Merge branches 'acpi-scan', 'acpi-processor' and 'acpi-assorted'
[cascardo/linux.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR    16
40
41 #define NETCP_EFUSE_REG_INDEX   0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED  2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
47                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
48                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
49                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
50                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
51                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
52                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
53                     NETIF_MSG_RX_STATUS)
54
55 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
56                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
57
58 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
59                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
60                                         (unsigned long)NULL)
61
62 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
63                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
64                                         (unsigned long)NULL)
65
66 #define knav_queue_get_count(q) knav_queue_device_control(q, \
67                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
68
69 #define for_each_netcp_module(module)                   \
70         list_for_each_entry(module, &netcp_modules, module_list)
71
72 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
73         list_for_each_entry(inst_modpriv, \
74                 &((netcp_device)->modpriv_head), inst_list)
75
76 #define for_each_module(netcp, intf_modpriv)                    \
77         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
78
79 /* Module management structures */
80 struct netcp_device {
81         struct list_head        device_list;
82         struct list_head        interface_head;
83         struct list_head        modpriv_head;
84         struct device           *device;
85 };
86
87 struct netcp_inst_modpriv {
88         struct netcp_device     *netcp_device;
89         struct netcp_module     *netcp_module;
90         struct list_head        inst_list;
91         void                    *module_priv;
92 };
93
94 struct netcp_intf_modpriv {
95         struct netcp_intf       *netcp_priv;
96         struct netcp_module     *netcp_module;
97         struct list_head        intf_list;
98         void                    *module_priv;
99 };
100
101 static LIST_HEAD(netcp_devices);
102 static LIST_HEAD(netcp_modules);
103 static DEFINE_MUTEX(netcp_modules_lock);
104
105 static int netcp_debug_level = -1;
106 module_param(netcp_debug_level, int, 0);
107 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
108
109 /* Helper functions - Get/Set */
110 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
111                          struct knav_dma_desc *desc)
112 {
113         *buff_len = desc->buff_len;
114         *buff = desc->buff;
115         *ndesc = desc->next_desc;
116 }
117
118 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
119 {
120         *pad0 = desc->pad[0];
121         *pad1 = desc->pad[1];
122 }
123
124 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
125                              struct knav_dma_desc *desc)
126 {
127         *buff = desc->orig_buff;
128         *buff_len = desc->orig_len;
129 }
130
131 static void get_words(u32 *words, int num_words, u32 *desc)
132 {
133         int i;
134
135         for (i = 0; i < num_words; i++)
136                 words[i] = desc[i];
137 }
138
139 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
140                          struct knav_dma_desc *desc)
141 {
142         desc->buff_len = buff_len;
143         desc->buff = buff;
144         desc->next_desc = ndesc;
145 }
146
147 static void set_desc_info(u32 desc_info, u32 pkt_info,
148                           struct knav_dma_desc *desc)
149 {
150         desc->desc_info = desc_info;
151         desc->packet_info = pkt_info;
152 }
153
154 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
155 {
156         desc->pad[0] = pad0;
157         desc->pad[1] = pad1;
158 }
159
160 static void set_org_pkt_info(u32 buff, u32 buff_len,
161                              struct knav_dma_desc *desc)
162 {
163         desc->orig_buff = buff;
164         desc->orig_len = buff_len;
165 }
166
167 static void set_words(u32 *words, int num_words, u32 *desc)
168 {
169         int i;
170
171         for (i = 0; i < num_words; i++)
172                 desc[i] = words[i];
173 }
174
175 /* Read the e-fuse value as 32 bit values to be endian independent */
176 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac)
177 {
178         unsigned int addr0, addr1;
179
180         addr1 = readl(efuse_mac + 4);
181         addr0 = readl(efuse_mac);
182
183         x[0] = (addr1 & 0x0000ff00) >> 8;
184         x[1] = addr1 & 0x000000ff;
185         x[2] = (addr0 & 0xff000000) >> 24;
186         x[3] = (addr0 & 0x00ff0000) >> 16;
187         x[4] = (addr0 & 0x0000ff00) >> 8;
188         x[5] = addr0 & 0x000000ff;
189
190         return 0;
191 }
192
193 static const char *netcp_node_name(struct device_node *node)
194 {
195         const char *name;
196
197         if (of_property_read_string(node, "label", &name) < 0)
198                 name = node->name;
199         if (!name)
200                 name = "unknown";
201         return name;
202 }
203
204 /* Module management routines */
205 static int netcp_register_interface(struct netcp_intf *netcp)
206 {
207         int ret;
208
209         ret = register_netdev(netcp->ndev);
210         if (!ret)
211                 netcp->netdev_registered = true;
212         return ret;
213 }
214
215 static int netcp_module_probe(struct netcp_device *netcp_device,
216                               struct netcp_module *module)
217 {
218         struct device *dev = netcp_device->device;
219         struct device_node *devices, *interface, *node = dev->of_node;
220         struct device_node *child;
221         struct netcp_inst_modpriv *inst_modpriv;
222         struct netcp_intf *netcp_intf;
223         struct netcp_module *tmp;
224         bool primary_module_registered = false;
225         int ret;
226
227         /* Find this module in the sub-tree for this device */
228         devices = of_get_child_by_name(node, "netcp-devices");
229         if (!devices) {
230                 dev_err(dev, "could not find netcp-devices node\n");
231                 return NETCP_MOD_PROBE_SKIPPED;
232         }
233
234         for_each_available_child_of_node(devices, child) {
235                 const char *name = netcp_node_name(child);
236
237                 if (!strcasecmp(module->name, name))
238                         break;
239         }
240
241         of_node_put(devices);
242         /* If module not used for this device, skip it */
243         if (!child) {
244                 dev_warn(dev, "module(%s) not used for device\n", module->name);
245                 return NETCP_MOD_PROBE_SKIPPED;
246         }
247
248         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
249         if (!inst_modpriv) {
250                 of_node_put(child);
251                 return -ENOMEM;
252         }
253
254         inst_modpriv->netcp_device = netcp_device;
255         inst_modpriv->netcp_module = module;
256         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
257
258         ret = module->probe(netcp_device, dev, child,
259                             &inst_modpriv->module_priv);
260         of_node_put(child);
261         if (ret) {
262                 dev_err(dev, "Probe of module(%s) failed with %d\n",
263                         module->name, ret);
264                 list_del(&inst_modpriv->inst_list);
265                 devm_kfree(dev, inst_modpriv);
266                 return NETCP_MOD_PROBE_FAILED;
267         }
268
269         /* Attach modules only if the primary module is probed */
270         for_each_netcp_module(tmp) {
271                 if (tmp->primary)
272                         primary_module_registered = true;
273         }
274
275         if (!primary_module_registered)
276                 return 0;
277
278         /* Attach module to interfaces */
279         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
280                             interface_list) {
281                 struct netcp_intf_modpriv *intf_modpriv;
282
283                 /* If interface not registered then register now */
284                 if (!netcp_intf->netdev_registered)
285                         ret = netcp_register_interface(netcp_intf);
286
287                 if (ret)
288                         return -ENODEV;
289
290                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
291                                             GFP_KERNEL);
292                 if (!intf_modpriv)
293                         return -ENOMEM;
294
295                 interface = of_parse_phandle(netcp_intf->node_interface,
296                                              module->name, 0);
297
298                 intf_modpriv->netcp_priv = netcp_intf;
299                 intf_modpriv->netcp_module = module;
300                 list_add_tail(&intf_modpriv->intf_list,
301                               &netcp_intf->module_head);
302
303                 ret = module->attach(inst_modpriv->module_priv,
304                                      netcp_intf->ndev, interface,
305                                      &intf_modpriv->module_priv);
306                 of_node_put(interface);
307                 if (ret) {
308                         dev_dbg(dev, "Attach of module %s declined with %d\n",
309                                 module->name, ret);
310                         list_del(&intf_modpriv->intf_list);
311                         devm_kfree(dev, intf_modpriv);
312                         continue;
313                 }
314         }
315         return 0;
316 }
317
318 int netcp_register_module(struct netcp_module *module)
319 {
320         struct netcp_device *netcp_device;
321         struct netcp_module *tmp;
322         int ret;
