tile: sort the "select" lines in the TILE/TILEGX configs
[cascardo/linux.git] / drivers / net / vrf.c
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38
39 #define RT_FL_TOS(oldflp4) \
40         ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41
42 #define DRV_NAME        "vrf"
43 #define DRV_VERSION     "1.0"
44
45 #define vrf_master_get_rcu(dev) \
46         ((struct net_device *)rcu_dereference(dev->rx_handler_data))
47
48 struct net_vrf {
49         struct rtable           *rth;
50         struct rt6_info         *rt6;
51         u32                     tb_id;
52 };
53
54 struct pcpu_dstats {
55         u64                     tx_pkts;
56         u64                     tx_bytes;
57         u64                     tx_drps;
58         u64                     rx_pkts;
59         u64                     rx_bytes;
60         struct u64_stats_sync   syncp;
61 };
62
63 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
64 {
65         return dst;
66 }
67
68 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
69 {
70         return ip_local_out(net, sk, skb);
71 }
72
73 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
74 {
75         /* TO-DO: return max ethernet size? */
76         return dst->dev->mtu;
77 }
78
79 static void vrf_dst_destroy(struct dst_entry *dst)
80 {
81         /* our dst lives forever - or until the device is closed */
82 }
83
84 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
85 {
86         return 65535 - 40;
87 }
88
89 static struct dst_ops vrf_dst_ops = {
90         .family         = AF_INET,
91         .local_out      = vrf_ip_local_out,
92         .check          = vrf_ip_check,
93         .mtu            = vrf_v4_mtu,
94         .destroy        = vrf_dst_destroy,
95         .default_advmss = vrf_default_advmss,
96 };
97
98 /* neighbor handling is done with actual device; do not want
99  * to flip skb->dev for those ndisc packets. This really fails
100  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
101  * a start.
102  */
103 #if IS_ENABLED(CONFIG_IPV6)
104 static bool check_ipv6_frame(const struct sk_buff *skb)
105 {
106         const struct ipv6hdr *ipv6h;
107         struct ipv6hdr _ipv6h;
108         bool rc = true;
109
110         ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
111         if (!ipv6h)
112                 goto out;
113
114         if (ipv6h->nexthdr == NEXTHDR_ICMP) {
115                 const struct icmp6hdr *icmph;
116                 struct icmp6hdr _icmph;
117
118                 icmph = skb_header_pointer(skb, sizeof(_ipv6h),
119                                            sizeof(_icmph), &_icmph);
120                 if (!icmph)
121                         goto out;
122
123                 switch (icmph->icmp6_type) {
124                 case NDISC_ROUTER_SOLICITATION:
125                 case NDISC_ROUTER_ADVERTISEMENT:
126                 case NDISC_NEIGHBOUR_SOLICITATION:
127                 case NDISC_NEIGHBOUR_ADVERTISEMENT:
128                 case NDISC_REDIRECT:
129                         rc = false;
130                         break;
131                 }
132         }
133
134 out:
135         return rc;
136 }
137 #else
138 static bool check_ipv6_frame(const struct sk_buff *skb)
139 {
140         return false;
141 }
142 #endif
143
144 static bool is_ip_rx_frame(struct sk_buff *skb)
145 {
146         switch (skb->protocol) {
147         case htons(ETH_P_IP):
148                 return true;
149         case htons(ETH_P_IPV6):
150                 return check_ipv6_frame(skb);
151         }
152         return false;
153 }
154
155 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
156 {
157         vrf_dev->stats.tx_errors++;
158         kfree_skb(skb);
159 }
160
161 /* note: already called with rcu_read_lock */
162 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
163 {
164         struct sk_buff *skb = *pskb;
165
166         if (is_ip_rx_frame(skb)) {
167                 struct net_device *dev = vrf_master_get_rcu(skb->dev);
168                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
169
170                 u64_stats_update_begin(&dstats->syncp);
171                 dstats->rx_pkts++;
172                 dstats->rx_bytes += skb->len;
173                 u64_stats_update_end(&dstats->syncp);
174
175                 skb->dev = dev;
176
177                 return RX_HANDLER_ANOTHER;
178         }
179         return RX_HANDLER_PASS;
180 }
