Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
[cascardo/linux.git] / drivers / net / fddi / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  *              01 Jul 2014     macro           Fixes for DMA on 64-bit hosts.
200  */
201
202 /* Include files */
203 #include <linux/bitops.h>
204 #include <linux/compiler.h>
205 #include <linux/delay.h>
206 #include <linux/dma-mapping.h>
207 #include <linux/eisa.h>
208 #include <linux/errno.h>
209 #include <linux/fddidevice.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223
224 #include "defxx.h"
225
226 /* Version information string should be updated prior to each new release!  */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.11"
229 #define DRV_RELDATE "2014/07/01"
230
231 static char version[] =
232         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233         "  Lawrence V. Stefani and others\n";
234
235 #define DYNAMIC_BUFFERS 1
236
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240  * alignment for compatibility with old EISA boards.
241  */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244 #ifdef CONFIG_EISA
245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246 #else
247 #define DFX_BUS_EISA(dev) 0
248 #endif
249
250 #ifdef CONFIG_TC
251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252 #else
253 #define DFX_BUS_TC(dev) 0
254 #endif
255
256 #ifdef CONFIG_DEFXX_MMIO
257 #define DFX_MMIO 1
258 #else
259 #define DFX_MMIO 0
260 #endif
261
262 /* Define module-wide (static) routines */
263
264 static void             dfx_bus_init(struct net_device *dev);
265 static void             dfx_bus_uninit(struct net_device *dev);
266 static void             dfx_bus_config_check(DFX_board_t *bp);
267
268 static int              dfx_driver_init(struct net_device *dev,
269                                         const char *print_name,
270                                         resource_size_t bar_start);
271 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273 static int              dfx_open(struct net_device *dev);
274 static int              dfx_close(struct net_device *dev);
275
276 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
277 static void             dfx_int_type_0_process(DFX_board_t *bp);
278 static void             dfx_int_common(struct net_device *dev);
279 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
280
281 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
283 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284 static int              dfx_ctl_update_cam(DFX_board_t *bp);
285 static int              dfx_ctl_update_filters(DFX_board_t *bp);
286
287 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
288 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
291 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294 static void             dfx_rcv_queue_process(DFX_board_t *bp);
295 #ifdef DYNAMIC_BUFFERS
296 static void             dfx_rcv_flush(DFX_board_t *bp);
297 #else
298 static inline void      dfx_rcv_flush(DFX_board_t *bp) {}
299 #endif
300
301 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302                                      struct net_device *dev);
303 static int              dfx_xmt_done(DFX_board_t *bp);
304 static void             dfx_xmt_flush(DFX_board_t *bp);
305
306 /* Define module-wide (static) variables */
307
308 static struct pci_driver dfx_pci_driver;
309 static struct eisa_driver dfx_eisa_driver;
310 static struct tc_driver dfx_tc_driver;
311
312
313 /*
314  * =======================
315  * = dfx_port_write_long =
316  * = dfx_port_read_long  =
317  * =======================
318  *
319  * Overview:
320  *   Routines for reading and writing values from/to adapter
321  *
322  * Returns:
323  *   None
324  *
325  * Arguments:
326  *   bp         - pointer to board information
327  *   offset     - register offset from base I/O address
328  *   data       - for dfx_port_write_long, this is a value to write;
329  *                for dfx_port_read_long, this is a pointer to store
330  *                the read value
331  *
332  * Functional Description:
333  *   These routines perform the correct operation to read or write
334  *   the adapter register.
335  *
336  *   EISA port block base addresses are based on the slot number in which the
337  *   controller is installed.  For example, if the EISA controller is installed
338  *   in slot 4, the port block base address is 0x4000.  If the controller is
339  *   installed in slot 2, the port block base address is 0x2000, and so on.
340  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
341  *   registers using the register offsets defined in DEFXX.H.
342  *
343  *   PCI port block base addresses are assigned by the PCI BIOS or system
344  *   firmware.  There is one 128 byte port block which can be accessed.  It
345  *   allows for I/O mapping of both PDQ and PFI registers using the register
346  *   offsets defined in DEFXX.H.
347  *
348  * Return Codes:
349  *   None
350  *
351  * Assumptions:
352  *   bp->base is a valid base I/O address for this adapter.
353  *   offset is a valid register offset for this adapter.
354  *
355  * Side Effects:
356  *   Rather than produce macros for these functions, these routines
357  *   are defined using "inline" to ensure that the compiler will
358  *   generate inline code and not waste a procedure call and return.
359  *   This provides all the benefits of macros, but with the
360  *   advantage of strict data type checking.
361  */
362
363 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364 {
365         writel(data, bp->base.mem + offset);
366         mb();
367 }
368
369 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370 {
371         outl(data, bp->base.port + offset);
372 }
373
374 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375 {
376         struct device __maybe_unused *bdev = bp->bus_dev;
377         int dfx_bus_tc = DFX_BUS_TC(bdev);
378         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380         if (dfx_use_mmio)
381                 dfx_writel(bp, offset, data);
382         else
383                 dfx_outl(bp, offset, data);
384 }
385
386
387 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388 {
389         mb();
390         *data = readl(bp->base.mem + offset);
391 }
392
393 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394 {
395         *data = inl(bp->base.port + offset);
396 }
397
398 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399 {
400         struct device __maybe_unused *bdev = bp->bus_dev;
401         int dfx_bus_tc = DFX_BUS_TC(bdev);
402         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404         if (dfx_use_mmio)
405                 dfx_readl(bp, offset, data);
406         else
407                 dfx_inl(bp, offset, data);
408 }
409
410
411 /*
412  * ================
413  * = dfx_get_bars =
414  * ================
415  *
416  * Overview:
417  *   Retrieves the address range used to access control and status
418  *   registers.
419  *
420  * Returns:
421  *   None
422  *
423  * Arguments:
424  *   bdev       - pointer to device information
425  *   bar_start  - pointer to store the start address
426  *   bar_len    - pointer to store the length of the area
427  *
428  * Assumptions:
429  *   I am sure there are some.
430  *
431  * Side Effects:
432  *   None
433  */
434 static void dfx_get_bars(struct device *bdev,
435                          resource_size_t *bar_start, resource_size_t *bar_len)
436 {
437         int dfx_bus_pci = dev_is_pci(bdev);
438         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439         int dfx_bus_tc = DFX_BUS_TC(bdev);
440         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442         if (dfx_bus_pci) {
443                 int num = dfx_use_mmio ? 0 : 1;
444
445                 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
446                 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
447         }
448         if (dfx_bus_eisa) {
449                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
450                 resource_size_t bar;
451
452                 if (dfx_use_mmio) {
453                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
454                         bar <<= 8;
455                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
456                         bar <<= 8;
457                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
458                         bar <<= 16;
459                         *bar_start = bar;
460                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
461                         bar <<= 8;
462                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
463                         bar <<= 8;
464                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
465                         bar <<= 16;
466                         *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
467                 } else {
468                         *bar_start = base_addr;
469                         *bar_len = PI_ESIC_K_CSR_IO_LEN +
470                                    PI_ESIC_K_BURST_HOLDOFF_LEN;
471                 }
472         }
473         if (dfx_bus_tc) {
474                 *bar_start = to_tc_dev(bdev)->resource.start +
475                              PI_TC_K_CSR_OFFSET;
476                 *bar_len = PI_TC_K_CSR_LEN;
477         }
478 }
479
480 static const struct net_device_ops dfx_netdev_ops = {
481         .ndo_open               = dfx_open,
482         .ndo_stop               = dfx_close,
483         .ndo_start_xmit         = dfx_xmt_queue_pkt,
484         .ndo_get_stats          = dfx_ctl_get_stats,
485         .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
486         .ndo_set_mac_address    = dfx_ctl_set_mac_address,
487 };
488
489 /*
490  * ================
491  * = dfx_register =
492  * ================
493  *
494  * Overview:
495  *   Initializes a supported FDDI controller
496  *
497  * Returns:
498  *   Condition code
499  *
500  * Arguments:
501  *   bdev - pointer to device information
502  *
503  * Functional Description:
504  *
505  * Return Codes:
506  *   0           - This device (fddi0, fddi1, etc) configured successfully
507  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
508  *
509  * Assumptions:
510  *   It compiles so it should work :-( (PCI cards do :-)
511  *
512  * Side Effects:
513  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
514  *   initialized and the board resources are read and stored in
515  *   the device structure.
516  */
517 static int dfx_register(struct device *bdev)
518 {
519         static int version_disp;
520         int dfx_bus_pci = dev_is_pci(bdev);
521         int dfx_bus_tc = DFX_BUS_TC(bdev);
522         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
523         const char *print_name = dev_name(bdev);
524         struct net_device *dev;
525         DFX_board_t       *bp;                  /* board pointer */
526         resource_size_t bar_start = 0;          /* pointer to port */
527         resource_size_t bar_len = 0;            /* resource length */
528         int alloc_size;                         /* total buffer size used */
529         struct resource *region;
530         int err = 0;
531
532         if (!version_disp) {    /* display version info if adapter is found */
533                 version_disp = 1;       /* set display flag to TRUE so that */
534                 printk(version);        /* we only display this string ONCE */
535         }
536
537         dev = alloc_fddidev(sizeof(*bp));
538         if (!dev) {
539                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
540                        print_name);
541                 return -ENOMEM;
542         }
543
544         /* Enable PCI device. */
545         if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
546                 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
547                        print_name);
548                 goto err_out;
549         }
550
551         SET_NETDEV_DEV(dev, bdev);
552
553         bp = netdev_priv(dev);
554         bp->bus_dev = bdev;
555         dev_set_drvdata(bdev, dev);
556
557         dfx_get_bars(bdev, &bar_start, &bar_len);
558
559         if (dfx_use_mmio)
560                 region = request_mem_region(bar_start, bar_len, print_name);
561         else
562                 region = request_region(bar_start, bar_len, print_name);
563         if (!region) {
564                 printk(KERN_ERR "%s: Cannot reserve I/O resource "
565                        "0x%lx @ 0x%lx, aborting\n",
566                        print_name, (long)bar_len, (long)bar_start);
567                 err = -EBUSY;
568                 goto err_out_disable;
569         }
570
571         /* Set up I/O base address. */
572         if (dfx_use_mmio) {
573                 bp->base.mem = ioremap_nocache(bar_start, bar_len);
574                 if (!bp->base.mem) {
575                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
576                         err = -ENOMEM;
577                         goto err_out_region;
578                 }
579         } else {
580                 bp->base.port = bar_start;
581                 dev->base_addr = bar_start;
582         }
583
584         /* Initialize new device structure */
585         dev->netdev_ops                 = &dfx_netdev_ops;
586
587         if (dfx_bus_pci)
588                 pci_set_master(to_pci_dev(bdev));
589
590         if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
591                 err = -ENODEV;
592                 goto err_out_unmap;
593         }
594
595         err = register_netdev(dev);
596         if (err)
597                 goto err_out_kfree;
598
599         printk("%s: registered as %s\n", print_name, dev->name);
600         return 0;
601
602 err_out_kfree:
603         alloc_size = sizeof(PI_DESCR_BLOCK) +
604                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
605 #ifndef DYNAMIC_BUFFERS
606                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
607 #endif
608                      sizeof(PI_CONSUMER_BLOCK) +
609                      (PI_ALIGN_K_DESC_BLK - 1);
610         if (bp->kmalloced)
611                 dma_free_coherent(bdev, alloc_size,
612                                   bp->kmalloced, bp->kmalloced_dma);
613
614 err_out_unmap:
615         if (dfx_use_mmio)
616                 iounmap(bp->base.mem);
617
618 err_out_region:
619         if (dfx_use_mmio)
620                 release_mem_region(bar_start, bar_len);
621         else
622                 release_region(bar_start, bar_len);
623
624 err_out_disable:
625         if (dfx_bus_pci)
626                 pci_disable_device(to_pci_dev(bdev));
627
628 err_out:
629         free_netdev(dev);
630         return err;
631 }
632
633
634 /*
635  * ================
636  * = dfx_bus_init =
637  * ================
638  *
639  * Overview:
640  *   Initializes the bus-specific controller logic.
641  *
642  * Returns:
643  *   None
644  *
645  * Arguments:
646  *   dev - pointer to device information
647  *
648  * Functional Description:
649  *   Determine and save adapter IRQ in device table,
650  *   then perform bus-specific logic initialization.
