Merge tag 'sound-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[cascardo/linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer,
35                                unsigned int *pkts_compl,
36                                unsigned int *bytes_compl)
37 {
38         if (buffer->unmap_len) {
39                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
40                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41                                          buffer->unmap_len);
42                 if (buffer->unmap_single)
43                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
44                                          DMA_TO_DEVICE);
45                 else
46                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
47                                        DMA_TO_DEVICE);
48                 buffer->unmap_len = 0;
49                 buffer->unmap_single = false;
50         }
51
52         if (buffer->skb) {
53                 (*pkts_compl)++;
54                 (*bytes_compl) += buffer->skb->len;
55                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56                 buffer->skb = NULL;
57                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58                            "TX queue %d transmission id %x complete\n",
59                            tx_queue->queue, tx_queue->read_count);
60         }
61 }
62
63 /**
64  * struct efx_tso_header - a DMA mapped buffer for packet headers
65  * @next: Linked list of free ones.
66  *      The list is protected by the TX queue lock.
67  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68  * @dma_addr: The DMA address of the header below.
69  *
70  * This controls the memory used for a TSO header.  Use TSOH_DATA()
71  * to find the packet header data.  Use TSOH_SIZE() to calculate the
72  * total size required for a given packet header length.  TSO headers
73  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
74  */
75 struct efx_tso_header {
76         union {
77                 struct efx_tso_header *next;
78                 size_t unmap_len;
79         };
80         dma_addr_t dma_addr;
81 };
82
83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84                                struct sk_buff *skb);
85 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87                                struct efx_tso_header *tsoh);
88
89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90                           struct efx_tx_buffer *buffer)
91 {
92         if (buffer->tsoh) {
93                 if (likely(!buffer->tsoh->unmap_len)) {
94                         buffer->tsoh->next = tx_queue->tso_headers_free;
95                         tx_queue->tso_headers_free = buffer->tsoh;
96                 } else {
97                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
98                 }
99                 buffer->tsoh = NULL;
100         }
101 }
102
103
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
106 {
107         /* Depending on the NIC revision, we can use descriptor
108          * lengths up to 8K or 8K-1.  However, since PCI Express
109          * devices must split read requests at 4K boundaries, there is
110          * little benefit from using descriptors that cross those
111          * boundaries and we keep things simple by not doing so.
112          */
113         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
114
115         /* Work around hardware bug for unaligned buffers. */
116         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
118
119         return len;
120 }
121
122 /*
123  * Add a socket buffer to a TX queue
124  *
125  * This maps all fragments of a socket buffer for DMA and adds them to
126  * the TX queue.  The queue's insert pointer will be incremented by
127  * the number of fragments in the socket buffer.
128  *
129  * If any DMA mapping fails, any mapped fragments will be unmapped,
130  * the queue's insert pointer will be restored to its original value.
131  *
132  * This function is split out from efx_hard_start_xmit to allow the
133  * loopback test to direct packets via specific TX queues.
134  *
135  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
136  * You must hold netif_tx_lock() to call this function.
137  */
138 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
139 {
140         struct efx_nic *efx = tx_queue->efx;
141         struct device *dma_dev = &efx->pci_dev->dev;
142         struct efx_tx_buffer *buffer;
143         skb_frag_t *fragment;
144         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
145         dma_addr_t dma_addr, unmap_addr = 0;
146         unsigned int dma_len;
147         bool unmap_single;
148         int q_space, i = 0;
149         netdev_tx_t rc = NETDEV_TX_OK;
150
151         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
152
153         if (skb_shinfo(skb)->gso_size)
154                 return efx_enqueue_skb_tso(tx_queue, skb);
155
156         /* Get size of the initial fragment */
157         len = skb_headlen(skb);
158
159         /* Pad if necessary */
160         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
161                 EFX_BUG_ON_PARANOID(skb->data_len);
162                 len = 32 + 1;
163                 if (skb_pad(skb, len - skb->len))
164                         return NETDEV_TX_OK;
165         }
166
167         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
168         q_space = efx->txq_entries - 1 - fill_level;
169
170         /* Map for DMA.  Use dma_map_single rather than dma_map_page
171          * since this is more efficient on machines with sparse
172          * memory.
