net: stmmac: support max-speed device tree property
[cascardo/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53
54 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
55 #define JUMBO_LEN       9000
56
57 /* Module parameters */
58 #define TX_TIMEO        5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66
67 static int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70
71 #define DMA_TX_SIZE 256
72 static int dma_txsize = DMA_TX_SIZE;
73 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
75
76 #define DMA_RX_SIZE 256
77 static int dma_rxsize = DMA_RX_SIZE;
78 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
80
81 static int flow_ctrl = FLOW_OFF;
82 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
84
85 static int pause = PAUSE_TIME;
86 module_param(pause, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
88
89 #define TC_DEFAULT 64
90 static int tc = TC_DEFAULT;
91 module_param(tc, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(tc, "DMA threshold control value");
93
94 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
95 static int buf_sz = DMA_BUFFER_SIZE;
96 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
98
99 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
100                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
101                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
102
103 #define STMMAC_DEFAULT_LPI_TIMER        1000
104 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
105 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
107 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
108
109 /* By default the driver will use the ring mode to manage tx and rx descriptors
110  * but passing this value so user can force to use the chain instead of the ring
111  */
112 static unsigned int chain_mode;
113 module_param(chain_mode, int, S_IRUGO);
114 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
115
116 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
117
118 #ifdef CONFIG_STMMAC_DEBUG_FS
119 static int stmmac_init_fs(struct net_device *dev);
120 static void stmmac_exit_fs(void);
121 #endif
122
123 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124
125 /**
126  * stmmac_verify_args - verify the driver parameters.
127  * Description: it verifies if some wrong parameter is passed to the driver.
128  * Note that wrong parameters are replaced with the default values.
129  */
130 static void stmmac_verify_args(void)
131 {
132         if (unlikely(watchdog < 0))
133                 watchdog = TX_TIMEO;
134         if (unlikely(dma_rxsize < 0))
135                 dma_rxsize = DMA_RX_SIZE;
136         if (unlikely(dma_txsize < 0))
137                 dma_txsize = DMA_TX_SIZE;
138         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
139                 buf_sz = DMA_BUFFER_SIZE;
140         if (unlikely(flow_ctrl > 1))
141                 flow_ctrl = FLOW_AUTO;
142         else if (likely(flow_ctrl < 0))
143                 flow_ctrl = FLOW_OFF;
144         if (unlikely((pause < 0) || (pause > 0xffff)))
145                 pause = PAUSE_TIME;
146         if (eee_timer < 0)
147                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
148 }
149
150 /**
151  * stmmac_clk_csr_set - dynamically set the MDC clock
152  * @priv: driver private structure
153  * Description: this is to dynamically set the MDC clock according to the csr
154  * clock input.
155  * Note:
156  *      If a specific clk_csr value is passed from the platform
157  *      this means that the CSR Clock Range selection cannot be
158  *      changed at run-time and it is fixed (as reported in the driver
159  *      documentation). Viceversa the driver will try to set the MDC
160  *      clock dynamically according to the actual clock input.
161  */
162 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
163 {
164         u32 clk_rate;
165
166         clk_rate = clk_get_rate(priv->stmmac_clk);
167
168         /* Platform provided default clk_csr would be assumed valid
169          * for all other cases except for the below mentioned ones.
170          * For values higher than the IEEE 802.3 specified frequency
171          * we can not estimate the proper divider as it is not known
172          * the frequency of clk_csr_i. So we do not change the default
173          * divider.
174          */
175         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176                 if (clk_rate < CSR_F_35M)
177                         priv->clk_csr = STMMAC_CSR_20_35M;
178                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179                         priv->clk_csr = STMMAC_CSR_35_60M;
180                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181                         priv->clk_csr = STMMAC_CSR_60_100M;
182                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183                         priv->clk_csr = STMMAC_CSR_100_150M;
184                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185                         priv->clk_csr = STMMAC_CSR_150_250M;
186                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187                         priv->clk_csr = STMMAC_CSR_250_300M;
188         }
189 }
190
191 static void print_pkt(unsigned char *buf, int len)
192 {
193         int j;
194         pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
195         for (j = 0; j < len; j++) {
196                 if ((j % 16) == 0)
197                         pr_debug("\n %03x:", j);
198                 pr_debug(" %02x", buf[j]);
199         }
200         pr_debug("\n");
201 }
202
203 /* minimum number of free TX descriptors required to wake up TX process */
204 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
205
206 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
207 {
208         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
209 }
210
211 /**
212  * stmmac_hw_fix_mac_speed: callback for speed selection
213  * @priv: driver private structure
214  * Description: on some platforms (e.g. ST), some HW system configuraton
215  * registers have to be set according to the link speed negotiated.
216  */
217 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
218 {
219         struct phy_device *phydev = priv->phydev;
220
221         if (likely(priv->plat->fix_mac_speed))
222                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
223 }
224
225 /**
226  * stmmac_enable_eee_mode: Check and enter in LPI mode
227  * @priv: driver private structure
228  * Description: this function is to verify and enter in LPI mode for EEE.
229  */
230 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
231 {
232         /* Check and enter in LPI mode */
233         if ((priv->dirty_tx == priv->cur_tx) &&
234             (priv->tx_path_in_lpi_mode == false))
235                 priv->hw->mac->set_eee_mode(priv->ioaddr);
236 }
237
238 /**
239  * stmmac_disable_eee_mode: disable/exit from EEE
240  * @priv: driver private structure
241  * Description: this function is to exit and disable EEE in case of
242  * LPI state is true. This is called by the xmit.
243  */
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246         priv->hw->mac->reset_eee_mode(priv->ioaddr);
247         del_timer_sync(&priv->eee_ctrl_timer);
248         priv->tx_path_in_lpi_mode = false;
249 }
250
251 /**
252  * stmmac_eee_ctrl_timer: EEE TX SW timer.
253  * @arg : data hook
254  * Description:
255  *  if there is no data transfer and if we are not in LPI state,
256  *  then MAC Transmitter can be moved to LPI state.
257  */
258 static void stmmac_eee_ctrl_timer(unsigned long arg)
259 {
260         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
261
262         stmmac_enable_eee_mode(priv);
263         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
264 }
265
266 /**
267  * stmmac_eee_init: init EEE
268  * @priv: driver private structure
269  * Description:
270  *  If the EEE support has been enabled while configuring the driver,
271  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
272  *  phy can also manage EEE, so enable the LPI state and start the timer
273  *  to verify if the tx path can enter in LPI state.
274  */
275 bool stmmac_eee_init(struct stmmac_priv *priv)
276 {
277         bool ret = false;
278
279         /* Using PCS we cannot dial with the phy registers at this stage
280          * so we do not support extra feature like EEE.
281          */
282         if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
283             (priv->pcs == STMMAC_PCS_RTBI))
284                 goto out;
285
286         /* MAC core supports the EEE feature. */
287         if (priv->dma_cap.eee) {
288                 /* Check if the PHY supports EEE */
289                 if (phy_init_eee(priv->phydev, 1))
290                         goto out;
291
292                 if (!priv->eee_active) {
293                         priv->eee_active = 1;
294                         init_timer(&priv->eee_ctrl_timer);
295                         priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
296                         priv->eee_ctrl_timer.data = (unsigned long)priv;
297                         priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
298                         add_timer(&priv->eee_ctrl_timer);
299
300                         priv->hw->mac->set_eee_timer(priv->ioaddr,
301                                                      STMMAC_DEFAULT_LIT_LS,
302                                                      priv->tx_lpi_timer);
303                 } else
304                         /* Set HW EEE according to the speed */
305                         priv->hw->mac->set_eee_pls(priv->ioaddr,
306                                                    priv->phydev->link);
307
308                 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
309
310                 ret = true;
311         }
312 out:
313         return ret;
314 }
315
316 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
317  * @priv: driver private structure
318  * @entry : descriptor index to be used.
319  * @skb : the socket buffer
320  * Description :
321  * This function will read timestamp from the descriptor & pass it to stack.
322  * and also perform some sanity checks.
323  */
324 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
325                                    unsigned int entry, struct sk_buff *skb)
326 {
327         struct skb_shared_hwtstamps shhwtstamp;
328         u64 ns;
329         void *desc = NULL;
330
331         if (!priv->hwts_tx_en)
332                 return;
333
334         /* exit if skb doesn't support hw tstamp */
335         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
336                 return;
337
338         if (priv->adv_ts)
339                 desc = (priv->dma_etx + entry);
340         else
341                 desc = (priv->dma_tx + entry);
342
343         /* check tx tstamp status */
344         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
345                 return;
346
347         /* get the valid tstamp */
348         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
349
350         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
351         shhwtstamp.hwtstamp = ns_to_ktime(ns);
352         /* pass tstamp to stack */
353         skb_tstamp_tx(skb, &shhwtstamp);
354
355         return;
356 }
357
358 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
359  * @priv: driver private structure
360  * @entry : descriptor index to be used.
361  * @skb : the socket buffer
362  * Description :
363  * This function will read received packet's timestamp from the descriptor
364  * and pass it to stack. It also perform some sanity checks.
365  */
366 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
367                                    unsigned int entry, struct sk_buff *skb)
368 {
369         struct skb_shared_hwtstamps *shhwtstamp = NULL;
370         u64 ns;
371         void *desc = NULL;
372
373         if (!priv->hwts_rx_en)
374                 return;
375
376         if (priv->adv_ts)
377                 desc = (priv->dma_erx + entry);
378         else
379                 desc = (priv->dma_rx + entry);
380
381         /* exit if rx tstamp is not valid */
382         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
383                 return;
384
385         /* get valid tstamp */
386         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
387         shhwtstamp = skb_hwtstamps(skb);
388         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
389         shhwtstamp->hwtstamp = ns_to_ktime(ns);
390 }
391
392 /**
393  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
394  *  @dev: device pointer.
395  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
396  *  a proprietary structure used to pass information to the driver.
397  *  Description:
398  *  This function configures the MAC to enable/disable both outgoing(TX)
399  *  and incoming(RX) packets time stamping based on user input.
400  *  Return Value:
401  *  0 on success and an appropriate -ve integer on failure.
