Merge commit 'v3.17' into next
[cascardo/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008         DECLARE_SSID_BUF(ssid);
2009
2010         /*
2011          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012          *      an actual MAC of the AP. Seems like FW sets this
2013          *      address too late. Read it later and expose through
2014          *      /proc or schedule a later task to query and update
2015          */
2016
2017         essid_len = IW_ESSID_MAX_SIZE;
2018         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019                                   essid, &essid_len);
2020         if (ret) {
2021                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022                                __LINE__);
2023                 return;
2024         }
2025
2026         len = sizeof(u32);
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028         if (ret) {
2029                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030                                __LINE__);
2031                 return;
2032         }
2033
2034         len = sizeof(u32);
2035         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036         if (ret) {
2037                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038                                __LINE__);
2039                 return;
2040         }
2041         len = ETH_ALEN;
2042         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043                                   &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 schedule_delayed_work(&priv->security_work, 0);
2166
2167         schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void ipw2100_scan_event(struct work_struct *work)
2185 {
2186         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2187                                                  scan_event.work);
2188         union iwreq_data wrqu;
2189
2190         wrqu.data.length = 0;
2191         wrqu.data.flags = 0;
2192         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2193 }
2194
2195 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2196 {
2197         IPW_DEBUG_SCAN("scan complete\n");
2198         /* Age the scan results... */
2199         priv->ieee->scans++;
2200         priv->status &= ~STATUS_SCANNING;
2201
2202         /* Only userspace-requested scan completion events go out immediately */
2203         if (!priv->user_requested_scan) {
2204                 schedule_delayed_work(&priv->scan_event,
2205                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2206         } else {
2207                 priv->user_requested_scan = 0;
2208                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2209         }
2210 }
2211
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 #define IPW2100_HANDLER(v, f) { v, f, # v }
2214 struct ipw2100_status_indicator {
2215         int status;
2216         void (*cb) (struct ipw2100_priv * priv, u32 status);
2217         char *name;
2218 };
2219 #else
2220 #define IPW2100_HANDLER(v, f) { v, f }
2221 struct ipw2100_status_indicator {
2222         int status;
2223         void (*cb) (struct ipw2100_priv * priv, u32 status);
2224 };
2225 #endif                          /* CONFIG_IPW2100_DEBUG */
2226
2227 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2228 {
2229         IPW_DEBUG_SCAN("Scanning...\n");
2230         priv->status |= STATUS_SCANNING;
2231 }
2232
2233 static const struct ipw2100_status_indicator status_handlers[] = {
2234         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2235         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2236         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2237         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2238         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2240         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2241         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2242         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2243         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2244         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2245         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2246         IPW2100_HANDLER(-1, NULL)
2247 };
2248
2249 static void isr_status_change(struct ipw2100_priv *priv, int status)
2250 {
2251         int i;
2252
2253         if (status == IPW_STATE_SCANNING &&
2254             priv->status & STATUS_ASSOCIATED &&
2255             !(priv->status & STATUS_SCANNING)) {
2256                 IPW_DEBUG_INFO("Scan detected while associated, with "
2257                                "no scan request.  Restarting firmware.\n");
2258
2259                 /* Wake up any sleeping jobs */
2260                 schedule_reset(priv);
2261         }
2262
2263         for (i = 0; status_handlers[i].status != -1; i++) {
2264                 if (status == status_handlers[i].status) {
2265                         IPW_DEBUG_NOTIF("Status change: %s\n",
2266                                         status_handlers[i].name);
2267                         if (status_handlers[i].cb)
2268                                 status_handlers[i].cb(priv, status);
2269                         priv->wstats.status = status;
2270                         return;
2271                 }
2272         }
2273
2274         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2275 }
2276
2277 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2278                                     struct ipw2100_cmd_header *cmd)
2279 {
2280 #ifdef CONFIG_IPW2100_DEBUG
2281         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2282                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2283                              command_types[cmd->host_command_reg],
2284                              cmd->host_command_reg);
2285         }
2286 #endif
2287         if (cmd->host_command_reg == HOST_COMPLETE)
2288                 priv->status |= STATUS_ENABLED;
2289
2290         if (cmd->host_command_reg == CARD_DISABLE)
2291                 priv->status &= ~STATUS_ENABLED;
2292
2293         priv->status &= ~STATUS_CMD_ACTIVE;
2294
2295         wake_up_interruptible(&priv->wait_command_queue);
2296 }
2297
2298 #ifdef CONFIG_IPW2100_DEBUG
2299 static const char *frame_types[] = {
2300         "COMMAND_STATUS_VAL",
2301         "STATUS_CHANGE_VAL",
2302         "P80211_DATA_VAL",
2303         "P8023_DATA_VAL",
2304         "HOST_NOTIFICATION_VAL"
2305 };
2306 #endif
2307
2308 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2309                                     struct ipw2100_rx_packet *packet)
2310 {
2311         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2312         if (!packet->skb)
2313                 return -ENOMEM;
2314
2315         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2316         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2317                                           sizeof(struct ipw2100_rx),
2318                                           PCI_DMA_FROMDEVICE);
2319         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2320          *       dma_addr */
2321
2322         return 0;
2323 }
2324
2325 #define SEARCH_ERROR   0xffffffff
2326 #define SEARCH_FAIL    0xfffffffe
2327 #define SEARCH_SUCCESS 0xfffffff0
2328 #define SEARCH_DISCARD 0
2329 #define SEARCH_SNAPSHOT 1
2330
2331 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2332 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2333 {
2334         int i;
2335         if (!priv->snapshot[0])
2336                 return;
2337         for (i = 0; i < 0x30; i++)
2338                 kfree(priv->snapshot[i]);
2339         priv->snapshot[0] = NULL;
2340 }
2341
2342 #ifdef IPW2100_DEBUG_C3
2343 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2344 {
2345         int i;
2346         if (priv->snapshot[0])
2347                 return 1;
2348         for (i = 0; i < 0x30; i++) {
2349                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2350                 if (!priv->snapshot[i]) {
2351                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2352                                        "buffer %d\n", priv->net_dev->name, i);
2353                         while (i > 0)
2354                                 kfree(priv->snapshot[--i]);
2355                         priv->snapshot[0] = NULL;
2356                         return 0;
2357                 }
2358         }
2359
2360         return 1;
2361 }
2362
2363 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2364                                     size_t len, int mode)
2365 {
2366         u32 i, j;
2367         u32 tmp;
2368         u8 *s, *d;
2369         u32 ret;
2370
2371         s = in_buf;
2372         if (mode == SEARCH_SNAPSHOT) {
2373                 if (!ipw2100_snapshot_alloc(priv))
2374                         mode = SEARCH_DISCARD;
2375         }
2376
2377         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2378                 read_nic_dword(priv->net_dev, i, &tmp);
2379                 if (mode == SEARCH_SNAPSHOT)
2380                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2381                 if (ret == SEARCH_FAIL) {
2382                         d = (u8 *) & tmp;
2383                         for (j = 0; j < 4; j++) {
2384                                 if (*s != *d) {
2385                                         s = in_buf;
2386                                         continue;
2387                                 }
2388
2389                                 s++;
2390                                 d++;
2391
2392                                 if ((s - in_buf) == len)
2393                                         ret = (i + j) - len + 1;
2394                         }
2395                 } else if (mode == SEARCH_DISCARD)
2396                         return ret;
2397         }
2398
2399         return ret;
2400 }
2401 #endif
2402
2403 /*
2404  *
2405  * 0) Disconnect the SKB from the firmware (just unmap)
2406  * 1) Pack the ETH header into the SKB
2407  * 2) Pass the SKB to the network stack
2408  *
2409  * When packet is provided by the firmware, it contains the following:
2410  *
2411  * .  libipw_hdr
2412  * .  libipw_snap_hdr
2413  *
2414  * The size of the constructed ethernet
2415  *
2416  */
2417 #ifdef IPW2100_RX_DEBUG
2418 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2419 #endif
2420
2421 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2422 {
2423 #ifdef IPW2100_DEBUG_C3