173          */
174         unmap_single = true;
175         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
176
177         /* Process all fragments */
178         while (1) {
179                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
180                         goto dma_err;
181
182                 /* Store fields for marking in the per-fragment final
183                  * descriptor */
184                 unmap_len = len;
185                 unmap_addr = dma_addr;
186
187                 /* Add to TX queue, splitting across DMA boundaries */
188                 do {
189                         if (unlikely(q_space-- <= 0)) {
190                                 /* It might be that completions have
191                                  * happened since the xmit path last
192                                  * checked.  Update the xmit path's
193                                  * copy of read_count.
194                                  */
195                                 netif_tx_stop_queue(tx_queue->core_txq);
196                                 /* This memory barrier protects the
197                                  * change of queue state from the access
198                                  * of read_count. */
199                                 smp_mb();
200                                 tx_queue->old_read_count =
201                                         ACCESS_ONCE(tx_queue->read_count);
202                                 fill_level = (tx_queue->insert_count
203                                               - tx_queue->old_read_count);
204                                 q_space = efx->txq_entries - 1 - fill_level;
205                                 if (unlikely(q_space-- <= 0)) {
206                                         rc = NETDEV_TX_BUSY;
207                                         goto unwind;
208                                 }
209                                 smp_mb();
210                                 if (likely(!efx->loopback_selftest))
211                                         netif_tx_start_queue(
212                                                 tx_queue->core_txq);
213                         }
214
215                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
216                         buffer = &tx_queue->buffer[insert_ptr];
217                         efx_tsoh_free(tx_queue, buffer);
218                         EFX_BUG_ON_PARANOID(buffer->tsoh);
219                         EFX_BUG_ON_PARANOID(buffer->skb);
220                         EFX_BUG_ON_PARANOID(buffer->len);
221                         EFX_BUG_ON_PARANOID(!buffer->continuation);
222                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
223
224                         dma_len = efx_max_tx_len(efx, dma_addr);
225                         if (likely(dma_len >= len))
226                                 dma_len = len;
227
228                         /* Fill out per descriptor fields */
229                         buffer->len = dma_len;
230                         buffer->dma_addr = dma_addr;
231                         len -= dma_len;
232                         dma_addr += dma_len;
233                         ++tx_queue->insert_count;
234                 } while (len);
235
236                 /* Transfer ownership of the unmapping to the final buffer */
237                 buffer->unmap_single = unmap_single;
238                 buffer->unmap_len = unmap_len;
239                 unmap_len = 0;
240
241                 /* Get address and size of next fragment */
242                 if (i >= skb_shinfo(skb)->nr_frags)
243                         break;
244                 fragment = &skb_shinfo(skb)->frags[i];
245                 len = skb_frag_size(fragment);
246                 i++;
247                 /* Map for DMA */
248                 unmap_single = false;
249                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
250                                             DMA_TO_DEVICE);
251         }
252
253         /* Transfer ownership of the skb to the final buffer */
254         buffer->skb = skb;
255         buffer->continuation = false;
256
257         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
258
259         /* Pass off to hardware */
260         efx_nic_push_buffers(tx_queue);
261
262         return NETDEV_TX_OK;
263
264  dma_err:
265         netif_err(efx, tx_err, efx->net_dev,
266                   " TX queue %d could not map skb with %d bytes %d "
267                   "fragments for DMA\n", tx_queue->queue, skb->len,
268                   skb_shinfo(skb)->nr_frags + 1);
269
270         /* Mark the packet as transmitted, and free the SKB ourselves */
271         dev_kfree_skb_any(skb);
272
273  unwind:
274         /* Work backwards until we hit the original insert pointer value */
275         while (tx_queue->insert_count != tx_queue->write_count) {
276                 unsigned int pkts_compl = 0, bytes_compl = 0;
277                 --tx_queue->insert_count;
278                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
279                 buffer = &tx_queue->buffer[insert_ptr];
280                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
281                 buffer->len = 0;
282         }
283
284         /* Free the fragment we were mid-way through pushing */
285         if (unmap_len) {
286                 if (unmap_single)
287                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
288                                          DMA_TO_DEVICE);
289                 else
290                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
291                                        DMA_TO_DEVICE);
292         }
293
294         return rc;
295 }
296
297 /* Remove packets from the TX queue
298  *
299  * This removes packets from the TX queue, up to and including the
300  * specified index.