651  *
652  * Return Codes:
653  *   None
654  *
655  * Assumptions:
656  *   bp->base has already been set with the proper
657  *       base I/O address for this device.
658  *
659  * Side Effects:
660  *   Interrupts are enabled at the adapter bus-specific logic.
661  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
662  *   enabled yet.
663  */
664
665 static void dfx_bus_init(struct net_device *dev)
666 {
667         DFX_board_t *bp = netdev_priv(dev);
668         struct device *bdev = bp->bus_dev;
669         int dfx_bus_pci = dev_is_pci(bdev);
670         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
671         int dfx_bus_tc = DFX_BUS_TC(bdev);
672         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
673         u8 val;
674
675         DBG_printk("In dfx_bus_init...\n");
676
677         /* Initialize a pointer back to the net_device struct */
678         bp->dev = dev;
679
680         /* Initialize adapter based on bus type */
681
682         if (dfx_bus_tc)
683                 dev->irq = to_tc_dev(bdev)->interrupt;
684         if (dfx_bus_eisa) {
685                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
686
687                 /* Disable the board before fiddling with the decoders.  */
688                 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
689
690                 /* Get the interrupt level from the ESIC chip.  */
691                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
692                 val &= PI_CONFIG_STAT_0_M_IRQ;
693                 val >>= PI_CONFIG_STAT_0_V_IRQ;
694
695                 switch (val) {
696                 case PI_CONFIG_STAT_0_IRQ_K_9:
697                         dev->irq = 9;
698                         break;
699
700                 case PI_CONFIG_STAT_0_IRQ_K_10:
701                         dev->irq = 10;
702                         break;
703
704                 case PI_CONFIG_STAT_0_IRQ_K_11:
705                         dev->irq = 11;
706                         break;
707
708                 case PI_CONFIG_STAT_0_IRQ_K_15:
709                         dev->irq = 15;
710                         break;
711                 }
712
713                 /*
714                  * Enable memory decoding (MEMCS0) and/or port decoding
715                  * (IOCS1/IOCS0) as appropriate in Function Control
716                  * Register.  IOCS0 is used for PDQ registers, taking 16
717                  * 32-bit words, while IOCS1 is used for the Burst Holdoff
718                  * register, taking a single 32-bit word only.  We use the
719                  * slot-specific I/O range as per the ESIC spec, that is
720                  * set bits 15:12 in the mask registers to mask them out.
721                  */
722
723                 /* Set the decode range of the board.  */
724                 val = 0;
725                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
726                 val = PI_DEFEA_K_CSR_IO;
727                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
728
729                 val = PI_IO_CMP_M_SLOT;
730                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
731                 val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
732                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
733
734                 val = 0;
735                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
736                 val = PI_DEFEA_K_BURST_HOLDOFF;
737                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
738
739                 val = PI_IO_CMP_M_SLOT;
740                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
741                 val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
742                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
743
744                 /* Enable the decoders.  */
745                 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
746                 if (dfx_use_mmio)
747                         val |= PI_FUNCTION_CNTRL_M_MEMCS0;
748                 outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
749
750                 /*
751                  * Enable access to the rest of the module
752                  * (including PDQ and packet memory).
753                  */
754                 val = PI_SLOT_CNTRL_M_ENB;
755                 outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
756
757                 /*
758                  * Map PDQ registers into memory or port space.  This is
759                  * done with a bit in the Burst Holdoff register.
760                  */
761                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
762                 if (dfx_use_mmio)
763                         val |= PI_BURST_HOLDOFF_M_MEM_MAP;
764                 else
765                         val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
766                 outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
767
768                 /* Enable interrupts at EISA bus interface chip (ESIC) */
769                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
770                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
771                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
772         }
773         if (dfx_bus_pci) {
774                 struct pci_dev *pdev = to_pci_dev(bdev);
775
776                 /* Get the interrupt level from the PCI Configuration Table */
777
778                 dev->irq = pdev->irq;
779
780                 /* Check Latency Timer and set if less than minimal */
781
782                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
783                 if (val < PFI_K_LAT_TIMER_MIN) {
784                         val = PFI_K_LAT_TIMER_DEF;
785                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
786                 }
787
788                 /* Enable interrupts at PCI bus interface chip (PFI) */
789                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
790                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
791         }
792 }
793
794 /*
795  * ==================
796  * = dfx_bus_uninit =
797  * ==================
798  *
799  * Overview:
800  *   Uninitializes the bus-specific controller logic.
801  *
802  * Returns:
803  *   None
804  *
805  * Arguments:
806  *   dev - pointer to device information
807  *
808  * Functional Description:
809  *   Perform bus-specific logic uninitialization.
810  *
811  * Return Codes:
812  *   None
813  *
814  * Assumptions:
815  *   bp->base has already been set with the proper
816  *       base I/O address for this device.
817  *
818  * Side Effects:
819  *   Interrupts are disabled at the adapter bus-specific logic.
820  */
821
822 static void dfx_bus_uninit(struct net_device *dev)
823 {
824         DFX_board_t *bp = netdev_priv(dev);
825         struct device *bdev = bp->bus_dev;
826         int dfx_bus_pci = dev_is_pci(bdev);
827         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
828         u8 val;
829
830         DBG_printk("In dfx_bus_uninit...\n");
831
832         /* Uninitialize adapter based on bus type */
833
834         if (dfx_bus_eisa) {
835                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
836
837                 /* Disable interrupts at EISA bus interface chip (ESIC) */
838                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
839                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
840                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
841         }
842         if (dfx_bus_pci) {
843                 /* Disable interrupts at PCI bus interface chip (PFI) */
844                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
845         }
846 }
847
848
849 /*
850  * ========================
851  * = dfx_bus_config_check =
852  * ========================
853  *
854  * Overview:
855  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
856  *   are illegal, then this routine will set new defaults.
857  *
858  * Returns:
859  *   None
860  *
861  * Arguments:
862  *   bp - pointer to board information
863  *
864  * Functional Description:
865  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
866  *   PDQ, and all FDDI PCI controllers, all values are legal.
867  *
868  * Return Codes:
869  *   None
870  *
871  * Assumptions:
872  *   dfx_adap_init has NOT been called yet so burst size and other items have
873  *   not been set.
874  *
875  * Side Effects:
876  *   None
877  */
878
879 static void dfx_bus_config_check(DFX_board_t *bp)
880 {
881         struct device __maybe_unused *bdev = bp->bus_dev;
882         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
883         int     status;                         /* return code from adapter port control call */
884         u32     host_data;                      /* LW data returned from port control call */
885
886         DBG_printk("In dfx_bus_config_check...\n");
887
888         /* Configuration check only valid for EISA adapter */
889
890         if (dfx_bus_eisa) {
891                 /*
892                  * First check if revision 2 EISA controller.  Rev. 1 cards used
893                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
894                  * cards used PDQ revision E, so no workaround needed in this
895                  * case, either.  Only Rev. 2 cards used either Rev. D or E
896                  * chips, so we must verify the chip revision on Rev. 2 cards.
897                  */
898                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
899                         /*
900                          * Revision 2 FDDI EISA controller found,
901                          * so let's check PDQ revision of adapter.
902                          */
903                         status = dfx_hw_port_ctrl_req(bp,
904                                                                                         PI_PCTRL_M_SUB_CMD,
905                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
906                                                                                         0,
907                                                                                         &host_data);
908                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
909                                 {
910                                 /*
911                                  * Either we couldn't determine the PDQ revision, or
912                                  * we determined that it is at revision D.  In either case,
913                                  * we need to implement the workaround.
914                                  */
915
916                                 /* Ensure that the burst size is set to 8 longwords or less */
917
918                                 switch (bp->burst_size)
919                                         {
920                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
921                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
922                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
923                                                 break;
924
925                                         default:
926                                                 break;
927                                         }
928
929                                 /* Ensure that full-duplex mode is not enabled */
930
931                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
932                                 }
933                         }
934                 }
935         }
936
937
938 /*
939  * ===================
940  * = dfx_driver_init =
941  * ===================
942  *
943  * Overview:
944  *   Initializes remaining adapter board structure information
945  *   and makes sure adapter is in a safe state prior to dfx_open().
946  *
947  * Returns:
948  *   Condition code
949  *
950  * Arguments:
951  *   dev - pointer to device information
952  *   print_name - printable device name
953  *
954  * Functional Description:
955  *   This function allocates additional resources such as the host memory
956  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
957  *       Remaining bus initialization steps are also completed.  The adapter
958  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
959  *   must call dfx_open() to open the adapter and bring it on-line.
960  *
961  * Return Codes:
962  *   DFX_K_SUCCESS      - initialization succeeded
963  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
964  *                                              or read adapter MAC address
965  *
966  * Assumptions:
967  *   Memory allocated from pci_alloc_consistent() call is physically
968  *   contiguous, locked memory.
969  *
970  * Side Effects:
971  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
972  *   returning from this routine.
973  */
974
975 static int dfx_driver_init(struct net_device *dev, const char *print_name,
976                            resource_size_t bar_start)
977 {
978         DFX_board_t *bp = netdev_priv(dev);
979         struct device *bdev = bp->bus_dev;
980         int dfx_bus_pci = dev_is_pci(bdev);
981         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
982         int dfx_bus_tc = DFX_BUS_TC(bdev);
983         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
984         int alloc_size;                 /* total buffer size needed */
985         char *top_v, *curr_v;           /* virtual addrs into memory block */
986         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
987         u32 data;                       /* host data register value */
988         __le32 le32;
989         char *board_name = NULL;
990
991         DBG_printk("In dfx_driver_init...\n");
992
993         /* Initialize bus-specific hardware registers */
994
995         dfx_bus_init(dev);
996
997         /*
998          * Initialize default values for configurable parameters
999          *
1000          * Note: All of these parameters are ones that a user may
1001          *       want to customize.  It'd be nice to break these
1002          *               out into Space.c or someplace else that's more
1003          *               accessible/understandable than this file.
1004          */
1005
1006         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
1007         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
1008         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
1009         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
1010
1011         /*
1012          * Ensure that HW configuration is OK
1013          *
1014          * Note: Depending on the hardware revision, we may need to modify
1015          *       some of the configurable parameters to workaround hardware
1016          *       limitations.  We'll perform this configuration check AFTER
1017          *       setting the parameters to their default values.
1018          */
1019
1020         dfx_bus_config_check(bp);
1021
1022         /* Disable PDQ interrupts first */
1023
1024         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1025
1026         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1027
1028         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1029
1030         /*  Read the factory MAC address from the adapter then save it */
1031
1032         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1033                                  &data) != DFX_K_SUCCESS) {
1034                 printk("%s: Could not read adapter factory MAC address!\n",
1035                        print_name);
1036                 return DFX_K_FAILURE;
1037         }
1038         le32 = cpu_to_le32(data);
1039         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1040
1041         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1042                                  &data) != DFX_K_SUCCESS) {
1043                 printk("%s: Could not read adapter factory MAC address!\n",
1044                        print_name);
1045                 return DFX_K_FAILURE;
1046         }
1047         le32 = cpu_to_le32(data);
1048         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1049
1050         /*
1051          * Set current address to factory address
1052          *
1053          * Note: Node address override support is handled through
1054          *       dfx_ctl_set_mac_address.
1055          */
1056
1057         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1058         if (dfx_bus_tc)
1059                 board_name = "DEFTA";
1060         if (dfx_bus_eisa)
1061                 board_name = "DEFEA";
1062         if (dfx_bus_pci)
1063                 board_name = "DEFPA";
1064         pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1065                 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1066                 (long long)bar_start, dev->irq, dev->dev_addr);
1067
1068         /*
1069          * Get memory for descriptor block, consumer block, and other buffers
1070          * that need to be DMA read or written to by the adapter.
1071          */
1072
1073         alloc_size = sizeof(PI_DESCR_BLOCK) +
1074                                         PI_CMD_REQ_K_SIZE_MAX +
1075                                         PI_CMD_RSP_K_SIZE_MAX +
1076 #ifndef DYNAMIC_BUFFERS
1077                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1078 #endif
1079                                         sizeof(PI_CONSUMER_BLOCK) +
1080                                         (PI_ALIGN_K_DESC_BLK - 1);
1081         bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1082                                                     &bp->kmalloced_dma,
1083                                                     GFP_ATOMIC);
1084         if (top_v == NULL)
1085                 return DFX_K_FAILURE;
1086
1087         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1088
1089         /*
1090          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1091          *  plus the amount of memory needed was allocated.  The physical address
1092          *      is now 8K aligned.  By carving up the memory in a specific order,
1093          *  we'll guarantee the alignment requirements for all other structures.