2424         struct ipw2100_status *status = &priv->status_queue.drv[i];
2425         u32 match, reg;
2426         int j;
2427 #endif
2428
2429         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2430                        i * sizeof(struct ipw2100_status));
2431
2432 #ifdef IPW2100_DEBUG_C3
2433         /* Halt the firmware so we can get a good image */
2434         write_register(priv->net_dev, IPW_REG_RESET_REG,
2435                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2436         j = 5;
2437         do {
2438                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2439                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2440
2441                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2442                         break;
2443         } while (j--);
2444
2445         match = ipw2100_match_buf(priv, (u8 *) status,
2446                                   sizeof(struct ipw2100_status),
2447                                   SEARCH_SNAPSHOT);
2448         if (match < SEARCH_SUCCESS)
2449                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2450                                "offset 0x%06X, length %d:\n",
2451                                priv->net_dev->name, match,
2452                                sizeof(struct ipw2100_status));
2453         else
2454                 IPW_DEBUG_INFO("%s: No DMA status match in "
2455                                "Firmware.\n", priv->net_dev->name);
2456
2457         printk_buf((u8 *) priv->status_queue.drv,
2458                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2459 #endif
2460
2461         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2462         priv->net_dev->stats.rx_errors++;
2463         schedule_reset(priv);
2464 }
2465
2466 static void isr_rx(struct ipw2100_priv *priv, int i,
2467                           struct libipw_rx_stats *stats)
2468 {
2469         struct net_device *dev = priv->net_dev;
2470         struct ipw2100_status *status = &priv->status_queue.drv[i];
2471         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2472
2473         IPW_DEBUG_RX("Handler...\n");
2474
2475         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2476                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477                                "  Dropping.\n",
2478                                dev->name,
2479                                status->frame_size, skb_tailroom(packet->skb));
2480                 dev->stats.rx_errors++;
2481                 return;
2482         }
2483
2484         if (unlikely(!netif_running(dev))) {
2485                 dev->stats.rx_errors++;
2486                 priv->wstats.discard.misc++;
2487                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2488                 return;
2489         }
2490
2491         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2492                      !(priv->status & STATUS_ASSOCIATED))) {
2493                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2494                 priv->wstats.discard.misc++;
2495                 return;
2496         }
2497
2498         pci_unmap_single(priv->pci_dev,
2499                          packet->dma_addr,
2500                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2501
2502         skb_put(packet->skb, status->frame_size);
2503
2504 #ifdef IPW2100_RX_DEBUG
2505         /* Make a copy of the frame so we can dump it to the logs if
2506          * libipw_rx fails */
2507         skb_copy_from_linear_data(packet->skb, packet_data,
2508                                   min_t(u32, status->frame_size,
2509                                              IPW_RX_NIC_BUFFER_LENGTH));
2510 #endif
2511
2512         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2513 #ifdef IPW2100_RX_DEBUG
2514                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2515                                dev->name);
2516                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2517 #endif
2518                 dev->stats.rx_errors++;
2519
2520                 /* libipw_rx failed, so it didn't free the SKB */
2521                 dev_kfree_skb_any(packet->skb);
2522                 packet->skb = NULL;
2523         }
2524
2525         /* We need to allocate a new SKB and attach it to the RDB. */
2526         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2527                 printk(KERN_WARNING DRV_NAME ": "
2528                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2529                        "adapter.\n", dev->name);
2530                 /* TODO: schedule adapter shutdown */
2531                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2532         }
2533
2534         /* Update the RDB entry */
2535         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2536 }
2537
2538 #ifdef CONFIG_IPW2100_MONITOR
2539
2540 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2541                    struct libipw_rx_stats *stats)
2542 {
2543         struct net_device *dev = priv->net_dev;
2544         struct ipw2100_status *status = &priv->status_queue.drv[i];
2545         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2546
2547         /* Magic struct that slots into the radiotap header -- no reason
2548          * to build this manually element by element, we can write it much
2549          * more efficiently than we can parse it. ORDER MATTERS HERE */
2550         struct ipw_rt_hdr {
2551                 struct ieee80211_radiotap_header rt_hdr;
2552                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2553         } *ipw_rt;
2554
2555         IPW_DEBUG_RX("Handler...\n");
2556
2557         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2558                                 sizeof(struct ipw_rt_hdr))) {
2559                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2560                                "  Dropping.\n",
2561                                dev->name,
2562                                status->frame_size,
2563                                skb_tailroom(packet->skb));
2564                 dev->stats.rx_errors++;
2565                 return;
2566         }
2567
2568         if (unlikely(!netif_running(dev))) {
2569                 dev->stats.rx_errors++;
2570                 priv->wstats.discard.misc++;
2571                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2572                 return;
2573         }
2574
2575         if (unlikely(priv->config & CFG_CRC_CHECK &&
2576                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2577                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2578                 dev->stats.rx_errors++;
2579                 return;
2580         }
2581
2582         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2583                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2584         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2585                 packet->skb->data, status->frame_size);
2586
2587         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2588
2589         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2590         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2591         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2592
2593         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2594
2595         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2596
2597         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2598
2599         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2600                 dev->stats.rx_errors++;
2601
2602                 /* libipw_rx failed, so it didn't free the SKB */
2603                 dev_kfree_skb_any(packet->skb);
2604                 packet->skb = NULL;
2605         }
2606
2607         /* We need to allocate a new SKB and attach it to the RDB. */
2608         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2609                 IPW_DEBUG_WARNING(
2610                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2611                         "adapter.\n", dev->name);
2612                 /* TODO: schedule adapter shutdown */
2613                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2614         }
2615
2616         /* Update the RDB entry */
2617         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2618 }
2619
2620 #endif
2621
2622 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2623 {
2624         struct ipw2100_status *status = &priv->status_queue.drv[i];
2625         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2626         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2627
2628         switch (frame_type) {
2629         case COMMAND_STATUS_VAL:
2630                 return (status->frame_size != sizeof(u->rx_data.command));
2631         case STATUS_CHANGE_VAL:
2632                 return (status->frame_size != sizeof(u->rx_data.status));
2633         case HOST_NOTIFICATION_VAL:
2634                 return (status->frame_size < sizeof(u->rx_data.notification));
2635         case P80211_DATA_VAL:
2636         case P8023_DATA_VAL:
2637 #ifdef CONFIG_IPW2100_MONITOR
2638                 return 0;
2639 #else
2640                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2641                 case IEEE80211_FTYPE_MGMT:
2642                 case IEEE80211_FTYPE_CTL:
2643                         return 0;
2644                 case IEEE80211_FTYPE_DATA:
2645                         return (status->frame_size >
2646                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2647                 }
2648 #endif
2649         }
2650
2651         return 1;
2652 }
2653
2654 /*
2655  * ipw2100 interrupts are disabled at this point, and the ISR
2656  * is the only code that calls this method.  So, we do not need
2657  * to play with any locks.
2658  *
2659  * RX Queue works as follows:
2660  *
2661  * Read index - firmware places packet in entry identified by the
2662  *              Read index and advances Read index.  In this manner,
2663  *              Read index will always point to the next packet to
2664  *              be filled--but not yet valid.
2665  *
2666  * Write index - driver fills this entry with an unused RBD entry.
2667  *               This entry has not filled by the firmware yet.
2668  *
2669  * In between the W and R indexes are the RBDs that have been received
2670  * but not yet processed.
2671  *
2672  * The process of handling packets will start at WRITE + 1 and advance
2673  * until it reaches the READ index.