323
324         if (!module->name) {
325                 WARN(1, "error registering netcp module: no name\n");
326                 return -EINVAL;
327         }
328
329         if (!module->probe) {
330                 WARN(1, "error registering netcp module: no probe\n");
331                 return -EINVAL;
332         }
333
334         mutex_lock(&netcp_modules_lock);
335
336         for_each_netcp_module(tmp) {
337                 if (!strcasecmp(tmp->name, module->name)) {
338                         mutex_unlock(&netcp_modules_lock);
339                         return -EEXIST;
340                 }
341         }
342         list_add_tail(&module->module_list, &netcp_modules);
343
344         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
345                 ret = netcp_module_probe(netcp_device, module);
346                 if (ret < 0)
347                         goto fail;
348         }
349
350         mutex_unlock(&netcp_modules_lock);
351         return 0;
352
353 fail:
354         mutex_unlock(&netcp_modules_lock);
355         netcp_unregister_module(module);
356         return ret;
357 }
358 EXPORT_SYMBOL_GPL(netcp_register_module);
359
360 static void netcp_release_module(struct netcp_device *netcp_device,
361                                  struct netcp_module *module)
362 {
363         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
364         struct netcp_intf *netcp_intf, *netcp_tmp;
365         struct device *dev = netcp_device->device;
366
367         /* Release the module from each interface */
368         list_for_each_entry_safe(netcp_intf, netcp_tmp,
369                                  &netcp_device->interface_head,
370                                  interface_list) {
371                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
372
373                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
374                                          &netcp_intf->module_head,
375                                          intf_list) {
376                         if (intf_modpriv->netcp_module == module) {
377                                 module->release(intf_modpriv->module_priv);
378                                 list_del(&intf_modpriv->intf_list);
379                                 devm_kfree(dev, intf_modpriv);
380                                 break;
381                         }
382                 }
383         }
384
385         /* Remove the module from each instance */
386         list_for_each_entry_safe(inst_modpriv, inst_tmp,
387                                  &netcp_device->modpriv_head, inst_list) {
388                 if (inst_modpriv->netcp_module == module) {
389                         module->remove(netcp_device,
390                                        inst_modpriv->module_priv);
391                         list_del(&inst_modpriv->inst_list);
392                         devm_kfree(dev, inst_modpriv);
393                         break;
394                 }
395         }
396 }
397
398 void netcp_unregister_module(struct netcp_module *module)
399 {
400         struct netcp_device *netcp_device;
401         struct netcp_module *module_tmp;
402
403         mutex_lock(&netcp_modules_lock);
404
405         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
406                 netcp_release_module(netcp_device, module);
407         }
408
409         /* Remove the module from the module list */
410         for_each_netcp_module(module_tmp) {
411                 if (module == module_tmp) {
412                         list_del(&module->module_list);
413                         break;
414                 }
415         }
416
417         mutex_unlock(&netcp_modules_lock);
418 }
419 EXPORT_SYMBOL_GPL(netcp_unregister_module);
420
421 void *netcp_module_get_intf_data(struct netcp_module *module,
422                                  struct netcp_intf *intf)
423 {
424         struct netcp_intf_modpriv *intf_modpriv;
425
426         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
427                 if (intf_modpriv->netcp_module == module)
428                         return intf_modpriv->module_priv;
429         return NULL;
430 }
431 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
432
433 /* Module TX and RX Hook management */
434 struct netcp_hook_list {
435         struct list_head         list;
436         netcp_hook_rtn          *hook_rtn;
437         void                    *hook_data;
438         int                      order;
439 };
440
441 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
442                           netcp_hook_rtn *hook_rtn, void *hook_data)
443 {
444         struct netcp_hook_list *entry;
445         struct netcp_hook_list *next;
446         unsigned long flags;
447
448         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
449         if (!entry)
450                 return -ENOMEM;
451
452         entry->hook_rtn  = hook_rtn;
453         entry->hook_data = hook_data;
454         entry->order     = order;
455
456         spin_lock_irqsave(&netcp_priv->lock, flags);
457         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
458                 if (next->order > order)
459                         break;
460         }
461         __list_add(&entry->list, next->list.prev, &next->list);
462         spin_unlock_irqrestore(&netcp_priv->lock, flags);
463
464         return 0;
465 }
466 EXPORT_SYMBOL_GPL(netcp_register_txhook);
467
468 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
469                             netcp_hook_rtn *hook_rtn, void *hook_data)
470 {
471         struct netcp_hook_list *next, *n;
472         unsigned long flags;
473
474         spin_lock_irqsave(&netcp_priv->lock, flags);
475         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
476                 if ((next->order     == order) &&
477                     (next->hook_rtn  == hook_rtn) &&
478                     (next->hook_data == hook_data)) {
479                         list_del(&next->list);
480                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
481                         devm_kfree(netcp_priv->dev, next);
482                         return 0;
483                 }
484         }
485         spin_unlock_irqrestore(&netcp_priv->lock, flags);
486         return -ENOENT;
487 }
488 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
489
490 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
491                           netcp_hook_rtn *hook_rtn, void *hook_data)
492 {
493         struct netcp_hook_list *entry;
494         struct netcp_hook_list *next;
495         unsigned long flags;
496
497         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
498         if (!entry)
499                 return -ENOMEM;
500
501         entry->hook_rtn  = hook_rtn;
502         entry->hook_data = hook_data;
503         entry->order     = order;
504
505         spin_lock_irqsave(&netcp_priv->lock, flags);
506         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
507                 if (next->order > order)
508                         break;
509         }
510         __list_add(&entry->list, next->list.prev, &next->list);
511         spin_unlock_irqrestore(&netcp_priv->lock, flags);
512
513         return 0;
514 }
515
516 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
517                             netcp_hook_rtn *hook_rtn, void *hook_data)
518 {
519         struct netcp_hook_list *next, *n;
520         unsigned long flags;
521
522         spin_lock_irqsave(&netcp_priv->lock, flags);
523         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
524                 if ((next->order     == order) &&
525                     (next->hook_rtn  == hook_rtn) &&
526                     (next->hook_data == hook_data)) {
527                         list_del(&next->list);
528                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
529                         devm_kfree(netcp_priv->dev, next);
530                         return 0;
531                 }
532         }
533         spin_unlock_irqrestore(&netcp_priv->lock, flags);
534
535         return -ENOENT;
536 }
537
538 static void netcp_frag_free(bool is_frag, void *ptr)
539 {
540         if (is_frag)
541                 skb_free_frag(ptr);
542         else
543                 kfree(ptr);
544 }
545
546 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
547                                      struct knav_dma_desc *desc)
548 {
549         struct knav_dma_desc *ndesc;
550         dma_addr_t dma_desc, dma_buf;
551         unsigned int buf_len, dma_sz = sizeof(*ndesc);
552         void *buf_ptr;
553         u32 tmp;
554
555         get_words(&dma_desc, 1, &desc->next_desc);
556
557         while (dma_desc) {
558                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
559                 if (unlikely(!ndesc)) {
560                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
561                         break;
562                 }
563                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
564                 get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
565                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
566                 __free_page(buf_ptr);
567                 knav_pool_desc_put(netcp->rx_pool, desc);
568         }
569
570         get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
571         if (buf_ptr)
572                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
573         knav_pool_desc_put(netcp->rx_pool, desc);
574 }
575
576 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
577 {
578         struct knav_dma_desc *desc;
579         unsigned int dma_sz;
580         dma_addr_t dma;
581
582         for (; ;) {
583                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
584                 if (!dma)
585                         break;
586
587                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
588                 if (unlikely(!desc)) {
589                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
590                                 __func__);
591                         netcp->ndev->stats.rx_errors++;
592                         continue;
593                 }