181
182 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
183                                                  struct rtnl_link_stats64 *stats)
184 {
185         int i;
186
187         for_each_possible_cpu(i) {
188                 const struct pcpu_dstats *dstats;
189                 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
190                 unsigned int start;
191
192                 dstats = per_cpu_ptr(dev->dstats, i);
193                 do {
194                         start = u64_stats_fetch_begin_irq(&dstats->syncp);
195                         tbytes = dstats->tx_bytes;
196                         tpkts = dstats->tx_pkts;
197                         tdrops = dstats->tx_drps;
198                         rbytes = dstats->rx_bytes;
199                         rpkts = dstats->rx_pkts;
200                 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
201                 stats->tx_bytes += tbytes;
202                 stats->tx_packets += tpkts;
203                 stats->tx_dropped += tdrops;
204                 stats->rx_bytes += rbytes;
205                 stats->rx_packets += rpkts;
206         }
207         return stats;
208 }
209
210 #if IS_ENABLED(CONFIG_IPV6)
211 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
212                                            struct net_device *dev)
213 {
214         const struct ipv6hdr *iph = ipv6_hdr(skb);
215         struct net *net = dev_net(skb->dev);
216         struct flowi6 fl6 = {
217                 /* needed to match OIF rule */
218                 .flowi6_oif = dev->ifindex,
219                 .flowi6_iif = LOOPBACK_IFINDEX,
220                 .daddr = iph->daddr,
221                 .saddr = iph->saddr,
222                 .flowlabel = ip6_flowinfo(iph),
223                 .flowi6_mark = skb->mark,
224                 .flowi6_proto = iph->nexthdr,
225                 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
226         };
227         int ret = NET_XMIT_DROP;
228         struct dst_entry *dst;
229         struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
230
231         dst = ip6_route_output(net, NULL, &fl6);
232         if (dst == dst_null)
233                 goto err;
234
235         skb_dst_drop(skb);
236         skb_dst_set(skb, dst);
237
238         ret = ip6_local_out(net, skb->sk, skb);
239         if (unlikely(net_xmit_eval(ret)))
240                 dev->stats.tx_errors++;
241         else
242                 ret = NET_XMIT_SUCCESS;
243
244         return ret;
245 err:
246         vrf_tx_error(dev, skb);
247         return NET_XMIT_DROP;
248 }
249 #else
250 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
251                                            struct net_device *dev)
252 {
253         vrf_tx_error(dev, skb);
254         return NET_XMIT_DROP;
255 }
256 #endif
257
258 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
259                             struct net_device *vrf_dev)
260 {
261         struct rtable *rt;
262         int err = 1;
263
264         rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
265         if (IS_ERR(rt))
266                 goto out;
267
268         /* TO-DO: what about broadcast ? */
269         if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
270                 ip_rt_put(rt);
271                 goto out;
272         }
273
274         skb_dst_drop(skb);
275         skb_dst_set(skb, &rt->dst);
276         err = 0;
277 out:
278         return err;
279 }
280
281 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
282                                            struct net_device *vrf_dev)
283 {
284         struct iphdr *ip4h = ip_hdr(skb);
285         int ret = NET_XMIT_DROP;
286         struct flowi4 fl4 = {
287                 /* needed to match OIF rule */
288                 .flowi4_oif = vrf_dev->ifindex,
289                 .flowi4_iif = LOOPBACK_IFINDEX,
290                 .flowi4_tos = RT_TOS(ip4h->tos),
291                 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
292                                 FLOWI_FLAG_SKIP_NH_OIF,
293                 .daddr = ip4h->daddr,
294         };
295
296         if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
297                 goto err;
298
299         if (!ip4h->saddr) {
300                 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
301                                                RT_SCOPE_LINK);
302         }