301  */
302 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
303                                 unsigned int index,
304                                 unsigned int *pkts_compl,
305                                 unsigned int *bytes_compl)
306 {
307         struct efx_nic *efx = tx_queue->efx;
308         unsigned int stop_index, read_ptr;
309
310         stop_index = (index + 1) & tx_queue->ptr_mask;
311         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
312
313         while (read_ptr != stop_index) {
314                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
315                 if (unlikely(buffer->len == 0)) {
316                         netif_err(efx, tx_err, efx->net_dev,
317                                   "TX queue %d spurious TX completion id %x\n",
318                                   tx_queue->queue, read_ptr);
319                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
320                         return;
321                 }
322
323                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
324                 buffer->continuation = true;
325                 buffer->len = 0;
326
327                 ++tx_queue->read_count;
328                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
329         }
330 }
331
332 /* Initiate a packet transmission.  We use one channel per CPU
333  * (sharing when we have more CPUs than channels).  On Falcon, the TX
334  * completion events will be directed back to the CPU that transmitted
335  * the packet, which should be cache-efficient.
336  *
337  * Context: non-blocking.
338  * Note that returning anything other than NETDEV_TX_OK will cause the
339  * OS to free the skb.
340  */
341 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
342                                 struct net_device *net_dev)
343 {
344         struct efx_nic *efx = netdev_priv(net_dev);
345         struct efx_tx_queue *tx_queue;
346         unsigned index, type;
347
348         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
349
350         index = skb_get_queue_mapping(skb);
351         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352         if (index >= efx->n_tx_channels) {
353                 index -= efx->n_tx_channels;
354                 type |= EFX_TXQ_TYPE_HIGHPRI;
355         }
356         tx_queue = efx_get_tx_queue(efx, index, type);
357
358         return efx_enqueue_skb(tx_queue, skb);
359 }
360
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362 {
363         struct efx_nic *efx = tx_queue->efx;
364
365         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
366         tx_queue->core_txq =
367                 netdev_get_tx_queue(efx->net_dev,
368                                     tx_queue->queue / EFX_TXQ_TYPES +
369                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370                                      efx->n_tx_channels : 0));
371 }
372
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374 {
375         struct efx_nic *efx = netdev_priv(net_dev);
376         struct efx_channel *channel;
377         struct efx_tx_queue *tx_queue;
378         unsigned tc;
379         int rc;
380
381         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382                 return -EINVAL;
383
384         if (num_tc == net_dev->num_tc)
385                 return 0;
386
387         for (tc = 0; tc < num_tc; tc++) {
388                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390         }
391
392         if (num_tc > net_dev->num_tc) {
393                 /* Initialise high-priority queues as necessary */
394                 efx_for_each_channel(channel, efx) {
395                         efx_for_each_possible_channel_tx_queue(tx_queue,
396                                                                channel) {
397                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398                                         continue;
399                                 if (!tx_queue->buffer) {
400                                         rc = efx_probe_tx_queue(tx_queue);
401                                         if (rc)
402                                                 return rc;
403                                 }
404                                 if (!tx_queue->initialised)
405                                         efx_init_tx_queue(tx_queue);
406                                 efx_init_tx_queue_core_txq(tx_queue);
407                         }
408                 }
409         } else {
410                 /* Reduce number of classes before number of queues */
411                 net_dev->num_tc = num_tc;
412         }
413
414         rc = netif_set_real_num_tx_queues(net_dev,
415                                           max_t(int, num_tc, 1) *
416                                           efx->n_tx_channels);
417         if (rc)
418                 return rc;
419
420         /* Do not destroy high-priority queues when they become
421          * unused.  We would have to flush them first, and it is
422          * fairly difficult to flush a subset of TX queues.  Leave
423          * it to efx_fini_channels().