402  */
403 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
404 {
405         struct stmmac_priv *priv = netdev_priv(dev);
406         struct hwtstamp_config config;
407         struct timespec now;
408         u64 temp = 0;
409         u32 ptp_v2 = 0;
410         u32 tstamp_all = 0;
411         u32 ptp_over_ipv4_udp = 0;
412         u32 ptp_over_ipv6_udp = 0;
413         u32 ptp_over_ethernet = 0;
414         u32 snap_type_sel = 0;
415         u32 ts_master_en = 0;
416         u32 ts_event_en = 0;
417         u32 value = 0;
418
419         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
420                 netdev_alert(priv->dev, "No support for HW time stamping\n");
421                 priv->hwts_tx_en = 0;
422                 priv->hwts_rx_en = 0;
423
424                 return -EOPNOTSUPP;
425         }
426
427         if (copy_from_user(&config, ifr->ifr_data,
428                            sizeof(struct hwtstamp_config)))
429                 return -EFAULT;
430
431         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
432                  __func__, config.flags, config.tx_type, config.rx_filter);
433
434         /* reserved for future extensions */
435         if (config.flags)
436                 return -EINVAL;
437
438         if (config.tx_type != HWTSTAMP_TX_OFF &&
439             config.tx_type != HWTSTAMP_TX_ON)
440                 return -ERANGE;
441
442         if (priv->adv_ts) {
443                 switch (config.rx_filter) {
444                 case HWTSTAMP_FILTER_NONE:
445                         /* time stamp no incoming packet at all */
446                         config.rx_filter = HWTSTAMP_FILTER_NONE;
447                         break;
448
449                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
450                         /* PTP v1, UDP, any kind of event packet */
451                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
452                         /* take time stamp for all event messages */
453                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
454
455                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
456                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
457                         break;
458
459                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
460                         /* PTP v1, UDP, Sync packet */
461                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
462                         /* take time stamp for SYNC messages only */
463                         ts_event_en = PTP_TCR_TSEVNTENA;
464
465                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
466                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
467                         break;
468
469                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
470                         /* PTP v1, UDP, Delay_req packet */
471                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
472                         /* take time stamp for Delay_Req messages only */
473                         ts_master_en = PTP_TCR_TSMSTRENA;
474                         ts_event_en = PTP_TCR_TSEVNTENA;
475
476                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
477                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
478                         break;
479
480                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
481                         /* PTP v2, UDP, any kind of event packet */
482                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
483                         ptp_v2 = PTP_TCR_TSVER2ENA;
484                         /* take time stamp for all event messages */
485                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
486
487                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
488                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
489                         break;
490
491                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
492                         /* PTP v2, UDP, Sync packet */
493                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
494                         ptp_v2 = PTP_TCR_TSVER2ENA;
495                         /* take time stamp for SYNC messages only */
496                         ts_event_en = PTP_TCR_TSEVNTENA;
497
498                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
499                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
500                         break;
501
502                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
503                         /* PTP v2, UDP, Delay_req packet */
504                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
505                         ptp_v2 = PTP_TCR_TSVER2ENA;
506                         /* take time stamp for Delay_Req messages only */
507                         ts_master_en = PTP_TCR_TSMSTRENA;
508                         ts_event_en = PTP_TCR_TSEVNTENA;
509
510                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
511                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
512                         break;
513
514                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
515                         /* PTP v2/802.AS1 any layer, any kind of event packet */
516                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
517                         ptp_v2 = PTP_TCR_TSVER2ENA;
518                         /* take time stamp for all event messages */
519                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
520
521                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
522                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
523                         ptp_over_ethernet = PTP_TCR_TSIPENA;
524                         break;
525
526                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
527                         /* PTP v2/802.AS1, any layer, Sync packet */
528                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
529                         ptp_v2 = PTP_TCR_TSVER2ENA;
530                         /* take time stamp for SYNC messages only */
531                         ts_event_en = PTP_TCR_TSEVNTENA;
532
533                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
534                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
535                         ptp_over_ethernet = PTP_TCR_TSIPENA;
536                         break;
537
538                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
539                         /* PTP v2/802.AS1, any layer, Delay_req packet */
540                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
541                         ptp_v2 = PTP_TCR_TSVER2ENA;
542                         /* take time stamp for Delay_Req messages only */
543                         ts_master_en = PTP_TCR_TSMSTRENA;
544                         ts_event_en = PTP_TCR_TSEVNTENA;
545
546                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548                         ptp_over_ethernet = PTP_TCR_TSIPENA;
549                         break;
550
551                 case HWTSTAMP_FILTER_ALL:
552                         /* time stamp any incoming packet */
553                         config.rx_filter = HWTSTAMP_FILTER_ALL;
554                         tstamp_all = PTP_TCR_TSENALL;
555                         break;
556
557                 default:
558                         return -ERANGE;
559                 }
560         } else {
561                 switch (config.rx_filter) {
562                 case HWTSTAMP_FILTER_NONE:
563                         config.rx_filter = HWTSTAMP_FILTER_NONE;
564                         break;
565                 default:
566                         /* PTP v1, UDP, any kind of event packet */
567                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
568                         break;
569                 }
570         }
571         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
572         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
573
574         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
575                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
576         else {
577                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
578                          tstamp_all | ptp_v2 | ptp_over_ethernet |
579                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
580                          ts_master_en | snap_type_sel);
581
582                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
583
584                 /* program Sub Second Increment reg */
585                 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
586
587                 /* calculate default added value:
588                  * formula is :
589                  * addend = (2^32)/freq_div_ratio;
590                  * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
591                  * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
592                  * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
593                  *       achive 20ns accuracy.
594                  *
595                  * 2^x * y == (y << x), hence
596                  * 2^32 * 50000000 ==> (50000000 << 32)
597                  */
598                 temp = (u64) (50000000ULL << 32);
599                 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
600                 priv->hw->ptp->config_addend(priv->ioaddr,
601                                              priv->default_addend);
602
603                 /* initialize system time */
604                 getnstimeofday(&now);
605                 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
606                                             now.tv_nsec);
607         }
608
609         return copy_to_user(ifr->ifr_data, &config,
610                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
611 }
612
613 /**
614  * stmmac_init_ptp: init PTP
615  * @priv: driver private structure
616  * Description: this is to verify if the HW supports the PTPv1 or v2.
617  * This is done by looking at the HW cap. register.
618  * Also it registers the ptp driver.
619  */
620 static int stmmac_init_ptp(struct stmmac_priv *priv)
621 {
622         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
623                 return -EOPNOTSUPP;
624
625         priv->adv_ts = 0;
626         if (priv->dma_cap.atime_stamp && priv->extend_desc)
627                 priv->adv_ts = 1;
628
629         if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
630                 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
631
632         if (netif_msg_hw(priv) && priv->adv_ts)
633                 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
634
635         priv->hw->ptp = &stmmac_ptp;
636         priv->hwts_tx_en = 0;
637         priv->hwts_rx_en = 0;
638
639         return stmmac_ptp_register(priv);
640 }
641
642 static void stmmac_release_ptp(struct stmmac_priv *priv)
643 {
644         stmmac_ptp_unregister(priv);
645 }
646
647 /**
648  * stmmac_adjust_link
649  * @dev: net device structure
650  * Description: it adjusts the link parameters.
651  */
652 static void stmmac_adjust_link(struct net_device *dev)
653 {
654         struct stmmac_priv *priv = netdev_priv(dev);
655         struct phy_device *phydev = priv->phydev;
656         unsigned long flags;
657         int new_state = 0;
658         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
659
660         if (phydev == NULL)
661                 return;
662
663         spin_lock_irqsave(&priv->lock, flags);
664
665         if (phydev->link) {
666                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
667
668                 /* Now we make sure that we can be in full duplex mode.
669                  * If not, we operate in half-duplex mode. */
670                 if (phydev->duplex != priv->oldduplex) {
671                         new_state = 1;
672                         if (!(phydev->duplex))
673                                 ctrl &= ~priv->hw->link.duplex;
674                         else
675                                 ctrl |= priv->hw->link.duplex;
676                         priv->oldduplex = phydev->duplex;
677                 }
678                 /* Flow Control operation */
679                 if (phydev->pause)
680                         priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
681                                                  fc, pause_time);
682
683                 if (phydev->speed != priv->speed) {
684                         new_state = 1;
685                         switch (phydev->speed) {
686                         case 1000:
687                                 if (likely(priv->plat->has_gmac))
688                                         ctrl &= ~priv->hw->link.port;
689                                 stmmac_hw_fix_mac_speed(priv);
690                                 break;
691                         case 100:
692                         case 10:
693                                 if (priv->plat->has_gmac) {
694                                         ctrl |= priv->hw->link.port;
695                                         if (phydev->speed == SPEED_100) {
696                                                 ctrl |= priv->hw->link.speed;
697                                         } else {
698                                                 ctrl &= ~(priv->hw->link.speed);
699                                         }
700                                 } else {
701                                         ctrl &= ~priv->hw->link.port;
702                                 }
703                                 stmmac_hw_fix_mac_speed(priv);
704                                 break;
705                         default:
706                                 if (netif_msg_link(priv))
707                                         pr_warn("%s: Speed (%d) not 10/100\n",
708                                                 dev->name, phydev->speed);
709                                 break;
710                         }
711
712                         priv->speed = phydev->speed;
713                 }
714
715                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
716
717                 if (!priv->oldlink) {
718                         new_state = 1;
719                         priv->oldlink = 1;
720                 }
721         } else if (priv->oldlink) {
722                 new_state = 1;
723                 priv->oldlink = 0;
724                 priv->speed = 0;
725                 priv->oldduplex = -1;
726         }
727
728         if (new_state && netif_msg_link(priv))
729                 phy_print_status(phydev);
730
731         /* At this stage, it could be needed to setup the EEE or adjust some
732          * MAC related HW registers.
733          */
734         priv->eee_enabled = stmmac_eee_init(priv);
735
736         spin_unlock_irqrestore(&priv->lock, flags);
737 }
738
739 /**
740  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
741  * @priv: driver private structure
742  * Description: this is to verify if the HW supports the PCS.
743  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
744  * configured for the TBI, RTBI, or SGMII PHY interface.
745  */
746 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
747 {
748         int interface = priv->plat->interface;
749
750         if (priv->dma_cap.pcs) {
751                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
752                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
753                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
754                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
755                         pr_debug("STMMAC: PCS RGMII support enable\n");
756                         priv->pcs = STMMAC_PCS_RGMII;
757                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
758                         pr_debug("STMMAC: PCS SGMII support enable\n");
759                         priv->pcs = STMMAC_PCS_SGMII;
760                 }
761         }
762 }
763
764 /**
765  * stmmac_init_phy - PHY initialization
766  * @dev: net device structure
767  * Description: it initializes the driver's PHY state, and attaches the PHY
768  * to the mac driver.
769  *  Return value:
770  *  0 on success
771  */
772 static int stmmac_init_phy(struct net_device *dev)
773 {
774         struct stmmac_priv *priv = netdev_priv(dev);
775         struct phy_device *phydev;
776         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
777         char bus_id[MII_BUS_ID_SIZE];
778         int interface = priv->plat->interface;
779         int max_speed = priv->plat->max_speed;
780         priv->oldlink = 0;
781         priv->speed = 0;
782         priv->oldduplex = -1;
783
784         if (priv->plat->phy_bus_name)
785                 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
786                          priv->plat->phy_bus_name, priv->plat->bus_id);
787         else
788                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
789                          priv->plat->bus_id);
790
791         snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
792                  priv->plat->phy_addr);
793         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
794
795         phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
796
797         if (IS_ERR(phydev)) {
798                 pr_err("%s: Could not attach to PHY\n", dev->name);
799                 return PTR_ERR(phydev);
800         }
801
802         /* Stop Advertising 1000BASE Capability if interface is not GMII */
803         if ((interface == PHY_INTERFACE_MODE_MII) ||
804             (interface == PHY_INTERFACE_MODE_RMII) ||
805                 (max_speed < 1000 &&  max_speed > 0))
806                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
807                                          SUPPORTED_1000baseT_Full);
808
809         /*
810          * Broken HW is sometimes missing the pull-up resistor on the
811          * MDIO line, which results in reads to non-existent devices returning
812          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
813          * device as well.
814          * Note: phydev->phy_id is the result of reading the UID PHY registers.
815          */
816         if (phydev->phy_id == 0) {
817                 phy_disconnect(phydev);
818                 return -ENODEV;
819         }
820         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
821                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
822
823         priv->phydev = phydev;
824
825         return 0;
826 }
827
828 /**
829  * stmmac_display_ring: display ring
830  * @head: pointer to the head of the ring passed.
831  * @size: size of the ring.
832  * @extend_desc: to verify if extended descriptors are used.
833  * Description: display the control/status and buffer descriptors.