2674  *
2675  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2676  *
2677  */
2678 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2679 {
2680         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2681         struct ipw2100_status_queue *sq = &priv->status_queue;
2682         struct ipw2100_rx_packet *packet;
2683         u16 frame_type;
2684         u32 r, w, i, s;
2685         struct ipw2100_rx *u;
2686         struct libipw_rx_stats stats = {
2687                 .mac_time = jiffies,
2688         };
2689
2690         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2691         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2692
2693         if (r >= rxq->entries) {
2694                 IPW_DEBUG_RX("exit - bad read index\n");
2695                 return;
2696         }
2697
2698         i = (rxq->next + 1) % rxq->entries;
2699         s = i;
2700         while (i != r) {
2701                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2702                    r, rxq->next, i); */
2703
2704                 packet = &priv->rx_buffers[i];
2705
2706                 /* Sync the DMA for the RX buffer so CPU is sure to get
2707                  * the correct values */
2708                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2709                                             sizeof(struct ipw2100_rx),
2710                                             PCI_DMA_FROMDEVICE);
2711
2712                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2713                         ipw2100_corruption_detected(priv, i);
2714                         goto increment;
2715                 }
2716
2717                 u = packet->rxp;
2718                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2719                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2720                 stats.len = sq->drv[i].frame_size;
2721
2722                 stats.mask = 0;
2723                 if (stats.rssi != 0)
2724                         stats.mask |= LIBIPW_STATMASK_RSSI;
2725                 stats.freq = LIBIPW_24GHZ_BAND;
2726
2727                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2728                              priv->net_dev->name, frame_types[frame_type],
2729                              stats.len);
2730
2731                 switch (frame_type) {
2732                 case COMMAND_STATUS_VAL:
2733                         /* Reset Rx watchdog */
2734                         isr_rx_complete_command(priv, &u->rx_data.command);
2735                         break;
2736
2737                 case STATUS_CHANGE_VAL:
2738                         isr_status_change(priv, u->rx_data.status);
2739                         break;
2740
2741                 case P80211_DATA_VAL:
2742                 case P8023_DATA_VAL:
2743 #ifdef CONFIG_IPW2100_MONITOR
2744                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2745                                 isr_rx_monitor(priv, i, &stats);
2746                                 break;
2747                         }
2748 #endif
2749                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2750                                 break;
2751                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2752                         case IEEE80211_FTYPE_MGMT:
2753                                 libipw_rx_mgt(priv->ieee,
2754                                                  &u->rx_data.header, &stats);
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_CTL:
2758                                 break;
2759
2760                         case IEEE80211_FTYPE_DATA:
2761                                 isr_rx(priv, i, &stats);
2762                                 break;
2763
2764                         }
2765                         break;
2766                 }
2767
2768               increment:
2769                 /* clear status field associated with this RBD */
2770                 rxq->drv[i].status.info.field = 0;
2771
2772                 i = (i + 1) % rxq->entries;
2773         }
2774
2775         if (i != s) {
2776                 /* backtrack one entry, wrapping to end if at 0 */
2777                 rxq->next = (i ? i : rxq->entries) - 1;
2778
2779                 write_register(priv->net_dev,
2780                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2781         }
2782 }
2783
2784 /*
2785  * __ipw2100_tx_process
2786  *
2787  * This routine will determine whether the next packet on
2788  * the fw_pend_list has been processed by the firmware yet.
2789  *
2790  * If not, then it does nothing and returns.
2791  *
2792  * If so, then it removes the item from the fw_pend_list, frees
2793  * any associated storage, and places the item back on the
2794  * free list of its source (either msg_free_list or tx_free_list)
2795  *
2796  * TX Queue works as follows:
2797  *
2798  * Read index - points to the next TBD that the firmware will
2799  *              process.  The firmware will read the data, and once
2800  *              done processing, it will advance the Read index.
2801  *
2802  * Write index - driver fills this entry with an constructed TBD
2803  *               entry.  The Write index is not advanced until the
2804  *               packet has been configured.
2805  *
2806  * In between the W and R indexes are the TBDs that have NOT been
2807  * processed.  Lagging behind the R index are packets that have
2808  * been processed but have not been freed by the driver.
2809  *
2810  * In order to free old storage, an internal index will be maintained
2811  * that points to the next packet to be freed.  When all used
2812  * packets have been freed, the oldest index will be the same as the
2813  * firmware's read index.
2814  *
2815  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2816  *
2817  * Because the TBD structure can not contain arbitrary data, the
2818  * driver must keep an internal queue of cached allocations such that
2819  * it can put that data back into the tx_free_list and msg_free_list
2820  * for use by future command and data packets.
2821  *
2822  */
2823 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2824 {
2825         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2826         struct ipw2100_bd *tbd;
2827         struct list_head *element;
2828         struct ipw2100_tx_packet *packet;
2829         int descriptors_used;
2830         int e, i;
2831         u32 r, w, frag_num = 0;
2832
2833         if (list_empty(&priv->fw_pend_list))
2834                 return 0;
2835
2836         element = priv->fw_pend_list.next;
2837
2838         packet = list_entry(element, struct ipw2100_tx_packet, list);
2839         tbd = &txq->drv[packet->index];
2840
2841         /* Determine how many TBD entries must be finished... */
2842         switch (packet->type) {
2843         case COMMAND:
2844                 /* COMMAND uses only one slot; don't advance */
2845                 descriptors_used = 1;
2846                 e = txq->oldest;
2847                 break;
2848
2849         case DATA:
2850                 /* DATA uses two slots; advance and loop position. */
2851                 descriptors_used = tbd->num_fragments;
2852                 frag_num = tbd->num_fragments - 1;
2853                 e = txq->oldest + frag_num;
2854                 e %= txq->entries;
2855                 break;
2856
2857         default:
2858                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2859                        priv->net_dev->name);
2860                 return 0;
2861         }
2862
2863         /* if the last TBD is not done by NIC yet, then packet is
2864          * not ready to be released.
2865          *
2866          */
2867         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2868                       &r);
2869         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2870                       &w);
2871         if (w != txq->next)
2872                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2873                        priv->net_dev->name);
2874
2875         /*
2876          * txq->next is the index of the last packet written txq->oldest is
2877          * the index of the r is the index of the next packet to be read by
2878          * firmware
2879          */
2880
2881         /*
2882          * Quick graphic to help you visualize the following
2883          * if / else statement
2884          *
2885          * ===>|                     s---->|===============
2886          *                               e>|
2887          * | a | b | c | d | e | f | g | h | i | j | k | l
2888          *       r---->|
2889          *               w
2890          *
2891          * w - updated by driver
2892          * r - updated by firmware
2893          * s - start of oldest BD entry (txq->oldest)
2894          * e - end of oldest BD entry
2895          *
2896          */
2897         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2898                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2899                 return 0;
2900         }
2901
2902         list_del(element);
2903         DEC_STAT(&priv->fw_pend_stat);
2904
2905 #ifdef CONFIG_IPW2100_DEBUG
2906         {
2907                 i = txq->oldest;
2908                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2909                              &txq->drv[i],
2910                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2911                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2912
2913                 if (packet->type == DATA) {
2914                         i = (i + 1) % txq->entries;
2915
2916                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2917                                      &txq->drv[i],
2918                                      (u32) (txq->nic + i *
2919                                             sizeof(struct ipw2100_bd)),
2920                                      (u32) txq->drv[i].host_addr,
2921                                      txq->drv[i].buf_length);
2922                 }
2923         }
2924 #endif
2925
2926         switch (packet->type) {
2927         case DATA:
2928                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2929                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2930                                "Expecting DATA TBD but pulled "
2931                                "something else: ids %d=%d.\n",
2932                                priv->net_dev->name, txq->oldest, packet->index);
2933
2934                 /* DATA packet; we have to unmap and free the SKB */
2935                 for (i = 0; i < frag_num; i++) {
2936                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2937
2938                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2939                                      (packet->index + 1 + i) % txq->entries,
2940                                      tbd->host_addr, tbd->buf_length);
2941
2942                         pci_unmap_single(priv->pci_dev,
2943                                          tbd->host_addr,
2944                                          tbd->buf_length, PCI_DMA_TODEVICE);
2945                 }
2946
2947                 libipw_txb_free(packet->info.d_struct.txb);
2948                 packet->info.d_struct.txb = NULL;
2949
2950                 list_add_tail(element, &priv->tx_free_list);
2951                 INC_STAT(&priv->tx_free_stat);
2952
2953                 /* We have a free slot in the Tx queue, so wake up the
2954                  * transmit layer if it is stopped. */
2955                 if (priv->status & STATUS_ASSOCIATED)
2956                         netif_wake_queue(priv->net_dev);
2957
2958                 /* A packet was processed by the hardware, so update the
2959                  * watchdog */
2960                 priv->net_dev->trans_start = jiffies;
2961
2962                 break;
2963
2964         case COMMAND:
2965                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2966                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2967                                "Expecting COMMAND TBD but pulled "
2968                                "something else: ids %d=%d.\n",
2969                                priv->net_dev->name, txq->oldest, packet->index);
2970
2971 #ifdef CONFIG_IPW2100_DEBUG
2972                 if (packet->info.c_struct.cmd->host_command_reg <
2973                     ARRAY_SIZE(command_types))
2974                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2975                                      command_types[packet->info.c_struct.cmd->
2976                                                    host_command_reg],
2977                                      packet->info.c_struct.cmd->
2978                                      host_command_reg,
2979                                      packet->info.c_struct.cmd->cmd_status_reg);
2980 #endif
2981
2982                 list_add_tail(element, &priv->msg_free_list);
2983                 INC_STAT(&priv->msg_free_stat);
2984                 break;
2985         }
2986
2987         /* advance oldest used TBD pointer to start of next entry */
2988         txq->oldest = (e + 1) % txq->entries;
2989         /* increase available TBDs number */
2990         txq->available += descriptors_used;
2991         SET_STAT(&priv->txq_stat, txq->available);
2992
2993         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2994                      jiffies - packet->jiffy_start);
2995
2996         return (!list_empty(&priv->fw_pend_list));
2997 }
2998
2999 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3000 {
3001         int i = 0;
3002
3003         while (__ipw2100_tx_process(priv) && i < 200)
3004                 i++;
3005
3006         if (i == 200) {
3007                 printk(KERN_WARNING DRV_NAME ": "
3008                        "%s: Driver is running slow (%d iters).\n",
3009                        priv->net_dev->name, i);
3010         }
3011 }
3012
3013 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3014 {
3015         struct list_head *element;
3016         struct ipw2100_tx_packet *packet;
3017         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018         struct ipw2100_bd *tbd;
3019         int next = txq->next;
3020
3021         while (!list_empty(&priv->msg_pend_list)) {
3022                 /* if there isn't enough space in TBD queue, then
3023                  * don't stuff a new one in.
