx_queue->tsoh_page) {
766                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
767                         efx_nic_free_buffer(tx_queue->efx,
768                                             &tx_queue->tsoh_page[i]);
769                 kfree(tx_queue->tsoh_page);
770                 tx_queue->tsoh_page = NULL;
771         }
772
773         kfree(tx_queue->buffer);
774         tx_queue->buffer = NULL;
775 }
776
777
778 /* Efx TCP segmentation acceleration.
779  *
780  * Why?  Because by doing it here in the driver we can go significantly
781  * faster than the GSO.
782  *
783  * Requires TX checksum offload support.
784  */
785
786 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
787
788 /**
789  * struct tso_state - TSO state for an SKB
790  * @out_len: Remaining length in current segment
791  * @seqnum: Current sequence number
792  * @ipv4_id: Current IPv4 ID, host endian
793  * @packet_space: Remaining space in current packet
794  * @dma_addr: DMA address of current position
795  * @in_len: Remaining length in current SKB fragment
796  * @unmap_len: Length of SKB fragment
797  * @unmap_addr: DMA address of SKB fragment
798  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
799  * @protocol: Network protocol (after any VLAN header)
800  * @ip_off: Offset of IP header
801  * @tcp_off: Offset of TCP header
802  * @header_len: Number of bytes of header
803  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
804  * @header_dma_addr: Header DMA address, when using option descriptors
805  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
806  *      descriptors
807  *
808  * The state used during segmentation.  It is put into this data structure
809  * just to make it easy to pass into inline functions.
810  */
811 struct tso_state {
812         /* Output position */
813         unsigned out_len;
814         unsigned seqnum;
815         u16 ipv4_id;
816         unsigned packet_space;
817
818         /* Input position */
819         dma_addr_t dma_addr;
820         unsigned in_len;
821         unsigned unmap_len;
822         dma_addr_t unmap_addr;
823         unsigned short dma_flags;
824
825         __be16 protocol;
826         unsigned int ip_off;
827         unsigned int tcp_off;
828         unsigned header_len;
829         unsigned int ip_base_len;
830         dma_addr_t header_dma_addr;
831         unsigned int header_unmap_len;
832 };
833
834
835 /*
836  * Verify that our various assumptions about sk_buffs and the conditions
837  * under which TSO will be attempted hold true.  Return the protocol number.
838  */
839 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
840 {
841         __be16 protocol = skb->protocol;
842
843         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
844                             protocol);
845         if (protocol == htons(ETH_P_8021Q)) {
846                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
847                 protocol = veh->h_vlan_encapsulated_proto;
848         }
849
850         if (protocol == htons(ETH_P_IP)) {
851                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
852         } else {
853                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
854                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
855         }
856         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
857                              + (tcp_hdr(skb)->doff << 2u)) >
858                             skb_headlen(skb));
859
860         return protocol;
861 }
862
863 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
864                                struct efx_tx_buffer *buffer, unsigned int len)
865 {
866         u8 *result;
867
868         EFX_BUG_ON_PARANOID(buffer->len);
869         EFX_BUG_ON_PARANOID(buffer->flags);
870         EFX_BUG_ON_PARANOID(buffer->unmap_len);
871
872         if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
873                 unsigned index =
874                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
875                 struct efx_buffer *page_buf =
876                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
877                 unsigned offset =
878                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
879
880                 if (unlikely(!page_buf->addr) &&
881                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
882                                          GFP_ATOMIC))
883                         return NULL;
884
885                 result = (u8 *)page_buf->addr + offset;
886                 buffer->dma_addr = page_buf->dma_addr + offset;
887                 buffer->flags = EFX_TX_BUF_CONT;
888         } else {
889                 tx_queue->tso_long_headers++;
890
891                 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
892                 if (unlikely(!buffer->heap_buf))
893                         return NULL;
894                 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
895                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
896         }
897
898         buffer->len = len;
899
900         return result;
901 }
902
903 /**
904  * efx_tx_queue_insert - push descriptors onto the TX queue
905  * @tx_queue:           Efx TX queue
906  * @dma_addr:           DMA address of fragment
907  * @len:                Length of fragment
908  * @final_buffer:       The final buffer inserted into the queue
909  *
910  * Push descriptors onto the TX queue.