834  */
835 static void stmmac_display_ring(void *head, int size, int extend_desc)
836 {
837         int i;
838         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
839         struct dma_desc *p = (struct dma_desc *)head;
840
841         for (i = 0; i < size; i++) {
842                 u64 x;
843                 if (extend_desc) {
844                         x = *(u64 *) ep;
845                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
846                                 i, (unsigned int)virt_to_phys(ep),
847                                 (unsigned int)x, (unsigned int)(x >> 32),
848                                 ep->basic.des2, ep->basic.des3);
849                         ep++;
850                 } else {
851                         x = *(u64 *) p;
852                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
853                                 i, (unsigned int)virt_to_phys(p),
854                                 (unsigned int)x, (unsigned int)(x >> 32),
855                                 p->des2, p->des3);
856                         p++;
857                 }
858                 pr_info("\n");
859         }
860 }
861
862 static void stmmac_display_rings(struct stmmac_priv *priv)
863 {
864         unsigned int txsize = priv->dma_tx_size;
865         unsigned int rxsize = priv->dma_rx_size;
866
867         if (priv->extend_desc) {
868                 pr_info("Extended RX descriptor ring:\n");
869                 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
870                 pr_info("Extended TX descriptor ring:\n");
871                 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
872         } else {
873                 pr_info("RX descriptor ring:\n");
874                 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
875                 pr_info("TX descriptor ring:\n");
876                 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
877         }
878 }
879
880 static int stmmac_set_bfsize(int mtu, int bufsize)
881 {
882         int ret = bufsize;
883
884         if (mtu >= BUF_SIZE_4KiB)
885                 ret = BUF_SIZE_8KiB;
886         else if (mtu >= BUF_SIZE_2KiB)
887                 ret = BUF_SIZE_4KiB;
888         else if (mtu >= DMA_BUFFER_SIZE)
889                 ret = BUF_SIZE_2KiB;
890         else
891                 ret = DMA_BUFFER_SIZE;
892
893         return ret;
894 }
895
896 /**
897  * stmmac_clear_descriptors: clear descriptors
898  * @priv: driver private structure
899  * Description: this function is called to clear the tx and rx descriptors
900  * in case of both basic and extended descriptors are used.
901  */
902 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
903 {
904         int i;
905         unsigned int txsize = priv->dma_tx_size;
906         unsigned int rxsize = priv->dma_rx_size;
907
908         /* Clear the Rx/Tx descriptors */
909         for (i = 0; i < rxsize; i++)
910                 if (priv->extend_desc)
911                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
912                                                      priv->use_riwt, priv->mode,
913                                                      (i == rxsize - 1));
914                 else
915                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
916                                                      priv->use_riwt, priv->mode,
917                                                      (i == rxsize - 1));
918         for (i = 0; i < txsize; i++)
919                 if (priv->extend_desc)
920                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
921                                                      priv->mode,
922                                                      (i == txsize - 1));
923                 else
924                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
925                                                      priv->mode,
926                                                      (i == txsize - 1));
927 }
928
929 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
930                                   int i)
931 {
932         struct sk_buff *skb;
933
934         skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
935                                  GFP_KERNEL);
936         if (!skb) {
937                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
938                 return -ENOMEM;
939         }
940         skb_reserve(skb, NET_IP_ALIGN);
941         priv->rx_skbuff[i] = skb;
942         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
943                                                 priv->dma_buf_sz,
944                                                 DMA_FROM_DEVICE);
945         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
946                 pr_err("%s: DMA mapping error\n", __func__);
947                 dev_kfree_skb_any(skb);
948                 return -EINVAL;
949         }
950
951         p->des2 = priv->rx_skbuff_dma[i];
952
953         if ((priv->mode == STMMAC_RING_MODE) &&
954             (priv->dma_buf_sz == BUF_SIZE_16KiB))
955                 priv->hw->ring->init_desc3(p);
956
957         return 0;
958 }
959
960 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
961 {
962         if (priv->rx_skbuff[i]) {
963                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
964                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
965                 dev_kfree_skb_any(priv->rx_skbuff[i]);
966         }
967         priv->rx_skbuff[i] = NULL;
968 }
969
970 /**
971  * init_dma_desc_rings - init the RX/TX descriptor rings
972  * @dev: net device structure
973  * Description:  this function initializes the DMA RX/TX descriptors
974  * and allocates the socket buffers. It suppors the chained and ring
975  * modes.
976  */
977 static int init_dma_desc_rings(struct net_device *dev)
978 {
979         int i;
980         struct stmmac_priv *priv = netdev_priv(dev);
981         unsigned int txsize = priv->dma_tx_size;
982         unsigned int rxsize = priv->dma_rx_size;
983         unsigned int bfsize = 0;
984         int ret = -ENOMEM;
985
986         /* Set the max buffer size according to the DESC mode
987          * and the MTU. Note that RING mode allows 16KiB bsize.
988          */
989         if (priv->mode == STMMAC_RING_MODE)
990                 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
991
992         if (bfsize < BUF_SIZE_16KiB)
993                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
994
995         if (netif_msg_probe(priv))
996                 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
997                          txsize, rxsize, bfsize);
998
999         if (priv->extend_desc) {
1000                 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1001                                                    sizeof(struct
1002                                                           dma_extended_desc),
1003                                                    &priv->dma_rx_phy,
1004                                                    GFP_KERNEL);
1005                 if (!priv->dma_erx)
1006                         goto err_dma;
1007
1008                 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1009                                                    sizeof(struct
1010                                                           dma_extended_desc),
1011                                                    &priv->dma_tx_phy,
1012                                                    GFP_KERNEL);
1013                 if (!priv->dma_etx) {
1014                         dma_free_coherent(priv->device, priv->dma_rx_size *
1015                                         sizeof(struct dma_extended_desc),
1016                                         priv->dma_erx, priv->dma_rx_phy);
1017                         goto err_dma;
1018                 }
1019         } else {
1020                 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1021                                                   sizeof(struct dma_desc),
1022                                                   &priv->dma_rx_phy,
1023                                                   GFP_KERNEL);
1024                 if (!priv->dma_rx)
1025                         goto err_dma;
1026
1027                 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1028                                                   sizeof(struct dma_desc),
1029                                                   &priv->dma_tx_phy,
1030                                                   GFP_KERNEL);
1031                 if (!priv->dma_tx) {
1032                         dma_free_coherent(priv->device, priv->dma_rx_size *
1033                                         sizeof(struct dma_desc),
1034                                         priv->dma_rx, priv->dma_rx_phy);
1035                         goto err_dma;
1036                 }
1037         }
1038
1039         priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1040                                             GFP_KERNEL);
1041         if (!priv->rx_skbuff_dma)
1042                 goto err_rx_skbuff_dma;
1043
1044         priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1045                                         GFP_KERNEL);
1046         if (!priv->rx_skbuff)
1047                 goto err_rx_skbuff;
1048
1049         priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1050                                             GFP_KERNEL);
1051         if (!priv->tx_skbuff_dma)
1052                 goto err_tx_skbuff_dma;
1053
1054         priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1055                                         GFP_KERNEL);
1056         if (!priv->tx_skbuff)
1057                 goto err_tx_skbuff;
1058
1059         if (netif_msg_probe(priv)) {
1060                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1061                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1062
1063                 /* RX INITIALIZATION */
1064                 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1065         }
1066         for (i = 0; i < rxsize; i++) {
1067                 struct dma_desc *p;
1068                 if (priv->extend_desc)
1069                         p = &((priv->dma_erx + i)->basic);
1070                 else
1071                         p = priv->dma_rx + i;
1072
1073                 ret = stmmac_init_rx_buffers(priv, p, i);
1074                 if (ret)
1075                         goto err_init_rx_buffers;
1076
1077                 if (netif_msg_probe(priv))
1078                         pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1079                                  priv->rx_skbuff[i]->data,
1080                                  (unsigned int)priv->rx_skbuff_dma[i]);
1081         }
1082         priv->cur_rx = 0;
1083         priv->dirty_rx = (unsigned int)(i - rxsize);
1084         priv->dma_buf_sz = bfsize;
1085         buf_sz = bfsize;
1086
1087         /* Setup the chained descriptor addresses */
1088         if (priv->mode == STMMAC_CHAIN_MODE) {
1089                 if (priv->extend_desc) {
1090                         priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1091                                               rxsize, 1);
1092                         priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1093                                               txsize, 1);
1094                 } else {
1095                         priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1096                                               rxsize, 0);
1097                         priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1098                                               txsize, 0);
1099                 }
1100         }
1101
1102         /* TX INITIALIZATION */
1103         for (i = 0; i < txsize; i++) {
1104                 struct dma_desc *p;
1105                 if (priv->extend_desc)
1106                         p = &((priv->dma_etx + i)->basic);
1107                 else
1108                         p = priv->dma_tx + i;
1109                 p->des2 = 0;
1110                 priv->tx_skbuff_dma[i] = 0;
1111                 priv->tx_skbuff[i] = NULL;
1112         }
1113
1114         priv->dirty_tx = 0;
1115         priv->cur_tx = 0;
1116
1117         stmmac_clear_descriptors(priv);
1118
1119         if (netif_msg_hw(priv))
1120                 stmmac_display_rings(priv);
1121
1122         return 0;
1123 err_init_rx_buffers:
1124         while (--i >= 0)
1125                 stmmac_free_rx_buffers(priv, i);
1126         kfree(priv->tx_skbuff);
1127 err_tx_skbuff:
1128         kfree(priv->tx_skbuff_dma);
1129 err_tx_skbuff_dma:
1130         kfree(priv->rx_skbuff);
1131 err_rx_skbuff:
1132         kfree(priv->rx_skbuff_dma);
1133 err_rx_skbuff_dma:
1134         if (priv->extend_desc) {
1135                 dma_free_coherent(priv->device, priv->dma_tx_size *
1136                                   sizeof(struct dma_extended_desc),
1137                                   priv->dma_etx, priv->dma_tx_phy);
1138                 dma_free_coherent(priv->device, priv->dma_rx_size *
1139                                   sizeof(struct dma_extended_desc),
1140                                   priv->dma_erx, priv->dma_rx_phy);
1141         } else {
1142                 dma_free_coherent(priv->device,
1143                                 priv->dma_tx_size * sizeof(struct dma_desc),
1144                                 priv->dma_tx, priv->dma_tx_phy);
1145                 dma_free_coherent(priv->device,
1146                                 priv->dma_rx_size * sizeof(struct dma_desc),
1147                                 priv->dma_rx, priv->dma_rx_phy);
1148         }
1149 err_dma:
1150         return ret;
1151 }
1152
1153 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1154 {
1155         int i;
1156
1157         for (i = 0; i < priv->dma_rx_size; i++)
1158                 stmmac_free_rx_buffers(priv, i);
1159 }
1160
1161 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1162 {
1163         int i;
1164
1165         for (i = 0; i < priv->dma_tx_size; i++) {
1166                 if (priv->tx_skbuff[i] != NULL) {
1167                         struct dma_desc *p;
1168                         if (priv->extend_desc)
1169                                 p = &((priv->dma_etx + i)->basic);
1170                         else
1171                                 p = priv->dma_tx + i;
1172
1173                         if (priv->tx_skbuff_dma[i])
1174                                 dma_unmap_single(priv->device,
1175                                                  priv->tx_skbuff_dma[i],
1176                                                  priv->hw->desc->get_tx_len(p),
1177                                                  DMA_TO_DEVICE);
1178                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1179                         priv->tx_skbuff[i] = NULL;
1180                         priv->tx_skbuff_dma[i] = 0;
1181                 }
1182         }
1183 }
1184
1185 static void free_dma_desc_resources(struct stmmac_priv *priv)
1186 {
1187         /* Release the DMA TX/RX socket buffers */
1188         dma_free_rx_skbufs(priv);
1189         dma_free_tx_skbufs(priv);
1190
1191         /* Free DMA regions of consistent memory previously allocated */
1192         if (!priv->extend_desc) {
1193                 dma_free_coherent(priv->device,
1194                                   priv->dma_tx_size * sizeof(struct dma_desc),
1195                                   priv->dma_tx, priv->dma_tx_phy);
1196                 dma_free_coherent(priv->device,
1197                                   priv->dma_rx_size * sizeof(struct dma_desc),
1198                                   priv->dma_rx, priv->dma_rx_phy);
1199         } else {
1200                 dma_free_coherent(priv->device, priv->dma_tx_size *
1201                                   sizeof(struct dma_extended_desc),
1202                                   priv->dma_etx, priv->dma_tx_phy);
1203                 dma_free_coherent(priv->device, priv->dma_rx_size *
1204                                   sizeof(struct dma_extended_desc),
1205                                   priv->dma_erx, priv->dma_rx_phy);
1206         }
1207         kfree(priv->rx_skbuff_dma);
1208         kfree(priv->rx_skbuff);
1209         kfree(priv->tx_skbuff_dma);
1210         kfree(priv->tx_skbuff);
1211 }
1212
1213 /**
1214  *  stmmac_dma_operation_mode - HW DMA operation mode
1215  *  @priv: driver private structure
1216  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1217  *  or Store-And-Forward capability.