1094          *
1095          *  Note: If the assumptions change regarding the non-paged, non-cached,
1096          *                physically contiguous nature of the memory block or the address
1097          *                alignments, then we'll need to implement a different algorithm
1098          *                for allocating the needed memory.
1099          */
1100
1101         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1102         curr_v = top_v + (curr_p - top_p);
1103
1104         /* Reserve space for descriptor block */
1105
1106         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1107         bp->descr_block_phys = curr_p;
1108         curr_v += sizeof(PI_DESCR_BLOCK);
1109         curr_p += sizeof(PI_DESCR_BLOCK);
1110
1111         /* Reserve space for command request buffer */
1112
1113         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1114         bp->cmd_req_phys = curr_p;
1115         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1116         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1117
1118         /* Reserve space for command response buffer */
1119
1120         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1121         bp->cmd_rsp_phys = curr_p;
1122         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1123         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1124
1125         /* Reserve space for the LLC host receive queue buffers */
1126
1127         bp->rcv_block_virt = curr_v;
1128         bp->rcv_block_phys = curr_p;
1129
1130 #ifndef DYNAMIC_BUFFERS
1131         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1132         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1133 #endif
1134
1135         /* Reserve space for the consumer block */
1136
1137         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1138         bp->cons_block_phys = curr_p;
1139
1140         /* Display virtual and physical addresses if debug driver */
1141
1142         DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1143                    print_name, bp->descr_block_virt, &bp->descr_block_phys);
1144         DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1145                    print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1146         DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1147                    print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1148         DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1149                    print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1150         DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1151                    print_name, bp->cons_block_virt, &bp->cons_block_phys);
1152
1153         return DFX_K_SUCCESS;
1154 }
1155
1156
1157 /*
1158  * =================
1159  * = dfx_adap_init =
1160  * =================
1161  *
1162  * Overview:
1163  *   Brings the adapter to the link avail/link unavailable state.
1164  *
1165  * Returns:
1166  *   Condition code
1167  *
1168  * Arguments:
1169  *   bp - pointer to board information
1170  *   get_buffers - non-zero if buffers to be allocated
1171  *
1172  * Functional Description:
1173  *   Issues the low-level firmware/hardware calls necessary to bring
1174  *   the adapter up, or to properly reset and restore adapter during
1175  *   run-time.
1176  *
1177  * Return Codes:
1178  *   DFX_K_SUCCESS - Adapter brought up successfully
1179  *   DFX_K_FAILURE - Adapter initialization failed
1180  *
1181  * Assumptions:
1182  *   bp->reset_type should be set to a valid reset type value before
1183  *   calling this routine.
1184  *
1185  * Side Effects:
1186  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1187  *   upon a successful return of this routine.
1188  */
1189
1190 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1191         {
1192         DBG_printk("In dfx_adap_init...\n");
1193
1194         /* Disable PDQ interrupts first */
1195
1196         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1197
1198         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1199
1200         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1201                 {
1202                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1203                 return DFX_K_FAILURE;
1204                 }
1205
1206         /*
1207          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1208          * so we'll acknowledge all Type 0 interrupts now before continuing.
1209          */
1210
1211         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1212
1213         /*
1214          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1215          *
1216          * Note: We only need to clear host copies of these registers.  The PDQ reset
1217          *       takes care of the on-board register values.
1218          */
1219
1220         bp->cmd_req_reg.lword   = 0;
1221         bp->cmd_rsp_reg.lword   = 0;
1222         bp->rcv_xmt_reg.lword   = 0;
1223
1224         /* Clear consumer block before going to DMA_AVAILABLE state */
1225
1226         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1227
1228         /* Initialize the DMA Burst Size */
1229
1230         if (dfx_hw_port_ctrl_req(bp,
1231                                                         PI_PCTRL_M_SUB_CMD,
1232                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1233                                                         bp->burst_size,
1234                                                         NULL) != DFX_K_SUCCESS)
1235                 {
1236                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1237                 return DFX_K_FAILURE;
1238                 }
1239
1240         /*
1241          * Set base address of Consumer Block
1242          *
1243          * Assumption: 32-bit physical address of consumer block is 64 byte
1244          *                         aligned.  That is, bits 0-5 of the address must be zero.
1245          */
1246
1247         if (dfx_hw_port_ctrl_req(bp,
1248                                                         PI_PCTRL_M_CONS_BLOCK,
1249                                                         bp->cons_block_phys,
1250                                                         0,
1251                                                         NULL) != DFX_K_SUCCESS)
1252                 {
1253                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1254                 return DFX_K_FAILURE;
1255                 }
1256
1257         /*
1258          * Set the base address of Descriptor Block and bring adapter
1259          * to DMA_AVAILABLE state.
1260          *
1261          * Note: We also set the literal and data swapping requirements
1262          *       in this command.
1263          *
1264          * Assumption: 32-bit physical address of descriptor block
1265          *       is 8Kbyte aligned.
1266          */
1267         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1268                                  (u32)(bp->descr_block_phys |
1269                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1270                                  0, NULL) != DFX_K_SUCCESS) {
1271                 printk("%s: Could not set descriptor block address!\n",
1272                        bp->dev->name);
1273                 return DFX_K_FAILURE;
1274         }
1275
1276         /* Set transmit flush timeout value */
1277
1278         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1279         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1280         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1281         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1282         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1283         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1284                 {
1285                 printk("%s: DMA command request failed!\n", bp->dev->name);
1286                 return DFX_K_FAILURE;
1287                 }
1288
1289         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1290
1291         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1292         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1293         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1294         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1295         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1296         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1297         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1298         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1299         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1300                 {
1301                 printk("%s: DMA command request failed!\n", bp->dev->name);
1302                 return DFX_K_FAILURE;
1303                 }
1304
1305         /* Initialize adapter CAM */
1306
1307         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1308                 {
1309                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1310                 return DFX_K_FAILURE;
1311                 }
1312
1313         /* Initialize adapter filters */
1314
1315         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1316                 {
1317                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1318                 return DFX_K_FAILURE;
1319                 }
1320
1321         /*
1322          * Remove any existing dynamic buffers (i.e. if the adapter is being
1323          * reinitialized)
1324          */
1325
1326         if (get_buffers)
1327                 dfx_rcv_flush(bp);
1328
1329         /* Initialize receive descriptor block and produce buffers */
1330
1331         if (dfx_rcv_init(bp, get_buffers))
1332                 {
1333                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1334                 if (get_buffers)
1335                         dfx_rcv_flush(bp);
1336                 return DFX_K_FAILURE;
1337                 }
1338
1339         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1340
1341         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1342         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1343                 {
1344                 printk("%s: Start command failed\n", bp->dev->name);
1345                 if (get_buffers)
1346                         dfx_rcv_flush(bp);
1347                 return DFX_K_FAILURE;
1348                 }
1349
1350         /* Initialization succeeded, reenable PDQ interrupts */
1351
1352         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1353         return DFX_K_SUCCESS;
1354         }
1355
1356
1357 /*
1358  * ============
1359  * = dfx_open =
1360  * ============
1361  *
1362  * Overview:
1363  *   Opens the adapter
1364  *
1365  * Returns:
1366  *   Condition code
1367  *
1368  * Arguments:
1369  *   dev - pointer to device information
1370  *
1371  * Functional Description:
1372  *   This function brings the adapter to an operational state.
1373  *
1374  * Return Codes:
1375  *   0           - Adapter was successfully opened
1376  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1377  *
1378  * Assumptions:
1379  *   This routine should only be called for a device that was
1380  *   initialized successfully.
1381  *
1382  * Side Effects:
1383  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1384  *   if the open is successful.
1385  */
1386
1387 static int dfx_open(struct net_device *dev)
1388 {
1389         DFX_board_t *bp = netdev_priv(dev);
1390         int ret;
1391
1392         DBG_printk("In dfx_open...\n");
1393
1394         /* Register IRQ - support shared interrupts by passing device ptr */
1395
1396         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1397                           dev);
1398         if (ret) {
1399                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1400                 return ret;
1401         }
1402
1403         /*
1404          * Set current address to factory MAC address
1405          *
1406          * Note: We've already done this step in dfx_driver_init.
1407          *       However, it's possible that a user has set a node
1408          *               address override, then closed and reopened the
1409          *               adapter.  Unless we reset the device address field
1410          *               now, we'll continue to use the existing modified
1411          *               address.
1412          */
1413
1414         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1415
1416         /* Clear local unicast/multicast address tables and counts */
1417
1418         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1419         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1420         bp->uc_count = 0;
1421         bp->mc_count = 0;
1422
1423         /* Disable promiscuous filter settings */
1424
1425         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1426         bp->group_prom          = PI_FSTATE_K_BLOCK;
1427
1428         spin_lock_init(&bp->lock);
1429
1430         /* Reset and initialize adapter */
1431
1432         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1433         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1434         {
1435                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1436                 free_irq(dev->irq, dev);
1437                 return -EAGAIN;
1438         }
1439
1440         /* Set device structure info */
1441         netif_start_queue(dev);
1442         return 0;
1443 }
1444
1445
1446 /*
1447  * =============
1448  * = dfx_close =
1449  * =============
1450  *
1451  * Overview:
1452  *   Closes the device/module.
1453  *
1454  * Returns:
1455  *   Condition code
1456  *
1457  * Arguments:
1458  *   dev - pointer to device information
1459  *
1460  * Functional Description:
1461  *   This routine closes the adapter and brings it to a safe state.
1462  *   The interrupt service routine is deregistered with the OS.
1463  *   The adapter can be opened again with another call to dfx_open().
1464  *
1465  * Return Codes:
1466  *   Always return 0.
1467  *
1468  * Assumptions:
1469  *   No further requests for this adapter are made after this routine is
1470  *   called.  dfx_open() can be called to reset and reinitialize the
1471  *   adapter.
1472  *
1473  * Side Effects:
1474  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1475  *   routine.
1476  */
1477
1478 static int dfx_close(struct net_device *dev)
1479 {
1480         DFX_board_t *bp = netdev_priv(dev);
1481
1482         DBG_printk("In dfx_close...\n");
1483
1484         /* Disable PDQ interrupts first */
1485
1486         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1487
1488         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1489
1490         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1491
1492         /*
1493          * Flush any pending transmit buffers
1494          *
1495          * Note: It's important that we flush the transmit buffers
1496          *               BEFORE we clear our copy of the Type 2 register.
1497          *               Otherwise, we'll have no idea how many buffers
1498          *               we need to free.
1499          */
1500
1501         dfx_xmt_flush(bp);
1502
1503         /*
1504          * Clear Type 1 and Type 2 registers after adapter reset
1505          *
1506          * Note: Even though we're closing the adapter, it's
1507          *       possible that an interrupt will occur after
1508          *               dfx_close is called.  Without some assurance to
1509          *               the contrary we want to make sure that we don't
1510          *               process receive and transmit LLC frames and update
1511          *               the Type 2 register with bad information.
1512          */
1513
1514         bp->cmd_req_reg.lword   = 0;
1515         bp->cmd_rsp_reg.lword   = 0;
1516         bp->rcv_xmt_reg.lword   = 0;
1517
1518         /* Clear consumer block for the same reason given above */
1519
1520         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1521
1522         /* Release all dynamically allocate skb in the receive ring. */
1523
1524         dfx_rcv_flush(bp);
1525
1526         /* Clear device structure flags */
1527
1528         netif_stop_queue(dev);
1529
1530         /* Deregister (free) IRQ */
1531
1532         free_irq(dev->irq, dev);
1533
1534         return 0;
1535 }
1536
1537
1538 /*
1539  * ======================
1540  * = dfx_int_pr_halt_id =
1541  * ======================
1542  *
1543  * Overview:
1544  *   Displays halt id's in string form.
1545  *
1546  * Returns:
1547  *   None
1548  *
1549  * Arguments:
1550  *   bp - pointer to board information
1551  *
1552  * Functional Description:
1553  *   Determine current halt id and display appropriate string.