3024                  * NOTE: 3 are needed as a command will take one,
3025                  *       and there is a minimum of 2 that must be
3026                  *       maintained between the r and w indexes
3027                  */
3028                 if (txq->available <= 3) {
3029                         IPW_DEBUG_TX("no room in tx_queue\n");
3030                         break;
3031                 }
3032
3033                 element = priv->msg_pend_list.next;
3034                 list_del(element);
3035                 DEC_STAT(&priv->msg_pend_stat);
3036
3037                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3038
3039                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3040                              &txq->drv[txq->next],
3041                              (u32) (txq->nic + txq->next *
3042                                       sizeof(struct ipw2100_bd)));
3043
3044                 packet->index = txq->next;
3045
3046                 tbd = &txq->drv[txq->next];
3047
3048                 /* initialize TBD */
3049                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3050                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3051                 /* not marking number of fragments causes problems
3052                  * with f/w debug version */
3053                 tbd->num_fragments = 1;
3054                 tbd->status.info.field =
3055                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3056                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3057
3058                 /* update TBD queue counters */
3059                 txq->next++;
3060                 txq->next %= txq->entries;
3061                 txq->available--;
3062                 DEC_STAT(&priv->txq_stat);
3063
3064                 list_add_tail(element, &priv->fw_pend_list);
3065                 INC_STAT(&priv->fw_pend_stat);
3066         }
3067
3068         if (txq->next != next) {
3069                 /* kick off the DMA by notifying firmware the
3070                  * write index has moved; make sure TBD stores are sync'd */
3071                 wmb();
3072                 write_register(priv->net_dev,
3073                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3074                                txq->next);
3075         }
3076 }
3077
3078 /*
3079  * ipw2100_tx_send_data
3080  *
3081  */
3082 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3083 {
3084         struct list_head *element;
3085         struct ipw2100_tx_packet *packet;
3086         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3087         struct ipw2100_bd *tbd;
3088         int next = txq->next;
3089         int i = 0;
3090         struct ipw2100_data_header *ipw_hdr;
3091         struct libipw_hdr_3addr *hdr;
3092
3093         while (!list_empty(&priv->tx_pend_list)) {
3094                 /* if there isn't enough space in TBD queue, then
3095                  * don't stuff a new one in.
3096                  * NOTE: 4 are needed as a data will take two,
3097                  *       and there is a minimum of 2 that must be
3098                  *       maintained between the r and w indexes
3099                  */
3100                 element = priv->tx_pend_list.next;
3101                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3102
3103                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3104                              IPW_MAX_BDS)) {
3105                         /* TODO: Support merging buffers if more than
3106                          * IPW_MAX_BDS are used */
3107                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3108                                        "Increase fragmentation level.\n",
3109                                        priv->net_dev->name);
3110                 }
3111
3112                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3113                         IPW_DEBUG_TX("no room in tx_queue\n");
3114                         break;
3115                 }
3116
3117                 list_del(element);
3118                 DEC_STAT(&priv->tx_pend_stat);
3119
3120                 tbd = &txq->drv[txq->next];
3121
3122                 packet->index = txq->next;
3123
3124                 ipw_hdr = packet->info.d_struct.data;
3125                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3126                     fragments[0]->data;
3127
3128                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3129                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3130                            Addr3 = DA */
3131                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3133                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3134                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3135                            Addr3 = BSSID */
3136                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3137                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3138                 }
3139
3140                 ipw_hdr->host_command_reg = SEND;
3141                 ipw_hdr->host_command_reg1 = 0;
3142
3143                 /* For now we only support host based encryption */
3144                 ipw_hdr->needs_encryption = 0;
3145                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3146                 if (packet->info.d_struct.txb->nr_frags > 1)
3147                         ipw_hdr->fragment_size =
3148                             packet->info.d_struct.txb->frag_size -
3149                             LIBIPW_3ADDR_LEN;
3150                 else
3151                         ipw_hdr->fragment_size = 0;
3152
3153                 tbd->host_addr = packet->info.d_struct.data_phys;
3154                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3155                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3156                 tbd->status.info.field =
3157                     IPW_BD_STATUS_TX_FRAME_802_3 |
3158                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3159                 txq->next++;
3160                 txq->next %= txq->entries;
3161
3162                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3163                              packet->index, tbd->host_addr, tbd->buf_length);
3164 #ifdef CONFIG_IPW2100_DEBUG
3165                 if (packet->info.d_struct.txb->nr_frags > 1)
3166                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3167                                        packet->info.d_struct.txb->nr_frags);
3168 #endif
3169
3170                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3171                         tbd = &txq->drv[txq->next];
3172                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3173                                 tbd->status.info.field =
3174                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3175                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3176                         else
3177                                 tbd->status.info.field =
3178                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3179                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3180
3181                         tbd->buf_length = packet->info.d_struct.txb->
3182                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3183
3184                         tbd->host_addr = pci_map_single(priv->pci_dev,
3185                                                         packet->info.d_struct.