1218  */
1219 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1220 {
1221         if (priv->plat->force_thresh_dma_mode)
1222                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1223         else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1224                 /*
1225                  * In case of GMAC, SF mode can be enabled
1226                  * to perform the TX COE in HW. This depends on:
1227                  * 1) TX COE if actually supported
1228                  * 2) There is no bugged Jumbo frame support
1229                  *    that needs to not insert csum in the TDES.
1230                  */
1231                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1232                 tc = SF_DMA_MODE;
1233         } else
1234                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1235 }
1236
1237 /**
1238  * stmmac_tx_clean:
1239  * @priv: driver private structure
1240  * Description: it reclaims resources after transmission completes.
1241  */
1242 static void stmmac_tx_clean(struct stmmac_priv *priv)
1243 {
1244         unsigned int txsize = priv->dma_tx_size;
1245
1246         spin_lock(&priv->tx_lock);
1247
1248         priv->xstats.tx_clean++;
1249
1250         while (priv->dirty_tx != priv->cur_tx) {
1251                 int last;
1252                 unsigned int entry = priv->dirty_tx % txsize;
1253                 struct sk_buff *skb = priv->tx_skbuff[entry];
1254                 struct dma_desc *p;
1255
1256                 if (priv->extend_desc)
1257                         p = (struct dma_desc *)(priv->dma_etx + entry);
1258                 else
1259                         p = priv->dma_tx + entry;
1260
1261                 /* Check if the descriptor is owned by the DMA. */
1262                 if (priv->hw->desc->get_tx_owner(p))
1263                         break;
1264
1265                 /* Verify tx error by looking at the last segment. */
1266                 last = priv->hw->desc->get_tx_ls(p);
1267                 if (likely(last)) {
1268                         int tx_error =
1269                             priv->hw->desc->tx_status(&priv->dev->stats,
1270                                                       &priv->xstats, p,
1271                                                       priv->ioaddr);
1272                         if (likely(tx_error == 0)) {
1273                                 priv->dev->stats.tx_packets++;
1274                                 priv->xstats.tx_pkt_n++;
1275                         } else
1276                                 priv->dev->stats.tx_errors++;
1277
1278                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1279                 }
1280                 if (netif_msg_tx_done(priv))
1281                         pr_debug("%s: curr %d, dirty %d\n", __func__,
1282                                  priv->cur_tx, priv->dirty_tx);
1283
1284                 if (likely(priv->tx_skbuff_dma[entry])) {
1285                         dma_unmap_single(priv->device,
1286                                          priv->tx_skbuff_dma[entry],
1287                                          priv->hw->desc->get_tx_len(p),
1288                                          DMA_TO_DEVICE);
1289                         priv->tx_skbuff_dma[entry] = 0;
1290                 }
1291                 priv->hw->ring->clean_desc3(priv, p);
1292
1293                 if (likely(skb != NULL)) {
1294                         dev_kfree_skb(skb);
1295                         priv->tx_skbuff[entry] = NULL;
1296                 }
1297
1298                 priv->hw->desc->release_tx_desc(p, priv->mode);
1299
1300                 priv->dirty_tx++;
1301         }
1302         if (unlikely(netif_queue_stopped(priv->dev) &&
1303                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1304                 netif_tx_lock(priv->dev);
1305                 if (netif_queue_stopped(priv->dev) &&
1306                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1307                         if (netif_msg_tx_done(priv))
1308                                 pr_debug("%s: restart transmit\n", __func__);
1309                         netif_wake_queue(priv->dev);
1310                 }
1311                 netif_tx_unlock(priv->dev);
1312         }
1313
1314         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1315                 stmmac_enable_eee_mode(priv);
1316                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1317         }
1318         spin_unlock(&priv->tx_lock);
1319 }
1320
1321 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1322 {
1323         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1324 }
1325
1326 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1327 {
1328         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1329 }
1330
1331 /**
1332  * stmmac_tx_err: irq tx error mng function
1333  * @priv: driver private structure
1334  * Description: it cleans the descriptors and restarts the transmission
1335  * in case of errors.
1336  */
1337 static void stmmac_tx_err(struct stmmac_priv *priv)
1338 {
1339         int i;
1340         int txsize = priv->dma_tx_size;
1341         netif_stop_queue(priv->dev);
1342
1343         priv->hw->dma->stop_tx(priv->ioaddr);
1344         dma_free_tx_skbufs(priv);
1345         for (i = 0; i < txsize; i++)
1346                 if (priv->extend_desc)
1347                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1348                                                      priv->mode,
1349                                                      (i == txsize - 1));
1350                 else
1351                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1352                                                      priv->mode,
1353                                                      (i == txsize - 1));
1354         priv->dirty_tx = 0;
1355         priv->cur_tx = 0;
1356         priv->hw->dma->start_tx(priv->ioaddr);
1357
1358         priv->dev->stats.tx_errors++;
1359         netif_wake_queue(priv->dev);
1360 }
1361
1362 /**
1363  * stmmac_dma_interrupt: DMA ISR
1364  * @priv: driver private structure
1365  * Description: this is the DMA ISR. It is called by the main ISR.
1366  * It calls the dwmac dma routine to understand which type of interrupt
1367  * happened. In case of there is a Normal interrupt and either TX or RX
1368  * interrupt happened so the NAPI is scheduled.
1369  */
1370 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1371 {
1372         int status;
1373
1374         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1375         if (likely((status & handle_rx)) || (status & handle_tx)) {
1376                 if (likely(napi_schedule_prep(&priv->napi))) {
1377                         stmmac_disable_dma_irq(priv);
1378                         __napi_schedule(&priv->napi);
1379                 }
1380         }
1381         if (unlikely(status & tx_hard_error_bump_tc)) {
1382                 /* Try to bump up the dma threshold on this failure */
1383                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1384                         tc += 64;
1385                         priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1386                         priv->xstats.threshold = tc;
1387                 }
1388         } else if (unlikely(status == tx_hard_error))
1389                 stmmac_tx_err(priv);
1390 }
1391
1392 /**
1393  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1394  * @priv: driver private structure
1395  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1396  */
1397 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1398 {
1399         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1400             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1401
1402         dwmac_mmc_intr_all_mask(priv->ioaddr);
1403
1404         if (priv->dma_cap.rmon) {
1405                 dwmac_mmc_ctrl(priv->ioaddr, mode);
1406                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1407         } else
1408                 pr_info(" No MAC Management Counters available\n");
1409 }
1410
1411 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1412 {
1413         u32 hwid = priv->hw->synopsys_uid;
1414
1415         /* Check Synopsys Id (not available on old chips) */
1416         if (likely(hwid)) {
1417                 u32 uid = ((hwid & 0x0000ff00) >> 8);
1418                 u32 synid = (hwid & 0x000000ff);
1419
1420                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1421                         uid, synid);
1422
1423                 return synid;
1424         }
1425         return 0;
1426 }
1427
1428 /**
1429  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1430  * @priv: driver private structure
1431  * Description: select the Enhanced/Alternate or Normal descriptors.
1432  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1433  * supported by the HW cap. register.
1434  */
1435 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1436 {
1437         if (priv->plat->enh_desc) {
1438                 pr_info(" Enhanced/Alternate descriptors\n");
1439
1440                 /* GMAC older than 3.50 has no extended descriptors */
1441                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1442                         pr_info("\tEnabled extended descriptors\n");
1443                         priv->extend_desc = 1;
1444                 } else
1445                         pr_warn("Extended descriptors not supported\n");
1446
1447                 priv->hw->desc = &enh_desc_ops;
1448         } else {
1449                 pr_info(" Normal descriptors\n");
1450                 priv->hw->desc = &ndesc_ops;
1451         }
1452 }
1453
1454 /**
1455  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1456  * @priv: driver private structure
1457  * Description:
1458  *  new GMAC chip generations have a new register to indicate the
1459  *  presence of the optional feature/functions.
1460  *  This can be also used to override the value passed through the
1461  *  platform and necessary for old MAC10/100 and GMAC chips.
1462  */
1463 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1464 {
1465         u32 hw_cap = 0;
1466
1467         if (priv->hw->dma->get_hw_feature) {
1468                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1469
1470                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1471                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1472                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1473                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1474                 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1475                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1476                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1477                 priv->dma_cap.pmt_remote_wake_up =
1478                     (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1479                 priv->dma_cap.pmt_magic_frame =
1480                     (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1481                 /* MMC */
1482                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1483                 /* IEEE 1588-2002 */
1484                 priv->dma_cap.time_stamp =
1485                     (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1486                 /* IEEE 1588-2008 */
1487                 priv->dma_cap.atime_stamp =
1488                     (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1489                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1490                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1491                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1492                 /* TX and RX csum */
1493                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1494                 priv->dma_cap.rx_coe_type1 =
1495                     (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1496                 priv->dma_cap.rx_coe_type2 =
1497                     (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1498                 priv->dma_cap.rxfifo_over_2048 =
1499                     (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1500                 /* TX and RX number of channels */
1501                 priv->dma_cap.number_rx_channel =
1502                     (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1503                 priv->dma_cap.number_tx_channel =
1504                     (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1505                 /* Alternate (enhanced) DESC mode */
1506                 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1507         }
1508
1509         return hw_cap;
1510 }
1511
1512 /**
1513  * stmmac_check_ether_addr: check if the MAC addr is valid
1514  * @priv: driver private structure
1515  * Description:
1516  * it is to verify if the MAC address is valid, in case of failures it
1517  * generates a random MAC address
1518  */
1519 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1520 {
1521         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1522                 priv->hw->mac->get_umac_addr((void __iomem *)
1523                                              priv->dev->base_addr,
1524                                              priv->dev->dev_addr, 0);
1525                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1526                         eth_hw_addr_random(priv->dev);
1527         }
1528         pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1529                 priv->dev->dev_addr);
1530 }
1531
1532 /**
1533  * stmmac_init_dma_engine: DMA init.
1534  * @priv: driver private structure
1535  * Description:
1536  * It inits the DMA invoking the specific MAC/GMAC callback.
1537  * Some DMA parameters can be passed from the platform;
1538  * in case of these are not passed a default is kept for the MAC or GMAC.
1539  */
1540 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1541 {
1542         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1543         int mixed_burst = 0;
1544         int atds = 0;
1545
1546         if (priv->plat->dma_cfg) {
1547                 pbl = priv->plat->dma_cfg->pbl;
1548                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1549                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1550                 burst_len = priv->plat->dma_cfg->burst_len;
1551         }
1552
1553         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1554                 atds = 1;
1555
1556         return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1557                                    burst_len, priv->dma_tx_phy,
1558                                    priv->dma_rx_phy, atds);
1559 }
1560
1561 /**
1562  * stmmac_tx_timer: mitigation sw timer for tx.