594                 netcp_free_rx_desc_chain(netcp, desc);
595                 netcp->ndev->stats.rx_dropped++;
596         }
597 }
598
599 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
600 {
601         unsigned int dma_sz, buf_len, org_buf_len;
602         struct knav_dma_desc *desc, *ndesc;
603         unsigned int pkt_sz = 0, accum_sz;
604         struct netcp_hook_list *rx_hook;
605         dma_addr_t dma_desc, dma_buff;
606         struct netcp_packet p_info;
607         struct sk_buff *skb;
608         void *org_buf_ptr;
609         u32 tmp;
610
611         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
612         if (!dma_desc)
613                 return -1;
614
615         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
616         if (unlikely(!desc)) {
617                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
618                 return 0;
619         }
620
621         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
622         get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
623
624         if (unlikely(!org_buf_ptr)) {
625                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
626                 goto free_desc;
627         }
628
629         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
630         accum_sz = buf_len;
631         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
632
633         /* Build a new sk_buff for the primary buffer */
634         skb = build_skb(org_buf_ptr, org_buf_len);
635         if (unlikely(!skb)) {
636                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
637                 goto free_desc;
638         }
639
640         /* update data, tail and len */
641         skb_reserve(skb, NETCP_SOP_OFFSET);
642         __skb_put(skb, buf_len);
643
644         /* Fill in the page fragment list */
645         while (dma_desc) {
646                 struct page *page;
647
648                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
649                 if (unlikely(!ndesc)) {
650                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
651                         goto free_desc;
652                 }
653
654                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
655                 get_pad_info((u32 *)&page, &tmp, ndesc);
656
657                 if (likely(dma_buff && buf_len && page)) {
658                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
659                                        DMA_FROM_DEVICE);
660                 } else {
661                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
662                                 (void *)dma_buff, buf_len, page);
663                         goto free_desc;
664                 }
665
666                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
667                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
668                 accum_sz += buf_len;
669
670                 /* Free the descriptor */
671                 knav_pool_desc_put(netcp->rx_pool, ndesc);
672         }
673
674         /* Free the primary descriptor */
675         knav_pool_desc_put(netcp->rx_pool, desc);
676
677         /* check for packet len and warn */
678         if (unlikely(pkt_sz != accum_sz))
679                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
680                         pkt_sz, accum_sz);
681
682         /* Remove ethernet FCS from the packet */
683         __pskb_trim(skb, skb->len - ETH_FCS_LEN);
684
685         /* Call each of the RX hooks */
686         p_info.skb = skb;
687         p_info.rxtstamp_complete = false;
688         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
689                 int ret;
690
691                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
692                                         &p_info);
693                 if (unlikely(ret)) {
694                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
695                                 rx_hook->order, ret);
696                         netcp->ndev->stats.rx_errors++;
697                         dev_kfree_skb(skb);
698                         return 0;
699                 }
700         }
701
702         netcp->ndev->stats.rx_packets++;
703         netcp->ndev->stats.rx_bytes += skb->len;
704
705         /* push skb up the stack */
706         skb->protocol = eth_type_trans(skb, netcp->ndev);
707         netif_receive_skb(skb);
708         return 0;
709
710 free_desc:
711         netcp_free_rx_desc_chain(netcp, desc);
712         netcp->ndev->stats.rx_errors++;
713         return 0;
714 }
715
716 static int netcp_process_rx_packets(struct netcp_intf *netcp,
717                                     unsigned int budget)
718 {
719         int i;
720
721         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
722                 ;
723         return i;
724 }
725
726 /* Release descriptors and attached buffers from Rx FDQ */
727 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
728 {
729         struct knav_dma_desc *desc;
730         unsigned int buf_len, dma_sz;
731         dma_addr_t dma;
732         void *buf_ptr;
733         u32 tmp;
734
735         /* Allocate descriptor */
736         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
737                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
738                 if (unlikely(!desc)) {
739                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
740                         continue;
741                 }
742
743                 get_org_pkt_info(&dma, &buf_len, desc);
744                 get_pad_info((u32 *)&buf_ptr, &tmp, desc);
745
746                 if (unlikely(!dma)) {
747                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
748                         knav_pool_desc_put(netcp->rx_pool, desc);
749                         continue;
750                 }
751
752                 if (unlikely(!buf_ptr)) {
753                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
754                         knav_pool_desc_put(netcp->rx_pool, desc);
755                         continue;
756                 }
757
758                 if (fdq == 0) {
759                         dma_unmap_single(netcp->dev, dma, buf_len,
760                                          DMA_FROM_DEVICE);
761                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
762                 } else {
763                         dma_unmap_page(netcp->dev, dma, buf_len,
764                                        DMA_FROM_DEVICE);
765                         __free_page(buf_ptr);
766                 }
767
768                 knav_pool_desc_put(netcp->rx_pool, desc);
769         }
770 }
771
772 static void netcp_rxpool_free(struct netcp_intf *netcp)
773 {
774         int i;
775
776         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
777              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
778                 netcp_free_rx_buf(netcp, i);
779
780         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
781                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
782                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
783
784         knav_pool_destroy(netcp->rx_pool);
785         netcp->rx_pool = NULL;
786 }
787
788 static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
789 {
790         struct knav_dma_desc *hwdesc;
791         unsigned int buf_len, dma_sz;
792         u32 desc_info, pkt_info;
793         struct page *page;
794         dma_addr_t dma;
795         void *bufptr;
796         u32 pad[2];
797
798         /* Allocate descriptor */
799         hwdesc = knav_pool_desc_get(netcp->rx_pool);
800         if (IS_ERR_OR_NULL(hwdesc)) {
801                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
802                 return;
803         }
804
805         if (likely(fdq == 0)) {
806                 unsigned int primary_buf_len;
807                 /* Allocate a primary receive queue entry */
808                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
809                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
810                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
811
812                 bufptr = netdev_alloc_frag(primary_buf_len);
813                 pad[1] = primary_buf_len;
814
815                 if (unlikely(!bufptr)) {
816                         dev_warn_ratelimited(netcp->ndev_dev,
817                                              "Primary RX buffer alloc failed\n");
818                         goto fail;
819                 }
820                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
821                                      DMA_TO_DEVICE);
822                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
823                         goto fail;
824
825                 pad[0] = (u32)bufptr;
826
827         } else {
828                 /* Allocate a secondary receive queue entry */
829                 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
830                 if (unlikely(!page)) {
831                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
832                         goto fail;
833                 }
834                 buf_len = PAGE_SIZE;
835                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
836                 pad[0] = (u32)page;
837                 pad[1] = 0;
838         }
839
840         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
841         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
842         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
843         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
844         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
845                     KNAV_DMA_DESC_RETQ_SHIFT;
846         set_org_pkt_info(dma, buf_len, hwdesc);
847         set_pad_info(pad[0], pad[1], hwdesc);
848         set_desc_info(desc_info, pkt_info, hwdesc);
849
850         /* Push to FDQs */
851         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
852                            &dma_sz);
853         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
854         return;
855
856 fail:
857         knav_pool_desc_put(netcp->rx_pool, hwdesc);
858 }
859
860 /* Refill Rx FDQ with descriptors & attached buffers */
861 static void netcp_rxpool_refill(struct netcp_intf *netcp)
862 {
863         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
864         int i;
865
866         /* Calculate the FDQ deficit and refill */
867         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
868                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
869                                  knav_queue_get_count(netcp->rx_fdq[i]);
870
871                 while (fdq_deficit[i]--)
872                         netcp_allocate_rx_buf(netcp, i);
873         } /* end for fdqs */
874 }
875
876 /* NAPI poll */
877 static int netcp_rx_poll(struct napi_struct *napi, int budget)
878 {
879         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
880                                                 rx_napi);
881         unsigned int packets;
882
883         packets = netcp_process_rx_packets(netcp, budget);
884
885         if (packets < budget) {
886                 napi_complete(&netcp->rx_napi);
887                 knav_queue_enable_notify(netcp->rx_queue);
888         }
889
890         netcp_rxpool_refill(netcp);
891         return packets;
892 }
893
894 static void netcp_rx_notify(void *arg)
895 {
896         struct netcp_intf *netcp = arg;
897
898         knav_queue_disable_notify(netcp->rx_queue);
899         napi_schedule(&netcp->rx_napi);
900 }
901
902 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
903                                      struct knav_dma_desc *desc,
904                                      unsigned int desc_sz)
905 {
906         struct knav_dma_desc *ndesc = desc;
907         dma_addr_t dma_desc, dma_buf;
908         unsigned int buf_len;
909
910         while (ndesc) {
911                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
912
913                 if (dma_buf && buf_len)
914                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
915                                          DMA_TO_DEVICE);
916                 else
917                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
918                                  (void *)dma_buf, buf_len);
919
920                 knav_pool_desc_put(netcp->tx_pool, ndesc);
921                 ndesc = NULL;
922                 if (dma_desc) {
923                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
924                                                      desc_sz);
925                         if (!ndesc)
926                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
927                 }
928         }
929 }
930
931 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
932                                           unsigned int budget)
933 {
934         struct knav_dma_desc *desc;
935         struct sk_buff *skb;
936         unsigned int dma_sz;
937         dma_addr_t dma;
938         int pkts = 0;
939         u32 tmp;
940
941         while (budget--) {
942                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
943                 if (!dma)
944                         break;
945                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
946                 if (unlikely(!desc)) {
947                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
948                         netcp->ndev->stats.tx_errors++;
949                         continue;
950                 }
951
952                 get_pad_info((u32 *)&skb, &tmp, desc);
953                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
954                 if (!skb) {
955                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
956                         netcp->ndev->stats.tx_errors++;
957                         continue;
958                 }
959
960                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
961                     netif_running(netcp->ndev) &&
962                     (knav_pool_count(netcp->tx_pool) >
963                     netcp->tx_resume_threshold)) {
964                         u16 subqueue = skb_get_queue_mapping(skb);
965
966                         netif_wake_subqueue(netcp->ndev, subqueue);
967                 }
968
969                 netcp->ndev->stats.tx_packets++;
970                 netcp->ndev->stats.tx_bytes += skb->len;
971                 dev_kfree_skb(skb);
972                 pkts++;
973         }
974         return pkts;
975 }
976
977 static int netcp_tx_poll(struct napi_struct *napi, int budget)
978 {
979         int packets;
980         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
981                                                 tx_napi);
982
983         packets = netcp_process_tx_compl_packets(netcp, budget);
984         if (packets < budget) {
985                 napi_complete(&netcp->tx_napi);
986                 knav_queue_enable_notify(netcp->tx_compl_q);
987         }
988
989         return packets;
990 }
991
992 static void netcp_tx_notify(void *arg)
993 {
994         struct netcp_intf *netcp = arg;
995
996         knav_queue_disable_notify(netcp->tx_compl_q);
997         napi_schedule(&netcp->tx_napi);
998 }
999
1000 static struct knav_dma_desc*
1001 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1002 {
1003         struct knav_dma_desc *desc, *ndesc, *pdesc;
1004         unsigned int pkt_len = skb_headlen(skb);
1005         struct device *dev = netcp->dev;
1006         dma_addr_t dma_addr;
1007         unsigned int dma_sz;
1008         int i;
1009
1010         /* Map the linear buffer */
1011         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1012         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1013                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1014                 return NULL;
1015         }
1016
1017         desc = knav_pool_desc_get(netcp->tx_pool);
1018         if (unlikely(IS_ERR_OR_NULL(desc))) {
1019                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1020                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1021                 return NULL;
1022         }
1023
1024         set_pkt_info(dma_addr, pkt_len, 0, desc);
1025         if (skb_is_nonlinear(skb)) {
1026                 prefetchw(skb_shinfo(skb));
1027         } else {
1028                 desc->next_desc = 0;
1029                 goto upd_pkt_len;
1030         }
1031
1032         pdesc = desc;
1033
1034         /* Handle the case where skb is fragmented in pages */
1035         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1036                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1037                 struct page *page = skb_frag_page(frag);
1038                 u32 page_offset = frag->page_offset;
1039                 u32 buf_len = skb_frag_size(frag);
1040                 dma_addr_t desc_dma;
1041                 u32 pkt_info;
1042
1043                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1044                                         DMA_TO_DEVICE);
1045                 if (unlikely(!dma_addr)) {
1046                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1047                         goto free_descs;
1048                 }
1049
1050                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1051                 if (unlikely(IS_ERR_OR_NULL(ndesc))) {
1052                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1053                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1054                         goto free_descs;
1055                 }
1056
1057                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1058                                                       (void *)ndesc);
1059                 pkt_info =
1060                         (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1061                                 KNAV_DMA_DESC_RETQ_SHIFT;
1062                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1063                 set_words(&desc_dma, 1, &pdesc->next_desc);
1064                 pkt_len += buf_len;
1065                 if (pdesc != desc)
1066                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1067                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1068                 pdesc = ndesc;
1069         }
1070         if (pdesc != desc)
1071                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1072                                    &dma_addr, &dma_sz);
1073
1074         /* frag list based linkage is not supported for now. */
1075         if (skb_shinfo(skb)->frag_list) {
1076                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1077                 goto free_descs;
1078         }
1079
1080 upd_pkt_len:
1081         WARN_ON(pkt_len != skb->len);
1082
1083         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1084         set_words(&pkt_len, 1, &desc->desc_info);
1085         return desc;
1086
1087 free_descs:
1088         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1089         return NULL;
1090 }
1091
1092 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1093                                struct sk_buff *skb,
1094                                struct knav_dma_desc *desc)
1095 {
1096         struct netcp_tx_pipe *tx_pipe = NULL;
1097         struct netcp_hook_list *tx_hook;
1098         struct netcp_packet p_info;
1099         unsigned int dma_sz;
1100         dma_addr_t dma;
1101         u32 tmp = 0;
1102         int ret = 0;
1103
1104         p_info.netcp = netcp;
1105         p_info.skb = skb;
1106         p_info.tx_pipe = NULL;
1107         p_info.psdata_len = 0;
1108         p_info.ts_context = NULL;
1109         p_info.txtstamp_complete = NULL;
1110         p_info.epib = desc->epib;
1111         p_info.psdata = desc->psdata;
1112         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1113
1114         /* Find out where to inject the packet for transmission */
1115         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1116                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1117                                         &p_info);
1118                 if (unlikely(ret != 0)) {