911  */
912 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
913                                 dma_addr_t dma_addr, unsigned len,
914                                 struct efx_tx_buffer **final_buffer)
915 {
916         struct efx_tx_buffer *buffer;
917         struct efx_nic *efx = tx_queue->efx;
918         unsigned dma_len;
919
920         EFX_BUG_ON_PARANOID(len <= 0);
921
922         while (1) {
923                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
924                 ++tx_queue->insert_count;
925
926                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
927                                     tx_queue->read_count >=
928                                     efx->txq_entries);
929
930                 buffer->dma_addr = dma_addr;
931
932                 dma_len = efx_max_tx_len(efx, dma_addr);
933
934                 /* If there is enough space to send then do so */
935                 if (dma_len >= len)
936                         break;
937
938                 buffer->len = dma_len;
939                 buffer->flags = EFX_TX_BUF_CONT;
940                 dma_addr += dma_len;
941                 len -= dma_len;
942         }
943
944         EFX_BUG_ON_PARANOID(!len);
945         buffer->len = len;
946         *final_buffer = buffer;
947 }
948
949
950 /*
951  * Put a TSO header into the TX queue.
952  *
953  * This is special-cased because we know that it is small enough to fit in
954  * a single fragment, and we know it doesn't cross a page boundary.  It
955  * also allows us to not worry about end-of-packet etc.
956  */
957 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
958                               struct efx_tx_buffer *buffer, u8 *header)
959 {
960         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
961                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
962                                                   header, buffer->len,
963                                                   DMA_TO_DEVICE);
964                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
965                                                buffer->dma_addr))) {
966                         kfree(buffer->heap_buf);
967                         buffer->len = 0;
968                         buffer->flags = 0;
969                         return -ENOMEM;
970                 }
971                 buffer->unmap_len = buffer->len;
972                 buffer->dma_offset = 0;
973                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
974         }
975
976         ++tx_queue->insert_count;
977         return 0;
978 }
979
980
981 /* Remove buffers put into a tx_queue.  None of the buffers must have
982  * an skb attached.
983  */
984 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
985                                unsigned int insert_count)
986 {
987         struct efx_tx_buffer *buffer;
988
989         /* Work backwards until we hit the original insert pointer value */
990         while (tx_queue->insert_count != insert_count) {
991                 --tx_queue->insert_count;
992                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
993                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
994         }
995 }
996
997
998 /* Parse the SKB header and initialise state. */
999 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1000                      const struct sk_buff *skb)
1001 {
1002         bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1003         struct device *dma_dev = &efx->pci_dev->dev;
1004         unsigned int header_len, in_len;
1005         dma_addr_t dma_addr;
1006
1007         st->ip_off = skb_network_header(skb) - skb->data;
1008         st->tcp_off = skb_transport_header(skb) - skb->data;
1009         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1010         in_len = skb_headlen(skb) - header_len;
1011         st->header_len = header_len;
1012         st->in_len = in_len;
1013         if (st->protocol == htons(ETH_P_IP)) {
1014                 st->ip_base_len = st->header_len - st->ip_off;
1015                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1016         } else {
1017                 st->ip_base_len = st->header_len - st->tcp_off;
1018                 st->ipv4_id = 0;
1019         }
1020         st->seqnum = ntohl(tcp_hdr(skb)->seq);
1021
1022         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1023         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1024         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1025
1026         st->out_len = skb->len - header_len;
1027
1028         if (!use_opt_desc) {
1029                 st->header_unmap_len = 0;
1030
1031                 if (likely(in_len == 0)) {
1032                         st->dma_flags = 0;
1033                         st->unmap_len = 0;
1034                         return 0;
1035                 }
1036
1037                 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1038                                           in_len, DMA_TO_DEVICE);
1039                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1040                 st->dma_addr = dma_addr;
1041                 st->unmap_addr = dma_addr;
1042                 st->unmap_len = in_len;
1043         } else {
1044                 dma_addr = dma_map_single(dma_dev, skb->data,
1045                                           skb_headlen(skb), DMA_TO_DEVICE);
1046                 st->header_dma_addr = dma_addr;
1047                 st->header_unmap_len = skb_headlen(skb);
1048                 st->dma_flags = 0;
1049                 st->dma_addr = dma_addr + header_len;
1050                 st->unmap_len = 0;
1051         }
1052
1053         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1054 }
1055
1056 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1057                             skb_frag_t *frag)
1058 {
1059         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1060                                           skb_frag_size(frag), DMA_TO_DEVICE);
1061         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1062                 st->dma_flags = 0;
1063                 st->unmap_len = skb_frag_size(frag);
1064                 st->in_len = skb_frag_size(frag);
1065                 st->dma_addr = st->unmap_addr;
1066                 return 0;
1067         }
1068         return -ENOMEM;
1069 }
1070
1071
1072 /**
1073  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1074  * @tx_queue:           Efx TX queue
1075  * @skb:                Socket buffer
1076  * @st:                 TSO state
1077  *
1078  * Form descriptors for the current fragment, until we reach the end
1079  * of fragment or end-of-packet.