1563  * @data: data pointer
1564  * Description:
1565  * This is the timer handler to directly invoke the stmmac_tx_clean.
1566  */
1567 static void stmmac_tx_timer(unsigned long data)
1568 {
1569         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1570
1571         stmmac_tx_clean(priv);
1572 }
1573
1574 /**
1575  * stmmac_init_tx_coalesce: init tx mitigation options.
1576  * @priv: driver private structure
1577  * Description:
1578  * This inits the transmit coalesce parameters: i.e. timer rate,
1579  * timer handler and default threshold used for enabling the
1580  * interrupt on completion bit.
1581  */
1582 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1583 {
1584         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1585         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1586         init_timer(&priv->txtimer);
1587         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1588         priv->txtimer.data = (unsigned long)priv;
1589         priv->txtimer.function = stmmac_tx_timer;
1590         add_timer(&priv->txtimer);
1591 }
1592
1593 /**
1594  *  stmmac_open - open entry point of the driver
1595  *  @dev : pointer to the device structure.
1596  *  Description:
1597  *  This function is the open entry point of the driver.
1598  *  Return value:
1599  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1600  *  file on failure.
1601  */
1602 static int stmmac_open(struct net_device *dev)
1603 {
1604         struct stmmac_priv *priv = netdev_priv(dev);
1605         int ret;
1606
1607         clk_prepare_enable(priv->stmmac_clk);
1608
1609         stmmac_check_ether_addr(priv);
1610
1611         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1612             priv->pcs != STMMAC_PCS_RTBI) {
1613                 ret = stmmac_init_phy(dev);
1614                 if (ret) {
1615                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1616                                __func__, ret);
1617                         goto phy_error;
1618                 }
1619         }
1620
1621         /* Create and initialize the TX/RX descriptors chains. */
1622         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1623         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1624         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1625
1626         ret = init_dma_desc_rings(dev);
1627         if (ret < 0) {
1628                 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1629                 goto dma_desc_error;
1630         }
1631
1632         /* DMA initialization and SW reset */
1633         ret = stmmac_init_dma_engine(priv);
1634         if (ret < 0) {
1635                 pr_err("%s: DMA engine initialization failed\n", __func__);
1636                 goto init_error;
1637         }
1638
1639         /* Copy the MAC addr into the HW  */
1640         priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1641
1642         /* If required, perform hw setup of the bus. */
1643         if (priv->plat->bus_setup)
1644                 priv->plat->bus_setup(priv->ioaddr);
1645
1646         /* Initialize the MAC Core */
1647         priv->hw->mac->core_init(priv->ioaddr);
1648
1649         /* Request the IRQ lines */
1650         ret = request_irq(dev->irq, stmmac_interrupt,
1651                           IRQF_SHARED, dev->name, dev);
1652         if (unlikely(ret < 0)) {
1653                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1654                        __func__, dev->irq, ret);
1655                 goto init_error;
1656         }
1657
1658         /* Request the Wake IRQ in case of another line is used for WoL */
1659         if (priv->wol_irq != dev->irq) {
1660                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1661                                   IRQF_SHARED, dev->name, dev);
1662                 if (unlikely(ret < 0)) {
1663                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1664                                __func__, priv->wol_irq, ret);
1665                         goto wolirq_error;
1666                 }
1667         }
1668
1669         /* Request the IRQ lines */
1670         if (priv->lpi_irq != -ENXIO) {
1671                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1672                                   dev->name, dev);
1673                 if (unlikely(ret < 0)) {
1674                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1675                                __func__, priv->lpi_irq, ret);
1676                         goto lpiirq_error;
1677                 }
1678         }
1679
1680         /* Enable the MAC Rx/Tx */
1681         stmmac_set_mac(priv->ioaddr, true);
1682
1683         /* Set the HW DMA mode and the COE */
1684         stmmac_dma_operation_mode(priv);
1685
1686         /* Extra statistics */
1687         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1688         priv->xstats.threshold = tc;
1689
1690         stmmac_mmc_setup(priv);
1691
1692         ret = stmmac_init_ptp(priv);
1693         if (ret)
1694                 pr_warn("%s: failed PTP initialisation\n", __func__);
1695
1696 #ifdef CONFIG_STMMAC_DEBUG_FS
1697         ret = stmmac_init_fs(dev);
1698         if (ret < 0)
1699                 pr_warn("%s: failed debugFS registration\n", __func__);
1700 #endif
1701         /* Start the ball rolling... */
1702         pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1703         priv->hw->dma->start_tx(priv->ioaddr);
1704         priv->hw->dma->start_rx(priv->ioaddr);
1705
1706         /* Dump DMA/MAC registers */
1707         if (netif_msg_hw(priv)) {
1708                 priv->hw->mac->dump_regs(priv->ioaddr);
1709                 priv->hw->dma->dump_regs(priv->ioaddr);
1710         }
1711
1712         if (priv->phydev)
1713                 phy_start(priv->phydev);
1714
1715         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1716
1717         priv->eee_enabled = stmmac_eee_init(priv);
1718
1719         stmmac_init_tx_coalesce(priv);
1720
1721         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1722                 priv->rx_riwt = MAX_DMA_RIWT;
1723                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1724         }
1725
1726         if (priv->pcs && priv->hw->mac->ctrl_ane)
1727                 priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1728
1729         napi_enable(&priv->napi);
1730         netif_start_queue(dev);
1731
1732         return 0;
1733
1734 lpiirq_error:
1735         if (priv->wol_irq != dev->irq)
1736                 free_irq(priv->wol_irq, dev);
1737 wolirq_error:
1738         free_irq(dev->irq, dev);
1739
1740 init_error:
1741         free_dma_desc_resources(priv);
1742 dma_desc_error:
1743         if (priv->phydev)
1744                 phy_disconnect(priv->phydev);
1745 phy_error:
1746         clk_disable_unprepare(priv->stmmac_clk);
1747
1748         return ret;
1749 }
1750
1751 /**
1752  *  stmmac_release - close entry point of the driver
1753  *  @dev : device pointer.
1754  *  Description:
1755  *  This is the stop entry point of the driver.
1756  */
1757 static int stmmac_release(struct net_device *dev)
1758 {
1759         struct stmmac_priv *priv = netdev_priv(dev);
1760
1761         if (priv->eee_enabled)
1762                 del_timer_sync(&priv->eee_ctrl_timer);
1763
1764         /* Stop and disconnect the PHY */
1765         if (priv->phydev) {
1766                 phy_stop(priv->phydev);
1767                 phy_disconnect(priv->phydev);
1768                 priv->phydev = NULL;
1769         }
1770
1771         netif_stop_queue(dev);
1772
1773         napi_disable(&priv->napi);
1774
1775         del_timer_sync(&priv->txtimer);
1776
1777         /* Free the IRQ lines */
1778         free_irq(dev->irq, dev);
1779         if (priv->wol_irq != dev->irq)
1780                 free_irq(priv->wol_irq, dev);
1781         if (priv->lpi_irq != -ENXIO)
1782                 free_irq(priv->lpi_irq, dev);
1783
1784         /* Stop TX/RX DMA and clear the descriptors */
1785         priv->hw->dma->stop_tx(priv->ioaddr);
1786         priv->hw->dma->stop_rx(priv->ioaddr);
1787
1788         /* Release and free the Rx/Tx resources */
1789         free_dma_desc_resources(priv);
1790
1791         /* Disable the MAC Rx/Tx */
1792         stmmac_set_mac(priv->ioaddr, false);
1793
1794         netif_carrier_off(dev);
1795
1796 #ifdef CONFIG_STMMAC_DEBUG_FS
1797         stmmac_exit_fs();
1798 #endif
1799         clk_disable_unprepare(priv->stmmac_clk);
1800
1801         stmmac_release_ptp(priv);
1802
1803         return 0;
1804 }
1805
1806 /**
1807  *  stmmac_xmit: Tx entry point of the driver
1808  *  @skb : the socket buffer
1809  *  @dev : device pointer
1810  *  Description : this is the tx entry point of the driver.
1811  *  It programs the chain or the ring and supports oversized frames
1812  *  and SG feature.
1813  */
1814 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1815 {
1816         struct stmmac_priv *priv = netdev_priv(dev);
1817         unsigned int txsize = priv->dma_tx_size;
1818         unsigned int entry;
1819         int i, csum_insertion = 0, is_jumbo = 0;
1820         int nfrags = skb_shinfo(skb)->nr_frags;
1821         struct dma_desc *desc, *first;
1822         unsigned int nopaged_len = skb_headlen(skb);
1823
1824         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1825                 if (!netif_queue_stopped(dev)) {
1826                         netif_stop_queue(dev);
1827                         /* This is a hard error, log it. */
1828                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1829                 }
1830                 return NETDEV_TX_BUSY;
1831         }
1832
1833         spin_lock(&priv->tx_lock);
1834
1835         if (priv->tx_path_in_lpi_mode)
1836                 stmmac_disable_eee_mode(priv);
1837
1838         entry = priv->cur_tx % txsize;
1839
1840         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1841
1842         if (priv->extend_desc)
1843                 desc = (struct dma_desc *)(priv->dma_etx + entry);
1844         else
1845                 desc = priv->dma_tx + entry;
1846
1847         first = desc;
1848
1849         priv->tx_skbuff[entry] = skb;
1850
1851         /* To program the descriptors according to the size of the frame */
1852         if (priv->mode == STMMAC_RING_MODE) {
1853                 is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1854                                                         priv->plat->enh_desc);
1855                 if (unlikely(is_jumbo))
1856                         entry = priv->hw->ring->jumbo_frm(priv, skb,
1857                                                           csum_insertion);
1858         } else {
1859                 is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1860                                                          priv->plat->enh_desc);
1861                 if (unlikely(is_jumbo))
1862                         entry = priv->hw->chain->jumbo_frm(priv, skb,
1863                                                            csum_insertion);
1864         }
1865         if (likely(!is_jumbo)) {
1866                 desc->des2 = dma_map_single(priv->device, skb->data,
1867                                             nopaged_len, DMA_TO_DEVICE);
1868                 priv->tx_skbuff_dma[entry] = desc->des2;
1869                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1870                                                 csum_insertion, priv->mode);
1871         } else
1872                 desc = first;
1873
1874         for (i = 0; i < nfrags; i++) {
1875                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1876                 int len = skb_frag_size(frag);
1877
1878                 entry = (++priv->cur_tx) % txsize;
1879                 if (priv->extend_desc)
1880                         desc = (struct dma_desc *)(priv->dma_etx + entry);
1881                 else
1882                         desc = priv->dma_tx + entry;
1883
1884                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1885                                               DMA_TO_DEVICE);
1886                 priv->tx_skbuff_dma[entry] = desc->des2;
1887                 priv->tx_skbuff[entry] = NULL;
1888                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1889                                                 priv->mode);
1890                 wmb();
1891                 priv->hw->desc->set_tx_owner(desc);
1892                 wmb();
1893         }
1894
1895         /* Finalize the latest segment. */
1896         priv->hw->desc->close_tx_desc(desc);
1897
1898         wmb();
1899         /* According to the coalesce parameter the IC bit for the latest
1900          * segment could be reset and the timer re-started to invoke the
1901          * stmmac_tx function. This approach takes care about the fragments.