424          */
425
426         net_dev->num_tc = num_tc;
427         return 0;
428 }
429
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431 {
432         unsigned fill_level;
433         struct efx_nic *efx = tx_queue->efx;
434         unsigned int pkts_compl = 0, bytes_compl = 0;
435
436         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
437
438         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
439         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
440
441         /* See if we need to restart the netif queue.  This barrier
442          * separates the update of read_count from the test of the
443          * queue state. */
444         smp_mb();
445         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
446             likely(efx->port_enabled) &&
447             likely(netif_device_present(efx->net_dev))) {
448                 fill_level = tx_queue->insert_count - tx_queue->read_count;
449                 if (fill_level < EFX_TXQ_THRESHOLD(efx))
450                         netif_tx_wake_queue(tx_queue->core_txq);
451         }
452
453         /* Check whether the hardware queue is now empty */
454         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
455                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
456                 if (tx_queue->read_count == tx_queue->old_write_count) {
457                         smp_mb();
458                         tx_queue->empty_read_count =
459                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
460                 }
461         }
462 }
463
464 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
465 {
466         struct efx_nic *efx = tx_queue->efx;
467         unsigned int entries;
468         int i, rc;
469
470         /* Create the smallest power-of-two aligned ring */
471         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
472         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
473         tx_queue->ptr_mask = entries - 1;
474
475         netif_dbg(efx, probe, efx->net_dev,
476                   "creating TX queue %d size %#x mask %#x\n",
477                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
478
479         /* Allocate software ring */
480         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
481                                    GFP_KERNEL);
482         if (!tx_queue->buffer)
483                 return -ENOMEM;
484         for (i = 0; i <= tx_queue->ptr_mask; ++i)
485                 tx_queue->buffer[i].continuation = true;
486
487         /* Allocate hardware ring */
488         rc = efx_nic_probe_tx(tx_queue);
489         if (rc)
490                 goto fail;
491
492         return 0;
493
494  fail:
495         kfree(tx_queue->buffer);
496         tx_queue->buffer = NULL;
497         return rc;
498 }
499
500 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
501 {
502         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
503                   "initialising TX queue %d\n", tx_queue->queue);
504
505         tx_queue->insert_count = 0;
506         tx_queue->write_count = 0;
507         tx_queue->old_write_count = 0;
508         tx_queue->read_count = 0;
509         tx_queue->old_read_count = 0;
510         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
511
512         /* Set up TX descriptor ring */
513         efx_nic_init_tx(tx_queue);
514
515         tx_queue->initialised = true;
516 }
517
518 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
519 {
520         struct efx_tx_buffer *buffer;
521
522         if (!tx_queue->buffer)
523                 return;
524
525         /* Free any buffers left in the ring */
526         while (tx_queue->read_count != tx_queue->write_count) {
527                 unsigned int pkts_compl = 0, bytes_compl = 0;
528                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
529                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
530                 buffer->continuation = true;
531                 buffer->len = 0;
532
533                 ++tx_queue->read_count;
534         }
535         netdev_tx_reset_queue(tx_queue->core_txq);
536 }
537
538 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
539 {
540         if (!tx_queue->initialised)
541                 return;
542
543         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
544                   "shutting down TX queue %d\n", tx_queue->queue);
545
546         tx_queue->initialised = false;
547
548         /* Flush TX queue, remove descriptor ring */
549         efx_nic_fini_tx(tx_queue);
550
551         efx_release_tx_buffers(tx_queue);
552
553         /* Free up TSO header cache */
554         efx_fini_tso(tx_queue);
555 }
556
557 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
558 {
559         if (!tx_queue->buffer)
560                 return;
561
562         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
563                   "destroying TX queue %d\n", tx_queue->queue);
564         efx_nic_remove_tx(tx_queue);
565
566         kfree(tx_queue->buffer);
567         tx_queue->buffer = NULL;
568 }
569
570
571 /* Efx TCP segmentation acceleration.
572  *
573  * Why?  Because by doing it here in the driver we can go significantly
574  * faster than the GSO.
575  *
576  * Requires TX checksum offload support.
577  */
578
579 /* Number of bytes inserted at the start of a TSO header buffer,
580  * similar to NET_IP_ALIGN.
581  */
582 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
583 #define TSOH_OFFSET     0
584 #else
585 #define TSOH_OFFSET     NET_IP_ALIGN
586 #endif
587
588 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
589
590 /* Total size of struct efx_tso_header, buffer and padding */
591 #define TSOH_SIZE(hdr_len)                                      \
592         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
593
594 /* Size of blocks on free list.  Larger blocks must be allocated from
595  * the heap.
596  */
597 #define TSOH_STD_SIZE           128
598
599 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
600 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
601 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
602 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
603 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
604
605 /**
606  * struct tso_state - TSO state for an SKB
607  * @out_len: Remaining length in current segment
608  * @seqnum: Current sequence number
609  * @ipv4_id: Current IPv4 ID, host endian
610  * @packet_space: Remaining space in current packet
611  * @dma_addr: DMA address of current position
612  * @in_len: Remaining length in current SKB fragment
613  * @unmap_len: Length of SKB fragment
614  * @unmap_addr: DMA address of SKB fragment
615  * @unmap_single: DMA single vs page mapping flag
616  * @protocol: Network protocol (after any VLAN header)
617  * @header_len: Number of bytes of header
618  * @full_packet_size: Number of bytes to put in each outgoing segment
619  *
620  * The state used during segmentation.  It is put into this data structure
621  * just to make it easy to pass into inline functions.