1554  *
1555  * Return Codes:
1556  *   None
1557  *
1558  * Assumptions:
1559  *   None
1560  *
1561  * Side Effects:
1562  *   None
1563  */
1564
1565 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1566         {
1567         PI_UINT32       port_status;                    /* PDQ port status register value */
1568         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1569
1570         /* Read the latest port status */
1571
1572         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1573
1574         /* Display halt state transition information */
1575
1576         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1577         switch (halt_id)
1578                 {
1579                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1580                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1581                         break;
1582
1583                 case PI_HALT_ID_K_PARITY_ERROR:
1584                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1585                         break;
1586
1587                 case PI_HALT_ID_K_HOST_DIR_HALT:
1588                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1589                         break;
1590
1591                 case PI_HALT_ID_K_SW_FAULT:
1592                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1593                         break;
1594
1595                 case PI_HALT_ID_K_HW_FAULT:
1596                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1597                         break;
1598
1599                 case PI_HALT_ID_K_PC_TRACE:
1600                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1601                         break;
1602
1603                 case PI_HALT_ID_K_DMA_ERROR:
1604                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1605                         break;
1606
1607                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1608                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1609                         break;
1610
1611                 case PI_HALT_ID_K_BUS_EXCEPTION:
1612                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1613                         break;
1614
1615                 default:
1616                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1617                         break;
1618                 }
1619         }
1620
1621
1622 /*
1623  * ==========================
1624  * = dfx_int_type_0_process =
1625  * ==========================
1626  *
1627  * Overview:
1628  *   Processes Type 0 interrupts.
1629  *
1630  * Returns:
1631  *   None
1632  *
1633  * Arguments:
1634  *   bp - pointer to board information
1635  *
1636  * Functional Description:
1637  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1638  *   is a serious fault on the adapter, then an error message is displayed
1639  *   and the adapter is reset.
1640  *
1641  *   One tricky potential timing window is the rapid succession of "link avail"
1642  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1643  *   interrupt must be done before reading the state from the Port Status
1644  *   register.  This is true because a state change could occur after reading
1645  *   the data, but before acknowledging the interrupt.  If this state change
1646  *   does happen, it would be lost because the driver is using the old state,
1647  *   and it will never know about the new state because it subsequently
1648  *   acknowledges the state change interrupt.
1649  *
1650  *          INCORRECT                                      CORRECT
1651  *      read type 0 int reasons                   read type 0 int reasons
1652  *      read adapter state                        ack type 0 interrupts
1653  *      ack type 0 interrupts                     read adapter state
1654  *      ... process interrupt ...                 ... process interrupt ...
1655  *
1656  * Return Codes:
1657  *   None
1658  *
1659  * Assumptions:
1660  *   None
1661  *
1662  * Side Effects:
1663  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1664  *   or if the port status indicates that the adapter is halted.  The driver
1665  *   is responsible for reinitializing the adapter with the current CAM
1666  *   contents and adapter filter settings.
1667  */
1668
1669 static void dfx_int_type_0_process(DFX_board_t  *bp)
1670
1671         {
1672         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1673         PI_UINT32       state;                          /* current adap state (from port status) */
1674
1675         /*
1676          * Read host interrupt Type 0 register to determine which Type 0
1677          * interrupts are pending.  Immediately write it back out to clear
1678          * those interrupts.
1679          */
1680
1681         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1682         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1683
1684         /* Check for Type 0 error interrupts */
1685
1686         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1687                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1688                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1689                 {
1690                 /* Check for Non-Existent Memory error */
1691
1692                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1693                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1694
1695                 /* Check for Packet Memory Parity error */
1696
1697                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1698                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1699
1700                 /* Check for Host Bus Parity error */
1701
1702                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1703                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1704
1705                 /* Reset adapter and bring it back on-line */
1706
1707                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1708                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1709                 printk("%s: Resetting adapter...\n", bp->dev->name);
1710                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1711                         {
1712                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1713                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1714                         return;
1715                         }
1716                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1717                 return;
1718                 }
1719
1720         /* Check for transmit flush interrupt */
1721
1722         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1723                 {
1724                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1725
1726                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1727                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1728                 (void) dfx_hw_port_ctrl_req(bp,
1729                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1730                                                                         0,
1731                                                                         0,
1732                                                                         NULL);
1733                 }
1734
1735         /* Check for adapter state change */
1736
1737         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1738                 {
1739                 /* Get latest adapter state */
1740
1741                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1742                 if (state == PI_STATE_K_HALTED)
1743                         {
1744                         /*
1745                          * Adapter has transitioned to HALTED state, try to reset
1746                          * adapter to bring it back on-line.  If reset fails,
1747                          * leave the adapter in the broken state.
1748                          */
1749
1750                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1751                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1752
1753                         /* Reset adapter and bring it back on-line */
1754
1755                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1756                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1757                         printk("%s: Resetting adapter...\n", bp->dev->name);
1758                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1759                                 {
1760                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1761                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1762                                 return;
1763                                 }
1764                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1765                         }
1766                 else if (state == PI_STATE_K_LINK_AVAIL)
1767                         {
1768                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1769                         }
1770                 }
1771         }
1772
1773
1774 /*
1775  * ==================
1776  * = dfx_int_common =
1777  * ==================
1778  *
1779  * Overview:
1780  *   Interrupt service routine (ISR)
1781  *
1782  * Returns:
1783  *   None
1784  *
1785  * Arguments:
1786  *   bp - pointer to board information
1787  *
1788  * Functional Description:
1789  *   This is the ISR which processes incoming adapter interrupts.
1790  *
1791  * Return Codes:
1792  *   None
1793  *
1794  * Assumptions:
1795  *   This routine assumes PDQ interrupts have not been disabled.
1796  *   When interrupts are disabled at the PDQ, the Port Status register
1797  *   is automatically cleared.  This routine uses the Port Status
1798  *   register value to determine whether a Type 0 interrupt occurred,
1799  *   so it's important that adapter interrupts are not normally
1800  *   enabled/disabled at the PDQ.
1801  *
1802  *   It's vital that this routine is NOT reentered for the
1803  *   same board and that the OS is not in another section of
1804  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1805  *   different thread.
1806  *
1807  * Side Effects:
1808  *   Pending interrupts are serviced.  Depending on the type of
1809  *   interrupt, acknowledging and clearing the interrupt at the
1810  *   PDQ involves writing a register to clear the interrupt bit
1811  *   or updating completion indices.
1812  */
1813
1814 static void dfx_int_common(struct net_device *dev)
1815 {
1816         DFX_board_t *bp = netdev_priv(dev);
1817         PI_UINT32       port_status;            /* Port Status register */
1818
1819         /* Process xmt interrupts - frequent case, so always call this routine */
1820
1821         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1822                 netif_wake_queue(dev);
1823
1824         /* Process rcv interrupts - frequent case, so always call this routine */
1825
1826         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1827
1828         /*
1829          * Transmit and receive producer and completion indices are updated on the
1830          * adapter by writing to the Type 2 Producer register.  Since the frequent
1831          * case is that we'll be processing either LLC transmit or receive buffers,
1832          * we'll optimize I/O writes by doing a single register write here.
1833          */
1834
1835         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1836
1837         /* Read PDQ Port Status register to find out which interrupts need processing */
1838
1839         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1840
1841         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1842
1843         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1844                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1845         }
1846
1847
1848 /*
1849  * =================
1850  * = dfx_interrupt =
1851  * =================
1852  *
1853  * Overview:
1854  *   Interrupt processing routine
1855  *
1856  * Returns:
1857  *   Whether a valid interrupt was seen.
1858  *
1859  * Arguments:
1860  *   irq        - interrupt vector
1861  *   dev_id     - pointer to device information
1862  *
1863  * Functional Description:
1864  *   This routine calls the interrupt processing routine for this adapter.  It
1865  *   disables and reenables adapter interrupts, as appropriate.  We can support
1866  *   shared interrupts since the incoming dev_id pointer provides our device
1867  *   structure context.
1868  *
1869  * Return Codes:
1870  *   IRQ_HANDLED - an IRQ was handled.
1871  *   IRQ_NONE    - no IRQ was handled.
1872  *
1873  * Assumptions:
1874  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1875  *   on Intel-based systems) is done by the operating system outside this
1876  *   routine.
1877  *
1878  *       System interrupts are enabled through this call.
1879  *
1880  * Side Effects:
1881  *   Interrupts are disabled, then reenabled at the adapter.
1882  */
1883
1884 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1885 {
1886         struct net_device *dev = dev_id;
1887         DFX_board_t *bp = netdev_priv(dev);
1888         struct device *bdev = bp->bus_dev;
1889         int dfx_bus_pci = dev_is_pci(bdev);
1890         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1891         int dfx_bus_tc = DFX_BUS_TC(bdev);
1892
1893         /* Service adapter interrupts */
1894
1895         if (dfx_bus_pci) {
1896                 u32 status;
1897
1898                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1899                 if (!(status & PFI_STATUS_M_PDQ_INT))
1900                         return IRQ_NONE;
1901
1902                 spin_lock(&bp->lock);
1903
1904                 /* Disable PDQ-PFI interrupts at PFI */
1905                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1906                                     PFI_MODE_M_DMA_ENB);
1907
1908                 /* Call interrupt service routine for this adapter */
1909                 dfx_int_common(dev);
1910
1911                 /* Clear PDQ interrupt status bit and reenable interrupts */
1912                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1913                                     PFI_STATUS_M_PDQ_INT);
1914                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1915                                     (PFI_MODE_M_PDQ_INT_ENB |
1916                                      PFI_MODE_M_DMA_ENB));
1917
1918                 spin_unlock(&bp->lock);
1919         }
1920         if (dfx_bus_eisa) {
1921                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1922                 u8 status;
1923
1924                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1925                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1926                         return IRQ_NONE;
1927
1928                 spin_lock(&bp->lock);
1929
1930                 /* Disable interrupts at the ESIC */
1931                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1932                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1933
1934                 /* Call interrupt service routine for this adapter */
1935                 dfx_int_common(dev);
1936
1937                 /* Reenable interrupts at the ESIC */
1938                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1939                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1940                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1941
1942                 spin_unlock(&bp->lock);
1943         }
1944         if (dfx_bus_tc) {
1945                 u32 status;
1946
1947                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1948                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1949                                 PI_PSTATUS_M_XMT_DATA_PENDING |
1950                                 PI_PSTATUS_M_SMT_HOST_PENDING |
1951                                 PI_PSTATUS_M_UNSOL_PENDING |
1952                                 PI_PSTATUS_M_CMD_RSP_PENDING |
1953                                 PI_PSTATUS_M_CMD_REQ_PENDING |
1954                                 PI_PSTATUS_M_TYPE_0_PENDING)))
1955                         return IRQ_NONE;
1956
1957                 spin_lock(&bp->lock);
1958
1959                 /* Call interrupt service routine for this adapter */
1960                 dfx_int_common(dev);
1961
1962                 spin_unlock(&bp->lock);
1963         }
1964
1965         return IRQ_HANDLED;
1966 }
1967
1968
1969 /*
1970  * =====================
1971  * = dfx_ctl_get_stats =
1972  * =====================
1973  *
1974  * Overview:
1975  *   Get statistics for FDDI adapter
1976  *
1977  * Returns:
1978  *   Pointer to FDDI statistics structure
1979  *
1980  * Arguments:
1981  *   dev - pointer to device information
1982  *
1983  * Functional Description:
1984  *   Gets current MIB objects from adapter, then
1985  *   returns FDDI statistics structure as defined
1986  *   in if_fddi.h.
1987  *
1988  *   Note: Since the FDDI statistics structure is
1989  *   still new and the device structure doesn't
1990  *   have an FDDI-specific get statistics handler,
1991  *   we'll return the FDDI statistics structure as
1992  *   a pointer to an Ethernet statistics structure.
1993  *   That way, at least the first part of the statistics
1994  *   structure can be decoded properly, and it allows
1995  *   "smart" applications to perform a second cast to
1996  *   decode the FDDI-specific statistics.
1997  *
1998  *   We'll have to pay attention to this routine as the
1999  *   device structure becomes more mature and LAN media
2000  *   independent.