303
304         ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
305         if (unlikely(net_xmit_eval(ret)))
306                 vrf_dev->stats.tx_errors++;
307         else
308                 ret = NET_XMIT_SUCCESS;
309
310 out:
311         return ret;
312 err:
313         vrf_tx_error(vrf_dev, skb);
314         goto out;
315 }
316
317 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
318 {
319         /* strip the ethernet header added for pass through VRF device */
320         __skb_pull(skb, skb_network_offset(skb));
321
322         switch (skb->protocol) {
323         case htons(ETH_P_IP):
324                 return vrf_process_v4_outbound(skb, dev);
325         case htons(ETH_P_IPV6):
326                 return vrf_process_v6_outbound(skb, dev);
327         default:
328                 vrf_tx_error(dev, skb);
329                 return NET_XMIT_DROP;
330         }
331 }
332
333 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
334 {
335         netdev_tx_t ret = is_ip_tx_frame(skb, dev);
336
337         if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
338                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
339
340                 u64_stats_update_begin(&dstats->syncp);
341                 dstats->tx_pkts++;
342                 dstats->tx_bytes += skb->len;
343                 u64_stats_update_end(&dstats->syncp);
344         } else {
345                 this_cpu_inc(dev->dstats->tx_drps);
346         }
347
348         return ret;
349 }
350
351 #if IS_ENABLED(CONFIG_IPV6)
352 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
353 {
354         return dst;
355 }
356
357 static struct dst_ops vrf_dst_ops6 = {
358         .family         = AF_INET6,
359         .local_out      = ip6_local_out,
360         .check          = vrf_ip6_check,
361         .mtu            = vrf_v4_mtu,
362         .destroy        = vrf_dst_destroy,
363         .default_advmss = vrf_default_advmss,
364 };
365
366 static int init_dst_ops6_kmem_cachep(void)
367 {
368         vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
369                                                      sizeof(struct rt6_info),
370                                                      0,
371                                                      SLAB_HWCACHE_ALIGN,
372                                                      NULL);
373
374         if (!vrf_dst_ops6.kmem_cachep)
375                 return -ENOMEM;
376
377         return 0;
378 }
379
380 static void free_dst_ops6_kmem_cachep(void)
381 {
382         kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
383 }
384
385 static int vrf_input6(struct sk_buff *skb)
386 {
387         skb->dev->stats.rx_errors++;
388         kfree_skb(skb);
389         return 0;
390 }
391
392 /* modelled after ip6_finish_output2 */
393 static int vrf_finish_output6(struct net *net, struct sock *sk,
394                               struct sk_buff *skb)
395 {
396         struct dst_entry *dst = skb_dst(skb);
397         struct net_device *dev = dst->dev;
398         struct neighbour *neigh;
399         struct in6_addr *nexthop;
400         int ret;
401
402         skb->protocol = htons(ETH_P_IPV6);
403         skb->dev = dev;
404
405         rcu_read_lock_bh();
406         nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
407         neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
408         if (unlikely(!neigh))
409                 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
410         if (!IS_ERR(neigh)) {
411                 ret = dst_neigh_output(dst, neigh, skb);
412                 rcu_read_unlock_bh();
413                 return ret;
414         }
415         rcu_read_unlock_bh();
416
417         IP6_INC_STATS(dev_net(dst->dev),
418                       ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
419         kfree_skb(skb);
420         return -EINVAL;
421 }
422
423 /* modelled after ip6_output */
424 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
425 {
426         return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
427                             net, sk, skb, NULL, skb_dst(skb)->dev,
428                             vrf_finish_output6,
429                             !(IP6CB(skb)->flags & IP6SKB_REROUTED));
430 }
431
432 static void vrf_rt6_destroy(struct net_vrf *vrf)
433 {
434         dst_destroy(&vrf->rt6->dst);
435         free_percpu(vrf->rt6->rt6i_pcpu);