1119                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1120                                 tx_hook->order, ret);
1121                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1122                         goto out;
1123                 }
1124         }
1125
1126         /* Make sure some TX hook claimed the packet */
1127         tx_pipe = p_info.tx_pipe;
1128         if (!tx_pipe) {
1129                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1130                 ret = -ENXIO;
1131                 goto out;
1132         }
1133
1134         /* update descriptor */
1135         if (p_info.psdata_len) {
1136                 u32 *psdata = p_info.psdata;
1137
1138                 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1139                         p_info.psdata_len);
1140                 set_words(psdata, p_info.psdata_len, psdata);
1141                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1142                         KNAV_DMA_DESC_PSLEN_SHIFT;
1143         }
1144
1145         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1146                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1147                 KNAV_DMA_DESC_RETQ_SHIFT);
1148
1149         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1150                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1151                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1152         }
1153
1154         set_words(&tmp, 1, &desc->packet_info);
1155         set_words((u32 *)&skb, 1, &desc->pad[0]);
1156
1157         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1158                 tmp = tx_pipe->switch_to_port;
1159                 set_words((u32 *)&tmp, 1, &desc->tag_info);
1160         }
1161
1162         /* submit packet descriptor */
1163         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1164                                  &dma_sz);
1165         if (unlikely(ret)) {
1166                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1167                 ret = -ENOMEM;
1168                 goto out;
1169         }
1170         skb_tx_timestamp(skb);
1171         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1172
1173 out:
1174         return ret;
1175 }
1176
1177 /* Submit the packet */
1178 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1179 {
1180         struct netcp_intf *netcp = netdev_priv(ndev);
1181         int subqueue = skb_get_queue_mapping(skb);
1182         struct knav_dma_desc *desc;
1183         int desc_count, ret = 0;
1184
1185         if (unlikely(skb->len <= 0)) {
1186                 dev_kfree_skb(skb);
1187                 return NETDEV_TX_OK;
1188         }
1189
1190         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1191                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1192                 if (ret < 0) {
1193                         /* If we get here, the skb has already been dropped */
1194                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1195                                  ret);
1196                         ndev->stats.tx_dropped++;
1197                         return ret;
1198                 }
1199                 skb->len = NETCP_MIN_PACKET_SIZE;
1200         }
1201
1202         desc = netcp_tx_map_skb(skb, netcp);
1203         if (unlikely(!desc)) {
1204                 netif_stop_subqueue(ndev, subqueue);
1205                 ret = -ENOBUFS;
1206                 goto drop;
1207         }
1208
1209         ret = netcp_tx_submit_skb(netcp, skb, desc);
1210         if (ret)
1211                 goto drop;
1212
1213         ndev->trans_start = jiffies;
1214
1215         /* Check Tx pool count & stop subqueue if needed */
1216         desc_count = knav_pool_count(netcp->tx_pool);
1217         if (desc_count < netcp->tx_pause_threshold) {
1218                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1219                 netif_stop_subqueue(ndev, subqueue);
1220         }
1221         return NETDEV_TX_OK;
1222
1223 drop:
1224         ndev->stats.tx_dropped++;
1225         if (desc)
1226                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1227         dev_kfree_skb(skb);
1228         return ret;
1229 }
1230
1231 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1232 {
1233         if (tx_pipe->dma_channel) {
1234                 knav_dma_close_channel(tx_pipe->dma_channel);
1235                 tx_pipe->dma_channel = NULL;
1236         }
1237         return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1240
1241 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1242 {
1243         struct device *dev = tx_pipe->netcp_device->device;
1244         struct knav_dma_cfg config;
1245         int ret = 0;
1246         u8 name[16];
1247
1248         memset(&config, 0, sizeof(config));
1249         config.direction = DMA_MEM_TO_DEV;
1250         config.u.tx.filt_einfo = false;
1251         config.u.tx.filt_pswords = false;
1252         config.u.tx.priority = DMA_PRIO_MED_L;
1253
1254         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1255                                 tx_pipe->dma_chan_name, &config);
1256         if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1257                 dev_err(dev, "failed opening tx chan(%s)\n",
1258                         tx_pipe->dma_chan_name);
1259                 goto err;
1260         }
1261
1262         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1263         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1264                                              KNAV_QUEUE_SHARED);
1265         if (IS_ERR(tx_pipe->dma_queue)) {
1266                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1267                         name, ret);
1268                 ret = PTR_ERR(tx_pipe->dma_queue);
1269                 goto err;
1270         }
1271
1272         dev_dbg(dev, "opened tx pipe %s\n", name);
1273         return 0;
1274
1275 err:
1276         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1277                 knav_dma_close_channel(tx_pipe->dma_channel);
1278         tx_pipe->dma_channel = NULL;
1279         return ret;
1280 }
1281 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1282
1283 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1284                       struct netcp_device *netcp_device,
1285                       const char *dma_chan_name, unsigned int dma_queue_id)
1286 {
1287         memset(tx_pipe, 0, sizeof(*tx_pipe));
1288         tx_pipe->netcp_device = netcp_device;
1289         tx_pipe->dma_chan_name = dma_chan_name;
1290         tx_pipe->dma_queue_id = dma_queue_id;
1291         return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1294
1295 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1296                                           const u8 *addr,
1297                                           enum netcp_addr_type type)
1298 {
1299         struct netcp_addr *naddr;
1300
1301         list_for_each_entry(naddr, &netcp->addr_list, node) {
1302                 if (naddr->type != type)
1303                         continue;
1304                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1305                         continue;
1306                 return naddr;
1307         }
1308
1309         return NULL;
1310 }
1311
1312 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1313                                          const u8 *addr,
1314                                          enum netcp_addr_type type)
1315 {
1316         struct netcp_addr *naddr;
1317
1318         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1319         if (!naddr)
1320                 return NULL;
1321
1322         naddr->type = type;
1323         naddr->flags = 0;
1324         naddr->netcp = netcp;
1325         if (addr)
1326                 ether_addr_copy(naddr->addr, addr);
1327         else
1328                 eth_zero_addr(naddr->addr);
1329         list_add_tail(&naddr->node, &netcp->addr_list);
1330
1331         return naddr;
1332 }
1333
1334 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1335 {
1336         list_del(&naddr->node);
1337         devm_kfree(netcp->dev, naddr);
1338 }
1339
1340 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1341 {
1342         struct netcp_addr *naddr;
1343
1344         list_for_each_entry(naddr, &netcp->addr_list, node)
1345                 naddr->flags = 0;
1346 }
1347
1348 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1349                                 enum netcp_addr_type type)
1350 {
1351         struct netcp_addr *naddr;
1352
1353         naddr = netcp_addr_find(netcp, addr, type);
1354         if (naddr) {
1355                 naddr->flags |= ADDR_VALID;
1356                 return;
1357         }
1358
1359         naddr = netcp_addr_add(netcp, addr, type);
1360         if (!WARN_ON(!naddr))
1361                 naddr->flags |= ADDR_NEW;
1362 }
1363
1364 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1365 {
1366         struct netcp_addr *naddr, *tmp;
1367         struct netcp_intf_modpriv *priv;
1368         struct netcp_module *module;
1369         int error;
1370
1371         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1372                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1373                         continue;
1374                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1375                         naddr->addr, naddr->type);
1376                 mutex_lock(&netcp_modules_lock);
1377                 for_each_module(netcp, priv) {
1378                         module = priv->netcp_module;
1379                         if (!module->del_addr)
1380                                 continue;
1381                         error = module->del_addr(priv->module_priv,
1382                                                  naddr);
1383                         WARN_ON(error);
1384                 }
1385                 mutex_unlock(&netcp_modules_lock);
1386                 netcp_addr_del(netcp, naddr);
1387         }
1388 }
1389
1390 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1391 {
1392         struct netcp_addr *naddr, *tmp;
1393         struct netcp_intf_modpriv *priv;
1394         struct netcp_module *module;