2001  *
2002  * Return Codes:
2003  *   None
2004  *
2005  * Assumptions:
2006  *   None
2007  *
2008  * Side Effects:
2009  *   None
2010  */
2011
2012 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2013         {
2014         DFX_board_t *bp = netdev_priv(dev);
2015
2016         /* Fill the bp->stats structure with driver-maintained counters */
2017
2018         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2019         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2020         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2021         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2022         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2023                                    bp->rcv_frame_status_errors +
2024                                    bp->rcv_length_errors;
2025         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2026         bp->stats.gen.rx_dropped = bp->rcv_discards;
2027         bp->stats.gen.tx_dropped = bp->xmt_discards;
2028         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2029         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2030
2031         /* Get FDDI SMT MIB objects */
2032
2033         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2034         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2035                 return (struct net_device_stats *)&bp->stats;
2036
2037         /* Fill the bp->stats structure with the SMT MIB object values */
2038
2039         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2040         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2041         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2042         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2043         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2044         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2045         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2046         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2047         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2048         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2049         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2050         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2051         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2052         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2053         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2054         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2055         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2056         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2057         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2058         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2059         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2060         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2061         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2062         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2063         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2064         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2065         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2066         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2067         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2068         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2069         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2070         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2071         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2072         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2073         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2074         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2075         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2076         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2077         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2078         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2079         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2080         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2081         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2082         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2083         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2084         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2085         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2086         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2087         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2088         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2089         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2090         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2091         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2092         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2093         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2094         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2095         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2096         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2097         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2098         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2099         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2100         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2101         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2102         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2103         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2104         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2105         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2106         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2107         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2108         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2109         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2110         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2111         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2112         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2113         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2114         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2115         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2116         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2117         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2118         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2119         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2120         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2121         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2122         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2123         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2124         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2125         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2126         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2127         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2128         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2129         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2130         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2131
2132         /* Get FDDI counters */
2133
2134         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2135         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2136                 return (struct net_device_stats *)&bp->stats;
2137
2138         /* Fill the bp->stats structure with the FDDI counter values */
2139
2140         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2141         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2142         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2143         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2144         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2145         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2146         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2147         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2148         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2149         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2150         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2151
2152         return (struct net_device_stats *)&bp->stats;
2153         }
2154
2155
2156 /*
2157  * ==============================
2158  * = dfx_ctl_set_multicast_list =
2159  * ==============================
2160  *
2161  * Overview:
2162  *   Enable/Disable LLC frame promiscuous mode reception
2163  *   on the adapter and/or update multicast address table.
2164  *
2165  * Returns:
2166  *   None
2167  *
2168  * Arguments:
2169  *   dev - pointer to device information
2170  *
2171  * Functional Description:
2172  *   This routine follows a fairly simple algorithm for setting the
2173  *   adapter filters and CAM:
2174  *
2175  *              if IFF_PROMISC flag is set
2176  *                      enable LLC individual/group promiscuous mode
2177  *              else
2178  *                      disable LLC individual/group promiscuous mode
2179  *                      if number of incoming multicast addresses >
2180  *                                      (CAM max size - number of unicast addresses in CAM)
2181  *                              enable LLC group promiscuous mode
2182  *                              set driver-maintained multicast address count to zero
2183  *                      else
2184  *                              disable LLC group promiscuous mode
2185  *                              set driver-maintained multicast address count to incoming count
2186  *                      update adapter CAM
2187  *              update adapter filters
2188  *
2189  * Return Codes:
2190  *   None
2191  *
2192  * Assumptions:
2193  *   Multicast addresses are presented in canonical (LSB) format.
2194  *
2195  * Side Effects:
2196  *   On-board adapter CAM and filters are updated.
2197  */
2198
2199 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2200 {
2201         DFX_board_t *bp = netdev_priv(dev);
2202         int                                     i;                      /* used as index in for loop */
2203         struct netdev_hw_addr *ha;
2204
2205         /* Enable LLC frame promiscuous mode, if necessary */
2206
2207         if (dev->flags & IFF_PROMISC)
2208                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2209
2210         /* Else, update multicast address table */
2211
2212         else
2213                 {
2214                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2215                 /*
2216                  * Check whether incoming multicast address count exceeds table size
2217                  *
2218                  * Note: The adapters utilize an on-board 64 entry CAM for
2219                  *       supporting perfect filtering of multicast packets
2220                  *               and bridge functions when adding unicast addresses.
2221                  *               There is no hash function available.  To support
2222                  *               additional multicast addresses, the all multicast
2223                  *               filter (LLC group promiscuous mode) must be enabled.
2224                  *
2225                  *               The firmware reserves two CAM entries for SMT-related
2226                  *               multicast addresses, which leaves 62 entries available.
2227                  *               The following code ensures that we're not being asked
2228                  *               to add more than 62 addresses to the CAM.  If we are,
2229                  *               the driver will enable the all multicast filter.
2230                  *               Should the number of multicast addresses drop below
2231                  *               the high water mark, the filter will be disabled and
2232                  *               perfect filtering will be used.
2233                  */
2234
2235                 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2236                         {
2237                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2238                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2239                         }
2240                 else
2241                         {
2242                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2243                         bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2244                         }
2245
2246                 /* Copy addresses to multicast address table, then update adapter CAM */
2247
2248                 i = 0;
2249                 netdev_for_each_mc_addr(ha, dev)
2250                         memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2251                                ha->addr, FDDI_K_ALEN);
2252
2253                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2254                         {
2255                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2256                         }
2257                 else
2258                         {
2259                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2260                         }
2261                 }
2262
2263         /* Update adapter filters */
2264
2265         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2266                 {
2267                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2268                 }
2269         else
2270                 {
2271                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2272                 }
2273         }
2274
2275
2276 /*
2277  * ===========================
2278  * = dfx_ctl_set_mac_address =
2279  * ===========================
2280  *
2281  * Overview:
2282  *   Add node address override (unicast address) to adapter
2283  *   CAM and update dev_addr field in device table.
2284  *
2285  * Returns:
2286  *   None
2287  *
2288  * Arguments:
2289  *   dev  - pointer to device information
2290  *   addr - pointer to sockaddr structure containing unicast address to add
2291  *
2292  * Functional Description:
2293  *   The adapter supports node address overrides by adding one or more
2294  *   unicast addresses to the adapter CAM.  This is similar to adding
2295  *   multicast addresses.  In this routine we'll update the driver and
2296  *   device structures with the new address, then update the adapter CAM
2297  *   to ensure that the adapter will copy and strip frames destined and
2298  *   sourced by that address.
2299  *
2300  * Return Codes:
2301  *   Always returns zero.
2302  *
2303  * Assumptions:
2304  *   The address pointed to by addr->sa_data is a valid unicast
2305  *   address and is presented in canonical (LSB) format.
2306  *
2307  * Side Effects:
2308  *   On-board adapter CAM is updated.  On-board adapter filters
2309  *   may be updated.
2310  */
2311
2312 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2313         {
2314         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2315         DFX_board_t *bp = netdev_priv(dev);
2316
2317         /* Copy unicast address to driver-maintained structs and update count */
2318
2319         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2320         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2321         bp->uc_count = 1;
2322
2323         /*
2324          * Verify we're not exceeding the CAM size by adding unicast address
2325          *
2326          * Note: It's possible that before entering this routine we've
2327          *       already filled the CAM with 62 multicast addresses.
2328          *               Since we need to place the node address override into
2329          *               the CAM, we have to check to see that we're not
2330          *               exceeding the CAM size.  If we are, we have to enable
2331          *               the LLC group (multicast) promiscuous mode filter as
2332          *               in dfx_ctl_set_multicast_list.
2333          */
2334
2335         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2336                 {
2337                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2338                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2339
2340                 /* Update adapter filters */
2341
2342                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2343                         {
2344                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2345                         }
2346                 else
2347                         {
2348                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2349                         }
2350                 }
2351
2352         /* Update adapter CAM with new unicast address */
2353
2354         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2355                 {
2356                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2357                 }
2358         else
2359                 {
2360                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2361                 }
2362         return 0;                       /* always return zero */
2363         }
2364
2365
2366 /*
2367  * ======================
2368  * = dfx_ctl_update_cam =
2369  * ======================
2370  *
2371  * Overview:
2372  *   Procedure to update adapter CAM (Content Addressable Memory)
2373  *   with desired unicast and multicast address entries.
2374  *
2375  * Returns:
2376  *   Condition code
2377  *
2378  * Arguments:
2379  *   bp - pointer to board information
2380  *
2381  * Functional Description:
2382  *   Updates adapter CAM with current contents of board structure
2383  *   unicast and multicast address tables.  Since there are only 62
2384  *   free entries in CAM, this routine ensures that the command
2385  *   request buffer is not overrun.
2386  *
2387  * Return Codes:
2388  *   DFX_K_SUCCESS - Request succeeded
2389  *   DFX_K_FAILURE - Request failed
2390  *
2391  * Assumptions:
2392  *   All addresses being added (unicast and multicast) are in canonical
2393  *   order.
2394  *
2395  * Side Effects:
2396  *   On-board adapter CAM is updated.
2397  */
2398
2399 static int dfx_ctl_update_cam(DFX_board_t *bp)
2400         {
2401         int                     i;                              /* used as index */
2402         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2403
2404         /*
2405          * Fill in command request information
2406          *
2407          * Note: Even though both the unicast and multicast address
2408          *       table entries are stored as contiguous 6 byte entries,
2409          *               the firmware address filter set command expects each
2410          *               entry to be two longwords (8 bytes total).  We must be
2411          *               careful to only copy the six bytes of each unicast and
2412          *               multicast table entry into each command entry.  This
2413          *               is also why we must first clear the entire command
2414          *               request buffer.
2415          */
2416
2417         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2418         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2419         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2420
2421         /* Now add unicast addresses to command request buffer, if any */
2422
2423         for (i=0; i < (int)bp->uc_count; i++)
2424                 {
2425                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2426                         {
2427                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2428                         p_addr++;                       /* point to next command entry */
2429                         }
2430                 }
2431
2432         /* Now add multicast addresses to command request buffer, if any */
2433
2434         for (i=0; i < (int)bp->mc_count; i++)
2435                 {
2436                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2437                         {
2438                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2439                         p_addr++;                       /* point to next command entry */
2440                         }
2441                 }
2442
2443         /* Issue command to update adapter CAM, then return */
2444
2445         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2446                 return DFX_K_FAILURE;
2447         return DFX_K_SUCCESS;
2448         }
2449
2450
2451 /*
2452  * ==========================
2453  * = dfx_ctl_update_filters =
2454  * ==========================
2455  *
2456  * Overview:
2457  *   Procedure to update adapter filters with desired
2458  *   filter settings.
2459  *
2460  * Returns:
2461  *   Condition code
2462  *
2463  * Arguments:
2464  *   bp - pointer to board information
2465  *
2466  * Functional Description:
2467  *   Enables or disables filter using current filter settings.
2468  *
2469  * Return Codes:
2470  *   DFX_K_SUCCESS - Request succeeded.
2471  *   DFX_K_FAILURE - Request failed.
2472  *
2473  * Assumptions:
2474  *   We must always pass up packets destined to the broadcast
2475  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2476  *   broadcast filter enabled.
2477  *
2478  * Side Effects:
2479  *   On-board adapter filters are updated.
2480  */
2481
2482 static int dfx_ctl_update_filters(DFX_board_t *bp)
2483         {
2484         int     i = 0;                                  /* used as index */
2485
2486         /* Fill in command request information */
2487
2488         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2489
2490         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2491
2492         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2493         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2494
2495         /* Initialize LLC Individual/Group Promiscuous filter */
2496
2497         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2498         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2499
2500         /* Initialize LLC Group Promiscuous filter */
2501
2502         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2503         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2504
2505         /* Terminate the item code list */
2506
2507         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2508
2509         /* Issue command to update adapter filters, then return */
2510
2511         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2512                 return DFX_K_FAILURE;
2513         return DFX_K_SUCCESS;
2514         }
2515
2516
2517 /*
2518  * ======================
2519  * = dfx_hw_dma_cmd_req =
2520  * ======================
2521  *
2522  * Overview:
2523  *   Sends PDQ DMA command to adapter firmware
2524  *
2525  * Returns:
2526  *   Condition code
2527  *
2528  * Arguments:
2529  *   bp - pointer to board information
2530  *
2531  * Functional Description:
2532  *   The command request and response buffers are posted to the adapter in the manner
2533  *   described in the PDQ Port Specification:
2534  *
2535  *              1. Command Response Buffer is posted to adapter.
2536  *              2. Command Request Buffer is posted to adapter.
2537  *              3. Command Request consumer index is polled until it indicates that request
2538  *         buffer has been DMA'd to adapter.
2539  *              4. Command Response consumer index is polled until it indicates that response
2540  *         buffer has been DMA'd from adapter.