1080  */
1081 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1082                                           const struct sk_buff *skb,
1083                                           struct tso_state *st)
1084 {
1085         struct efx_tx_buffer *buffer;
1086         int n;
1087
1088         if (st->in_len == 0)
1089                 return;
1090         if (st->packet_space == 0)
1091                 return;
1092
1093         EFX_BUG_ON_PARANOID(st->in_len <= 0);
1094         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1095
1096         n = min(st->in_len, st->packet_space);
1097
1098         st->packet_space -= n;
1099         st->out_len -= n;
1100         st->in_len -= n;
1101
1102         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1103
1104         if (st->out_len == 0) {
1105                 /* Transfer ownership of the skb */
1106                 buffer->skb = skb;
1107                 buffer->flags = EFX_TX_BUF_SKB;
1108         } else if (st->packet_space != 0) {
1109                 buffer->flags = EFX_TX_BUF_CONT;
1110         }
1111
1112         if (st->in_len == 0) {
1113                 /* Transfer ownership of the DMA mapping */
1114                 buffer->unmap_len = st->unmap_len;
1115                 buffer->dma_offset = buffer->unmap_len - buffer->len;
1116                 buffer->flags |= st->dma_flags;
1117                 st->unmap_len = 0;
1118         }
1119
1120         st->dma_addr += n;
1121 }
1122
1123
1124 /**
1125  * tso_start_new_packet - generate a new header and prepare for the new packet
1126  * @tx_queue:           Efx TX queue
1127  * @skb:                Socket buffer
1128  * @st:                 TSO state
1129  *
1130  * Generate a new header and prepare for the new packet.  Return 0 on
1131  * success, or -%ENOMEM if failed to alloc header.
1132  */
1133 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1134                                 const struct sk_buff *skb,
1135                                 struct tso_state *st)
1136 {
1137         struct efx_tx_buffer *buffer =
1138                 efx_tx_queue_get_insert_buffer(tx_queue);
1139         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1140         u8 tcp_flags_clear;
1141
1142         if (!is_last) {
1143                 st->packet_space = skb_shinfo(skb)->gso_size;
1144                 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1145         } else {
1146                 st->packet_space = st->out_len;
1147                 tcp_flags_clear = 0x00;
1148         }
1149
1150         if (!st->header_unmap_len) {
1151                 /* Allocate and insert a DMA-mapped header buffer. */
1152                 struct tcphdr *tsoh_th;
1153                 unsigned ip_length;
1154                 u8 *header;
1155                 int rc;
1156
1157                 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1158                 if (!header)
1159                         return -ENOMEM;
1160
1161                 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1162
1163                 /* Copy and update the headers. */
1164                 memcpy(header, skb->data, st->header_len);
1165
1166                 tsoh_th->seq = htonl(st->seqnum);
1167                 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1168
1169                 ip_length = st->ip_base_len + st->packet_space;
1170
1171                 if (st->protocol == htons(ETH_P_IP)) {
1172                         struct iphdr *tsoh_iph =
1173                                 (struct iphdr *)(header + st->ip_off);
1174
1175                         tsoh_iph->tot_len = htons(ip_length);
1176                         tsoh_iph->id = htons(st->ipv4_id);
1177                 } else {
1178                         struct ipv6hdr *tsoh_iph =
1179                                 (struct ipv6hdr *)(header + st->ip_off);
1180
1181                         tsoh_iph->payload_len = htons(ip_length);
1182                 }
1183
1184                 rc = efx_tso_put_header(tx_queue, buffer, header);
1185                 if (unlikely(rc))
1186                         return rc;
1187         } else {
1188                 /* Send the original headers with a TSO option descriptor
1189                  * in front
1190                  */
1191                 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1192
1193                 buffer->flags = EFX_TX_BUF_OPTION;
1194                 buffer->len = 0;
1195                 buffer->unmap_len = 0;
1196                 EFX_POPULATE_QWORD_5(buffer->option,
1197                                      ESF_DZ_TX_DESC_IS_OPT, 1,
1198                                      ESF_DZ_TX_OPTION_TYPE,
1199                                      ESE_DZ_TX_OPTION_DESC_TSO,
1200                                      ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1201                                      ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1202                                      ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1203                 ++tx_queue->insert_count;
1204
1205                 /* We mapped the headers in tso_start().  Unmap them
1206                  * when the last segment is completed.