622  */
623 struct tso_state {
624         /* Output position */
625         unsigned out_len;
626         unsigned seqnum;
627         unsigned ipv4_id;
628         unsigned packet_space;
629
630         /* Input position */
631         dma_addr_t dma_addr;
632         unsigned in_len;
633         unsigned unmap_len;
634         dma_addr_t unmap_addr;
635         bool unmap_single;
636
637         __be16 protocol;
638         unsigned header_len;
639         int full_packet_size;
640 };
641
642
643 /*
644  * Verify that our various assumptions about sk_buffs and the conditions
645  * under which TSO will be attempted hold true.  Return the protocol number.
646  */
647 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
648 {
649         __be16 protocol = skb->protocol;
650
651         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
652                             protocol);
653         if (protocol == htons(ETH_P_8021Q)) {
654                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
655                 protocol = veh->h_vlan_encapsulated_proto;
656         }
657
658         if (protocol == htons(ETH_P_IP)) {
659                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
660         } else {
661                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
662                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
663         }
664         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
665                              + (tcp_hdr(skb)->doff << 2u)) >
666                             skb_headlen(skb));
667
668         return protocol;
669 }
670
671
672 /*
673  * Allocate a page worth of efx_tso_header structures, and string them
674  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
675  */
676 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
677 {
678         struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
679         struct efx_tso_header *tsoh;
680         dma_addr_t dma_addr;
681         u8 *base_kva, *kva;
682
683         base_kva = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, GFP_ATOMIC);
684         if (base_kva == NULL) {
685                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
686                           "Unable to allocate page for TSO headers\n");
687                 return -ENOMEM;
688         }
689
690         /* dma_alloc_coherent() allocates pages. */
691         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
692
693         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
694                 tsoh = (struct efx_tso_header *)kva;
695                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
696                 tsoh->next = tx_queue->tso_headers_free;
697                 tx_queue->tso_headers_free = tsoh;
698         }
699
700         return 0;
701 }
702
703
704 /* Free up a TSO header, and all others in the same page. */
705 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
706                                 struct efx_tso_header *tsoh,
707                                 struct device *dma_dev)
708 {
709         struct efx_tso_header **p;
710         unsigned long base_kva;
711         dma_addr_t base_dma;
712
713         base_kva = (unsigned long)tsoh & PAGE_MASK;
714         base_dma = tsoh->dma_addr & PAGE_MASK;
715
716         p = &tx_queue->tso_headers_free;
717         while (*p != NULL) {
718                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
719                         *p = (*p)->next;
720                 else
721                         p = &(*p)->next;
722         }
723
724         dma_free_coherent(dma_dev, PAGE_SIZE, (void *)base_kva, base_dma);
725 }
726
727 static struct efx_tso_header *
728 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
729 {
730         struct efx_tso_header *tsoh;
731
732         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
733         if (unlikely(!tsoh))
734                 return NULL;
735
736         tsoh->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
737                                         TSOH_BUFFER(tsoh), header_len,
738                                         DMA_TO_DEVICE);
739         if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
740                                        tsoh->dma_addr))) {
741                 kfree(tsoh);
742                 return NULL;
743         }
744
745         tsoh->unmap_len = header_len;
746         return tsoh;
747 }
748
749 static void
750 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
751 {
752         dma_unmap_single(&tx_queue->efx->pci_dev->dev,
753                          tsoh->dma_addr, tsoh->unmap_len,
754                          DMA_TO_DEVICE);
755         kfree(tsoh);
756 }
757
758 /**
759  * efx_tx_queue_insert - push descriptors onto the TX queue
760  * @tx_queue:           Efx TX queue
761  * @dma_addr:           DMA address of fragment
762  * @len:                Length of fragment
763  * @final_buffer:       The final buffer inserted into the queue
764  *
765  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
766  * @tx_queue full.
767  */
768 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
769                                dma_addr_t dma_addr, unsigned len,
770                                struct efx_tx_buffer **final_buffer)
771 {
772         struct efx_tx_buffer *buffer;
773         struct efx_nic *efx = tx_queue->efx;
774         unsigned dma_len, fill_level, insert_ptr;
775         int q_space;
776
777         EFX_BUG_ON_PARANOID(len <= 0);
778
779         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
780         /* -1 as there is no way to represent all descriptors used */
781         q_space = efx->txq_entries - 1 - fill_level;
782
783         while (1) {
784                 if (unlikely(q_space-- <= 0)) {
785                         /* It might be that completions have happened
786                          * since the xmit path last checked.  Update
787                          * the xmit path's copy of read_count.