436         vrf->rt6 = NULL;
437 }
438
439 static int vrf_rt6_create(struct net_device *dev)
440 {
441         struct net_vrf *vrf = netdev_priv(dev);
442         struct dst_entry *dst;
443         struct rt6_info *rt6;
444         int cpu;
445         int rc = -ENOMEM;
446
447         rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
448                         DST_OBSOLETE_NONE,
449                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
450         if (!rt6)
451                 goto out;
452
453         dst = &rt6->dst;
454
455         rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
456         if (!rt6->rt6i_pcpu) {
457                 dst_destroy(dst);
458                 goto out;
459         }
460         for_each_possible_cpu(cpu) {
461                 struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
462                 *p =  NULL;
463         }
464
465         memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
466
467         INIT_LIST_HEAD(&rt6->rt6i_siblings);
468         INIT_LIST_HEAD(&rt6->rt6i_uncached);
469
470         rt6->dst.input  = vrf_input6;
471         rt6->dst.output = vrf_output6;
472
473         rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
474
475         atomic_set(&rt6->dst.__refcnt, 2);
476
477         vrf->rt6 = rt6;
478         rc = 0;
479 out:
480         return rc;
481 }
482 #else
483 static int init_dst_ops6_kmem_cachep(void)
484 {
485         return 0;
486 }
487
488 static void free_dst_ops6_kmem_cachep(void)
489 {
490 }
491
492 static void vrf_rt6_destroy(struct net_vrf *vrf)
493 {
494 }
495
496 static int vrf_rt6_create(struct net_device *dev)
497 {
498         return 0;
499 }
500 #endif
501
502 /* modelled after ip_finish_output2 */
503 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
504 {
505         struct dst_entry *dst = skb_dst(skb);
506         struct rtable *rt = (struct rtable *)dst;
507         struct net_device *dev = dst->dev;
508         unsigned int hh_len = LL_RESERVED_SPACE(dev);
509         struct neighbour *neigh;
510         u32 nexthop;
511         int ret = -EINVAL;
512
513         /* Be paranoid, rather than too clever. */
514         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
515                 struct sk_buff *skb2;
516
517                 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
518                 if (!skb2) {
519                         ret = -ENOMEM;
520                         goto err;
521                 }
522                 if (skb->sk)
523                         skb_set_owner_w(skb2, skb->sk);
524
525                 consume_skb(skb);
526                 skb = skb2;
527         }
528
529         rcu_read_lock_bh();
530
531         nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
532         neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
533         if (unlikely(!neigh))
534                 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
535         if (!IS_ERR(neigh))
536                 ret = dst_neigh_output(dst, neigh, skb);
537
538         rcu_read_unlock_bh();
539 err:
540         if (unlikely(ret < 0))
541                 vrf_tx_error(skb->dev, skb);
542         return ret;
543 }
544
545 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
546 {
547         struct net_device *dev = skb_dst(skb)->dev;
548
549         IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
550
551         skb->dev = dev;
552         skb->protocol = htons(ETH_P_IP);
553
554         return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
555                             net, sk, skb, NULL, dev,
556                             vrf_finish_output,
557                             !(IPCB(skb)->flags & IPSKB_REROUTED));
558 }
559
560 static void vrf_rtable_destroy(struct net_vrf *vrf)
561 {
562         struct dst_entry *dst = (struct dst_entry *)vrf->rth;
563
564         dst_destroy(dst);
565         vrf->rth = NULL;
566 }
567
568 static struct rtable *vrf_rtable_create(struct net_device *dev)
569 {
570         struct net_vrf *vrf = netdev_priv(dev);
571         struct rtable *rth;
572
573         rth = dst_alloc(&vrf_dst_ops, dev, 2,
574                         DST_OBSOLETE_NONE,
575                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
576         if (rth) {
577                 rth->dst.output = vrf_output;
578                 rth->rt_genid   = rt_genid_ipv4(dev_net(dev));