1395         int error;
1396
1397         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1398                 if (!(naddr->flags & ADDR_NEW))
1399                         continue;
1400                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1401                         naddr->addr, naddr->type);
1402                 mutex_lock(&netcp_modules_lock);
1403                 for_each_module(netcp, priv) {
1404                         module = priv->netcp_module;
1405                         if (!module->add_addr)
1406                                 continue;
1407                         error = module->add_addr(priv->module_priv, naddr);
1408                         WARN_ON(error);
1409                 }
1410                 mutex_unlock(&netcp_modules_lock);
1411         }
1412 }
1413
1414 static void netcp_set_rx_mode(struct net_device *ndev)
1415 {
1416         struct netcp_intf *netcp = netdev_priv(ndev);
1417         struct netdev_hw_addr *ndev_addr;
1418         bool promisc;
1419
1420         promisc = (ndev->flags & IFF_PROMISC ||
1421                    ndev->flags & IFF_ALLMULTI ||
1422                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1423
1424         /* first clear all marks */
1425         netcp_addr_clear_mark(netcp);
1426
1427         /* next add new entries, mark existing ones */
1428         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1429         for_each_dev_addr(ndev, ndev_addr)
1430                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1431         netdev_for_each_uc_addr(ndev_addr, ndev)
1432                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1433         netdev_for_each_mc_addr(ndev_addr, ndev)
1434                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1435
1436         if (promisc)
1437                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1438
1439         /* finally sweep and callout into modules */
1440         netcp_addr_sweep_del(netcp);
1441         netcp_addr_sweep_add(netcp);
1442 }
1443
1444 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1445 {
1446         int i;
1447
1448         if (netcp->rx_channel) {
1449                 knav_dma_close_channel(netcp->rx_channel);
1450                 netcp->rx_channel = NULL;
1451         }
1452
1453         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1454                 netcp_rxpool_free(netcp);
1455
1456         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1457                 knav_queue_close(netcp->rx_queue);
1458                 netcp->rx_queue = NULL;
1459         }
1460
1461         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1462              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1463                 knav_queue_close(netcp->rx_fdq[i]);
1464                 netcp->rx_fdq[i] = NULL;
1465         }
1466
1467         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1468                 knav_queue_close(netcp->tx_compl_q);
1469                 netcp->tx_compl_q = NULL;
1470         }
1471
1472         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1473                 knav_pool_destroy(netcp->tx_pool);
1474                 netcp->tx_pool = NULL;
1475         }
1476 }
1477
1478 static int netcp_setup_navigator_resources(struct net_device *ndev)
1479 {
1480         struct netcp_intf *netcp = netdev_priv(ndev);
1481         struct knav_queue_notify_config notify_cfg;
1482         struct knav_dma_cfg config;
1483         u32 last_fdq = 0;
1484         u8 name[16];
1485         int ret;
1486         int i;
1487
1488         /* Create Rx/Tx descriptor pools */
1489         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1490         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1491                                                 netcp->rx_pool_region_id);
1492         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1493                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1494                 ret = PTR_ERR(netcp->rx_pool);
1495                 goto fail;
1496         }
1497
1498         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1499         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1500                                                 netcp->tx_pool_region_id);
1501         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1502                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1503                 ret = PTR_ERR(netcp->tx_pool);
1504                 goto fail;
1505         }
1506
1507         /* open Tx completion queue */
1508         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1509         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1510         if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1511                 ret = PTR_ERR(netcp->tx_compl_q);
1512                 goto fail;
1513         }
1514         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1515
1516         /* Set notification for Tx completion */
1517         notify_cfg.fn = netcp_tx_notify;
1518         notify_cfg.fn_arg = netcp;
1519         ret = knav_queue_device_control(netcp->tx_compl_q,
1520                                         KNAV_QUEUE_SET_NOTIFIER,
1521                                         (unsigned long)&notify_cfg);
1522         if (ret)
1523                 goto fail;
1524
1525         knav_queue_disable_notify(netcp->tx_compl_q);
1526
1527         /* open Rx completion queue */
1528         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1529         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1530         if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1531                 ret = PTR_ERR(netcp->rx_queue);
1532                 goto fail;
1533         }
1534         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1535
1536         /* Set notification for Rx completion */
1537         notify_cfg.fn = netcp_rx_notify;
1538         notify_cfg.fn_arg = netcp;
1539         ret = knav_queue_device_control(netcp->rx_queue,
1540                                         KNAV_QUEUE_SET_NOTIFIER,
1541                                         (unsigned long)&notify_cfg);
1542         if (ret)
1543                 goto fail;
1544
1545         knav_queue_disable_notify(netcp->rx_queue);
1546
1547         /* open Rx FDQs */
1548         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1549              ++i) {
1550                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1551                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1552                 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1553                         ret = PTR_ERR(netcp->rx_fdq[i]);
1554                         goto fail;
1555                 }
1556         }
1557
1558         memset(&config, 0, sizeof(config));
1559         config.direction                = DMA_DEV_TO_MEM;
1560         config.u.rx.einfo_present       = true;
1561         config.u.rx.psinfo_present      = true;
1562         config.u.rx.err_mode            = DMA_DROP;
1563         config.u.rx.desc_type           = DMA_DESC_HOST;
1564         config.u.rx.psinfo_at_sop       = false;
1565         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1566         config.u.rx.dst_q               = netcp->rx_queue_id;
1567         config.u.rx.thresh              = DMA_THRESH_NONE;
1568
1569         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1570                 if (netcp->rx_fdq[i])
1571                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1572                 config.u.rx.fdq[i] = last_fdq;
1573         }
1574
1575         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1576                                         netcp->dma_chan_name, &config);
1577         if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1578                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1579                         netcp->dma_chan_name);
1580                 goto fail;
1581         }
1582
1583         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1584         return 0;
1585
1586 fail:
1587         netcp_free_navigator_resources(netcp);
1588         return ret;
1589 }
1590
1591 /* Open the device */
1592 static int netcp_ndo_open(struct net_device *ndev)
1593 {
1594         struct netcp_intf *netcp = netdev_priv(ndev);
1595         struct netcp_intf_modpriv *intf_modpriv;
1596         struct netcp_module *module;
1597         int ret;
1598
1599         netif_carrier_off(ndev);
1600         ret = netcp_setup_navigator_resources(ndev);
1601         if (ret) {
1602                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1603                 goto fail;
1604         }
1605
1606         mutex_lock(&netcp_modules_lock);
1607         for_each_module(netcp, intf_modpriv) {
1608                 module = intf_modpriv->netcp_module;
1609                 if (module->open) {
1610                         ret = module->open(intf_modpriv->module_priv, ndev);
1611                         if (ret != 0) {
1612                                 dev_err(netcp->ndev_dev, "module open failed\n");
1613                                 goto fail_open;
1614                         }
1615                 }
1616         }
1617         mutex_unlock(&netcp_modules_lock);
1618
1619         napi_enable(&netcp->rx_napi);
1620         napi_enable(&netcp->tx_napi);
1621         knav_queue_enable_notify(netcp->tx_compl_q);
1622         knav_queue_enable_notify(netcp->rx_queue);
1623         netcp_rxpool_refill(netcp);
1624         netif_tx_wake_all_queues(ndev);
1625         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1626         return 0;
1627
1628 fail_open:
1629         for_each_module(netcp, intf_modpriv) {
1630                 module = intf_modpriv->netcp_module;
1631                 if (module->close)
1632                         module->close(intf_modpriv->module_priv, ndev);
1633         }
1634         mutex_unlock(&netcp_modules_lock);
1635
1636 fail:
1637         netcp_free_navigator_resources(netcp);
1638         return ret;
1639 }
1640
1641 /* Close the device */
1642 static int netcp_ndo_stop(struct net_device *ndev)
1643 {
1644         struct netcp_intf *netcp = netdev_priv(ndev);