1902          */
1903         priv->tx_count_frames += nfrags + 1;
1904         if (priv->tx_coal_frames > priv->tx_count_frames) {
1905                 priv->hw->desc->clear_tx_ic(desc);
1906                 priv->xstats.tx_reset_ic_bit++;
1907                 mod_timer(&priv->txtimer,
1908                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
1909         } else
1910                 priv->tx_count_frames = 0;
1911
1912         /* To avoid raise condition */
1913         priv->hw->desc->set_tx_owner(first);
1914         wmb();
1915
1916         priv->cur_tx++;
1917
1918         if (netif_msg_pktdata(priv)) {
1919                 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1920                         __func__, (priv->cur_tx % txsize),
1921                         (priv->dirty_tx % txsize), entry, first, nfrags);
1922
1923                 if (priv->extend_desc)
1924                         stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1925                 else
1926                         stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1927
1928                 pr_debug(">>> frame to be transmitted: ");
1929                 print_pkt(skb->data, skb->len);
1930         }
1931         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1932                 if (netif_msg_hw(priv))
1933                         pr_debug("%s: stop transmitted packets\n", __func__);
1934                 netif_stop_queue(dev);
1935         }
1936
1937         dev->stats.tx_bytes += skb->len;
1938
1939         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1940                      priv->hwts_tx_en)) {
1941                 /* declare that device is doing timestamping */
1942                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1943                 priv->hw->desc->enable_tx_timestamp(first);
1944         }
1945
1946         if (!priv->hwts_tx_en)
1947                 skb_tx_timestamp(skb);
1948
1949         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1950
1951         spin_unlock(&priv->tx_lock);
1952
1953         return NETDEV_TX_OK;
1954 }
1955
1956 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
1957 {
1958         struct ethhdr *ehdr;
1959         u16 vlanid;
1960
1961         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
1962             NETIF_F_HW_VLAN_CTAG_RX &&
1963             !__vlan_get_tag(skb, &vlanid)) {
1964                 /* pop the vlan tag */
1965                 ehdr = (struct ethhdr *)skb->data;
1966                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
1967                 skb_pull(skb, VLAN_HLEN);
1968                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
1969         }
1970 }
1971
1972
1973 /**
1974  * stmmac_rx_refill: refill used skb preallocated buffers
1975  * @priv: driver private structure
1976  * Description : this is to reallocate the skb for the reception process
1977  * that is based on zero-copy.
1978  */
1979 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1980 {
1981         unsigned int rxsize = priv->dma_rx_size;
1982         int bfsize = priv->dma_buf_sz;
1983
1984         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1985                 unsigned int entry = priv->dirty_rx % rxsize;
1986                 struct dma_desc *p;
1987
1988                 if (priv->extend_desc)
1989                         p = (struct dma_desc *)(priv->dma_erx + entry);
1990                 else
1991                         p = priv->dma_rx + entry;
1992
1993                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1994                         struct sk_buff *skb;
1995
1996                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1997
1998                         if (unlikely(skb == NULL))
1999                                 break;
2000
2001                         priv->rx_skbuff[entry] = skb;
2002                         priv->rx_skbuff_dma[entry] =
2003                             dma_map_single(priv->device, skb->data, bfsize,
2004                                            DMA_FROM_DEVICE);
2005
2006                         p->des2 = priv->rx_skbuff_dma[entry];
2007
2008                         priv->hw->ring->refill_desc3(priv, p);
2009
2010                         if (netif_msg_rx_status(priv))
2011                                 pr_debug("\trefill entry #%d\n", entry);
2012                 }
2013                 wmb();
2014                 priv->hw->desc->set_rx_owner(p);
2015                 wmb();
2016         }
2017 }
2018
2019 /**
2020  * stmmac_rx_refill: refill used skb preallocated buffers
2021  * @priv: driver private structure
2022  * @limit: napi bugget.
2023  * Description :  this the function called by the napi poll method.
2024  * It gets all the frames inside the ring.
2025  */
2026 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2027 {
2028         unsigned int rxsize = priv->dma_rx_size;
2029         unsigned int entry = priv->cur_rx % rxsize;
2030         unsigned int next_entry;
2031         unsigned int count = 0;
2032         int coe = priv->plat->rx_coe;
2033
2034         if (netif_msg_rx_status(priv)) {
2035                 pr_debug("%s: descriptor ring:\n", __func__);
2036                 if (priv->extend_desc)
2037                         stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2038                 else
2039                         stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2040         }
2041         while (count < limit) {
2042                 int status;
2043                 struct dma_desc *p;
2044
2045                 if (priv->extend_desc)
2046                         p = (struct dma_desc *)(priv->dma_erx + entry);
2047                 else
2048                         p = priv->dma_rx + entry;
2049
2050                 if (priv->hw->desc->get_rx_owner(p))
2051                         break;
2052
2053                 count++;
2054
2055                 next_entry = (++priv->cur_rx) % rxsize;
2056                 if (priv->extend_desc)
2057                         prefetch(priv->dma_erx + next_entry);
2058                 else
2059                         prefetch(priv->dma_rx + next_entry);
2060
2061                 /* read the status of the incoming frame */
2062                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2063                                                    &priv->xstats, p);
2064                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2065                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2066                                                            &priv->xstats,
2067                                                            priv->dma_erx +
2068                                                            entry);
2069                 if (unlikely(status == discard_frame)) {
2070                         priv->dev->stats.rx_errors++;
2071                         if (priv->hwts_rx_en && !priv->extend_desc) {
2072                                 /* DESC2 & DESC3 will be overwitten by device
2073                                  * with timestamp value, hence reinitialize
2074                                  * them in stmmac_rx_refill() function so that
2075                                  * device can reuse it.
2076                                  */
2077                                 priv->rx_skbuff[entry] = NULL;
2078                                 dma_unmap_single(priv->device,
2079                                                  priv->rx_skbuff_dma[entry],
2080                                                  priv->dma_buf_sz,
2081                                                  DMA_FROM_DEVICE);
2082                         }
2083                 } else {
2084                         struct sk_buff *skb;
2085                         int frame_len;
2086
2087                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2088
2089                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2090                          * Type frames (LLC/LLC-SNAP)
2091                          */
2092                         if (unlikely(status != llc_snap))
2093                                 frame_len -= ETH_FCS_LEN;
2094
2095                         if (netif_msg_rx_status(priv)) {
2096                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2097                                          p, entry, p->des2);
2098                                 if (frame_len > ETH_FRAME_LEN)
2099                                         pr_debug("\tframe size %d, COE: %d\n",
2100                                                  frame_len, status);
2101                         }
2102                         skb = priv->rx_skbuff[entry];
2103                         if (unlikely(!skb)) {
2104                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
2105                                        priv->dev->name);
2106                                 priv->dev->stats.rx_dropped++;
2107                                 break;
2108                         }
2109                         prefetch(skb->data - NET_IP_ALIGN);
2110                         priv->rx_skbuff[entry] = NULL;
2111
2112                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2113
2114                         skb_put(skb, frame_len);
2115                         dma_unmap_single(priv->device,
2116                                          priv->rx_skbuff_dma[entry],
2117                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
2118
2119                         if (netif_msg_pktdata(priv)) {
2120                                 pr_debug("frame received (%dbytes)", frame_len);
2121                                 print_pkt(skb->data, frame_len);
2122                         }
2123
2124                         stmmac_rx_vlan(priv->dev, skb);
2125
2126                         skb->protocol = eth_type_trans(skb, priv->dev);
2127
2128                         if (unlikely(!coe))
2129                                 skb_checksum_none_assert(skb);
2130                         else
2131                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2132
2133                         napi_gro_receive(&priv->napi, skb);
2134
2135                         priv->dev->stats.rx_packets++;
2136                         priv->dev->stats.rx_bytes += frame_len;
2137                 }
2138                 entry = next_entry;
2139         }
2140
2141         stmmac_rx_refill(priv);
2142
2143         priv->xstats.rx_pkt_n += count;
2144
2145         return count;
2146 }
2147
2148 /**
2149  *  stmmac_poll - stmmac poll method (NAPI)
2150  *  @napi : pointer to the napi structure.
2151  *  @budget : maximum number of packets that the current CPU can receive from
2152  *            all interfaces.
2153  *  Description :
2154  *  To look at the incoming frames and clear the tx resources.
2155  */
2156 static int stmmac_poll(struct napi_struct *napi, int budget)
2157 {
2158         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2159         int work_done = 0;
2160
2161         priv->xstats.napi_poll++;
2162         stmmac_tx_clean(priv);
2163
2164         work_done = stmmac_rx(priv, budget);
2165         if (work_done < budget) {
2166                 napi_complete(napi);
2167                 stmmac_enable_dma_irq(priv);
2168         }
2169         return work_done;
2170 }
2171
2172 /**
2173  *  stmmac_tx_timeout
2174  *  @dev : Pointer to net device structure
2175  *  Description: this function is called when a packet transmission fails to
2176  *   complete within a reasonable time. The driver will mark the error in the
2177  *   netdev structure and arrange for the device to be reset to a sane state
2178  *   in order to transmit a new packet.
2179  */
2180 static void stmmac_tx_timeout(struct net_device *dev)
2181 {
2182         struct stmmac_priv *priv = netdev_priv(dev);
2183
2184         /* Clear Tx resources and restart transmitting again */
2185         stmmac_tx_err(priv);
2186 }
2187
2188 /* Configuration changes (passed on by ifconfig) */
2189 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2190 {
2191         if (dev->flags & IFF_UP)        /* can't act on a running interface */
2192                 return -EBUSY;
2193
2194         /* Don't allow changing the I/O address */
2195         if (map->base_addr != dev->base_addr) {
2196                 pr_warn("%s: can't change I/O address\n", dev->name);
2197                 return -EOPNOTSUPP;
2198         }
2199
2200         /* Don't allow changing the IRQ */
2201         if (map->irq != dev->irq) {
2202                 pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2203                 return -EOPNOTSUPP;
2204         }
2205
2206         return 0;
2207 }
2208
2209 /**
2210  *  stmmac_set_rx_mode - entry point for multicast addressing
2211  *  @dev : pointer to the device structure
2212  *  Description:
2213  *  This function is a driver entry point which gets called by the kernel
2214  *  whenever multicast addresses must be enabled/disabled.
2215  *  Return value:
2216  *  void.
2217  */
2218 static void stmmac_set_rx_mode(struct net_device *dev)
2219 {
2220         struct stmmac_priv *priv = netdev_priv(dev);
2221
2222         spin_lock(&priv->lock);
2223         priv->hw->mac->set_filter(dev, priv->synopsys_id);
2224         spin_unlock(&priv->lock);
2225 }
2226
2227 /**
2228  *  stmmac_change_mtu - entry point to change MTU size for the device.
2229  *  @dev : device pointer.
2230  *  @new_mtu : the new MTU size for the device.
2231  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2232  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2233  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2234  *  Return value:
2235  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2236  *  file on failure.
2237  */
2238 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2239 {
2240         struct stmmac_priv *priv = netdev_priv(dev);
2241         int max_mtu;
2242
2243         if (netif_running(dev)) {
2244                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2245                 return -EBUSY;
2246         }
2247
2248         if (priv->plat->enh_desc)
2249                 max_mtu = JUMBO_LEN;
2250         else
2251                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2252
2253         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2254                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2255                 return -EINVAL;
2256         }
2257
2258         dev->mtu = new_mtu;
2259         netdev_update_features(dev);
2260
2261         return 0;
2262 }
2263
2264 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2265                                              netdev_features_t features)
2266 {
2267         struct stmmac_priv *priv = netdev_priv(dev);
2268
2269         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2270                 features &= ~NETIF_F_RXCSUM;
2271         else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2272                 features &= ~NETIF_F_IPV6_CSUM;
2273         if (!priv->plat->tx_coe)
2274                 features &= ~NETIF_F_ALL_CSUM;
2275
2276         /* Some GMAC devices have a bugged Jumbo frame support that
2277          * needs to have the Tx COE disabled for oversized frames
2278          * (due to limited buffer sizes). In this case we disable
2279          * the TX csum insertionin the TDES and not use SF.