579                 rth->rt_flags   = 0;
580                 rth->rt_type    = RTN_UNICAST;
581                 rth->rt_is_input = 0;
582                 rth->rt_iif     = 0;
583                 rth->rt_pmtu    = 0;
584                 rth->rt_gateway = 0;
585                 rth->rt_uses_gateway = 0;
586                 rth->rt_table_id = vrf->tb_id;
587                 INIT_LIST_HEAD(&rth->rt_uncached);
588                 rth->rt_uncached_list = NULL;
589         }
590
591         return rth;
592 }
593
594 /**************************** device handling ********************/
595
596 /* cycle interface to flush neighbor cache and move routes across tables */
597 static void cycle_netdev(struct net_device *dev)
598 {
599         unsigned int flags = dev->flags;
600         int ret;
601
602         if (!netif_running(dev))
603                 return;
604
605         ret = dev_change_flags(dev, flags & ~IFF_UP);
606         if (ret >= 0)
607                 ret = dev_change_flags(dev, flags);
608
609         if (ret < 0) {
610                 netdev_err(dev,
611                            "Failed to cycle device %s; route tables might be wrong!\n",
612                            dev->name);
613         }
614 }
615
616 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
617 {
618         int ret;
619
620         /* register the packet handler for slave ports */
621         ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
622         if (ret) {
623                 netdev_err(port_dev,
624                            "Device %s failed to register rx_handler\n",
625                            port_dev->name);
626                 goto out_fail;
627         }
628
629         ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
630         if (ret < 0)
631                 goto out_unregister;
632
633         port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
634         cycle_netdev(port_dev);
635
636         return 0;
637
638 out_unregister:
639         netdev_rx_handler_unregister(port_dev);
640 out_fail:
641         return ret;
642 }
643
644 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
645 {
646         if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
647                 return -EINVAL;
648
649         return do_vrf_add_slave(dev, port_dev);
650 }
651
652 /* inverse of do_vrf_add_slave */
653 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
654 {
655         netdev_upper_dev_unlink(port_dev, dev);
656         port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
657
658         netdev_rx_handler_unregister(port_dev);
659
660         cycle_netdev(port_dev);
661
662         return 0;
663 }
664
665 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
666 {
667         return do_vrf_del_slave(dev, port_dev);
668 }
669
670 static void vrf_dev_uninit(struct net_device *dev)
671 {
672         struct net_vrf *vrf = netdev_priv(dev);
673         struct net_device *port_dev;
674         struct list_head *iter;
675
676         vrf_rtable_destroy(vrf);
677         vrf_rt6_destroy(vrf);
678
679         netdev_for_each_lower_dev(dev, port_dev, iter)
680                 vrf_del_slave(dev, port_dev);
681
682         free_percpu(dev->dstats);
683         dev->dstats = NULL;
684 }
685
686 static int vrf_dev_init(struct net_device *dev)
687 {
688         struct net_vrf *vrf = netdev_priv(dev);
689
690         dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
691         if (!dev->dstats)
692                 goto out_nomem;
693
694         /* create the default dst which points back to us */
695         vrf->rth = vrf_rtable_create(dev);
696         if (!vrf->rth)
697                 goto out_stats;
698
699         if (vrf_rt6_create(dev) != 0)
700                 goto out_rth;
701
702         dev->flags = IFF_MASTER | IFF_NOARP;
703
704         return 0;
705
706 out_rth:
707         vrf_rtable_destroy(vrf);
708 out_stats:
709         free_percpu(dev->dstats);
710         dev->dstats = NULL;
711 out_nomem:
712         return -ENOMEM;
713 }
714
715 static const struct net_device_ops vrf_netdev_ops = {
716         .ndo_init               = vrf_dev_init,
717         .ndo_uninit             = vrf_dev_uninit,
718         .ndo_start_xmit         = vrf_xmit,
719         .ndo_get_stats64        = vrf_get_stats64,
720         .ndo_add_slave          = vrf_add_slave,
721         .ndo_del_slave          = vrf_del_slave,
722 };
723