2541  *
2542  *   This ordering ensures that a response buffer is already available for the firmware
2543  *   to use once it's done processing the request buffer.
2544  *
2545  * Return Codes:
2546  *   DFX_K_SUCCESS        - DMA command succeeded
2547  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2548  *   DFX_K_HW_TIMEOUT - DMA command timed out
2549  *
2550  * Assumptions:
2551  *   Command request buffer has already been filled with desired DMA command.
2552  *
2553  * Side Effects:
2554  *   None
2555  */
2556
2557 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2558         {
2559         int status;                     /* adapter status */
2560         int timeout_cnt;        /* used in for loops */
2561
2562         /* Make sure the adapter is in a state that we can issue the DMA command in */
2563
2564         status = dfx_hw_adap_state_rd(bp);
2565         if ((status == PI_STATE_K_RESET)                ||
2566                 (status == PI_STATE_K_HALTED)           ||
2567                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2568                 (status == PI_STATE_K_UPGRADE))
2569                 return DFX_K_OUTSTATE;
2570
2571         /* Put response buffer on the command response queue */
2572
2573         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2574                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2575         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2576
2577         /* Bump (and wrap) the producer index and write out to register */
2578
2579         bp->cmd_rsp_reg.index.prod += 1;
2580         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2581         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2582
2583         /* Put request buffer on the command request queue */
2584
2585         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2586                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2587         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2588
2589         /* Bump (and wrap) the producer index and write out to register */
2590
2591         bp->cmd_req_reg.index.prod += 1;
2592         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2593         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2594
2595         /*
2596          * Here we wait for the command request consumer index to be equal
2597          * to the producer, indicating that the adapter has DMAed the request.
2598          */
2599
2600         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2601                 {
2602                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2603                         break;
2604                 udelay(100);                    /* wait for 100 microseconds */
2605                 }
2606         if (timeout_cnt == 0)
2607                 return DFX_K_HW_TIMEOUT;
2608
2609         /* Bump (and wrap) the completion index and write out to register */
2610
2611         bp->cmd_req_reg.index.comp += 1;
2612         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2613         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2614
2615         /*
2616          * Here we wait for the command response consumer index to be equal
2617          * to the producer, indicating that the adapter has DMAed the response.
2618          */
2619
2620         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2621                 {
2622                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2623                         break;
2624                 udelay(100);                    /* wait for 100 microseconds */
2625                 }
2626         if (timeout_cnt == 0)
2627                 return DFX_K_HW_TIMEOUT;
2628
2629         /* Bump (and wrap) the completion index and write out to register */
2630
2631         bp->cmd_rsp_reg.index.comp += 1;
2632         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2633         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2634         return DFX_K_SUCCESS;
2635         }
2636
2637
2638 /*
2639  * ========================
2640  * = dfx_hw_port_ctrl_req =
2641  * ========================
2642  *
2643  * Overview:
2644  *   Sends PDQ port control command to adapter firmware
2645  *
2646  * Returns:
2647  *   Host data register value in host_data if ptr is not NULL
2648  *
2649  * Arguments:
2650  *   bp                 - pointer to board information
2651  *       command        - port control command
2652  *       data_a         - port data A register value
2653  *       data_b         - port data B register value
2654  *       host_data      - ptr to host data register value
2655  *
2656  * Functional Description:
2657  *   Send generic port control command to adapter by writing
2658  *   to various PDQ port registers, then polling for completion.
2659  *
2660  * Return Codes:
2661  *   DFX_K_SUCCESS        - port control command succeeded
2662  *   DFX_K_HW_TIMEOUT - port control command timed out
2663  *
2664  * Assumptions:
2665  *   None
2666  *
2667  * Side Effects:
2668  *   None
2669  */
2670
2671 static int dfx_hw_port_ctrl_req(
2672         DFX_board_t     *bp,
2673         PI_UINT32       command,
2674         PI_UINT32       data_a,
2675         PI_UINT32       data_b,
2676         PI_UINT32       *host_data
2677         )
2678
2679         {
2680         PI_UINT32       port_cmd;               /* Port Control command register value */
2681         int                     timeout_cnt;    /* used in for loops */
2682
2683         /* Set Command Error bit in command longword */
2684
2685         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2686
2687         /* Issue port command to the adapter */
2688
2689         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2690         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2691         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2692
2693         /* Now wait for command to complete */
2694
2695         if (command == PI_PCTRL_M_BLAST_FLASH)
2696                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2697         else
2698                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2699
2700         for (; timeout_cnt > 0; timeout_cnt--)
2701                 {
2702                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2703                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2704                         break;
2705                 udelay(100);                    /* wait for 100 microseconds */
2706                 }
2707         if (timeout_cnt == 0)
2708                 return DFX_K_HW_TIMEOUT;
2709
2710         /*
2711          * If the address of host_data is non-zero, assume caller has supplied a
2712          * non NULL pointer, and return the contents of the HOST_DATA register in
2713          * it.
2714          */
2715
2716         if (host_data != NULL)
2717                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2718         return DFX_K_SUCCESS;
2719         }
2720
2721
2722 /*
2723  * =====================
2724  * = dfx_hw_adap_reset =
2725  * =====================
2726  *
2727  * Overview:
2728  *   Resets adapter
2729  *
2730  * Returns:
2731  *   None
2732  *
2733  * Arguments:
2734  *   bp   - pointer to board information
2735  *   type - type of reset to perform
2736  *
2737  * Functional Description:
2738  *   Issue soft reset to adapter by writing to PDQ Port Reset
2739  *   register.  Use incoming reset type to tell adapter what
2740  *   kind of reset operation to perform.
2741  *
2742  * Return Codes:
2743  *   None
2744  *
2745  * Assumptions:
2746  *   This routine merely issues a soft reset to the adapter.
2747  *   It is expected that after this routine returns, the caller
2748  *   will appropriately poll the Port Status register for the
2749  *   adapter to enter the proper state.
2750  *
2751  * Side Effects:
2752  *   Internal adapter registers are cleared.
2753  */
2754
2755 static void dfx_hw_adap_reset(
2756         DFX_board_t     *bp,
2757         PI_UINT32       type
2758         )
2759
2760         {
2761         /* Set Reset type and assert reset */
2762
2763         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2764         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2765
2766         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2767
2768         udelay(20);
2769
2770         /* Deassert reset */
2771
2772         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2773         }
2774
2775
2776 /*
2777  * ========================
2778  * = dfx_hw_adap_state_rd =
2779  * ========================
2780  *
2781  * Overview:
2782  *   Returns current adapter state
2783  *
2784  * Returns:
2785  *   Adapter state per PDQ Port Specification
2786  *
2787  * Arguments:
2788  *   bp - pointer to board information
2789  *
2790  * Functional Description:
2791  *   Reads PDQ Port Status register and returns adapter state.
2792  *
2793  * Return Codes:
2794  *   None
2795  *
2796  * Assumptions:
2797  *   None
2798  *
2799  * Side Effects:
2800  *   None
2801  */
2802
2803 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2804         {
2805         PI_UINT32 port_status;          /* Port Status register value */
2806
2807         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2808         return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2809         }
2810
2811
2812 /*
2813  * =====================
2814  * = dfx_hw_dma_uninit =
2815  * =====================
2816  *
2817  * Overview:
2818  *   Brings adapter to DMA_UNAVAILABLE state
2819  *
2820  * Returns:
2821  *   Condition code
2822  *
2823  * Arguments:
2824  *   bp   - pointer to board information
2825  *   type - type of reset to perform
2826  *
2827  * Functional Description:
2828  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2829  *              1. Set reset type bit in Port Data A Register then reset adapter.
2830  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2831  *
2832  * Return Codes:
2833  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2834  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2835  *
2836  * Assumptions:
2837  *   None
2838  *
2839  * Side Effects:
2840  *   Internal adapter registers are cleared.
2841  */
2842
2843 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2844         {
2845         int timeout_cnt;        /* used in for loops */
2846
2847         /* Set reset type bit and reset adapter */
2848
2849         dfx_hw_adap_reset(bp, type);
2850
2851         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2852
2853         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2854                 {
2855                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2856                         break;
2857                 udelay(100);                                    /* wait for 100 microseconds */
2858                 }
2859         if (timeout_cnt == 0)
2860                 return DFX_K_HW_TIMEOUT;
2861         return DFX_K_SUCCESS;
2862         }
2863
2864 /*
2865  *      Align an sk_buff to a boundary power of 2
2866  *
2867  */
2868 #ifdef DYNAMIC_BUFFERS
2869 static void my_skb_align(struct sk_buff *skb, int n)
2870 {
2871         unsigned long x = (unsigned long)skb->data;
2872         unsigned long v;
2873
2874         v = ALIGN(x, n);        /* Where we want to be */
2875
2876         skb_reserve(skb, v - x);
2877 }
2878 #endif
2879
2880 /*
2881  * ================
2882  * = dfx_rcv_init =
2883  * ================
2884  *
2885  * Overview:
2886  *   Produces buffers to adapter LLC Host receive descriptor block
2887  *
2888  * Returns:
2889  *   None
2890  *
2891  * Arguments:
2892  *   bp - pointer to board information
2893  *   get_buffers - non-zero if buffers to be allocated
2894  *
2895  * Functional Description:
2896  *   This routine can be called during dfx_adap_init() or during an adapter
2897  *       reset.  It initializes the descriptor block and produces all allocated
2898  *   LLC Host queue receive buffers.
2899  *
2900  * Return Codes:
2901  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2902  *   dynamic buffer allocation). If the buffer allocation failed, the
2903  *   already allocated buffers will not be released and the caller should do
2904  *   this.
2905  *
2906  * Assumptions:
2907  *   The PDQ has been reset and the adapter and driver maintained Type 2
2908  *   register indices are cleared.
2909  *
2910  * Side Effects:
2911  *   Receive buffers are posted to the adapter LLC queue and the adapter
2912  *   is notified.
2913  */
2914
2915 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2916         {
2917         int     i, j;                                   /* used in for loop */
2918
2919         /*
2920          *  Since each receive buffer is a single fragment of same length, initialize
2921          *  first longword in each receive descriptor for entire LLC Host descriptor
2922          *  block.  Also initialize second longword in each receive descriptor with
2923          *  physical address of receive buffer.  We'll always allocate receive
2924          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2925          *  block and produce new receive buffers by simply updating the receive
2926          *  producer index.
2927          *
2928          *      Assumptions:
2929          *              To support all shipping versions of PDQ, the receive buffer size
2930          *              must be mod 128 in length and the physical address must be 128 byte
2931          *              aligned.  In other words, bits 0-6 of the length and address must
2932          *              be zero for the following descriptor field entries to be correct on
2933          *              all PDQ-based boards.  We guaranteed both requirements during
2934          *              driver initialization when we allocated memory for the receive buffers.
2935          */
2936
2937         if (get_buffers) {
2938 #ifdef DYNAMIC_BUFFERS
2939         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2940                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2941                 {
2942                         struct sk_buff *newskb;
2943                         dma_addr_t dma_addr;
2944
2945                         newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
2946                                                     GFP_NOIO);
2947                         if (!newskb)
2948                                 return -ENOMEM;
2949                         /*
2950                          * align to 128 bytes for compatibility with
2951                          * the old EISA boards.
2952                          */
2953
2954                         my_skb_align(newskb, 128);
2955                         dma_addr = dma_map_single(bp->bus_dev,
2956                                                   newskb->data,
2957                                                   PI_RCV_DATA_K_SIZE_MAX,
2958                                                   DMA_FROM_DEVICE);
2959                         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
2960                                 dev_kfree_skb(newskb);
2961                                 return -ENOMEM;
2962                         }
2963                         bp->descr_block_virt->rcv_data[i + j].long_0 =
2964                                 (u32)(PI_RCV_DESCR_M_SOP |
2965                                       ((PI_RCV_DATA_K_SIZE_MAX /
2966                                         PI_ALIGN_K_RCV_DATA_BUFF) <<
2967                                        PI_RCV_DESCR_V_SEG_LEN));
2968                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2969                                 (u32)dma_addr;
2970
2971                         /*
2972                          * p_rcv_buff_va is only used inside the
2973                          * kernel so we put the skb pointer here.
2974                          */
2975                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2976                 }
2977 #else
2978         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2979                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2980                         {
2981                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2982                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2983                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2984                         bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2985                         }
2986 #endif
2987         }
2988
2989         /* Update receive producer and Type 2 register */
2990
2991         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2992         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2993         return 0;
2994         }
2995
2996
2997 /*
2998  * =========================
2999  * = dfx_rcv_queue_process =
3000  * =========================
3001  *
3002  * Overview:
3003  *   Process received LLC frames.