2280          */
2281         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2282                 features &= ~NETIF_F_ALL_CSUM;
2283
2284         return features;
2285 }
2286
2287 /**
2288  *  stmmac_interrupt - main ISR
2289  *  @irq: interrupt number.
2290  *  @dev_id: to pass the net device pointer.
2291  *  Description: this is the main driver interrupt service routine.
2292  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2293  *  interrupts.
2294  */
2295 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2296 {
2297         struct net_device *dev = (struct net_device *)dev_id;
2298         struct stmmac_priv *priv = netdev_priv(dev);
2299
2300         if (unlikely(!dev)) {
2301                 pr_err("%s: invalid dev pointer\n", __func__);
2302                 return IRQ_NONE;
2303         }
2304
2305         /* To handle GMAC own interrupts */
2306         if (priv->plat->has_gmac) {
2307                 int status = priv->hw->mac->host_irq_status((void __iomem *)
2308                                                             dev->base_addr,
2309                                                             &priv->xstats);
2310                 if (unlikely(status)) {
2311                         /* For LPI we need to save the tx status */
2312                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2313                                 priv->tx_path_in_lpi_mode = true;
2314                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2315                                 priv->tx_path_in_lpi_mode = false;
2316                 }
2317         }
2318
2319         /* To handle DMA interrupts */
2320         stmmac_dma_interrupt(priv);
2321
2322         return IRQ_HANDLED;
2323 }
2324
2325 #ifdef CONFIG_NET_POLL_CONTROLLER
2326 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2327  * to allow network I/O with interrupts disabled.
2328  */
2329 static void stmmac_poll_controller(struct net_device *dev)
2330 {
2331         disable_irq(dev->irq);
2332         stmmac_interrupt(dev->irq, dev);
2333         enable_irq(dev->irq);
2334 }
2335 #endif
2336
2337 /**
2338  *  stmmac_ioctl - Entry point for the Ioctl
2339  *  @dev: Device pointer.
2340  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2341  *  a proprietary structure used to pass information to the driver.
2342  *  @cmd: IOCTL command
2343  *  Description:
2344  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2345  */
2346 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2347 {
2348         struct stmmac_priv *priv = netdev_priv(dev);
2349         int ret = -EOPNOTSUPP;
2350
2351         if (!netif_running(dev))
2352                 return -EINVAL;
2353
2354         switch (cmd) {
2355         case SIOCGMIIPHY:
2356         case SIOCGMIIREG:
2357         case SIOCSMIIREG:
2358                 if (!priv->phydev)
2359                         return -EINVAL;
2360                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2361                 break;
2362         case SIOCSHWTSTAMP:
2363                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2364                 break;
2365         default:
2366                 break;
2367         }
2368
2369         return ret;
2370 }
2371
2372 #ifdef CONFIG_STMMAC_DEBUG_FS
2373 static struct dentry *stmmac_fs_dir;
2374 static struct dentry *stmmac_rings_status;
2375 static struct dentry *stmmac_dma_cap;
2376
2377 static void sysfs_display_ring(void *head, int size, int extend_desc,
2378                                struct seq_file *seq)
2379 {
2380         int i;
2381         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2382         struct dma_desc *p = (struct dma_desc *)head;
2383
2384         for (i = 0; i < size; i++) {
2385                 u64 x;
2386                 if (extend_desc) {
2387                         x = *(u64 *) ep;
2388                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2389                                    i, (unsigned int)virt_to_phys(ep),
2390                                    (unsigned int)x, (unsigned int)(x >> 32),
2391                                    ep->basic.des2, ep->basic.des3);
2392                         ep++;
2393                 } else {
2394                         x = *(u64 *) p;
2395                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2396                                    i, (unsigned int)virt_to_phys(ep),
2397                                    (unsigned int)x, (unsigned int)(x >> 32),
2398                                    p->des2, p->des3);
2399                         p++;
2400                 }
2401                 seq_printf(seq, "\n");
2402         }
2403 }
2404
2405 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2406 {
2407         struct net_device *dev = seq->private;
2408         struct stmmac_priv *priv = netdev_priv(dev);
2409         unsigned int txsize = priv->dma_tx_size;
2410         unsigned int rxsize = priv->dma_rx_size;
2411
2412         if (priv->extend_desc) {
2413                 seq_printf(seq, "Extended RX descriptor ring:\n");
2414                 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2415                 seq_printf(seq, "Extended TX descriptor ring:\n");
2416                 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2417         } else {
2418                 seq_printf(seq, "RX descriptor ring:\n");
2419                 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2420                 seq_printf(seq, "TX descriptor ring:\n");
2421                 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2422         }
2423
2424         return 0;
2425 }
2426
2427 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2428 {
2429         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2430 }
2431
2432 static const struct file_operations stmmac_rings_status_fops = {
2433         .owner = THIS_MODULE,
2434         .open = stmmac_sysfs_ring_open,
2435         .read = seq_read,
2436         .llseek = seq_lseek,
2437         .release = single_release,
2438 };
2439
2440 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2441 {
2442         struct net_device *dev = seq->private;
2443         struct stmmac_priv *priv = netdev_priv(dev);
2444
2445         if (!priv->hw_cap_support) {
2446                 seq_printf(seq, "DMA HW features not supported\n");
2447                 return 0;
2448         }
2449
2450         seq_printf(seq, "==============================\n");
2451         seq_printf(seq, "\tDMA HW features\n");
2452         seq_printf(seq, "==============================\n");
2453
2454         seq_printf(seq, "\t10/100 Mbps %s\n",
2455                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2456         seq_printf(seq, "\t1000 Mbps %s\n",
2457                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2458         seq_printf(seq, "\tHalf duple %s\n",
2459                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2460         seq_printf(seq, "\tHash Filter: %s\n",
2461                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2462         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2463                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2464         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2465                    (priv->dma_cap.pcs) ? "Y" : "N");
2466         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2467                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2468         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2469                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2470         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2471                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2472         seq_printf(seq, "\tRMON module: %s\n",
2473                    (priv->dma_cap.rmon) ? "Y" : "N");
2474         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2475                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2476         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2477                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2478         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2479                    (priv->dma_cap.eee) ? "Y" : "N");
2480         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2481         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2482                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2483         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2484                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2485         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2486                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2487         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2488                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2489         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2490                    priv->dma_cap.number_rx_channel);
2491         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2492                    priv->dma_cap.number_tx_channel);
2493         seq_printf(seq, "\tEnhanced descriptors: %s\n",
2494                    (priv->dma_cap.enh_desc) ? "Y" : "N");
2495
2496         return 0;
2497 }
2498
2499 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2500 {
2501         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2502 }
2503
2504 static const struct file_operations stmmac_dma_cap_fops = {
2505         .owner = THIS_MODULE,
2506         .open = stmmac_sysfs_dma_cap_open,
2507         .read = seq_read,
2508         .llseek = seq_lseek,
2509         .release = single_release,
2510 };
2511
2512 static int stmmac_init_fs(struct net_device *dev)
2513 {
2514         /* Create debugfs entries */
2515         stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2516
2517         if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2518                 pr_err("ERROR %s, debugfs create directory failed\n",
2519                        STMMAC_RESOURCE_NAME);
2520
2521                 return -ENOMEM;
2522         }
2523
2524         /* Entry to report DMA RX/TX rings */
2525         stmmac_rings_status = debugfs_create_file("descriptors_status",
2526                                                   S_IRUGO, stmmac_fs_dir, dev,
2527                                                   &stmmac_rings_status_fops);
2528
2529         if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2530                 pr_info("ERROR creating stmmac ring debugfs file\n");
2531                 debugfs_remove(stmmac_fs_dir);
2532
2533                 return -ENOMEM;
2534         }
2535
2536         /* Entry to report the DMA HW features */
2537         stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2538                                              dev, &stmmac_dma_cap_fops);
2539
2540         if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2541                 pr_info("ERROR creating stmmac MMC debugfs file\n");
2542                 debugfs_remove(stmmac_rings_status);
2543                 debugfs_remove(stmmac_fs_dir);
2544
2545                 return -ENOMEM;
2546         }
2547
2548         return 0;
2549 }
2550
2551 static void stmmac_exit_fs(void)
2552 {
2553         debugfs_remove(stmmac_rings_status);
2554         debugfs_remove(stmmac_dma_cap);
2555         debugfs_remove(stmmac_fs_dir);
2556 }
2557 #endif /* CONFIG_STMMAC_DEBUG_FS */
2558
2559 static const struct net_device_ops stmmac_netdev_ops = {
2560         .ndo_open = stmmac_open,
2561         .ndo_start_xmit = stmmac_xmit,
2562         .ndo_stop = stmmac_release,
2563         .ndo_change_mtu = stmmac_change_mtu,
2564         .ndo_fix_features = stmmac_fix_features,
2565         .ndo_set_rx_mode = stmmac_set_rx_mode,
2566         .ndo_tx_timeout = stmmac_tx_timeout,
2567         .ndo_do_ioctl = stmmac_ioctl,
2568         .ndo_set_config = stmmac_config,
2569 #ifdef CONFIG_NET_POLL_CONTROLLER
2570         .ndo_poll_controller = stmmac_poll_controller,
2571 #endif
2572         .ndo_set_mac_address = eth_mac_addr,
2573 };
2574
2575 /**
2576  *  stmmac_hw_init - Init the MAC device
2577  *  @priv: driver private structure
2578  *  Description: this function detects which MAC device
2579  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2580  *  (if supported) and sets the driver's features (for example
2581  *  to use the ring or chaine mode or support the normal/enh
2582  *  descriptor structure).
2583  */
2584 static int stmmac_hw_init(struct stmmac_priv *priv)
2585 {
2586         int ret;
2587         struct mac_device_info *mac;
2588
2589         /* Identify the MAC HW device */
2590         if (priv->plat->has_gmac) {
2591                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2592                 mac = dwmac1000_setup(priv->ioaddr);
2593         } else {
2594                 mac = dwmac100_setup(priv->ioaddr);
2595         }
2596         if (!mac)
2597                 return -ENOMEM;
2598
2599         priv->hw = mac;
2600
2601         /* Get and dump the chip ID */
2602         priv->synopsys_id = stmmac_get_synopsys_id(priv);
2603
2604         /* To use the chained or ring mode */
2605         if (chain_mode) {
2606                 priv->hw->chain = &chain_mode_ops;
2607                 pr_info(" Chain mode enabled\n");
2608                 priv->mode = STMMAC_CHAIN_MODE;
2609         } else {
2610                 priv->hw->ring = &ring_mode_ops;
2611                 pr_info(" Ring mode enabled\n");
2612                 priv->mode = STMMAC_RING_MODE;
2613         }
2614
2615         /* Get the HW capability (new GMAC newer than 3.50a) */
2616         priv->hw_cap_support = stmmac_get_hw_features(priv);
2617         if (priv->hw_cap_support) {
2618                 pr_info(" DMA HW capability register supported");
2619
2620                 /* We can override some gmac/dma configuration fields: e.g.
2621                  * enh_desc, tx_coe (e.g. that are passed through the
2622                  * platform) with the values from the HW capability
2623                  * register (if supported).