724 static u32 vrf_fib_table(const struct net_device *dev)
725 {
726         struct net_vrf *vrf = netdev_priv(dev);
727
728         return vrf->tb_id;
729 }
730
731 static struct rtable *vrf_get_rtable(const struct net_device *dev,
732                                      const struct flowi4 *fl4)
733 {
734         struct rtable *rth = NULL;
735
736         if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
737                 struct net_vrf *vrf = netdev_priv(dev);
738
739                 rth = vrf->rth;
740                 atomic_inc(&rth->dst.__refcnt);
741         }
742
743         return rth;
744 }
745
746 /* called under rcu_read_lock */
747 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
748 {
749         struct fib_result res = { .tclassid = 0 };
750         struct net *net = dev_net(dev);
751         u32 orig_tos = fl4->flowi4_tos;
752         u8 flags = fl4->flowi4_flags;
753         u8 scope = fl4->flowi4_scope;
754         u8 tos = RT_FL_TOS(fl4);
755         int rc;
756
757         if (unlikely(!fl4->daddr))
758                 return 0;
759
760         fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
761         fl4->flowi4_iif = LOOPBACK_IFINDEX;
762         fl4->flowi4_tos = tos & IPTOS_RT_MASK;
763         fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
764                              RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
765
766         rc = fib_lookup(net, fl4, &res, 0);
767         if (!rc) {
768                 if (res.type == RTN_LOCAL)
769                         fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
770                 else
771                         fib_select_path(net, &res, fl4, -1);
772         }
773
774         fl4->flowi4_flags = flags;
775         fl4->flowi4_tos = orig_tos;
776         fl4->flowi4_scope = scope;
777
778         return rc;
779 }
780
781 #if IS_ENABLED(CONFIG_IPV6)
782 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
783                                          const struct flowi6 *fl6)
784 {
785         struct rt6_info *rt = NULL;
786
787         if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
788                 struct net_vrf *vrf = netdev_priv(dev);
789
790                 rt = vrf->rt6;
791                 atomic_inc(&rt->dst.__refcnt);
792         }
793
794         return (struct dst_entry *)rt;
795 }
796 #endif
797
798 static const struct l3mdev_ops vrf_l3mdev_ops = {
799         .l3mdev_fib_table       = vrf_fib_table,
800         .l3mdev_get_rtable      = vrf_get_rtable,
801         .l3mdev_get_saddr       = vrf_get_saddr,
802 #if IS_ENABLED(CONFIG_IPV6)
803         .l3mdev_get_rt6_dst     = vrf_get_rt6_dst,
804 #endif
805 };
806
807 static void vrf_get_drvinfo(struct net_device *dev,
808                             struct ethtool_drvinfo *info)
809 {
810         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
811         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
812 }
813
814 static const struct ethtool_ops vrf_ethtool_ops = {
815         .get_drvinfo    = vrf_get_drvinfo,
816 };
817
818 static void vrf_setup(struct net_device *dev)
819 {
820         ether_setup(dev);
821
822         /* Initialize the device structure. */
823         dev->netdev_ops = &vrf_netdev_ops;
824         dev->l3mdev_ops = &vrf_l3mdev_ops;
825         dev->ethtool_ops = &vrf_ethtool_ops;
826         dev->destructor = free_netdev;
827
828         /* Fill in device structure with ethernet-generic values. */
829         eth_hw_addr_random(dev);
830
831         /* don't acquire vrf device's netif_tx_lock when transmitting */
832         dev->features |= NETIF_F_LLTX;
833
834         /* don't allow vrf devices to change network namespaces. */
835         dev->features |= NETIF_F_NETNS_LOCAL;
836 }
837
838 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
839 {
840         if (tb[IFLA_ADDRESS]) {
841                 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
842                         return -EINVAL;
843                 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
844                         return -EADDRNOTAVAIL;
845         }
846         return 0;
847 }
848
849 static void vrf_dellink(struct net_device *dev, struct list_head *head)
850 {
851         unregister_netdevice_queue(dev, head);
852 }
853
854 static int vrf_newlink(struct net *src_net, struct net_device *dev,
855                        struct nlattr *tb[], struct nlattr *data[])
