Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-next-2.6
[cascardo/linux.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18
19 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
20 {
21         if (fbin == AR5416_BCHAN_UNUSED)
22                 return fbin;
23
24         return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
25 }
26
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28                                u32 shift, u32 val)
29 {
30         u32 regVal;
31
32         regVal = REG_READ(ah, reg) & ~mask;
33         regVal |= (val << shift) & mask;
34
35         REG_WRITE(ah, reg, regVal);
36
37         if (ah->config.analog_shiftreg)
38                 udelay(100);
39 }
40
41 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
42                              int16_t targetLeft, int16_t targetRight)
43 {
44         int16_t rv;
45
46         if (srcRight == srcLeft) {
47                 rv = targetLeft;
48         } else {
49                 rv = (int16_t) (((target - srcLeft) * targetRight +
50                                  (srcRight - target) * targetLeft) /
51                                 (srcRight - srcLeft));
52         }
53         return rv;
54 }
55
56 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
57                                     u16 *indexL, u16 *indexR)
58 {
59         u16 i;
60
61         if (target <= pList[0]) {
62                 *indexL = *indexR = 0;
63                 return true;
64         }
65         if (target >= pList[listSize - 1]) {
66                 *indexL = *indexR = (u16) (listSize - 1);
67                 return true;
68         }
69
70         for (i = 0; i < listSize - 1; i++) {
71                 if (pList[i] == target) {
72                         *indexL = *indexR = i;
73                         return true;
74                 }
75                 if (target < pList[i + 1]) {
76                         *indexL = i;
77                         *indexR = (u16) (i + 1);
78                         return false;
79                 }
80         }
81         return false;
82 }
83
84 bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
85 {
86         return common->bus_ops->eeprom_read(common, off, data);
87 }
88
89 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
90                              u8 *pVpdList, u16 numIntercepts,
91                              u8 *pRetVpdList)
92 {
93         u16 i, k;
94         u8 currPwr = pwrMin;
95         u16 idxL = 0, idxR = 0;
96
97         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
98                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
99                                                numIntercepts, &(idxL),
100                                                &(idxR));
101                 if (idxR < 1)
102                         idxR = 1;
103                 if (idxL == numIntercepts - 1)
104                         idxL = (u16) (numIntercepts - 2);
105                 if (pPwrList[idxL] == pPwrList[idxR])
106                         k = pVpdList[idxL];
107                 else
108                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
109                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
110                                   (pPwrList[idxR] - pPwrList[idxL]));
111                 pRetVpdList[i] = (u8) k;
112                 currPwr += 2;
113         }
114 }
115
116 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
117                                        struct ath9k_channel *chan,
118                                        struct cal_target_power_leg *powInfo,
119                                        u16 numChannels,
120                                        struct cal_target_power_leg *pNewPower,
121                                        u16 numRates, bool isExtTarget)
122 {
123         struct chan_centers centers;
124         u16 clo, chi;
125         int i;
126         int matchIndex = -1, lowIndex = -1;
127         u16 freq;
128
129         ath9k_hw_get_channel_centers(ah, chan, &centers);
130         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
131
132         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
133                                        IS_CHAN_2GHZ(chan))) {
134                 matchIndex = 0;
135         } else {
136                 for (i = 0; (i < numChannels) &&
137                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
138                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
139                                                        IS_CHAN_2GHZ(chan))) {
140                                 matchIndex = i;
141                                 break;
142                         } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
143                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
144                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
145                                                 IS_CHAN_2GHZ(chan))) {
146                                 lowIndex = i - 1;
147                                 break;
148                         }
149                 }
150                 if ((matchIndex == -1) && (lowIndex == -1))
151                         matchIndex = i - 1;
152         }
153
154         if (matchIndex != -1) {
155                 *pNewPower = powInfo[matchIndex];
156         } else {
157                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
158                                          IS_CHAN_2GHZ(chan));
159                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
160                                          IS_CHAN_2GHZ(chan));
161
162                 for (i = 0; i < numRates; i++) {
163                         pNewPower->tPow2x[i] =
164                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
165                                                 powInfo[lowIndex].tPow2x[i],
166                                                 powInfo[lowIndex + 1].tPow2x[i]);
167                 }
168         }
169 }
170
171 void ath9k_hw_get_target_powers(struct ath_hw *ah,
172                                 struct ath9k_channel *chan,
173                                 struct cal_target_power_ht *powInfo,
174                                 u16 numChannels,
175                                 struct cal_target_power_ht *pNewPower,
176                                 u16 numRates, bool isHt40Target)
177 {
178         struct chan_centers centers;
179         u16 clo, chi;
180         int i;
181         int matchIndex = -1, lowIndex = -1;
182         u16 freq;
183
184         ath9k_hw_get_channel_centers(ah, chan, &centers);
185         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
186
187         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
188                 matchIndex = 0;
189         } else {
190                 for (i = 0; (i < numChannels) &&
191                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
192                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
193                                                        IS_CHAN_2GHZ(chan))) {
194                                 matchIndex = i;
195                                 break;
196                         } else
197                                 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
198                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
199                                     freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
200                                                 IS_CHAN_2GHZ(chan))) {
201                                         lowIndex = i - 1;
202                                         break;
203                                 }
204                 }
205                 if ((matchIndex == -1) && (lowIndex == -1))
206                         matchIndex = i - 1;
207         }
208
209         if (matchIndex != -1) {
210                 *pNewPower = powInfo[matchIndex];
211         } else {
212                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
213                                          IS_CHAN_2GHZ(chan));
214                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
215                                          IS_CHAN_2GHZ(chan));
216
217                 for (i = 0; i < numRates; i++) {
218                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
219                                                 clo, chi,
220                                                 powInfo[lowIndex].tPow2x[i],
221                                                 powInfo[lowIndex + 1].tPow2x[i]);
222                 }
223         }
224 }
225
226 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
227                                 bool is2GHz, int num_band_edges)
228 {
229         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
230         int i;
231
232         for (i = 0; (i < num_band_edges) &&
233                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
234                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
235                         twiceMaxEdgePower = pRdEdgesPower[i].tPower;
236                         break;
237                 } else if ((i > 0) &&
238                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
239                                                       is2GHz))) {
240                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
241                                                is2GHz) < freq &&
242                             pRdEdgesPower[i - 1].flag) {
243                                 twiceMaxEdgePower =
244                                         pRdEdgesPower[i - 1].tPower;
245                         }
246                         break;
247                 }
248         }
249
250         return twiceMaxEdgePower;
251 }
252
253 int ath9k_hw_eeprom_init(struct ath_hw *ah)
254 {
255         int status;
256
257         if (AR_SREV_9300_20_OR_LATER(ah))
258                 ah->eep_ops = &eep_ar9300_ops;
259         else if (AR_SREV_9287(ah)) {
260                 ah->eep_ops = &eep_ar9287_ops;
261         } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
262                 ah->eep_ops = &eep_4k_ops;
263         } else {
264                 ah->eep_ops = &eep_def_ops;
265         }
266
267         if (!ah->eep_ops->fill_eeprom(ah))
268                 return -EIO;
269
270         status = ah->eep_ops->check_eeprom(ah);
271
272         return status;
273 }