1207                  */
1208                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1209                 buffer->dma_addr = st->header_dma_addr;
1210                 buffer->len = st->header_len;
1211                 if (is_last) {
1212                         buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1213                         buffer->unmap_len = st->header_unmap_len;
1214                         buffer->dma_offset = 0;
1215                         /* Ensure we only unmap them once in case of a
1216                          * later DMA mapping error and rollback
1217                          */
1218                         st->header_unmap_len = 0;
1219                 } else {
1220                         buffer->flags = EFX_TX_BUF_CONT;
1221                         buffer->unmap_len = 0;
1222                 }
1223                 ++tx_queue->insert_count;
1224         }
1225
1226         st->seqnum += skb_shinfo(skb)->gso_size;
1227
1228         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1229         ++st->ipv4_id;
1230
1231         ++tx_queue->tso_packets;
1232
1233         ++tx_queue->tx_packets;
1234
1235         return 0;
1236 }
1237
1238
1239 /**
1240  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1241  * @tx_queue:           Efx TX queue
1242  * @skb:                Socket buffer
1243  *
1244  * Context: You must hold netif_tx_lock() to call this function.
1245  *
1246  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1247  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1248  * %NETDEV_TX_OK.
1249  */
1250 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1251                                struct sk_buff *skb)
1252 {
1253         struct efx_nic *efx = tx_queue->efx;
1254         unsigned int old_insert_count = tx_queue->insert_count;
1255         int frag_i, rc;
1256         struct tso_state state;
1257
1258         /* Find the packet protocol and sanity-check it */
1259         state.protocol = efx_tso_check_protocol(skb);
1260
1261         EFX_BUG_ON_PARANOID(tx_queue->write_count > tx_queue->insert_count);
1262
1263         rc = tso_start(&state, efx, skb);
1264         if (rc)
1265                 goto mem_err;
1266
1267         if (likely(state.in_len == 0)) {
1268                 /* Grab the first payload fragment. */
1269                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1270                 frag_i = 0;
1271                 rc = tso_get_fragment(&state, efx,
1272                                       skb_shinfo(skb)->frags + frag_i);
1273                 if (rc)
1274                         goto mem_err;
1275         } else {
1276                 /* Payload starts in the header area. */
1277                 frag_i = -1;
1278         }
1279
1280         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1281                 goto mem_err;
1282
1283         while (1) {
1284                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1285
1286                 /* Move onto the next fragment? */
1287                 if (state.in_len == 0) {
1288                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1289                                 /* End of payload reached. */
1290                                 break;
1291                         rc = tso_get_fragment(&state, efx,
1292                                               skb_shinfo(skb)->frags + frag_i);
1293                         if (rc)
1294                                 goto mem_err;
1295                 }
1296
1297                 /* Start at new packet? */
1298                 if (state.packet_space == 0 &&
1299                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1300                         goto mem_err;
1301         }
1302
1303         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1304
1305         efx_tx_maybe_stop_queue(tx_queue);
1306
1307         /* Pass off to hardware */
1308         if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
1309                 efx_nic_push_buffers(tx_queue);
1310
1311         tx_queue->tso_bursts++;
1312         return NETDEV_TX_OK;
1313
1314  mem_err:
1315         netif_err(efx, tx_err, efx->net_dev,
1316                   "Out of memory for TSO headers, or DMA mapping error\n");
1317         dev_kfree_skb_any(skb);
1318
1319         /* Free the DMA mapping we were in the process of writing out */
1320         if (state.unmap_len) {
1321                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1322                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1323                                          state.unmap_len, DMA_TO_DEVICE);
1324                 else
1325                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1326                                        state.unmap_len, DMA_TO_DEVICE);
1327         }
1328
1329         /* Free the header DMA mapping, if using option descriptors */
1330         if (state.header_unmap_len)
1331                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1332                                  state.header_unmap_len, DMA_TO_DEVICE);
1333
1334         efx_enqueue_unwind(tx_queue, old_insert_count);
1335         return NETDEV_TX_OK;
1336 }