3186                                                         txb->fragments[i]->
3187                                                         data +
3188                                                         LIBIPW_3ADDR_LEN,
3189                                                         tbd->buf_length,
3190                                                         PCI_DMA_TODEVICE);
3191
3192                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3193                                      txq->next, tbd->host_addr,
3194                                      tbd->buf_length);
3195
3196                         pci_dma_sync_single_for_device(priv->pci_dev,
3197                                                        tbd->host_addr,
3198                                                        tbd->buf_length,
3199                                                        PCI_DMA_TODEVICE);
3200
3201                         txq->next++;
3202                         txq->next %= txq->entries;
3203                 }
3204
3205                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3206                 SET_STAT(&priv->txq_stat, txq->available);
3207
3208                 list_add_tail(element, &priv->fw_pend_list);
3209                 INC_STAT(&priv->fw_pend_stat);
3210         }
3211
3212         if (txq->next != next) {
3213                 /* kick off the DMA by notifying firmware the
3214                  * write index has moved; make sure TBD stores are sync'd */
3215                 write_register(priv->net_dev,
3216                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3217                                txq->next);
3218         }
3219 }
3220
3221 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3222 {
3223         struct net_device *dev = priv->net_dev;
3224         unsigned long flags;
3225         u32 inta, tmp;
3226
3227         spin_lock_irqsave(&priv->low_lock, flags);
3228         ipw2100_disable_interrupts(priv);
3229
3230         read_register(dev, IPW_REG_INTA, &inta);
3231
3232         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3234
3235         priv->in_isr++;
3236         priv->interrupts++;
3237
3238         /* We do not loop and keep polling for more interrupts as this
3239          * is frowned upon and doesn't play nicely with other potentially
3240          * chained IRQs */
3241         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3243
3244         if (inta & IPW2100_INTA_FATAL_ERROR) {
3245                 printk(KERN_WARNING DRV_NAME
3246                        ": Fatal interrupt. Scheduling firmware restart.\n");
3247                 priv->inta_other++;
3248                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3249
3250                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252                                priv->net_dev->name, priv->fatal_error);
3253
3254                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256                                priv->net_dev->name, tmp);
3257
3258                 /* Wake up any sleeping jobs */
3259                 schedule_reset(priv);
3260         }
3261
3262         if (inta & IPW2100_INTA_PARITY_ERROR) {
3263                 printk(KERN_ERR DRV_NAME
3264                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265                 priv->inta_other++;
3266                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3267         }
3268
3269         if (inta & IPW2100_INTA_RX_TRANSFER) {
3270                 IPW_DEBUG_ISR("RX interrupt\n");
3271
3272                 priv->rx_interrupts++;
3273
3274                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3275
3276                 __ipw2100_rx_process(priv);
3277                 __ipw2100_tx_complete(priv);
3278         }
3279
3280         if (inta & IPW2100_INTA_TX_TRANSFER) {
3281                 IPW_DEBUG_ISR("TX interrupt\n");
3282
3283                 priv->tx_interrupts++;
3284
3285                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3286
3287                 __ipw2100_tx_complete(priv);
3288                 ipw2100_tx_send_commands(priv);
3289                 ipw2100_tx_send_data(priv);
3290         }
3291
3292         if (inta & IPW2100_INTA_TX_COMPLETE) {
3293                 IPW_DEBUG_ISR("TX complete\n");
3294                 priv->inta_other++;
3295                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3296
3297                 __ipw2100_tx_complete(priv);
3298         }
3299
3300         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301                 /* ipw2100_handle_event(dev); */
3302                 priv->inta_other++;
3303                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3304         }
3305
3306         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307                 IPW_DEBUG_ISR("FW init done interrupt\n");
3308                 priv->inta_other++;
3309
3310                 read_register(dev, IPW_REG_INTA, &tmp);
3311                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312                            IPW2100_INTA_PARITY_ERROR)) {
3313                         write_register(dev, IPW_REG_INTA,
3314                                        IPW2100_INTA_FATAL_ERROR |
3315                                        IPW2100_INTA_PARITY_ERROR);
3316                 }
3317
3318                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3319         }
3320
3321         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322                 IPW_DEBUG_ISR("Status change interrupt\n");
3323                 priv->inta_other++;
3324                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3325         }
3326
3327         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329                 priv->inta_other++;
3330                 write_register(dev, IPW_REG_INTA,
3331                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3332         }
3333
3334         priv->in_isr--;
3335         ipw2100_enable_interrupts(priv);
3336
3337         spin_unlock_irqrestore(&priv->low_lock, flags);
3338
3339         IPW_DEBUG_ISR("exit\n");
3340 }
3341
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3343 {
3344         struct ipw2100_priv *priv = data;
3345         u32 inta, inta_mask;
3346
3347         if (!data)
3348                 return IRQ_NONE;
3349
3350         spin_lock(&priv->low_lock);
3351
3352         /* We check to see if we should be ignoring interrupts before
3353          * we touch the hardware.  During ucode load if we try and handle
3354          * an interrupt we can cause keyboard problems as well as cause
3355          * the ucode to fail to initialize */
3356         if (!(priv->status & STATUS_INT_ENABLED)) {
3357                 /* Shared IRQ */
3358                 goto none;
3359         }
3360
3361         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3363
3364         if (inta == 0xFFFFFFFF) {
3365                 /* Hardware disappeared */
3366                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367                 goto none;
3368         }
3369
3370         inta &= IPW_INTERRUPT_MASK;
3371
3372         if (!(inta & inta_mask)) {
3373                 /* Shared interrupt */
3374                 goto none;
3375         }
3376
3377         /* We disable the hardware interrupt here just to prevent unneeded
3378          * calls to be made.  We disable this again within the actual
3379          * work tasklet, so if another part of the code re-enables the
3380          * interrupt, that is fine */
3381         ipw2100_disable_interrupts(priv);
3382
3383         tasklet_schedule(&priv->irq_tasklet);
3384         spin_unlock(&priv->low_lock);
3385
3386         return IRQ_HANDLED;
3387       none:
3388         spin_unlock(&priv->low_lock);
3389         return IRQ_NONE;
3390 }
3391
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393                               struct net_device *dev, int pri)
3394 {
3395         struct ipw2100_priv *priv = libipw_priv(dev);
3396         struct list_head *element;
3397         struct ipw2100_tx_packet *packet;
3398         unsigned long flags;
3399
3400         spin_lock_irqsave(&priv->low_lock, flags);
3401
3402         if (!(priv->status & STATUS_ASSOCIATED)) {
3403                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404                 priv->net_dev->stats.tx_carrier_errors++;
3405                 netif_stop_queue(dev);
3406                 goto fail_unlock;
3407         }
3408
3409         if (list_empty(&priv->tx_free_list))
3410                 goto fail_unlock;
3411
3412         element = priv->tx_free_list.next;
3413         packet = list_entry(element, struct ipw2100_tx_packet, list);
3414
3415         packet->info.d_struct.txb = txb;
3416
3417         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3419
3420         packet->jiffy_start = jiffies;
3421
3422         list_del(element);
3423         DEC_STAT(&priv->tx_free_stat);
3424
3425         list_add_tail(element, &priv->tx_pend_list);
3426         INC_STAT(&priv->tx_pend_stat);
3427
3428         ipw2100_tx_send_data(priv);
3429
3430         spin_unlock_irqrestore(&priv->low_lock, flags);
3431         return NETDEV_TX_OK;
3432
3433 fail_unlock:
3434         netif_stop_queue(dev);
3435         spin_unlock_irqrestore(&priv->low_lock, flags);
3436         return NETDEV_TX_BUSY;
3437 }
3438
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3440 {
3441         int i, j, err = -EINVAL;
3442         void *v;
3443         dma_addr_t p;
3444
3445         priv->msg_buffers =
3446             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3447                     GFP_KERNEL);
3448         if (!priv->msg_buffers)
3449                 return -ENOMEM;
3450
3451         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3452                 v = pci_zalloc_consistent(priv->pci_dev,
3453                                           sizeof(struct ipw2100_cmd_header),
3454                                           &p);
3455                 if (!v) {
3456                         printk(KERN_ERR DRV_NAME ": "
3457                                "%s: PCI alloc failed for msg "
3458                                "buffers.\n", priv->net_dev->name);
3459                         err = -ENOMEM;
3460                         break;
3461                 }
3462
3463                 priv->msg_buffers[i].type = COMMAND;
3464                 priv->msg_buffers[i].info.c_struct.cmd =
3465                     (struct ipw2100_cmd_header *)v;
3466                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3467         }
3468
3469         if (i == IPW_COMMAND_POOL_SIZE)
3470                 return 0;
3471
3472         for (j = 0; j < i; j++) {
3473                 pci_free_consistent(priv->pci_dev,
3474                                     sizeof(struct ipw2100_cmd_header),
3475                                     priv->msg_buffers[j].info.c_struct.cmd,
3476                                     priv->msg_buffers[j].info.c_struct.
3477                                     cmd_phys);
3478         }
3479
3480         kfree(priv->msg_buffers);
3481         priv->msg_buffers = NULL;
3482
3483         return err;
3484 }
3485
3486 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3487 {
3488         int i;
3489
3490         INIT_LIST_HEAD(&priv->msg_free_list);
3491         INIT_LIST_HEAD(&priv->msg_pend_list);
3492
3493         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3494                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3495         SET_STAT(&priv->msg_free_stat, i);
3496
3497         return 0;
3498 }
3499
3500 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3501 {
3502         int i;
3503
3504         if (!priv->msg_buffers)
3505                 return;
3506
3507         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3508                 pci_free_consistent(priv->pci_dev,
3509                                     sizeof(struct ipw2100_cmd_header),
3510                                     priv->msg_buffers[i].info.c_struct.cmd,
3511                                     priv->msg_buffers[i].info.c_struct.
