Merge branch 'stable-3.14' of git://git.infradead.org/users/pcmoore/selinux into...
[cascardo/linux.git] / drivers / net / irda / au1k_ir.c
1 /*
2  * Alchemy Semi Au1000 IrDA driver
3  *
4  * Copyright 2001 MontaVista Software Inc.
5  * Author: MontaVista Software, Inc.
6  *              ppopov@mvista.com or source@mvista.com
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/time.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29
30 #include <net/irda/irda.h>
31 #include <net/irda/irmod.h>
32 #include <net/irda/wrapper.h>
33 #include <net/irda/irda_device.h>
34 #include <asm/mach-au1x00/au1000.h>
35
36 /* registers */
37 #define IR_RING_PTR_STATUS      0x00
38 #define IR_RING_BASE_ADDR_H     0x04
39 #define IR_RING_BASE_ADDR_L     0x08
40 #define IR_RING_SIZE            0x0C
41 #define IR_RING_PROMPT          0x10
42 #define IR_RING_ADDR_CMPR       0x14
43 #define IR_INT_CLEAR            0x18
44 #define IR_CONFIG_1             0x20
45 #define IR_SIR_FLAGS            0x24
46 #define IR_STATUS               0x28
47 #define IR_READ_PHY_CONFIG      0x2C
48 #define IR_WRITE_PHY_CONFIG     0x30
49 #define IR_MAX_PKT_LEN          0x34
50 #define IR_RX_BYTE_CNT          0x38
51 #define IR_CONFIG_2             0x3C
52 #define IR_ENABLE               0x40
53
54 /* Config1 */
55 #define IR_RX_INVERT_LED        (1 << 0)
56 #define IR_TX_INVERT_LED        (1 << 1)
57 #define IR_ST                   (1 << 2)
58 #define IR_SF                   (1 << 3)
59 #define IR_SIR                  (1 << 4)
60 #define IR_MIR                  (1 << 5)
61 #define IR_FIR                  (1 << 6)
62 #define IR_16CRC                (1 << 7)
63 #define IR_TD                   (1 << 8)
64 #define IR_RX_ALL               (1 << 9)
65 #define IR_DMA_ENABLE           (1 << 10)
66 #define IR_RX_ENABLE            (1 << 11)
67 #define IR_TX_ENABLE            (1 << 12)
68 #define IR_LOOPBACK             (1 << 14)
69 #define IR_SIR_MODE             (IR_SIR | IR_DMA_ENABLE | \
70                                  IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
71                                  IR_16CRC)
72
73 /* ir_status */
74 #define IR_RX_STATUS            (1 << 9)
75 #define IR_TX_STATUS            (1 << 10)
76 #define IR_PHYEN                (1 << 15)
77
78 /* ir_write_phy_config */
79 #define IR_BR(x)                (((x) & 0x3f) << 10)    /* baud rate */
80 #define IR_PW(x)                (((x) & 0x1f) << 5)     /* pulse width */
81 #define IR_P(x)                 ((x) & 0x1f)            /* preamble bits */
82
83 /* Config2 */
84 #define IR_MODE_INV             (1 << 0)
85 #define IR_ONE_PIN              (1 << 1)
86 #define IR_PHYCLK_40MHZ         (0 << 2)
87 #define IR_PHYCLK_48MHZ         (1 << 2)
88 #define IR_PHYCLK_56MHZ         (2 << 2)
89 #define IR_PHYCLK_64MHZ         (3 << 2)
90 #define IR_DP                   (1 << 4)
91 #define IR_DA                   (1 << 5)
92 #define IR_FLT_HIGH             (0 << 6)
93 #define IR_FLT_MEDHI            (1 << 6)
94 #define IR_FLT_MEDLO            (2 << 6)
95 #define IR_FLT_LO               (3 << 6)
96 #define IR_IEN                  (1 << 8)
97
98 /* ir_enable */
99 #define IR_HC                   (1 << 3)        /* divide SBUS clock by 2 */
100 #define IR_CE                   (1 << 2)        /* clock enable */
101 #define IR_C                    (1 << 1)        /* coherency bit */
102 #define IR_BE                   (1 << 0)        /* set in big endian mode */
103
104 #define NUM_IR_DESC     64
105 #define RING_SIZE_4     0x0
106 #define RING_SIZE_16    0x3
107 #define RING_SIZE_64    0xF
108 #define MAX_NUM_IR_DESC 64
109 #define MAX_BUF_SIZE    2048
110
111 /* Ring descriptor flags */