788                          */
789                         netif_tx_stop_queue(tx_queue->core_txq);
790                         /* This memory barrier protects the change of
791                          * queue state from the access of read_count. */
792                         smp_mb();
793                         tx_queue->old_read_count =
794                                 ACCESS_ONCE(tx_queue->read_count);
795                         fill_level = (tx_queue->insert_count
796                                       - tx_queue->old_read_count);
797                         q_space = efx->txq_entries - 1 - fill_level;
798                         if (unlikely(q_space-- <= 0)) {
799                                 *final_buffer = NULL;
800                                 return 1;
801                         }
802                         smp_mb();
803                         netif_tx_start_queue(tx_queue->core_txq);
804                 }
805
806                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
807                 buffer = &tx_queue->buffer[insert_ptr];
808                 ++tx_queue->insert_count;
809
810                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
811                                     tx_queue->read_count >=
812                                     efx->txq_entries);
813
814                 efx_tsoh_free(tx_queue, buffer);
815                 EFX_BUG_ON_PARANOID(buffer->len);
816                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
817                 EFX_BUG_ON_PARANOID(buffer->skb);
818                 EFX_BUG_ON_PARANOID(!buffer->continuation);
819                 EFX_BUG_ON_PARANOID(buffer->tsoh);
820
821                 buffer->dma_addr = dma_addr;
822
823                 dma_len = efx_max_tx_len(efx, dma_addr);
824
825                 /* If there is enough space to send then do so */
826                 if (dma_len >= len)
827                         break;
828
829                 buffer->len = dma_len; /* Don't set the other members */
830                 dma_addr += dma_len;
831                 len -= dma_len;
832         }
833
834         EFX_BUG_ON_PARANOID(!len);
835         buffer->len = len;
836         *final_buffer = buffer;
837         return 0;
838 }
839
840
841 /*
842  * Put a TSO header into the TX queue.
843  *
844  * This is special-cased because we know that it is small enough to fit in
845  * a single fragment, and we know it doesn't cross a page boundary.  It
846  * also allows us to not worry about end-of-packet etc.
847  */
848 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
849                                struct efx_tso_header *tsoh, unsigned len)
850 {
851         struct efx_tx_buffer *buffer;
852
853         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
854         efx_tsoh_free(tx_queue, buffer);
855         EFX_BUG_ON_PARANOID(buffer->len);
856         EFX_BUG_ON_PARANOID(buffer->unmap_len);
857         EFX_BUG_ON_PARANOID(buffer->skb);
858         EFX_BUG_ON_PARANOID(!buffer->continuation);
859         EFX_BUG_ON_PARANOID(buffer->tsoh);
860         buffer->len = len;
861         buffer->dma_addr = tsoh->dma_addr;
862         buffer->tsoh = tsoh;
863
864         ++tx_queue->insert_count;
865 }
866
867
868 /* Remove descriptors put into a tx_queue. */
869 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
870 {
871         struct efx_tx_buffer *buffer;
872         dma_addr_t unmap_addr;
873
874         /* Work backwards until we hit the original insert pointer value */
875         while (tx_queue->insert_count != tx_queue->write_count) {
876                 --tx_queue->insert_count;
877                 buffer = &tx_queue->buffer[tx_queue->insert_count &
878                                            tx_queue->ptr_mask];
879                 efx_tsoh_free(tx_queue, buffer);
880                 EFX_BUG_ON_PARANOID(buffer->skb);
881                 if (buffer->unmap_len) {
882                         unmap_addr = (buffer->dma_addr + buffer->len -
883                                       buffer->unmap_len);
884                         if (buffer->unmap_single)
885                                 dma_unmap_single(&tx_queue->efx->pci_dev->dev,
886                                                  unmap_addr, buffer->unmap_len,
887                                                  DMA_TO_DEVICE);
888                         else
889                                 dma_unmap_page(&tx_queue->efx->pci_dev->dev,
890                                                unmap_addr, buffer->unmap_len,
891                                                DMA_TO_DEVICE);
892                         buffer->unmap_len = 0;
893                 }
894                 buffer->len = 0;
895                 buffer->continuation = true;
896         }
897 }
898
899
900 /* Parse the SKB header and initialise state. */
901 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
902 {
903         /* All ethernet/IP/TCP headers combined size is TCP header size
904          * plus offset of TCP header relative to start of packet.