856 {
857         struct net_vrf *vrf = netdev_priv(dev);
858
859         if (!data || !data[IFLA_VRF_TABLE])
860                 return -EINVAL;
861
862         vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
863
864         dev->priv_flags |= IFF_L3MDEV_MASTER;
865
866         return register_netdevice(dev);
867 }
868
869 static size_t vrf_nl_getsize(const struct net_device *dev)
870 {
871         return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
872 }
873
874 static int vrf_fillinfo(struct sk_buff *skb,
875                         const struct net_device *dev)
876 {
877         struct net_vrf *vrf = netdev_priv(dev);
878
879         return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
880 }
881
882 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
883                                  const struct net_device *slave_dev)
884 {
885         return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
886 }
887
888 static int vrf_fill_slave_info(struct sk_buff *skb,
889                                const struct net_device *vrf_dev,
890                                const struct net_device *slave_dev)
891 {
892         struct net_vrf *vrf = netdev_priv(vrf_dev);
893
894         if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
895                 return -EMSGSIZE;
896
897         return 0;
898 }
899
900 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
901         [IFLA_VRF_TABLE] = { .type = NLA_U32 },
902 };
903
904 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
905         .kind           = DRV_NAME,
906         .priv_size      = sizeof(struct net_vrf),
907
908         .get_size       = vrf_nl_getsize,
909         .policy         = vrf_nl_policy,
910         .validate       = vrf_validate,
911         .fill_info      = vrf_fillinfo,
912
913         .get_slave_size  = vrf_get_slave_size,
914         .fill_slave_info = vrf_fill_slave_info,
915
916         .newlink        = vrf_newlink,
917         .dellink        = vrf_dellink,
918         .setup          = vrf_setup,
919         .maxtype        = IFLA_VRF_MAX,
920 };
921
922 static int vrf_device_event(struct notifier_block *unused,
923                             unsigned long event, void *ptr)
924 {
925         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
926
927         /* only care about unregister events to drop slave references */
928         if (event == NETDEV_UNREGISTER) {
929                 struct net_device *vrf_dev;
930
931                 if (!netif_is_l3_slave(dev))
932                         goto out;
933
934                 vrf_dev = netdev_master_upper_dev_get(dev);
935                 vrf_del_slave(vrf_dev, dev);
936         }
937 out:
938         return NOTIFY_DONE;
939 }
940
941 static struct notifier_block vrf_notifier_block __read_mostly = {
942         .notifier_call = vrf_device_event,
943 };
944
945 static int __init vrf_init_module(void)
946 {
947         int rc;
948
949         vrf_dst_ops.kmem_cachep =
950                 kmem_cache_create("vrf_ip_dst_cache",
951                                   sizeof(struct rtable), 0,
952                                   SLAB_HWCACHE_ALIGN,
953                                   NULL);
954
955         if (!vrf_dst_ops.kmem_cachep)
956                 return -ENOMEM;
957
958         rc = init_dst_ops6_kmem_cachep();
959         if (rc != 0)
960                 goto error2;
961
962         register_netdevice_notifier(&vrf_notifier_block);
963
964         rc = rtnl_link_register(&vrf_link_ops);
965         if (rc < 0)
966                 goto error;
967
968         return 0;
969
970 error:
971         unregister_netdevice_notifier(&vrf_notifier_block);
972         free_dst_ops6_kmem_cachep();
973 error2:
974         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
975         return rc;
976 }
977
978 static void __exit vrf_cleanup_module(void)
979 {
980         rtnl_link_unregister(&vrf_link_ops);
981         unregister_netdevice_notifier(&vrf_notifier_block);
982         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
983         free_dst_ops6_kmem_cachep();
984 }
985
986 module_init(vrf_init_module);
987 module_exit(vrf_cleanup_module);
988 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
989 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
990 MODULE_LICENSE("GPL");
991 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
992 MODULE_VERSION(DRV_VERSION);