112 #define AU_OWN          (1 << 7) /* tx,rx */
113 #define IR_DIS_CRC      (1 << 6) /* tx */
114 #define IR_BAD_CRC      (1 << 5) /* tx */
115 #define IR_NEED_PULSE   (1 << 4) /* tx */
116 #define IR_FORCE_UNDER  (1 << 3) /* tx */
117 #define IR_DISABLE_TX   (1 << 2) /* tx */
118 #define IR_HW_UNDER     (1 << 0) /* tx */
119 #define IR_TX_ERROR     (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
120
121 #define IR_PHY_ERROR    (1 << 6) /* rx */
122 #define IR_CRC_ERROR    (1 << 5) /* rx */
123 #define IR_MAX_LEN      (1 << 4) /* rx */
124 #define IR_FIFO_OVER    (1 << 3) /* rx */
125 #define IR_SIR_ERROR    (1 << 2) /* rx */
126 #define IR_RX_ERROR     (IR_PHY_ERROR | IR_CRC_ERROR | \
127                          IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
128
129 struct db_dest {
130         struct db_dest *pnext;
131         volatile u32 *vaddr;
132         dma_addr_t dma_addr;
133 };
134
135 struct ring_dest {
136         u8 count_0;     /* 7:0  */
137         u8 count_1;     /* 12:8 */
138         u8 reserved;
139         u8 flags;
140         u8 addr_0;      /* 7:0   */
141         u8 addr_1;      /* 15:8  */
142         u8 addr_2;      /* 23:16 */
143         u8 addr_3;      /* 31:24 */
144 };
145
146 /* Private data for each instance */
147 struct au1k_private {
148         void __iomem *iobase;
149         int irq_rx, irq_tx;
150
151         struct db_dest *pDBfree;
152         struct db_dest db[2 * NUM_IR_DESC];
153         volatile struct ring_dest *rx_ring[NUM_IR_DESC];
154         volatile struct ring_dest *tx_ring[NUM_IR_DESC];
155         struct db_dest *rx_db_inuse[NUM_IR_DESC];
156         struct db_dest *tx_db_inuse[NUM_IR_DESC];
157         u32 rx_head;
158         u32 tx_head;
159         u32 tx_tail;
160         u32 tx_full;
161
162         iobuff_t rx_buff;
163
164         struct net_device *netdev;
165         struct timeval stamp;
166         struct timeval now;
167         struct qos_info qos;
168         struct irlap_cb *irlap;
169
170         u8 open;
171         u32 speed;
172         u32 newspeed;
173
174         struct timer_list timer;
175
176         struct resource *ioarea;
177         struct au1k_irda_platform_data *platdata;
178 };
179
180 static int qos_mtt_bits = 0x07;  /* 1 ms or more */
181
182 #define RUN_AT(x) (jiffies + (x))
183
184 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
185 {
186         if (p->platdata && p->platdata->set_phy_mode)
187                 p->platdata->set_phy_mode(mode);
188 }
189
190 static inline unsigned long irda_read(struct au1k_private *p,
191                                       unsigned long ofs)
192 {
193         /*
194         * IrDA peripheral bug. You have to read the register
195         * twice to get the right value.
196         */
197         (void)__raw_readl(p->iobase + ofs);
198         return __raw_readl(p->iobase + ofs);
199 }
200
201 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
202                               unsigned long val)
203 {
204         __raw_writel(val, p->iobase + ofs);
205         wmb();
206 }
207
208 /*
209  * Buffer allocation/deallocation routines. The buffer descriptor returned
210  * has the virtual and dma address of a buffer suitable for
211  * both, receive and transmit operations.
212  */
213 static struct db_dest *GetFreeDB(struct au1k_private *aup)
214 {
215         struct db_dest *db;
216         db = aup->pDBfree;
217
218         if (db)
219                 aup->pDBfree = db->pnext;
220         return db;
221 }
222
223 /*
224   DMA memory allocation, derived from pci_alloc_consistent.
225   However, the Au1000 data cache is coherent (when programmed
226   so), therefore we return KSEG0 address, not KSEG1.