905          */
906         st->header_len = ((tcp_hdr(skb)->doff << 2u)
907                           + PTR_DIFF(tcp_hdr(skb), skb->data));
908         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
909
910         if (st->protocol == htons(ETH_P_IP))
911                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
912         else
913                 st->ipv4_id = 0;
914         st->seqnum = ntohl(tcp_hdr(skb)->seq);
915
916         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
917         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
918         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
919
920         st->out_len = skb->len - st->header_len;
921         st->unmap_len = 0;
922         st->unmap_single = false;
923 }
924
925 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
926                             skb_frag_t *frag)
927 {
928         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
929                                           skb_frag_size(frag), DMA_TO_DEVICE);
930         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
931                 st->unmap_single = false;
932                 st->unmap_len = skb_frag_size(frag);
933                 st->in_len = skb_frag_size(frag);
934                 st->dma_addr = st->unmap_addr;
935                 return 0;
936         }
937         return -ENOMEM;
938 }
939
940 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
941                                  const struct sk_buff *skb)
942 {
943         int hl = st->header_len;
944         int len = skb_headlen(skb) - hl;
945
946         st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
947                                         len, DMA_TO_DEVICE);
948         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
949                 st->unmap_single = true;
950                 st->unmap_len = len;
951                 st->in_len = len;
952                 st->dma_addr = st->unmap_addr;
953                 return 0;
954         }
955         return -ENOMEM;
956 }
957
958
959 /**
960  * tso_fill_packet_with_fragment - form descriptors for the current fragment
961  * @tx_queue:           Efx TX queue
962  * @skb:                Socket buffer
963  * @st:                 TSO state
964  *
965  * Form descriptors for the current fragment, until we reach the end
966  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
967  * space in @tx_queue.
968  */
969 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
970                                          const struct sk_buff *skb,
971                                          struct tso_state *st)
972 {
973         struct efx_tx_buffer *buffer;
974         int n, end_of_packet, rc;
975
976         if (st->in_len == 0)
977                 return 0;
978         if (st->packet_space == 0)
979                 return 0;
980
981         EFX_BUG_ON_PARANOID(st->in_len <= 0);
982         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
983
984         n = min(st->in_len, st->packet_space);
985
986         st->packet_space -= n;
987         st->out_len -= n;
988         st->in_len -= n;
989
990         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
991         if (likely(rc == 0)) {
992                 if (st->out_len == 0)
993                         /* Transfer ownership of the skb */
994                         buffer->skb = skb;
995
996                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
997                 buffer->continuation = !end_of_packet;
998
999                 if (st->in_len == 0) {
1000                         /* Transfer ownership of the DMA mapping */
1001                         buffer->unmap_len = st->unmap_len;
1002                         buffer->unmap_single = st->unmap_single;
1003                         st->unmap_len = 0;
1004                 }
1005         }
1006
1007         st->dma_addr += n;
1008         return rc;
1009 }
1010
1011
1012 /**
1013  * tso_start_new_packet - generate a new header and prepare for the new packet
1014  * @tx_queue:           Efx TX queue
1015  * @skb:                Socket buffer
1016  * @st:                 TSO state
1017  *
1018  * Generate a new header and prepare for the new packet.  Return 0 on
1019  * success, or -1 if failed to alloc header.
1020  */
1021 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1022                                 const struct sk_buff *skb,
1023                                 struct tso_state *st)
1024 {
1025         struct efx_tso_header *tsoh;
1026         struct tcphdr *tsoh_th;
1027         unsigned ip_length;
1028         u8 *header;
1029
1030         /* Allocate a DMA-mapped header buffer. */
1031         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1032                 if (tx_queue->tso_headers_free == NULL) {
1033                         if (efx_tsoh_block_alloc(tx_queue))
1034                                 return -1;
1035                 }
1036                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1037                 tsoh = tx_queue->tso_headers_free;
1038                 tx_queue->tso_headers_free = tsoh->next;
1039                 tsoh->unmap_len = 0;
1040         } else {
1041                 tx_queue->tso_long_headers++;
1042                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1043                 if (unlikely(!tsoh))
1044                         return -1;
1045         }
1046
1047         header = TSOH_BUFFER(tsoh);
1048         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1049
1050         /* Copy and update the headers. */
1051         memcpy(header, skb->data, st->header_len);
1052
1053         tsoh_th->seq = htonl(st->seqnum);
1054         st->seqnum += skb_shinfo(skb)->gso_size;
1055         if (st->out_len > skb_shinfo(skb)->gso_size) {
1056                 /* This packet will not finish the TSO burst. */
1057                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1058                 tsoh_th->fin = 0;
1059                 tsoh_th->psh = 0;
1060         } else {
1061                 /* This packet will be the last in the TSO burst. */
1062                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1063                 tsoh_th->fin = tcp_hdr(skb)->fin;
1064                 tsoh_th->psh = tcp_hdr(skb)->psh;
1065         }
1066
1067         if (st->protocol == htons(ETH_P_IP)) {
1068                 struct iphdr *tsoh_iph =
1069                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1070
1071                 tsoh_iph->tot_len = htons(ip_length);
1072
1073                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1074                 tsoh_iph->id = htons(st->ipv4_id);
1075                 st->ipv4_id++;
1076         } else {
1077                 struct ipv6hdr *tsoh_iph =
1078                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1079
1080                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1081         }
1082
1083         st->packet_space = skb_shinfo(skb)->gso_size;
1084         ++tx_queue->tso_packets;
1085
1086         /* Form a descriptor for this header. */
1087         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1088
1089         return 0;
1090 }
1091
1092
1093 /**
1094  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1095  * @tx_queue:           Efx TX queue
1096  * @skb:                Socket buffer
1097  *
1098  * Context: You must hold netif_tx_lock() to call this function.