3512                                     cmd_phys);
3513         }
3514
3515         kfree(priv->msg_buffers);
3516         priv->msg_buffers = NULL;
3517 }
3518
3519 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3520                         char *buf)
3521 {
3522         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3523         char *out = buf;
3524         int i, j;
3525         u32 val;
3526
3527         for (i = 0; i < 16; i++) {
3528                 out += sprintf(out, "[%08X] ", i * 16);
3529                 for (j = 0; j < 16; j += 4) {
3530                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3531                         out += sprintf(out, "%08X ", val);
3532                 }
3533                 out += sprintf(out, "\n");
3534         }
3535
3536         return out - buf;
3537 }
3538
3539 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3540
3541 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3542                         char *buf)
3543 {
3544         struct ipw2100_priv *p = dev_get_drvdata(d);
3545         return sprintf(buf, "0x%08x\n", (int)p->config);
3546 }
3547
3548 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3549
3550 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3551                            char *buf)
3552 {
3553         struct ipw2100_priv *p = dev_get_drvdata(d);
3554         return sprintf(buf, "0x%08x\n", (int)p->status);
3555 }
3556
3557 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3558
3559 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3560                                char *buf)
3561 {
3562         struct ipw2100_priv *p = dev_get_drvdata(d);
3563         return sprintf(buf, "0x%08x\n", (int)p->capability);
3564 }
3565
3566 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3567
3568 #define IPW2100_REG(x) { IPW_ ##x, #x }
3569 static const struct {
3570         u32 addr;
3571         const char *name;
3572 } hw_data[] = {
3573 IPW2100_REG(REG_GP_CNTRL),
3574             IPW2100_REG(REG_GPIO),
3575             IPW2100_REG(REG_INTA),
3576             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3577 #define IPW2100_NIC(x, s) { x, #x, s }
3578 static const struct {
3579         u32 addr;
3580         const char *name;
3581         size_t size;
3582 } nic_data[] = {
3583 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3584             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3585 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3586 static const struct {
3587         u8 index;
3588         const char *name;
3589         const char *desc;
3590 } ord_data[] = {
3591 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3592             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3593                                 "successful Host Tx's (MSDU)"),
3594             IPW2100_ORD(STAT_TX_DIR_DATA,
3595                                 "successful Directed Tx's (MSDU)"),
3596             IPW2100_ORD(STAT_TX_DIR_DATA1,
3597                                 "successful Directed Tx's (MSDU) @ 1MB"),
3598             IPW2100_ORD(STAT_TX_DIR_DATA2,
3599                                 "successful Directed Tx's (MSDU) @ 2MB"),
3600             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3601                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3602             IPW2100_ORD(STAT_TX_DIR_DATA11,
3603                                 "successful Directed Tx's (MSDU) @ 11MB"),
3604             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3605                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3606             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3607                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3608             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3609                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3610             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3611                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3612             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3613             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3614             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3615             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3616             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3617             IPW2100_ORD(STAT_TX_ASSN_RESP,
3618                                 "successful Association response Tx's"),
3619             IPW2100_ORD(STAT_TX_REASSN,
3620                                 "successful Reassociation Tx's"),
3621             IPW2100_ORD(STAT_TX_REASSN_RESP,
3622                                 "successful Reassociation response Tx's"),
3623             IPW2100_ORD(STAT_TX_PROBE,
3624                                 "probes successfully transmitted"),
3625             IPW2100_ORD(STAT_TX_PROBE_RESP,
3626                                 "probe responses successfully transmitted"),
3627             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3628             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3629             IPW2100_ORD(STAT_TX_DISASSN,
3630                                 "successful Disassociation TX"),
3631             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3632             IPW2100_ORD(STAT_TX_DEAUTH,
3633                                 "successful Deauthentication TX"),
3634             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3635                                 "Total successful Tx data bytes"),
3636             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3637             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3638             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3639             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3640             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3641             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3642             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3643                                 "times max tries in a hop failed"),
3644             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3645                                 "times disassociation failed"),
3646             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3647             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3648             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3649             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3650             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3651             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3652             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3653                                 "directed packets at 5.5MB"),
3654             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3655             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3656             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3657                                 "nondirected packets at 1MB"),
3658             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3659                                 "nondirected packets at 2MB"),
3660             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3661                                 "nondirected packets at 5.5MB"),
3662             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3663                                 "nondirected packets at 11MB"),
3664             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3665             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3666                                                                     "Rx CTS"),
3667             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3668             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3669             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3670             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3671             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3672             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3673             IPW2100_ORD(STAT_RX_REASSN_RESP,
3674                                 "Reassociation response Rx's"),
3675             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3676             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3677             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3678             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3679             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3680             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3681             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3682             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3683                                 "Total rx data bytes received"),
3684             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3685             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3686             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3689             IPW2100_ORD(STAT_RX_DUPLICATE1,
3690                                 "duplicate rx packets at 1MB"),
3691             IPW2100_ORD(STAT_RX_DUPLICATE2,
3692                                 "duplicate rx packets at 2MB"),
3693             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3694                                 "duplicate rx packets at 5.5MB"),
3695             IPW2100_ORD(STAT_RX_DUPLICATE11,
3696                                 "duplicate rx packets at 11MB"),
3697             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3698             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3699             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3700             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3701             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3702                                 "rx frames with invalid protocol"),
3703             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3704             IPW2100_ORD(STAT_RX_NO_BUFFER,
3705                                 "rx frames rejected due to no buffer"),
3706             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3707                                 "rx frames dropped due to missing fragment"),
3708             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3709                                 "rx frames dropped due to non-sequential fragment"),
3710             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3711                                 "rx frames dropped due to unmatched 1st frame"),
3712             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3713                                 "rx frames dropped due to uncompleted frame"),
3714             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3715                                 "ICV errors during decryption"),
3716             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3717             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3718             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3719                                 "poll response timeouts"),
3720             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3721                                 "timeouts waiting for last {broad,multi}cast pkt"),
3722             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3723             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3724             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3725             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3726             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3727                                 "current calculation of % missed beacons"),
3728             IPW2100_ORD(STAT_PERCENT_RETRIES,
3729                                 "current calculation of % missed tx retries"),
3730             IPW2100_ORD(ASSOCIATED_AP_PTR,
3731                                 "0 if not associated, else pointer to AP table entry"),
3732             IPW2100_ORD(AVAILABLE_AP_CNT,
3733                                 "AP's decsribed in the AP table"),