3004  *
3005  * Returns:
3006  *   None
3007  *
3008  * Arguments:
3009  *   bp - pointer to board information
3010  *
3011  * Functional Description:
3012  *   Received LLC frames are processed until there are no more consumed frames.
3013  *   Once all frames are processed, the receive buffers are returned to the
3014  *   adapter.  Note that this algorithm fixes the length of time that can be spent
3015  *   in this routine, because there are a fixed number of receive buffers to
3016  *   process and buffers are not produced until this routine exits and returns
3017  *   to the ISR.
3018  *
3019  * Return Codes:
3020  *   None
3021  *
3022  * Assumptions:
3023  *   None
3024  *
3025  * Side Effects:
3026  *   None
3027  */
3028
3029 static void dfx_rcv_queue_process(
3030         DFX_board_t *bp
3031         )
3032
3033         {
3034         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3035         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3036         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3037         struct sk_buff          *skb = NULL;                    /* pointer to a sk_buff to hold incoming packet data */
3038
3039         /* Service all consumed LLC receive frames */
3040
3041         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3042         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3043                 {
3044                 /* Process any errors */
3045                 dma_addr_t dma_addr;
3046                 int entry;
3047
3048                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3049 #ifdef DYNAMIC_BUFFERS
3050                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3051 #else
3052                 p_buff = bp->p_rcv_buff_va[entry];
3053 #endif
3054                 dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3055                 dma_sync_single_for_cpu(bp->bus_dev,
3056                                         dma_addr + RCV_BUFF_K_DESCR,
3057                                         sizeof(u32),
3058                                         DMA_FROM_DEVICE);
3059                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3060
3061                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3062                         {
3063                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3064                                 bp->rcv_crc_errors++;
3065                         else
3066                                 bp->rcv_frame_status_errors++;
3067                         }
3068                 else
3069                 {
3070                         int rx_in_place = 0;
3071
3072                         /* The frame was received without errors - verify packet length */
3073
3074                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3075                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3076                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3077                                 bp->rcv_length_errors++;
3078                         else{
3079 #ifdef DYNAMIC_BUFFERS
3080                                 struct sk_buff *newskb = NULL;
3081
3082                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3083                                         dma_addr_t new_dma_addr;
3084
3085                                         newskb = netdev_alloc_skb(bp->dev,
3086                                                                   NEW_SKB_SIZE);
3087                                         if (newskb){
3088                                                 my_skb_align(newskb, 128);
3089                                                 new_dma_addr = dma_map_single(
3090                                                                 bp->bus_dev,
3091                                                                 newskb->data,
3092                                                                 PI_RCV_DATA_K_SIZE_MAX,
3093                                                                 DMA_FROM_DEVICE);
3094                                                 if (dma_mapping_error(
3095                                                                 bp->bus_dev,
3096                                                                 new_dma_addr)) {
3097                                                         dev_kfree_skb(newskb);
3098                                                         newskb = NULL;
3099                                                 }
3100                                         }
3101                                         if (newskb) {
3102                                                 rx_in_place = 1;
3103
3104                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3105                                                 dma_unmap_single(bp->bus_dev,
3106                                                         dma_addr,
3107                                                         PI_RCV_DATA_K_SIZE_MAX,
3108                                                         DMA_FROM_DEVICE);
3109                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3110                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3111                                                 bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3112                                         }
3113                                 }
3114                                 if (!newskb)
3115 #endif
3116                                         /* Alloc new buffer to pass up,
3117                                          * add room for PRH. */
3118                                         skb = netdev_alloc_skb(bp->dev,
3119                                                                pkt_len + 3);
3120                                 if (skb == NULL)
3121                                         {
3122                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3123                                         bp->rcv_discards++;
3124                                         break;
3125                                         }
3126                                 else {
3127                                         if (!rx_in_place) {
3128                                                 /* Receive buffer allocated, pass receive packet up */
3129                                                 dma_sync_single_for_cpu(
3130                                                         bp->bus_dev,
3131                                                         dma_addr +
3132                                                         RCV_BUFF_K_PADDING,
3133                                                         pkt_len + 3,
3134                                                         DMA_FROM_DEVICE);
3135
3136                                                 skb_copy_to_linear_data(skb,
3137                                                                p_buff + RCV_BUFF_K_PADDING,
3138                                                                pkt_len + 3);
3139                                         }
3140
3141                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3142                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3143                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3144                                         bp->rcv_total_bytes += skb->len;
3145                                         netif_rx(skb);
3146
3147                                         /* Update the rcv counters */
3148                                         bp->rcv_total_frames++;
3149                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3150                                                 bp->rcv_multicast_frames++;
3151                                 }
3152                         }
3153                         }
3154
3155                 /*
3156                  * Advance the producer (for recycling) and advance the completion
3157                  * (for servicing received frames).  Note that it is okay to
3158                  * advance the producer without checking that it passes the
3159                  * completion index because they are both advanced at the same
3160                  * rate.
3161                  */
3162
3163                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3164                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3165                 }
3166         }
3167
3168
3169 /*
3170  * =====================
3171  * = dfx_xmt_queue_pkt =
3172  * =====================
3173  *
3174  * Overview:
3175  *   Queues packets for transmission
3176  *
3177  * Returns:
3178  *   Condition code
3179  *
3180  * Arguments:
3181  *   skb - pointer to sk_buff to queue for transmission
3182  *   dev - pointer to device information
3183  *
3184  * Functional Description:
3185  *   Here we assume that an incoming skb transmit request
3186  *   is contained in a single physically contiguous buffer
3187  *   in which the virtual address of the start of packet
3188  *   (skb->data) can be converted to a physical address
3189  *   by using pci_map_single().
3190  *
3191  *   Since the adapter architecture requires a three byte
3192  *   packet request header to prepend the start of packet,
3193  *   we'll write the three byte field immediately prior to
3194  *   the FC byte.  This assumption is valid because we've
3195  *   ensured that dev->hard_header_len includes three pad
3196  *   bytes.  By posting a single fragment to the adapter,
3197  *   we'll reduce the number of descriptor fetches and
3198  *   bus traffic needed to send the request.
3199  *
3200  *   Also, we can't free the skb until after it's been DMA'd
3201  *   out by the adapter, so we'll queue it in the driver and
3202  *   return it in dfx_xmt_done.
3203  *
3204  * Return Codes:
3205  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3206  *       1 - caller should requeue the sk_buff for later transmission
3207  *
3208  * Assumptions:
3209  *       First and foremost, we assume the incoming skb pointer
3210  *   is NOT NULL and is pointing to a valid sk_buff structure.
3211  *
3212  *   The outgoing packet is complete, starting with the
3213  *   frame control byte including the last byte of data,
3214  *   but NOT including the 4 byte CRC.  We'll let the
3215  *   adapter hardware generate and append the CRC.
3216  *
3217  *   The entire packet is stored in one physically
3218  *   contiguous buffer which is not cached and whose
3219  *   32-bit physical address can be determined.
3220  *
3221  *   It's vital that this routine is NOT reentered for the
3222  *   same board and that the OS is not in another section of
3223  *   code (eg. dfx_int_common) for the same board on a
3224  *   different thread.
3225  *
3226  * Side Effects:
3227  *   None
3228  */
3229
3230 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3231                                      struct net_device *dev)
3232         {
3233         DFX_board_t             *bp = netdev_priv(dev);
3234         u8                      prod;                           /* local transmit producer index */
3235         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3236         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3237         dma_addr_t              dma_addr;
3238         unsigned long           flags;
3239
3240         netif_stop_queue(dev);
3241
3242         /*
3243          * Verify that incoming transmit request is OK
3244          *
3245          * Note: The packet size check is consistent with other
3246          *               Linux device drivers, although the correct packet
3247          *               size should be verified before calling the
3248          *               transmit routine.
3249          */
3250
3251         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3252         {
3253                 printk("%s: Invalid packet length - %u bytes\n",
3254                         dev->name, skb->len);
3255                 bp->xmt_length_errors++;                /* bump error counter */
3256                 netif_wake_queue(dev);
3257                 dev_kfree_skb(skb);
3258                 return NETDEV_TX_OK;                    /* return "success" */
3259         }
3260         /*
3261          * See if adapter link is available, if not, free buffer
3262          *
3263          * Note: If the link isn't available, free buffer and return 0
3264          *               rather than tell the upper layer to requeue the packet.
3265          *               The methodology here is that by the time the link
3266          *               becomes available, the packet to be sent will be
3267          *               fairly stale.  By simply dropping the packet, the
3268          *               higher layer protocols will eventually time out
3269          *               waiting for response packets which it won't receive.
3270          */
3271
3272         if (bp->link_available == PI_K_FALSE)
3273                 {
3274                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3275                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3276                 else
3277                         {
3278                         bp->xmt_discards++;                                     /* bump error counter */
3279                         dev_kfree_skb(skb);             /* free sk_buff now */
3280                         netif_wake_queue(dev);
3281                         return NETDEV_TX_OK;            /* return "success" */
3282                         }
3283                 }
3284
3285         /* Write the three PRH bytes immediately before the FC byte */
3286
3287         skb_push(skb, 3);
3288         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3289         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3290         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3291
3292         dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3293                                   DMA_TO_DEVICE);
3294         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3295                 skb_pull(skb, 3);
3296                 return NETDEV_TX_BUSY;
3297         }
3298
3299         spin_lock_irqsave(&bp->lock, flags);
3300
3301         /* Get the current producer and the next free xmt data descriptor */
3302
3303         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3304         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3305
3306         /*
3307          * Get pointer to auxiliary queue entry to contain information
3308          * for this packet.
3309          *
3310          * Note: The current xmt producer index will become the
3311          *       current xmt completion index when we complete this
3312          *       packet later on.  So, we'll get the pointer to the
3313          *       next auxiliary queue entry now before we bump the
3314          *       producer index.
3315          */
3316
3317         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3318
3319         /*
3320          * Write the descriptor with buffer info and bump producer
3321          *
3322          * Note: Since we need to start DMA from the packet request
3323          *               header, we'll add 3 bytes to the DMA buffer length,
3324          *               and we'll determine the physical address of the
3325          *               buffer from the PRH, not skb->data.
3326          *
3327          * Assumptions:
3328          *               1. Packet starts with the frame control (FC) byte
3329          *                  at skb->data.
3330          *               2. The 4-byte CRC is not appended to the buffer or
3331          *                      included in the length.
3332          *               3. Packet length (skb->len) is from FC to end of
3333          *                      data, inclusive.
3334          *               4. The packet length does not exceed the maximum
3335          *                      FDDI LLC frame length of 4491 bytes.
3336          *               5. The entire packet is contained in a physically
3337          *                      contiguous, non-cached, locked memory space
3338          *                      comprised of a single buffer pointed to by
3339          *                      skb->data.
3340          *               6. The physical address of the start of packet
3341          *                      can be determined from the virtual address
3342          *                      by using pci_map_single() and is only 32-bits
3343          *                      wide.
3344          */
3345
3346         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3347         p_xmt_descr->long_1 = (u32)dma_addr;
3348
3349         /*
3350          * Verify that descriptor is actually available
3351          *
3352          * Note: If descriptor isn't available, return 1 which tells
3353          *       the upper layer to requeue the packet for later
3354          *       transmission.
3355          *
3356          *       We need to ensure that the producer never reaches the
3357          *       completion, except to indicate that the queue is empty.
3358          */
3359
3360         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3361         {
3362                 skb_pull(skb,3);
3363                 spin_unlock_irqrestore(&bp->lock, flags);
3364                 return NETDEV_TX_BUSY;  /* requeue packet for later */
3365         }
3366
3367         /*
3368          * Save info for this packet for xmt done indication routine
3369          *
3370          * Normally, we'd save the producer index in the p_xmt_drv_descr
3371          * structure so that we'd have it handy when we complete this
3372          * packet later (in dfx_xmt_done).  However, since the current
3373          * transmit architecture guarantees a single fragment for the
3374          * entire packet, we can simply bump the completion index by
3375          * one (1) for each completed packet.
3376          *
3377          * Note: If this assumption changes and we're presented with
3378          *       an inconsistent number of transmit fragments for packet
3379          *       data, we'll need to modify this code to save the current
3380          *       transmit producer index.