227 */
228 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
229 {
230         void *ret;
231         int gfp = GFP_ATOMIC | GFP_DMA;
232
233         ret = (void *)__get_free_pages(gfp, get_order(size));
234
235         if (ret != NULL) {
236                 memset(ret, 0, size);
237                 *dma_handle = virt_to_bus(ret);
238                 ret = (void *)KSEG0ADDR(ret);
239         }
240         return ret;
241 }
242
243 static void dma_free(void *vaddr, size_t size)
244 {
245         vaddr = (void *)KSEG0ADDR(vaddr);
246         free_pages((unsigned long) vaddr, get_order(size));
247 }
248
249
250 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
251 {
252         int i;
253         for (i = 0; i < NUM_IR_DESC; i++) {
254                 aup->rx_ring[i] = (volatile struct ring_dest *)
255                         (rx_base + sizeof(struct ring_dest) * i);
256         }
257         for (i = 0; i < NUM_IR_DESC; i++) {
258                 aup->tx_ring[i] = (volatile struct ring_dest *)
259                         (tx_base + sizeof(struct ring_dest) * i);
260         }
261 }
262
263 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
264 {
265         io->head = kmalloc(size, GFP_KERNEL);
266         if (io->head != NULL) {
267                 io->truesize    = size;
268                 io->in_frame    = FALSE;
269                 io->state       = OUTSIDE_FRAME;
270                 io->data        = io->head;
271         }
272         return io->head ? 0 : -ENOMEM;
273 }
274
275 /*
276  * Set the IrDA communications speed.
277  */
278 static int au1k_irda_set_speed(struct net_device *dev, int speed)
279 {
280         struct au1k_private *aup = netdev_priv(dev);
281         volatile struct ring_dest *ptxd;
282         unsigned long control;
283         int ret = 0, timeout = 10, i;
284
285         if (speed == aup->speed)
286                 return ret;
287
288         /* disable PHY first */
289         au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
290         irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
291
292         /* disable RX/TX */
293         irda_write(aup, IR_CONFIG_1,
294             irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
295         msleep(20);
296         while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
297                 msleep(20);
298                 if (!timeout--) {
299                         printk(KERN_ERR "%s: rx/tx disable timeout\n",
300                                         dev->name);
301                         break;
302                 }
303         }
304
305         /* disable DMA */
306         irda_write(aup, IR_CONFIG_1,
307                    irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
308         msleep(20);
309
310         /* After we disable tx/rx. the index pointers go back to zero. */
311         aup->tx_head = aup->tx_tail = aup->rx_head = 0;
312         for (i = 0; i < NUM_IR_DESC; i++) {
313                 ptxd = aup->tx_ring[i];
314                 ptxd->flags = 0;
315                 ptxd->count_0 = 0;
316                 ptxd->count_1 = 0;
317         }
318
319         for (i = 0; i < NUM_IR_DESC; i++) {
320                 ptxd = aup->rx_ring[i];
321                 ptxd->count_0 = 0;
322                 ptxd->count_1 = 0;
323                 ptxd->flags = AU_OWN;
324         }
325
326         if (speed == 4000000)
327                 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
328         else
329                 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
330
331         switch (speed) {
332         case 9600:
333                 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
334                 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
335                 break;
336         case 19200:
337                 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
338                 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
339                 break;
340         case 38400:
341                 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
342                 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
343                 break;
344         case 57600:
345                 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
346                 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
347                 break;
348         case 115200:
349                 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
350                 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
351                 break;
352         case 4000000:
353                 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
354                 irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
355                                 IR_RX_ENABLE);
356                 break;
357         default:
358                 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
359                 ret = -EINVAL;
360                 break;
361         }
362
363         aup->speed = speed;
364         irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
365
366         control = irda_read(aup, IR_STATUS);
367         irda_write(aup, IR_RING_PROMPT, 0);
368
369         if (control & (1 << 14)) {
370                 printk(KERN_ERR "%s: configuration error\n", dev->name);
371         } else {
372                 if (control & (1 << 11))
373                         printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
374                 if (control & (1 << 12))
375                         printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
376                 if (control & (1 << 13))
377                         printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
378                 if (control & (1 << 10))
379                         printk(KERN_DEBUG "%s TX enabled\n", dev->name);
380                 if (control & (1 << 9))
381                         printk(KERN_DEBUG "%s RX enabled\n", dev->name);
382         }
383
384         return ret;
385 }
386
387 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
388 {
389         struct net_device_stats *ps = &dev->stats;
390
391         ps->rx_packets++;
392
393         if (status & IR_RX_ERROR) {
394                 ps->rx_errors++;
395                 if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
396                         ps->rx_missed_errors++;
397                 if (status & IR_MAX_LEN)
398                         ps->rx_length_errors++;
399                 if (status & IR_CRC_ERROR)
400                         ps->rx_crc_errors++;
401         } else
402                 ps->rx_bytes += count;
403 }
404
405 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
406 {
407         struct net_device_stats *ps = &dev->stats;
408
409         ps->tx_packets++;
410         ps->tx_bytes += pkt_len;
411
412         if (status & IR_TX_ERROR) {
413                 ps->tx_errors++;
414                 ps->tx_aborted_errors++;
415         }
416 }
417
418 static void au1k_tx_ack(struct net_device *dev)
419 {
420         struct au1k_private *aup = netdev_priv(dev);
421         volatile struct ring_dest *ptxd;
422
423         ptxd = aup->tx_ring[aup->tx_tail];
424         while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
425                 update_tx_stats(dev, ptxd->flags,
426                                 (ptxd->count_1 << 8) | ptxd->count_0);
427                 ptxd->count_0 = 0;
428                 ptxd->count_1 = 0;
429                 wmb();
430                 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
431                 ptxd = aup->tx_ring[aup->tx_tail];
432
433                 if (aup->tx_full) {
434                         aup->tx_full = 0;
435                         netif_wake_queue(dev);
436                 }
437         }
438
439         if (aup->tx_tail == aup->tx_head) {
440                 if (aup->newspeed) {
441                         au1k_irda_set_speed(dev, aup->newspeed);
442                         aup->newspeed = 0;
443                 } else {
444                         irda_write(aup, IR_CONFIG_1,
445                             irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
446                         irda_write(aup, IR_CONFIG_1,
447                             irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
448                         irda_write(aup, IR_RING_PROMPT, 0);
449                 }
450         }
451 }
452
453 static int au1k_irda_rx(struct net_device *dev)
454 {
455         struct au1k_private *aup = netdev_priv(dev);
456         volatile struct ring_dest *prxd;
457         struct sk_buff *skb;
458         struct db_dest *pDB;
459         u32 flags, count;
460
461         prxd = aup->rx_ring[aup->rx_head];
462         flags = prxd->flags;
463
464         while (!(flags & AU_OWN))  {
465                 pDB = aup->rx_db_inuse[aup->rx_head];
466                 count = (prxd->count_1 << 8) | prxd->count_0;
467                 if (!(flags & IR_RX_ERROR)) {
468                         /* good frame */
469                         update_rx_stats(dev, flags, count);
470                         skb = alloc_skb(count + 1, GFP_ATOMIC);
471                         if (skb == NULL) {
472                                 dev->stats.rx_dropped++;
473                                 continue;
474                         }
475                         skb_reserve(skb, 1);
476                         if (aup->speed == 4000000)
477                                 skb_put(skb, count);
478                         else
479                                 skb_put(skb, count - 2);
480                         skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