2624                  */
2625                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2626                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2627
2628                 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2629
2630                 if (priv->dma_cap.rx_coe_type2)
2631                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2632                 else if (priv->dma_cap.rx_coe_type1)
2633                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2634
2635         } else
2636                 pr_info(" No HW DMA feature register supported");
2637
2638         /* To use alternate (extended) or normal descriptor structures */
2639         stmmac_selec_desc_mode(priv);
2640
2641         ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2642         if (!ret) {
2643                 pr_warn(" RX IPC Checksum Offload not configured.\n");
2644                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2645         }
2646
2647         if (priv->plat->rx_coe)
2648                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2649                         priv->plat->rx_coe);
2650         if (priv->plat->tx_coe)
2651                 pr_info(" TX Checksum insertion supported\n");
2652
2653         if (priv->plat->pmt) {
2654                 pr_info(" Wake-Up On Lan supported\n");
2655                 device_set_wakeup_capable(priv->device, 1);
2656         }
2657
2658         return 0;
2659 }
2660
2661 /**
2662  * stmmac_dvr_probe
2663  * @device: device pointer
2664  * @plat_dat: platform data pointer
2665  * @addr: iobase memory address
2666  * Description: this is the main probe function used to
2667  * call the alloc_etherdev, allocate the priv structure.
2668  */
2669 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2670                                      struct plat_stmmacenet_data *plat_dat,
2671                                      void __iomem *addr)
2672 {
2673         int ret = 0;
2674         struct net_device *ndev = NULL;
2675         struct stmmac_priv *priv;
2676
2677         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2678         if (!ndev)
2679                 return NULL;
2680
2681         SET_NETDEV_DEV(ndev, device);
2682
2683         priv = netdev_priv(ndev);
2684         priv->device = device;
2685         priv->dev = ndev;
2686
2687         ether_setup(ndev);
2688
2689         stmmac_set_ethtool_ops(ndev);
2690         priv->pause = pause;
2691         priv->plat = plat_dat;
2692         priv->ioaddr = addr;
2693         priv->dev->base_addr = (unsigned long)addr;
2694
2695         /* Verify driver arguments */
2696         stmmac_verify_args();
2697
2698         /* Override with kernel parameters if supplied XXX CRS XXX
2699          * this needs to have multiple instances
2700          */
2701         if ((phyaddr >= 0) && (phyaddr <= 31))
2702                 priv->plat->phy_addr = phyaddr;
2703
2704         /* Init MAC and get the capabilities */
2705         ret = stmmac_hw_init(priv);
2706         if (ret)
2707                 goto error_free_netdev;
2708
2709         ndev->netdev_ops = &stmmac_netdev_ops;
2710
2711         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2712                             NETIF_F_RXCSUM;
2713         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2714         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2715 #ifdef STMMAC_VLAN_TAG_USED
2716         /* Both mac100 and gmac support receive VLAN tag detection */
2717         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2718 #endif
2719         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2720
2721         if (flow_ctrl)
2722                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2723
2724         /* Rx Watchdog is available in the COREs newer than the 3.40.
2725          * In some case, for example on bugged HW this feature
2726          * has to be disable and this can be done by passing the
2727          * riwt_off field from the platform.
2728          */
2729         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2730                 priv->use_riwt = 1;
2731                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2732         }
2733
2734         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2735
2736         spin_lock_init(&priv->lock);
2737         spin_lock_init(&priv->tx_lock);
2738
2739         ret = register_netdev(ndev);
2740         if (ret) {
2741                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2742                 goto error_netdev_register;
2743         }
2744
2745         priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2746         if (IS_ERR(priv->stmmac_clk)) {
2747                 pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2748                 goto error_clk_get;
2749         }
2750
2751         /* If a specific clk_csr value is passed from the platform
2752          * this means that the CSR Clock Range selection cannot be
2753          * changed at run-time and it is fixed. Viceversa the driver'll try to
2754          * set the MDC clock dynamically according to the csr actual
2755          * clock input.
2756          */
2757         if (!priv->plat->clk_csr)
2758                 stmmac_clk_csr_set(priv);
2759         else
2760                 priv->clk_csr = priv->plat->clk_csr;
2761
2762         stmmac_check_pcs_mode(priv);
2763
2764         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2765             priv->pcs != STMMAC_PCS_RTBI) {
2766                 /* MDIO bus Registration */
2767                 ret = stmmac_mdio_register(ndev);
2768                 if (ret < 0) {
2769                         pr_debug("%s: MDIO bus (id: %d) registration failed",
2770                                  __func__, priv->plat->bus_id);
2771                         goto error_mdio_register;
2772                 }
2773         }
2774
2775         return priv;
2776
2777 error_mdio_register:
2778         clk_put(priv->stmmac_clk);
2779 error_clk_get:
2780         unregister_netdev(ndev);
2781 error_netdev_register:
2782         netif_napi_del(&priv->napi);
2783 error_free_netdev:
2784         free_netdev(ndev);
2785
2786         return NULL;
2787 }
2788
2789 /**
2790  * stmmac_dvr_remove
2791  * @ndev: net device pointer
2792  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2793  * changes the link status, releases the DMA descriptor rings.
2794  */
2795 int stmmac_dvr_remove(struct net_device *ndev)
2796 {
2797         struct stmmac_priv *priv = netdev_priv(ndev);
2798
2799         pr_info("%s:\n\tremoving driver", __func__);
2800
2801         priv->hw->dma->stop_rx(priv->ioaddr);
2802         priv->hw->dma->stop_tx(priv->ioaddr);
2803
2804         stmmac_set_mac(priv->ioaddr, false);
2805         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2806             priv->pcs != STMMAC_PCS_RTBI)
2807                 stmmac_mdio_unregister(ndev);
2808         netif_carrier_off(ndev);
2809         unregister_netdev(ndev);
2810         free_netdev(ndev);
2811
2812         return 0;
2813 }
2814
2815 #ifdef CONFIG_PM
2816 int stmmac_suspend(struct net_device *ndev)
2817 {
2818         struct stmmac_priv *priv = netdev_priv(ndev);
2819         unsigned long flags;
2820
2821         if (!ndev || !netif_running(ndev))
2822                 return 0;
2823
2824         if (priv->phydev)
2825                 phy_stop(priv->phydev);
2826
2827         spin_lock_irqsave(&priv->lock, flags);
2828
2829         netif_device_detach(ndev);
2830         netif_stop_queue(ndev);
2831
2832         napi_disable(&priv->napi);
2833
2834         /* Stop TX/RX DMA */
2835         priv->hw->dma->stop_tx(priv->ioaddr);
2836         priv->hw->dma->stop_rx(priv->ioaddr);
2837
2838         stmmac_clear_descriptors(priv);
2839
2840         /* Enable Power down mode by programming the PMT regs */
2841         if (device_may_wakeup(priv->device))
2842                 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2843         else {
2844                 stmmac_set_mac(priv->ioaddr, false);
2845                 /* Disable clock in case of PWM is off */
2846                 clk_disable_unprepare(priv->stmmac_clk);
2847         }
2848         spin_unlock_irqrestore(&priv->lock, flags);
2849         return 0;
2850 }
2851
2852 int stmmac_resume(struct net_device *ndev)
2853 {
2854         struct stmmac_priv *priv = netdev_priv(ndev);
2855         unsigned long flags;
2856
2857         if (!netif_running(ndev))
2858                 return 0;
2859
2860         spin_lock_irqsave(&priv->lock, flags);
2861
2862         /* Power Down bit, into the PM register, is cleared
2863          * automatically as soon as a magic packet or a Wake-up frame
2864          * is received. Anyway, it's better to manually clear
2865          * this bit because it can generate problems while resuming
2866          * from another devices (e.g. serial console).
2867          */
2868         if (device_may_wakeup(priv->device))
2869                 priv->hw->mac->pmt(priv->ioaddr, 0);
2870         else
2871                 /* enable the clk prevously disabled */
2872                 clk_prepare_enable(priv->stmmac_clk);
2873
2874         netif_device_attach(ndev);
2875
2876         /* Enable the MAC and DMA */
2877         stmmac_set_mac(priv->ioaddr, true);
2878         priv->hw->dma->start_tx(priv->ioaddr);
2879         priv->hw->dma->start_rx(priv->ioaddr);
2880
2881         napi_enable(&priv->napi);
2882
2883         netif_start_queue(ndev);
2884
2885         spin_unlock_irqrestore(&priv->lock, flags);
2886
2887         if (priv->phydev)
2888                 phy_start(priv->phydev);
2889
2890         return 0;
2891 }
2892
2893 int stmmac_freeze(struct net_device *ndev)
2894 {
2895         if (!ndev || !netif_running(ndev))
2896                 return 0;
2897
2898         return stmmac_release(ndev);
2899 }
2900
2901 int stmmac_restore(struct net_device *ndev)
2902 {
2903         if (!ndev || !netif_running(ndev))
2904                 return 0;
2905
2906         return stmmac_open(ndev);
2907 }
2908 #endif /* CONFIG_PM */
2909
2910 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2911  * depending on the configuration selected.
2912  */
2913 static int __init stmmac_init(void)
2914 {
2915         int ret;
2916
2917         ret = stmmac_register_platform();
2918         if (ret)
2919                 goto err;
2920         ret = stmmac_register_pci();
2921         if (ret)
2922                 goto err_pci;
2923         return 0;
2924 err_pci:
2925         stmmac_unregister_platform();
2926 err:
2927         pr_err("stmmac: driver registration failed\n");
2928         return ret;
2929 }
2930
2931 static void __exit stmmac_exit(void)
2932 {
2933         stmmac_unregister_platform();
2934         stmmac_unregister_pci();
2935 }
2936
2937 module_init(stmmac_init);
2938 module_exit(stmmac_exit);
2939
2940 #ifndef MODULE
2941 static int __init stmmac_cmdline_opt(char *str)
2942 {
2943         char *opt;
2944
2945         if (!str || !*str)
2946                 return -EINVAL;
2947         while ((opt = strsep(&str, ",")) != NULL) {
2948                 if (!strncmp(opt, "debug:", 6)) {
2949                         if (kstrtoint(opt + 6, 0, &debug))
2950                                 goto err;
2951                 } else if (!strncmp(opt, "phyaddr:", 8)) {
2952                         if (kstrtoint(opt + 8, 0, &phyaddr))
2953                                 goto err;
2954                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2955                         if (kstrtoint(opt + 11, 0, &dma_txsize))
2956                                 goto err;
2957                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2958                         if (kstrtoint(opt + 11, 0, &dma_rxsize))
2959                                 goto err;
2960                 } else if (!strncmp(opt, "buf_sz:", 7)) {
2961                         if (kstrtoint(opt + 7, 0, &buf_sz))
2962                                 goto err;
2963                 } else if (!strncmp(opt, "tc:", 3)) {
2964                         if (kstrtoint(opt + 3, 0, &tc))
2965                                 goto err;
2966                 } else if (!strncmp(opt, "watchdog:", 9)) {
2967                         if (kstrtoint(opt + 9, 0, &watchdog))
2968                                 goto err;
2969                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2970                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
2971                                 goto err;
2972                 } else if (!strncmp(opt, "pause:", 6)) {
2973                         if (kstrtoint(opt + 6, 0, &pause))
2974                                 goto err;
2975                 } else if (!strncmp(opt, "eee_timer:", 10)) {
2976                         if (kstrtoint(opt + 10, 0, &eee_timer))
2977                                 goto err;
2978                 } else if (!strncmp(opt, "chain_mode:", 11)) {
2979                         if (kstrtoint(opt + 11, 0, &chain_mode))
2980                                 goto err;
2981                 }
2982         }
2983         return 0;
2984
2985 err:
2986         pr_err("%s: ERROR broken module parameter conversion", __func__);
2987         return -EINVAL;
2988 }
2989
2990 __setup("stmmaceth=", stmmac_cmdline_opt);
2991 #endif /* MODULE */
2992
2993 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2994 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2995 MODULE_LICENSE("GPL");