1645         struct netcp_intf_modpriv *intf_modpriv;
1646         struct netcp_module *module;
1647         int err = 0;
1648
1649         netif_tx_stop_all_queues(ndev);
1650         netif_carrier_off(ndev);
1651         netcp_addr_clear_mark(netcp);
1652         netcp_addr_sweep_del(netcp);
1653         knav_queue_disable_notify(netcp->rx_queue);
1654         knav_queue_disable_notify(netcp->tx_compl_q);
1655         napi_disable(&netcp->rx_napi);
1656         napi_disable(&netcp->tx_napi);
1657
1658         mutex_lock(&netcp_modules_lock);
1659         for_each_module(netcp, intf_modpriv) {
1660                 module = intf_modpriv->netcp_module;
1661                 if (module->close) {
1662                         err = module->close(intf_modpriv->module_priv, ndev);
1663                         if (err != 0)
1664                                 dev_err(netcp->ndev_dev, "Close failed\n");
1665                 }
1666         }
1667         mutex_unlock(&netcp_modules_lock);
1668
1669         /* Recycle Rx descriptors from completion queue */
1670         netcp_empty_rx_queue(netcp);
1671
1672         /* Recycle Tx descriptors from completion queue */
1673         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1674
1675         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1676                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1677                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1678
1679         netcp_free_navigator_resources(netcp);
1680         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1681         return 0;
1682 }
1683
1684 static int netcp_ndo_ioctl(struct net_device *ndev,
1685                            struct ifreq *req, int cmd)
1686 {
1687         struct netcp_intf *netcp = netdev_priv(ndev);
1688         struct netcp_intf_modpriv *intf_modpriv;
1689         struct netcp_module *module;
1690         int ret = -1, err = -EOPNOTSUPP;
1691
1692         if (!netif_running(ndev))
1693                 return -EINVAL;
1694
1695         mutex_lock(&netcp_modules_lock);
1696         for_each_module(netcp, intf_modpriv) {
1697                 module = intf_modpriv->netcp_module;
1698                 if (!module->ioctl)
1699                         continue;
1700
1701                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1702                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1703                         ret = err;
1704                         goto out;
1705                 }
1706                 if (err == 0)
1707                         ret = err;
1708         }
1709
1710 out:
1711         mutex_unlock(&netcp_modules_lock);
1712         return (ret == 0) ? 0 : err;
1713 }
1714
1715 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1716 {
1717         struct netcp_intf *netcp = netdev_priv(ndev);
1718
1719         /* MTU < 68 is an error for IPv4 traffic */
1720         if ((new_mtu < 68) ||
1721             (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1722                 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1723                 return -EINVAL;
1724         }
1725
1726         ndev->mtu = new_mtu;
1727         return 0;
1728 }
1729
1730 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1731 {
1732         struct netcp_intf *netcp = netdev_priv(ndev);
1733         unsigned int descs = knav_pool_count(netcp->tx_pool);
1734
1735         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1736         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1737         ndev->trans_start = jiffies;
1738         netif_tx_wake_all_queues(ndev);
1739 }
1740
1741 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1742 {
1743         struct netcp_intf *netcp = netdev_priv(ndev);
1744         struct netcp_intf_modpriv *intf_modpriv;
1745         struct netcp_module *module;
1746         int err = 0;
1747
1748         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1749
1750         mutex_lock(&netcp_modules_lock);
1751         for_each_module(netcp, intf_modpriv) {
1752                 module = intf_modpriv->netcp_module;
1753                 if ((module->add_vid) && (vid != 0)) {
1754                         err = module->add_vid(intf_modpriv->module_priv, vid);
1755                         if (err != 0) {
1756                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1757                                         vid);
1758                                 break;
1759                         }
1760                 }
1761         }
1762         mutex_unlock(&netcp_modules_lock);
1763         return err;
1764 }
1765
1766 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1767 {
1768         struct netcp_intf *netcp = netdev_priv(ndev);
1769         struct netcp_intf_modpriv *intf_modpriv;
1770         struct netcp_module *module;
1771         int err = 0;
1772
1773         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1774
1775         mutex_lock(&netcp_modules_lock);
1776         for_each_module(netcp, intf_modpriv) {
1777                 module = intf_modpriv->netcp_module;
1778                 if (module->del_vid) {
1779                         err = module->del_vid(intf_modpriv->module_priv, vid);
1780                         if (err != 0) {
1781                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1782                                         vid);
1783                                 break;
1784                         }
1785                 }
1786         }
1787         mutex_unlock(&netcp_modules_lock);
1788         return err;
1789 }
1790
1791 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1792                               void *accel_priv,
1793                               select_queue_fallback_t fallback)
1794 {
1795         return 0;
1796 }
1797
1798 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1799 {
1800         int i;
1801
1802         /* setup tc must be called under rtnl lock */
1803         ASSERT_RTNL();
1804
1805         /* Sanity-check the number of traffic classes requested */
1806         if ((dev->real_num_tx_queues <= 1) ||
1807             (dev->real_num_tx_queues < num_tc))
1808                 return -EINVAL;
1809
1810         /* Configure traffic class to queue mappings */
1811         if (num_tc) {
1812                 netdev_set_num_tc(dev, num_tc);
1813                 for (i = 0; i < num_tc; i++)
1814                         netdev_set_tc_queue(dev, i, 1, i);
1815         } else {
1816                 netdev_reset_tc(dev);
1817         }
1818
1819         return 0;
1820 }
1821
1822 static const struct net_device_ops netcp_netdev_ops = {
1823         .ndo_open               = netcp_ndo_open,
1824         .ndo_stop               = netcp_ndo_stop,
1825         .ndo_start_xmit         = netcp_ndo_start_xmit,
1826         .ndo_set_rx_mode        = netcp_set_rx_mode,
1827         .ndo_do_ioctl           = netcp_ndo_ioctl,
1828         .ndo_change_mtu         = netcp_ndo_change_mtu,
1829         .ndo_set_mac_address    = eth_mac_addr,
1830         .ndo_validate_addr      = eth_validate_addr,
1831         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1832         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1833         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1834         .ndo_select_queue       = netcp_select_queue,
1835         .ndo_setup_tc           = netcp_setup_tc,
1836 };
1837
1838 static int netcp_create_interface(struct netcp_device *netcp_device,
1839                                   struct device_node *node_interface)
1840 {
1841         struct device *dev = netcp_device->device;
1842         struct device_node *node = dev->of_node;
1843         struct netcp_intf *netcp;
1844         struct net_device *ndev;
1845         resource_size_t size;
1846         struct resource res;
1847         void __iomem *efuse = NULL;
1848         u32 efuse_mac = 0;
1849         const void *mac_addr;
1850         u8 efuse_mac_addr[6];
1851         u32 temp[2];
1852         int ret = 0;
1853
1854         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1855         if (!ndev) {
1856                 dev_err(dev, "Error allocating netdev\n");
1857                 return -ENOMEM;
1858         }
1859
1860         ndev->features |= NETIF_F_SG;
1861         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1862         ndev->hw_features = ndev->features;
1863         ndev->vlan_features |=  NETIF_F_SG;
1864
1865         netcp = netdev_priv(ndev);
1866         spin_lock_init(&netcp->lock);
1867         INIT_LIST_HEAD(&netcp->module_head);
1868         INIT_LIST_HEAD(&netcp->txhook_list_head);
1869         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1870         INIT_LIST_HEAD(&netcp->addr_list);
1871         netcp->netcp_device = netcp_device;
1872         netcp->dev = netcp_device->device;
1873         netcp->ndev = ndev;
1874         netcp->ndev_dev  = &ndev->dev;
1875         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1876         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1877         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1878         netcp->node_interface = node_interface;
1879
1880         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1881         if (efuse_mac) {
1882                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1883                         dev_err(dev, "could not find efuse-mac reg resource\n");
1884                         ret = -ENODEV;
1885                         goto quit;
1886                 }
1887                 size = resource_size(&res);
1888
1889                 if (!devm_request_mem_region(dev, res.start, size,
1890                                              dev_name(dev))) {
1891                         dev_err(dev, "could not reserve resource\n");
1892                         ret = -ENOMEM;
1893                         goto quit;
1894                 }
1895
1896                 efuse = devm_ioremap_nocache(dev, res.start, size);
1897                 if (!efuse) {
1898                         dev_err(dev, "could not map resource\n");
1899                         devm_release_mem_region(dev, res.start, size);
1900                         ret = -ENOMEM;