1099  *
1100  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1101  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1102  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1103  */
1104 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1105                                struct sk_buff *skb)
1106 {
1107         struct efx_nic *efx = tx_queue->efx;
1108         int frag_i, rc, rc2 = NETDEV_TX_OK;
1109         struct tso_state state;
1110
1111         /* Find the packet protocol and sanity-check it */
1112         state.protocol = efx_tso_check_protocol(skb);
1113
1114         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1115
1116         tso_start(&state, skb);
1117
1118         /* Assume that skb header area contains exactly the headers, and
1119          * all payload is in the frag list.
1120          */
1121         if (skb_headlen(skb) == state.header_len) {
1122                 /* Grab the first payload fragment. */
1123                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1124                 frag_i = 0;
1125                 rc = tso_get_fragment(&state, efx,
1126                                       skb_shinfo(skb)->frags + frag_i);
1127                 if (rc)
1128                         goto mem_err;
1129         } else {
1130                 rc = tso_get_head_fragment(&state, efx, skb);
1131                 if (rc)
1132                         goto mem_err;
1133                 frag_i = -1;
1134         }
1135
1136         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1137                 goto mem_err;
1138
1139         while (1) {
1140                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1141                 if (unlikely(rc)) {
1142                         rc2 = NETDEV_TX_BUSY;
1143                         goto unwind;
1144                 }
1145
1146                 /* Move onto the next fragment? */
1147                 if (state.in_len == 0) {
1148                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1149                                 /* End of payload reached. */
1150                                 break;
1151                         rc = tso_get_fragment(&state, efx,
1152                                               skb_shinfo(skb)->frags + frag_i);
1153                         if (rc)
1154                                 goto mem_err;
1155                 }
1156
1157                 /* Start at new packet? */
1158                 if (state.packet_space == 0 &&
1159                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1160                         goto mem_err;
1161         }
1162
1163         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1164
1165         /* Pass off to hardware */
1166         efx_nic_push_buffers(tx_queue);
1167
1168         tx_queue->tso_bursts++;
1169         return NETDEV_TX_OK;
1170
1171  mem_err:
1172         netif_err(efx, tx_err, efx->net_dev,
1173                   "Out of memory for TSO headers, or DMA mapping error\n");
1174         dev_kfree_skb_any(skb);
1175
1176  unwind:
1177         /* Free the DMA mapping we were in the process of writing out */
1178         if (state.unmap_len) {
1179                 if (state.unmap_single)
1180                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1181                                          state.unmap_len, DMA_TO_DEVICE);
1182                 else
1183                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1184                                        state.unmap_len, DMA_TO_DEVICE);
1185         }
1186
1187         efx_enqueue_unwind(tx_queue);
1188         return rc2;
1189 }
1190
1191
1192 /*
1193  * Free up all TSO datastructures associated with tx_queue. This
1194  * routine should be called only once the tx_queue is both empty and
1195  * will no longer be used.
1196  */
1197 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1198 {
1199         unsigned i;
1200
1201         if (tx_queue->buffer) {
1202                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1203                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1204         }
1205
1206         while (tx_queue->tso_headers_free != NULL)
1207                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1208                                     &tx_queue->efx->pci_dev->dev);
1209 }