3734             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3735             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3736             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3737             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3738                                 "failures due to response fail"),
3739             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3740             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3741             IPW2100_ORD(STAT_ROAM_INHIBIT,
3742                                 "times roaming was inhibited due to activity"),
3743             IPW2100_ORD(RSSI_AT_ASSN,
3744                                 "RSSI of associated AP at time of association"),
3745             IPW2100_ORD(STAT_ASSN_CAUSE1,
3746                                 "reassociation: no probe response or TX on hop"),
3747             IPW2100_ORD(STAT_ASSN_CAUSE2,
3748                                 "reassociation: poor tx/rx quality"),
3749             IPW2100_ORD(STAT_ASSN_CAUSE3,
3750                                 "reassociation: tx/rx quality (excessive AP load"),
3751             IPW2100_ORD(STAT_ASSN_CAUSE4,
3752                                 "reassociation: AP RSSI level"),
3753             IPW2100_ORD(STAT_ASSN_CAUSE5,
3754                                 "reassociations due to load leveling"),
3755             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3756             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3757                                 "times authentication response failed"),
3758             IPW2100_ORD(STATION_TABLE_CNT,
3759                                 "entries in association table"),
3760             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3761             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3762             IPW2100_ORD(COUNTRY_CODE,
3763                                 "IEEE country code as recv'd from beacon"),
3764             IPW2100_ORD(COUNTRY_CHANNELS,
3765                                 "channels supported by country"),
3766             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3767             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3768             IPW2100_ORD(ANTENNA_DIVERSITY,
3769                                 "TRUE if antenna diversity is disabled"),
3770             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3771             IPW2100_ORD(OUR_FREQ,
3772                                 "current radio freq lower digits - channel ID"),
3773             IPW2100_ORD(RTC_TIME, "current RTC time"),
3774             IPW2100_ORD(PORT_TYPE, "operating mode"),
3775             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3776             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3777             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3778             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3779             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3780             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3781             IPW2100_ORD(CAPABILITIES,
3782                                 "Management frame capability field"),
3783             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3784             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3785             IPW2100_ORD(RTS_THRESHOLD,
3786                                 "Min packet length for RTS handshaking"),
3787             IPW2100_ORD(INT_MODE, "International mode"),
3788             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3789                                 "protocol frag threshold"),
3790             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3791                                 "EEPROM offset in SRAM"),
3792             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3793                                 "EEPROM size in SRAM"),
3794             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3795             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3796                                 "EEPROM IBSS 11b channel set"),
3797             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3798             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3799             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3800             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3801             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3802
3803 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3804                               char *buf)
3805 {
3806         int i;
3807         struct ipw2100_priv *priv = dev_get_drvdata(d);
3808         struct net_device *dev = priv->net_dev;
3809         char *out = buf;
3810         u32 val = 0;
3811
3812         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3813
3814         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3815                 read_register(dev, hw_data[i].addr, &val);
3816                 out += sprintf(out, "%30s [%08X] : %08X\n",
3817                                hw_data[i].name, hw_data[i].addr, val);
3818         }
3819
3820         return out - buf;
3821 }
3822
3823 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3824
3825 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3826                              char *buf)
3827 {
3828         struct ipw2100_priv *priv = dev_get_drvdata(d);
3829         struct net_device *dev = priv->net_dev;
3830         char *out = buf;
3831         int i;
3832
3833         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3834
3835         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3836                 u8 tmp8;
3837                 u16 tmp16;
3838                 u32 tmp32;
3839
3840                 switch (nic_data[i].size) {
3841                 case 1:
3842                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3843                         out += sprintf(out, "%30s [%08X] : %02X\n",
3844                                        nic_data[i].name, nic_data[i].addr,
3845                                        tmp8);
3846                         break;
3847                 case 2:
3848                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3849                         out += sprintf(out, "%30s [%08X] : %04X\n",
3850                                        nic_data[i].name, nic_data[i].addr,
3851                                        tmp16);
3852                         break;
3853                 case 4:
3854                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3855                         out += sprintf(out, "%30s [%08X] : %08X\n",
3856                                        nic_data[i].name, nic_data[i].addr,
3857                                        tmp32);
3858                         break;
3859                 }
3860         }
3861         return out - buf;
3862 }
3863
3864 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3865
3866 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3867                            char *buf)
3868 {
3869         struct ipw2100_priv *priv = dev_get_drvdata(d);
3870         struct net_device *dev = priv->net_dev;
3871         static unsigned long loop = 0;
3872         int len = 0;
3873         u32 buffer[4];
3874         int i;
3875         char line[81];
3876
3877         if (loop >= 0x30000)
3878                 loop = 0;
3879
3880         /* sysfs provides us PAGE_SIZE buffer */
3881         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3882
3883                 if (priv->snapshot[0])
3884                         for (i = 0; i < 4; i++)
3885                                 buffer[i] =
3886                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3887                 else
3888                         for (i = 0; i < 4; i++)
3889                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3890
3891                 if (priv->dump_raw)
3892                         len += sprintf(buf + len,
3893                                        "%c%c%c%c"
3894                                        "%c%c%c%c"
3895                                        "%c%c%c%c"
3896                                        "%c%c%c%c",
3897                                        ((u8 *) buffer)[0x0],
3898                                        ((u8 *) buffer)[0x1],
3899                                        ((u8 *) buffer)[0x2],
3900                                        ((u8 *) buffer)[0x3],
3901                                        ((u8 *) buffer)[0x4],
3902                                        ((u8 *) buffer)[0x5],
3903                                        ((u8 *) buffer)[0x6],
3904                                        ((u8 *) buffer)[0x7],
3905                                        ((u8 *) buffer)[0x8],
3906                                        ((u8 *) buffer)[0x9],
3907                                        ((u8 *) buffer)[0xa],
3908                                        ((u8 *) buffer)[0xb],
3909                                        ((u8 *) buffer)[0xc],
3910                                        ((u8 *) buffer)[0xd],
3911                                        ((u8 *) buffer)[0xe],
3912                                        ((u8 *) buffer)[0xf]);
3913                 else
3914                         len += sprintf(buf + len, "%s\n",
3915                                        snprint_line(line, sizeof(line),
3916                                                     (u8 *) buffer, 16, loop));
3917                 loop += 16;
3918         }
3919
3920         return len;
3921 }
3922
3923 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3924                             const char *buf, size_t count)
3925 {
3926         struct ipw2100_priv *priv = dev_get_drvdata(d);
3927         struct net_device *dev = priv->net_dev;
3928         const char *p = buf;
3929
3930         (void)dev;              /* kill unused-var warning for debug-only code */
3931
3932         if (count < 1)
3933                 return count;
3934
3935         if (p[0] == '1' ||
3936             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3937                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3938                                dev->name);
3939                 priv->dump_raw = 1;
3940
3941         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3942                                    tolower(p[1]) == 'f')) {
3943                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3944                                dev->name);
3945                 priv->dump_raw = 0;
3946
3947         } else if (tolower(p[0]) == 'r') {
3948                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3949                 ipw2100_snapshot_free(priv);
3950
3951         } else
3952                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3953                                "reset = clear memory snapshot\n", dev->name);
3954
3955         return count;
3956 }
3957
3958 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3959
3960 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3961                              char *buf)
3962 {
3963         struct ipw2100_priv *priv = dev_get_drvdata(d);
3964         u32 val = 0;
3965         int len = 0;
3966         u32 val_len;
3967         static int loop = 0;
3968
3969         if (priv->status & STATUS_RF_KILL_MASK)
3970                 return 0;
3971
3972         if (loop >= ARRAY_SIZE(ord_data))
3973                 loop = 0;
3974
3975         /* sysfs provides us PAGE_SIZE buffer */
3976         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3977                 val_len = sizeof(u32);
3978
3979                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3980                                         &val_len))
3981                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3982                                        ord_data[loop].index,
3983                                        ord_data[loop].desc);
3984                 else
3985                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3986                                        ord_data[loop].index, val,
3987                                        ord_data[loop].desc);
3988                 loop++;
3989         }
3990
3991         return len;
3992 }
3993
3994 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3995
3996 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3997                           char *buf)
3998 {