3381          */
3382
3383         p_xmt_drv_descr->p_skb = skb;
3384
3385         /* Update Type 2 register */
3386
3387         bp->rcv_xmt_reg.index.xmt_prod = prod;
3388         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3389         spin_unlock_irqrestore(&bp->lock, flags);
3390         netif_wake_queue(dev);
3391         return NETDEV_TX_OK;    /* packet queued to adapter */
3392         }
3393
3394
3395 /*
3396  * ================
3397  * = dfx_xmt_done =
3398  * ================
3399  *
3400  * Overview:
3401  *   Processes all frames that have been transmitted.
3402  *
3403  * Returns:
3404  *   None
3405  *
3406  * Arguments:
3407  *   bp - pointer to board information
3408  *
3409  * Functional Description:
3410  *   For all consumed transmit descriptors that have not
3411  *   yet been completed, we'll free the skb we were holding
3412  *   onto using dev_kfree_skb and bump the appropriate
3413  *   counters.
3414  *
3415  * Return Codes:
3416  *   None
3417  *
3418  * Assumptions:
3419  *   The Type 2 register is not updated in this routine.  It is
3420  *   assumed that it will be updated in the ISR when dfx_xmt_done
3421  *   returns.
3422  *
3423  * Side Effects:
3424  *   None
3425  */
3426
3427 static int dfx_xmt_done(DFX_board_t *bp)
3428         {
3429         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3430         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3431         u8                      comp;                   /* local transmit completion index */
3432         int                     freed = 0;              /* buffers freed */
3433
3434         /* Service all consumed transmit frames */
3435
3436         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3437         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3438                 {
3439                 /* Get pointer to the transmit driver descriptor block information */
3440
3441                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3442
3443                 /* Increment transmit counters */
3444
3445                 bp->xmt_total_frames++;
3446                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3447
3448                 /* Return skb to operating system */
3449                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3450                 dma_unmap_single(bp->bus_dev,
3451                                  bp->descr_block_virt->xmt_data[comp].long_1,
3452                                  p_xmt_drv_descr->p_skb->len,
3453                                  DMA_TO_DEVICE);
3454                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3455
3456                 /*
3457                  * Move to start of next packet by updating completion index
3458                  *
3459                  * Here we assume that a transmit packet request is always
3460                  * serviced by posting one fragment.  We can therefore
3461                  * simplify the completion code by incrementing the
3462                  * completion index by one.  This code will need to be
3463                  * modified if this assumption changes.  See comments
3464                  * in dfx_xmt_queue_pkt for more details.
3465                  */
3466
3467                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3468                 freed++;
3469                 }
3470         return freed;
3471         }
3472
3473
3474 /*
3475  * =================
3476  * = dfx_rcv_flush =
3477  * =================
3478  *
3479  * Overview:
3480  *   Remove all skb's in the receive ring.
3481  *
3482  * Returns:
3483  *   None
3484  *
3485  * Arguments:
3486  *   bp - pointer to board information
3487  *
3488  * Functional Description:
3489  *   Free's all the dynamically allocated skb's that are
3490  *   currently attached to the device receive ring. This
3491  *   function is typically only used when the device is
3492  *   initialized or reinitialized.
3493  *
3494  * Return Codes:
3495  *   None
3496  *
3497  * Side Effects:
3498  *   None
3499  */
3500 #ifdef DYNAMIC_BUFFERS
3501 static void dfx_rcv_flush( DFX_board_t *bp )
3502         {
3503         int i, j;
3504
3505         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3506                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3507                 {
3508                         struct sk_buff *skb;
3509                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3510                         if (skb) {
3511                                 dma_unmap_single(bp->bus_dev,
3512                                                  bp->descr_block_virt->rcv_data[i+j].long_1,
3513                                                  PI_RCV_DATA_K_SIZE_MAX,
3514                                                  DMA_FROM_DEVICE);
3515                                 dev_kfree_skb(skb);
3516                         }
3517                         bp->p_rcv_buff_va[i+j] = NULL;
3518                 }
3519
3520         }
3521 #endif /* DYNAMIC_BUFFERS */
3522
3523 /*
3524  * =================
3525  * = dfx_xmt_flush =
3526  * =================
3527  *
3528  * Overview:
3529  *   Processes all frames whether they've been transmitted
3530  *   or not.
3531  *
3532  * Returns:
3533  *   None
3534  *
3535  * Arguments:
3536  *   bp - pointer to board information
3537  *
3538  * Functional Description:
3539  *   For all produced transmit descriptors that have not
3540  *   yet been completed, we'll free the skb we were holding
3541  *   onto using dev_kfree_skb and bump the appropriate
3542  *   counters.  Of course, it's possible that some of
3543  *   these transmit requests actually did go out, but we
3544  *   won't make that distinction here.  Finally, we'll
3545  *   update the consumer index to match the producer.
3546  *
3547  * Return Codes:
3548  *   None
3549  *
3550  * Assumptions:
3551  *   This routine does NOT update the Type 2 register.  It
3552  *   is assumed that this routine is being called during a
3553  *   transmit flush interrupt, or a shutdown or close routine.
3554  *
3555  * Side Effects:
3556  *   None
3557  */
3558
3559 static void dfx_xmt_flush( DFX_board_t *bp )
3560         {
3561         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3562         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3563         u8                      comp;                   /* local transmit completion index */
3564
3565         /* Flush all outstanding transmit frames */
3566
3567         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3568                 {
3569                 /* Get pointer to the transmit driver descriptor block information */
3570
3571                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3572
3573                 /* Return skb to operating system */
3574                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3575                 dma_unmap_single(bp->bus_dev,
3576                                  bp->descr_block_virt->xmt_data[comp].long_1,
3577                                  p_xmt_drv_descr->p_skb->len,
3578                                  DMA_TO_DEVICE);
3579                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3580
3581                 /* Increment transmit error counter */
3582
3583                 bp->xmt_discards++;
3584
3585                 /*
3586                  * Move to start of next packet by updating completion index
3587                  *
3588                  * Here we assume that a transmit packet request is always
3589                  * serviced by posting one fragment.  We can therefore
3590                  * simplify the completion code by incrementing the
3591                  * completion index by one.  This code will need to be
3592                  * modified if this assumption changes.  See comments
3593                  * in dfx_xmt_queue_pkt for more details.
3594                  */
3595
3596                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3597                 }
3598
3599         /* Update the transmit consumer index in the consumer block */
3600
3601         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3602         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3603         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3604         }
3605
3606 /*
3607  * ==================
3608  * = dfx_unregister =
3609  * ==================
3610  *
3611  * Overview:
3612  *   Shuts down an FDDI controller
3613  *
3614  * Returns:
3615  *   Condition code
3616  *
3617  * Arguments:
3618  *   bdev - pointer to device information
3619  *
3620  * Functional Description:
3621  *
3622  * Return Codes:
3623  *   None
3624  *
3625  * Assumptions:
3626  *   It compiles so it should work :-( (PCI cards do :-)
3627  *
3628  * Side Effects:
3629  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3630  *   freed.
3631  */
3632 static void dfx_unregister(struct device *bdev)
3633 {
3634         struct net_device *dev = dev_get_drvdata(bdev);
3635         DFX_board_t *bp = netdev_priv(dev);
3636         int dfx_bus_pci = dev_is_pci(bdev);
3637         int dfx_bus_tc = DFX_BUS_TC(bdev);
3638         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3639         resource_size_t bar_start = 0;          /* pointer to port */
3640         resource_size_t bar_len = 0;            /* resource length */
3641         int             alloc_size;             /* total buffer size used */
3642
3643         unregister_netdev(dev);
3644
3645         alloc_size = sizeof(PI_DESCR_BLOCK) +
3646                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3647 #ifndef DYNAMIC_BUFFERS
3648                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3649 #endif
3650                      sizeof(PI_CONSUMER_BLOCK) +
3651                      (PI_ALIGN_K_DESC_BLK - 1);
3652         if (bp->kmalloced)
3653                 dma_free_coherent(bdev, alloc_size,
3654                                   bp->kmalloced, bp->kmalloced_dma);
3655
3656         dfx_bus_uninit(dev);
3657
3658         dfx_get_bars(bdev, &bar_start, &bar_len);
3659         if (dfx_use_mmio) {
3660                 iounmap(bp->base.mem);
3661                 release_mem_region(bar_start, bar_len);
3662         } else
3663                 release_region(bar_start, bar_len);
3664
3665         if (dfx_bus_pci)
3666                 pci_disable_device(to_pci_dev(bdev));
3667
3668         free_netdev(dev);
3669 }
3670
3671
3672 static int __maybe_unused dfx_dev_register(struct device *);
3673 static int __maybe_unused dfx_dev_unregister(struct device *);
3674
3675 #ifdef CONFIG_PCI
3676 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3677 static void dfx_pci_unregister(struct pci_dev *);
3678
3679 static const struct pci_device_id dfx_pci_table[] = {
3680         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3681         { }
3682 };
3683 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3684
3685 static struct pci_driver dfx_pci_driver = {
3686         .name           = "defxx",
3687         .id_table       = dfx_pci_table,
3688         .probe          = dfx_pci_register,
3689         .remove         = dfx_pci_unregister,
3690 };
3691
3692 static int dfx_pci_register(struct pci_dev *pdev,
3693                             const struct pci_device_id *ent)
3694 {
3695         return dfx_register(&pdev->dev);
3696 }
3697
3698 static void dfx_pci_unregister(struct pci_dev *pdev)
3699 {
3700         dfx_unregister(&pdev->dev);
3701 }
3702 #endif /* CONFIG_PCI */
3703
3704 #ifdef CONFIG_EISA
3705 static struct eisa_device_id dfx_eisa_table[] = {
3706         { "DEC3001", DEFEA_PROD_ID_1 },
3707         { "DEC3002", DEFEA_PROD_ID_2 },
3708         { "DEC3003", DEFEA_PROD_ID_3 },
3709         { "DEC3004", DEFEA_PROD_ID_4 },
3710         { }
3711 };
3712 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3713
3714 static struct eisa_driver dfx_eisa_driver = {
3715         .id_table       = dfx_eisa_table,
3716         .driver         = {
3717                 .name   = "defxx",
3718                 .bus    = &eisa_bus_type,
3719                 .probe  = dfx_dev_register,
3720                 .remove = dfx_dev_unregister,
3721         },
3722 };
3723 #endif /* CONFIG_EISA */
3724
3725 #ifdef CONFIG_TC
3726 static struct tc_device_id const dfx_tc_table[] = {
3727         { "DEC     ", "PMAF-FA " },
3728         { "DEC     ", "PMAF-FD " },
3729         { "DEC     ", "PMAF-FS " },
3730         { "DEC     ", "PMAF-FU " },
3731         { }
3732 };
3733 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3734
3735 static struct tc_driver dfx_tc_driver = {
3736         .id_table       = dfx_tc_table,
3737         .driver         = {
3738                 .name   = "defxx",
3739                 .bus    = &tc_bus_type,
3740                 .probe  = dfx_dev_register,
3741                 .remove = dfx_dev_unregister,
3742         },
3743 };
3744 #endif /* CONFIG_TC */
3745
3746 static int __maybe_unused dfx_dev_register(struct device *dev)
3747 {
3748         int status;
3749
3750         status = dfx_register(dev);
3751         if (!status)
3752                 get_device(dev);
3753         return status;
3754 }
3755
3756 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3757 {
3758         put_device(dev);
3759         dfx_unregister(dev);
3760         return 0;
3761 }
3762
3763
3764 static int dfx_init(void)
3765 {
3766         int status;
3767
3768         status = pci_register_driver(&dfx_pci_driver);
3769         if (!status)
3770                 status = eisa_driver_register(&dfx_eisa_driver);
3771         if (!status)
3772                 status = tc_register_driver(&dfx_tc_driver);
3773         return status;
3774 }
3775
3776 static void dfx_cleanup(void)
3777 {
3778         tc_unregister_driver(&dfx_tc_driver);
3779         eisa_driver_unregister(&dfx_eisa_driver);
3780         pci_unregister_driver(&dfx_pci_driver);
3781 }
3782
3783 module_init(dfx_init);
3784 module_exit(dfx_cleanup);
3785 MODULE_AUTHOR("Lawrence V. Stefani");
3786 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3787                    DRV_VERSION " " DRV_RELDATE);
3788 MODULE_LICENSE("GPL");