481                                                 count - 2);
482                         skb->dev = dev;
483                         skb_reset_mac_header(skb);
484                         skb->protocol = htons(ETH_P_IRDA);
485                         netif_rx(skb);
486                         prxd->count_0 = 0;
487                         prxd->count_1 = 0;
488                 }
489                 prxd->flags |= AU_OWN;
490                 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
491                 irda_write(aup, IR_RING_PROMPT, 0);
492
493                 /* next descriptor */
494                 prxd = aup->rx_ring[aup->rx_head];
495                 flags = prxd->flags;
496
497         }
498         return 0;
499 }
500
501 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
502 {
503         struct net_device *dev = dev_id;
504         struct au1k_private *aup = netdev_priv(dev);
505
506         irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
507
508         au1k_irda_rx(dev);
509         au1k_tx_ack(dev);
510
511         return IRQ_HANDLED;
512 }
513
514 static int au1k_init(struct net_device *dev)
515 {
516         struct au1k_private *aup = netdev_priv(dev);
517         u32 enable, ring_address;
518         int i;
519
520         enable = IR_HC | IR_CE | IR_C;
521 #ifndef CONFIG_CPU_LITTLE_ENDIAN
522         enable |= IR_BE;
523 #endif
524         aup->tx_head = 0;
525         aup->tx_tail = 0;
526         aup->rx_head = 0;
527
528         for (i = 0; i < NUM_IR_DESC; i++)
529                 aup->rx_ring[i]->flags = AU_OWN;
530
531         irda_write(aup, IR_ENABLE, enable);
532         msleep(20);
533
534         /* disable PHY */
535         au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
536         irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
537         msleep(20);
538
539         irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
540
541         ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
542         irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
543         irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
544
545         irda_write(aup, IR_RING_SIZE,
546                                 (RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
547
548         irda_write(aup, IR_CONFIG_2, IR_PHYCLK_48MHZ | IR_ONE_PIN);
549         irda_write(aup, IR_RING_ADDR_CMPR, 0);
550
551         au1k_irda_set_speed(dev, 9600);
552         return 0;
553 }
554
555 static int au1k_irda_start(struct net_device *dev)
556 {
557         struct au1k_private *aup = netdev_priv(dev);
558         char hwname[32];
559         int retval;
560
561         retval = au1k_init(dev);
562         if (retval) {
563                 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
564                 return retval;
565         }
566
567         retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
568                              dev->name, dev);
569         if (retval) {
570                 printk(KERN_ERR "%s: unable to get IRQ %d\n",
571                                 dev->name, dev->irq);
572                 return retval;
573         }
574         retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
575                              dev->name, dev);
576         if (retval) {
577                 free_irq(aup->irq_tx, dev);
578                 printk(KERN_ERR "%s: unable to get IRQ %d\n",
579                                 dev->name, dev->irq);
580                 return retval;
581         }
582
583         /* Give self a hardware name */
584         sprintf(hwname, "Au1000 SIR/FIR");
585         aup->irlap = irlap_open(dev, &aup->qos, hwname);
586         netif_start_queue(dev);
587
588         /* int enable */
589         irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
590
591         /* power up */
592         au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
593
594         aup->timer.expires = RUN_AT((3 * HZ));
595         aup->timer.data = (unsigned long)dev;
596         return 0;
597 }
598
599 static int au1k_irda_stop(struct net_device *dev)
600 {
601         struct au1k_private *aup = netdev_priv(dev);
602
603         au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
604
605         /* disable interrupts */
606         irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
607         irda_write(aup, IR_CONFIG_1, 0);
608         irda_write(aup, IR_ENABLE, 0); /* disable clock */
609
610         if (aup->irlap) {
611                 irlap_close(aup->irlap);
612                 aup->irlap = NULL;
613         }
614
615         netif_stop_queue(dev);
616         del_timer(&aup->timer);
617
618         /* disable the interrupt */
619         free_irq(aup->irq_tx, dev);
620         free_irq(aup->irq_rx, dev);
621
622         return 0;
623 }
624
625 /*
626  * Au1000 transmit routine.