1901                         goto quit;
1902                 }
1903
1904                 emac_arch_get_mac_addr(efuse_mac_addr, efuse);
1905                 if (is_valid_ether_addr(efuse_mac_addr))
1906                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1907                 else
1908                         random_ether_addr(ndev->dev_addr);
1909
1910                 devm_iounmap(dev, efuse);
1911                 devm_release_mem_region(dev, res.start, size);
1912         } else {
1913                 mac_addr = of_get_mac_address(node_interface);
1914                 if (mac_addr)
1915                         ether_addr_copy(ndev->dev_addr, mac_addr);
1916                 else
1917                         random_ether_addr(ndev->dev_addr);
1918         }
1919
1920         ret = of_property_read_string(node_interface, "rx-channel",
1921                                       &netcp->dma_chan_name);
1922         if (ret < 0) {
1923                 dev_err(dev, "missing \"rx-channel\" parameter\n");
1924                 ret = -ENODEV;
1925                 goto quit;
1926         }
1927
1928         ret = of_property_read_u32(node_interface, "rx-queue",
1929                                    &netcp->rx_queue_id);
1930         if (ret < 0) {
1931                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1932                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1933         }
1934
1935         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1936                                          netcp->rx_queue_depths,
1937                                          KNAV_DMA_FDQ_PER_CHAN);
1938         if (ret < 0) {
1939                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1940                 netcp->rx_queue_depths[0] = 128;
1941         }
1942
1943         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1944         if (ret < 0) {
1945                 dev_err(dev, "missing \"rx-pool\" parameter\n");
1946                 ret = -ENODEV;
1947                 goto quit;
1948         }
1949         netcp->rx_pool_size = temp[0];
1950         netcp->rx_pool_region_id = temp[1];
1951
1952         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1953         if (ret < 0) {
1954                 dev_err(dev, "missing \"tx-pool\" parameter\n");
1955                 ret = -ENODEV;
1956                 goto quit;
1957         }
1958         netcp->tx_pool_size = temp[0];
1959         netcp->tx_pool_region_id = temp[1];
1960
1961         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1962                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1963                         MAX_SKB_FRAGS);
1964                 ret = -ENODEV;
1965                 goto quit;
1966         }
1967
1968         ret = of_property_read_u32(node_interface, "tx-completion-queue",
1969                                    &netcp->tx_compl_qid);
1970         if (ret < 0) {
1971                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1972                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1973         }
1974
1975         /* NAPI register */
1976         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1977         netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1978
1979         /* Register the network device */
1980         ndev->dev_id            = 0;
1981         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
1982         ndev->netdev_ops        = &netcp_netdev_ops;
1983         SET_NETDEV_DEV(ndev, dev);
1984
1985         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
1986         return 0;
1987
1988 quit:
1989         free_netdev(ndev);
1990         return ret;
1991 }
1992
1993 static void netcp_delete_interface(struct netcp_device *netcp_device,
1994                                    struct net_device *ndev)
1995 {
1996         struct netcp_intf_modpriv *intf_modpriv, *tmp;
1997         struct netcp_intf *netcp = netdev_priv(ndev);
1998         struct netcp_module *module;
1999
2000         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2001                 ndev->name);
2002
2003         /* Notify each of the modules that the interface is going away */
2004         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2005                                  intf_list) {
2006                 module = intf_modpriv->netcp_module;
2007                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2008                         module->name);
2009                 if (module->release)
2010                         module->release(intf_modpriv->module_priv);
2011                 list_del(&intf_modpriv->intf_list);
2012                 kfree(intf_modpriv);
2013         }
2014         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2015              ndev->name);
2016
2017         list_del(&netcp->interface_list);
2018
2019         of_node_put(netcp->node_interface);
2020         unregister_netdev(ndev);
2021         netif_napi_del(&netcp->rx_napi);
2022         free_netdev(ndev);
2023 }
2024
2025 static int netcp_probe(struct platform_device *pdev)
2026 {
2027         struct device_node *node = pdev->dev.of_node;
2028         struct netcp_intf *netcp_intf, *netcp_tmp;
2029         struct device_node *child, *interfaces;
2030         struct netcp_device *netcp_device;
2031         struct device *dev = &pdev->dev;
2032         struct netcp_module *module;
2033         int ret;
2034
2035         if (!node) {
2036                 dev_err(dev, "could not find device info\n");
2037                 return -ENODEV;
2038         }
2039
2040         /* Allocate a new NETCP device instance */
2041         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2042         if (!netcp_device)
2043                 return -ENOMEM;
2044
2045         pm_runtime_enable(&pdev->dev);
2046         ret = pm_runtime_get_sync(&pdev->dev);
2047         if (ret < 0) {
2048                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2049                 pm_runtime_disable(&pdev->dev);
2050                 return ret;
2051         }
2052
2053         /* Initialize the NETCP device instance */
2054         INIT_LIST_HEAD(&netcp_device->interface_head);
2055         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2056         netcp_device->device = dev;
2057         platform_set_drvdata(pdev, netcp_device);
2058
2059         /* create interfaces */
2060         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2061         if (!interfaces) {
2062                 dev_err(dev, "could not find netcp-interfaces node\n");
2063                 ret = -ENODEV;
2064                 goto probe_quit;
2065         }
2066
2067         for_each_available_child_of_node(interfaces, child) {
2068                 ret = netcp_create_interface(netcp_device, child);
2069                 if (ret) {
2070                         dev_err(dev, "could not create interface(%s)\n",
2071                                 child->name);
2072                         goto probe_quit_interface;
2073                 }
2074         }
2075
2076         /* Add the device instance to the list */
2077         list_add_tail(&netcp_device->device_list, &netcp_devices);
2078
2079         /* Probe & attach any modules already registered */
2080         mutex_lock(&netcp_modules_lock);
2081         for_each_netcp_module(module) {
2082                 ret = netcp_module_probe(netcp_device, module);
2083                 if (ret < 0)
2084                         dev_err(dev, "module(%s) probe failed\n", module->name);
2085         }
2086         mutex_unlock(&netcp_modules_lock);
2087         return 0;
2088
2089 probe_quit_interface:
2090         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2091                                  &netcp_device->interface_head,
2092                                  interface_list) {
2093                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2094         }
2095
2096 probe_quit:
2097         pm_runtime_put_sync(&pdev->dev);
2098         pm_runtime_disable(&pdev->dev);
2099         platform_set_drvdata(pdev, NULL);
2100         return ret;
2101 }
2102
2103 static int netcp_remove(struct platform_device *pdev)
2104 {
2105         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2106         struct netcp_intf *netcp_intf, *netcp_tmp;
2107         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2108         struct netcp_module *module;
2109
2110         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2111                                  inst_list) {
2112                 module = inst_modpriv->netcp_module;
2113                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2114                 module->remove(netcp_device, inst_modpriv->module_priv);
2115                 list_del(&inst_modpriv->inst_list);
2116                 kfree(inst_modpriv);
2117         }
2118
2119         /* now that all modules are removed, clean up the interfaces */
2120         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2121                                  &netcp_device->interface_head,
2122                                  interface_list) {
2123                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2124         }
2125
2126         WARN(!list_empty(&netcp_device->interface_head),
2127              "%s interface list not empty!\n", pdev->name);
2128
2129         pm_runtime_put_sync(&pdev->dev);
2130         pm_runtime_disable(&pdev->dev);
2131         platform_set_drvdata(pdev, NULL);
2132         return 0;
2133 }
2134
2135 static const struct of_device_id of_match[] = {
2136         { .compatible = "ti,netcp-1.0", },
2137         {},
2138 };
2139 MODULE_DEVICE_TABLE(of, of_match);
2140
2141 static struct platform_driver netcp_driver = {
2142         .driver = {
2143                 .name           = "netcp-1.0",
2144                 .owner          = THIS_MODULE,
2145                 .of_match_table = of_match,
2146         },
2147         .probe = netcp_probe,
2148         .remove = netcp_remove,
2149 };
2150 module_platform_driver(netcp_driver);
2151
2152 MODULE_LICENSE("GPL v2");
2153 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2154 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");