627  */
628 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
629 {
630         struct au1k_private *aup = netdev_priv(dev);
631         int speed = irda_get_next_speed(skb);
632         volatile struct ring_dest *ptxd;
633         struct db_dest *pDB;
634         u32 len, flags;
635
636         if (speed != aup->speed && speed != -1)
637                 aup->newspeed = speed;
638
639         if ((skb->len == 0) && (aup->newspeed)) {
640                 if (aup->tx_tail == aup->tx_head) {
641                         au1k_irda_set_speed(dev, speed);
642                         aup->newspeed = 0;
643                 }
644                 dev_kfree_skb(skb);
645                 return NETDEV_TX_OK;
646         }
647
648         ptxd = aup->tx_ring[aup->tx_head];
649         flags = ptxd->flags;
650
651         if (flags & AU_OWN) {
652                 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
653                 netif_stop_queue(dev);
654                 aup->tx_full = 1;
655                 return 1;
656         } else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
657                 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
658                 netif_stop_queue(dev);
659                 aup->tx_full = 1;
660                 return 1;
661         }
662
663         pDB = aup->tx_db_inuse[aup->tx_head];
664
665 #if 0
666         if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
667                 printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
668                                 irda_read(aup, IR_RX_BYTE_CNT));
669         }
670 #endif
671
672         if (aup->speed == 4000000) {
673                 /* FIR */
674                 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
675                 ptxd->count_0 = skb->len & 0xff;
676                 ptxd->count_1 = (skb->len >> 8) & 0xff;
677         } else {
678                 /* SIR */
679                 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
680                 ptxd->count_0 = len & 0xff;
681                 ptxd->count_1 = (len >> 8) & 0xff;
682                 ptxd->flags |= IR_DIS_CRC;
683         }
684         ptxd->flags |= AU_OWN;
685         wmb();
686
687         irda_write(aup, IR_CONFIG_1,
688                    irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
689         irda_write(aup, IR_RING_PROMPT, 0);
690
691         dev_kfree_skb(skb);
692         aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
693         return NETDEV_TX_OK;
694 }
695
696 /*
697  * The Tx ring has been full longer than the watchdog timeout
698  * value. The transmitter must be hung?
699  */
700 static void au1k_tx_timeout(struct net_device *dev)
701 {
702         u32 speed;
703         struct au1k_private *aup = netdev_priv(dev);
704
705         printk(KERN_ERR "%s: tx timeout\n", dev->name);
706         speed = aup->speed;
707         aup->speed = 0;
708         au1k_irda_set_speed(dev, speed);
709         aup->tx_full = 0;
710         netif_wake_queue(dev);
711 }
712
713 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
714 {
715         struct if_irda_req *rq = (struct if_irda_req *)ifreq;
716         struct au1k_private *aup = netdev_priv(dev);
717         int ret = -EOPNOTSUPP;
718
719         switch (cmd) {
720         case SIOCSBANDWIDTH:
721                 if (capable(CAP_NET_ADMIN)) {
722                         /*
723                          * We are unable to set the speed if the
724                          * device is not running.
725                          */
726                         if (aup->open)
727                                 ret = au1k_irda_set_speed(dev,
728                                                 rq->ifr_baudrate);
729                         else {
730                                 printk(KERN_ERR "%s ioctl: !netif_running\n",
731                                                 dev->name);
732                                 ret = 0;
733                         }
734                 }
735                 break;
736
737         case SIOCSMEDIABUSY:
738                 ret = -EPERM;
739                 if (capable(CAP_NET_ADMIN)) {
740                         irda_device_set_media_busy(dev, TRUE);
741                         ret = 0;
742                 }
743                 break;
744
745         case SIOCGRECEIVING:
746                 rq->ifr_receiving = 0;
747                 break;
748         default:
749                 break;
750         }
751         return ret;
752 }
753
754 static const struct net_device_ops au1k_irda_netdev_ops = {
755         .ndo_open               = au1k_irda_start,
756         .ndo_stop               = au1k_irda_stop,
757         .ndo_start_xmit         = au1k_irda_hard_xmit,
758         .ndo_tx_timeout         = au1k_tx_timeout,
759         .ndo_do_ioctl           = au1k_irda_ioctl,
760 };
761
762 static int au1k_irda_net_init(struct net_device *dev)
763 {
764         struct au1k_private *aup = netdev_priv(dev);
765         struct db_dest *pDB, *pDBfree;
766         int i, err, retval = 0;
767         dma_addr_t temp;
768
769         err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
770         if (err)
771                 goto out1;
772
773         dev->netdev_ops = &au1k_irda_netdev_ops;
774
775         irda_init_max_qos_capabilies(&aup->qos);
776
777         /* The only value we must override it the baudrate */
778         aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
779                 IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
780
781         aup->qos.min_turn_time.bits = qos_mtt_bits;
782         irda_qos_bits_to_value(&aup->qos);
783
784         retval = -ENOMEM;
785
786         /* Tx ring follows rx ring + 512 bytes */
787         /* we need a 1k aligned buffer */
788         aup->rx_ring[0] = (struct ring_dest *)
789                 dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
790                           &temp);
791         if (!aup->rx_ring[0])
792                 goto out2;
793
794         /* allocate the data buffers */
795         aup->db[0].vaddr =
796                 dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
797         if (!aup->db[0].vaddr)
798                 goto out3;
799
800         setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
801
802         pDBfree = NULL;
803         pDB = aup->db;
804         for (i = 0; i < (2 * NUM_IR_DESC); i++) {
805                 pDB->pnext = pDBfree;
806                 pDBfree = pDB;
807                 pDB->vaddr =
808                        (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
809                 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
810                 pDB++;
811         }
812         aup->pDBfree = pDBfree;
813
814         /* attach a data buffer to each descriptor */
815         for (i = 0; i < NUM_IR_DESC; i++) {
816                 pDB = GetFreeDB(aup);
817                 if (!pDB)
818                         goto out3;
819                 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
820                 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
821                 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
822                 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
823                 aup->rx_db_inuse[i] = pDB;
824         }
825         for (i = 0; i < NUM_IR_DESC; i++) {
826                 pDB = GetFreeDB(aup);
827                 if (!pDB)
828                         goto out3;
829                 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
830                 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
831                 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
832                 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
833                 aup->tx_ring[i]->count_0 = 0;
834                 aup->tx_ring[i]->count_1 = 0;
835                 aup->tx_ring[i]->flags = 0;
836                 aup->tx_db_inuse[i] = pDB;
837         }
838
839         return 0;
840
841 out3:
842         dma_free((void *)aup->rx_ring[0],
843                 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
844 out2:
845         kfree(aup->rx_buff.head);
846 out1:
847         printk(KERN_ERR "au1k_irda_net_init() failed.  Returns %d\n", retval);
848         return retval;
849 }
850
851 static int au1k_irda_probe(struct platform_device *pdev)
852 {
853         struct au1k_private *aup;
854         struct net_device *dev;
855         struct resource *r;
856         int err;
857
858         dev = alloc_irdadev(sizeof(struct au1k_private));
859         if (!dev)
860                 return -ENOMEM;
861
862         aup = netdev_priv(dev);
863
864         aup->platdata = pdev->dev.platform_data;
865
866         err = -EINVAL;
867         r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
868         if (!r)
869                 goto out;
870
871         aup->irq_tx = r->start;
872
873         r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
874         if (!r)
875                 goto out;
876
877         aup->irq_rx = r->start;
878
879         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
880         if (!r)
881                 goto out;
882
883         err = -EBUSY;
884         aup->ioarea = request_mem_region(r->start, resource_size(r),
885                                          pdev->name);
886         if (!aup->ioarea)
887                 goto out;
888
889         aup->iobase = ioremap_nocache(r->start, resource_size(r));
890         if (!aup->iobase)
891                 goto out2;
892
893         dev->irq = aup->irq_rx;
894
895         err = au1k_irda_net_init(dev);
896         if (err)
897                 goto out3;
898         err = register_netdev(dev);
899         if (err)
900                 goto out4;
901
902         platform_set_drvdata(pdev, dev);
903
904         printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
905         return 0;
906
907 out4:
908         dma_free((void *)aup->db[0].vaddr,
909                 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
910         dma_free((void *)aup->rx_ring[0],
911                 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
912         kfree(aup->rx_buff.head);
913 out3:
914         iounmap(aup->iobase);
915 out2:
916         release_resource(aup->ioarea);
917         kfree(aup->ioarea);
918 out:
919         free_netdev(dev);
920         return err;
921 }
922
923 static int au1k_irda_remove(struct platform_device *pdev)
924 {
925         struct net_device *dev = platform_get_drvdata(pdev);
926         struct au1k_private *aup = netdev_priv(dev);
927
928         unregister_netdev(dev);
929
930         dma_free((void *)aup->db[0].vaddr,
931                 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
932         dma_free((void *)aup->rx_ring[0],
933                 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
934         kfree(aup->rx_buff.head);
935
936         iounmap(aup->iobase);
937         release_resource(aup->ioarea);
938         kfree(aup->ioarea);
939
940         free_netdev(dev);
941
942         return 0;
943 }
944
945 static struct platform_driver au1k_irda_driver = {
946         .driver = {
947                 .name   = "au1000-irda",
948                 .owner  = THIS_MODULE,
949         },
950         .probe          = au1k_irda_probe,
951         .remove         = au1k_irda_remove,
952 };
953
954 module_platform_driver(au1k_irda_driver);
955
956 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
957 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");