3999         struct ipw2100_priv *priv = dev_get_drvdata(d);
4000         char *out = buf;
4001
4002         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4003                        priv->interrupts, priv->tx_interrupts,
4004                        priv->rx_interrupts, priv->inta_other);
4005         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4006         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4007 #ifdef CONFIG_IPW2100_DEBUG
4008         out += sprintf(out, "packet mismatch image: %s\n",
4009                        priv->snapshot[0] ? "YES" : "NO");
4010 #endif
4011
4012         return out - buf;
4013 }
4014
4015 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4016
4017 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4018 {
4019         int err;
4020
4021         if (mode == priv->ieee->iw_mode)
4022                 return 0;
4023
4024         err = ipw2100_disable_adapter(priv);
4025         if (err) {
4026                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4027                        priv->net_dev->name, err);
4028                 return err;
4029         }
4030
4031         switch (mode) {
4032         case IW_MODE_INFRA:
4033                 priv->net_dev->type = ARPHRD_ETHER;
4034                 break;
4035         case IW_MODE_ADHOC:
4036                 priv->net_dev->type = ARPHRD_ETHER;
4037                 break;
4038 #ifdef CONFIG_IPW2100_MONITOR
4039         case IW_MODE_MONITOR:
4040                 priv->last_mode = priv->ieee->iw_mode;
4041                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4042                 break;
4043 #endif                          /* CONFIG_IPW2100_MONITOR */
4044         }
4045
4046         priv->ieee->iw_mode = mode;
4047
4048 #ifdef CONFIG_PM
4049         /* Indicate ipw2100_download_firmware download firmware
4050          * from disk instead of memory. */
4051         ipw2100_firmware.version = 0;
4052 #endif
4053
4054         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4055         priv->reset_backoff = 0;
4056         schedule_reset(priv);
4057
4058         return 0;
4059 }
4060
4061 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4062                               char *buf)
4063 {
4064         struct ipw2100_priv *priv = dev_get_drvdata(d);
4065         int len = 0;
4066
4067 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4068
4069         if (priv->status & STATUS_ASSOCIATED)
4070                 len += sprintf(buf + len, "connected: %lu\n",
4071                                get_seconds() - priv->connect_start);
4072         else
4073                 len += sprintf(buf + len, "not connected\n");
4074
4075         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4076         DUMP_VAR(status, "08lx");
4077         DUMP_VAR(config, "08lx");
4078         DUMP_VAR(capability, "08lx");
4079
4080         len +=
4081             sprintf(buf + len, "last_rtc: %lu\n",
4082                     (unsigned long)priv->last_rtc);
4083
4084         DUMP_VAR(fatal_error, "d");
4085         DUMP_VAR(stop_hang_check, "d");
4086         DUMP_VAR(stop_rf_kill, "d");
4087         DUMP_VAR(messages_sent, "d");
4088
4089         DUMP_VAR(tx_pend_stat.value, "d");
4090         DUMP_VAR(tx_pend_stat.hi, "d");
4091
4092         DUMP_VAR(tx_free_stat.value, "d");
4093         DUMP_VAR(tx_free_stat.lo, "d");
4094
4095         DUMP_VAR(msg_free_stat.value, "d");
4096         DUMP_VAR(msg_free_stat.lo, "d");
4097
4098         DUMP_VAR(msg_pend_stat.value, "d");
4099         DUMP_VAR(msg_pend_stat.hi, "d");
4100
4101         DUMP_VAR(fw_pend_stat.value, "d");
4102         DUMP_VAR(fw_pend_stat.hi, "d");
4103
4104         DUMP_VAR(txq_stat.value, "d");
4105         DUMP_VAR(txq_stat.lo, "d");
4106
4107         DUMP_VAR(ieee->scans, "d");
4108         DUMP_VAR(reset_backoff, "d");
4109
4110         return len;
4111 }
4112
4113 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4114
4115 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4116                             char *buf)
4117 {
4118         struct ipw2100_priv *priv = dev_get_drvdata(d);
4119         char essid[IW_ESSID_MAX_SIZE + 1];
4120         u8 bssid[ETH_ALEN];
4121         u32 chan = 0;
4122         char *out = buf;
4123         unsigned int length;
4124         int ret;
4125
4126         if (priv->status & STATUS_RF_KILL_MASK)
4127                 return 0;
4128
4129         memset(essid, 0, sizeof(essid));
4130         memset(bssid, 0, sizeof(bssid));
4131
4132         length = IW_ESSID_MAX_SIZE;
4133         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4134         if (ret)
4135                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4136                                __LINE__);
4137
4138         length = sizeof(bssid);
4139         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4140                                   bssid, &length);
4141         if (ret)
4142                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4143                                __LINE__);
4144
4145         length = sizeof(u32);
4146         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4147         if (ret)
4148                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4149                                __LINE__);
4150
4151         out += sprintf(out, "ESSID: %s\n", essid);
4152         out += sprintf(out, "BSSID:   %pM\n", bssid);
4153         out += sprintf(out, "Channel: %d\n", chan);
4154
4155         return out - buf;
4156 }
4157
4158 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4159
4160 #ifdef CONFIG_IPW2100_DEBUG
4161 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4162 {
4163         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4164 }
4165
4166 static ssize_t store_debug_level(struct device_driver *d,
4167                                  const char *buf, size_t count)
4168 {
4169         u32 val;
4170         int ret;
4171
4172         ret = kstrtou32(buf, 0, &val);
4173         if (ret)
4174                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4175         else
4176                 ipw2100_debug_level = val;
4177
4178         return strnlen(buf, count);
4179 }
4180
4181 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4182                    store_debug_level);
4183 #endif                          /* CONFIG_IPW2100_DEBUG */
4184
4185 static ssize_t show_fatal_error(struct device *d,
4186                                 struct device_attribute *attr, char *buf)
4187 {
4188         struct ipw2100_priv *priv = dev_get_drvdata(d);
4189         char *out = buf;
4190         int i;
4191
4192         if (priv->fatal_error)
4193                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4194         else
4195                 out += sprintf(out, "0\n");
4196
4197         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4198                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4199                                         IPW2100_ERROR_QUEUE])
4200                         continue;
4201
4202                 out += sprintf(out, "%d. 0x%08X\n", i,
4203                                priv->fatal_errors[(priv->fatal_index - i) %
4204                                                   IPW2100_ERROR_QUEUE]);
4205         }
4206
4207         return out - buf;
4208 }
4209
4210 static ssize_t store_fatal_error(struct device *d,
4211                                  struct device_attribute *attr, const char *buf,
4212                                  size_t count)
4213 {
4214         struct ipw2100_priv *priv = dev_get_drvdata(d);
4215         schedule_reset(priv);
4216         return count;
4217 }
4218
4219 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4220                    store_fatal_error);
4221
4222 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4223                              char *buf)
4224 {
4225         struct ipw2100_priv *priv = dev_get_drvdata(d);
4226         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4227 }
4228
4229 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4230                               const char *buf, size_t count)
4231 {
4232         struct ipw2100_priv *priv = dev_get_drvdata(d);
4233         struct net_device *dev = priv->net_dev;
4234         unsigned long val;
4235         int ret;
4236
4237         (void)dev;              /* kill unused-var warning for debug-only code */
4238
4239         IPW_DEBUG_INFO("enter\n");
4240
4241         ret = kstrtoul(buf, 0, &val);
4242         if (ret) {
4243                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4244         } else {
4245                 priv->ieee->scan_age = val;
4246                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4247         }
4248
4249         IPW_DEBUG_INFO("exit\n");
4250         return strnlen(buf, count);
4251 }
4252
4253 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4254
4255 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4256                             char *buf)
4257 {
4258         /* 0 - RF kill not enabled
4259            1 - SW based RF kill active (sysfs)
4260            2 - HW based RF kill active
4261            3 - Both HW and SW baed RF kill active */
4262         struct ipw2100_priv *priv = dev_get_drvdata(d);
4263         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4264             (rf_kill_active(priv) ? 0x2 : 0x0);
4265         return sprintf(buf, "%i\n", val);
4266 }
4267
4268 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4269 {
4270         if ((disable_radio ? 1 : 0) ==
4271             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4272                 return 0;
4273
4274         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4275                           disable_radio ? "OFF" : "ON");
4276
4277         mutex_lock(&priv->action_mutex);
4278
4279         if (disable_radio) {
4280                 priv->status |= STATUS_RF_KILL_SW;
4281                 ipw2100_down(priv);
4282         } else {
4283                 priv->status &= ~STATUS_RF_KILL_SW;
4284                 if (rf_kill_active(priv)) {
4285                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4286                                           "disabled by HW switch\n");
4287                         /* Make sure the RF_KILL check timer is running */
4288                         priv->stop_rf_kill = 0;
4289                         mod_delayed_work(system_wq, &priv->rf_kill,
4290                                          round_jiffies_relative(HZ));
4291                 } else
4292                         schedule_reset(priv);
4293         }
4294
4295         mutex_unlock(&priv->action_mutex);
4296         return 1;
4297 }
4298
4299 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4300                              const char *buf, size_t count)
4301 {
4302         struct ipw2100_priv *priv = dev_get_drvdata(d);
4303         ipw_radio_kill_sw(priv, buf[0] == '1');
4304         return count;
4305 }
4306
4307 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4308
4309 static struct attribute *ipw2100_sysfs_entries[] = {
4310         &dev_attr_hardware.attr,
4311         &dev_attr_registers.attr,
4312         &dev_attr_ordinals.attr,
4313         &dev_attr_pci.attr,
4314         &dev_attr_stats.attr,
4315         &dev_attr_internals.attr,
4316         &dev_attr_bssinfo.attr,
4317         &dev_attr_memory.attr,
4318         &dev_attr_scan_age.attr,
4319         &dev_attr_fatal_error.attr,
4320         &dev_attr_rf_kill.attr,
4321         &dev_attr_cfg.attr,
4322         &dev_attr_status.attr,
4323         &dev_attr_capability.attr,
4324         NULL,
4325 };
4326
4327 static struct attribute_group ipw2100_attribute_group = {
4328         .attrs = ipw2100_sysfs_entries,
4329 };
4330
4331 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4332 {
4333         struct ipw2100_status_queue *q = &priv->status_queue;
4334
4335         IPW_DEBUG_INFO("enter\n");
4336
4337         q->size = entries * sizeof(struct ipw2100_status);
4338         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4339         if (!q->drv) {
4340                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4341                 return -ENOMEM;
4342         }
4343
4344         IPW_DEBUG_INFO("exit\n");
4345
4346         return 0;
4347 }
4348
4349 static void status_queue_free(struct ipw2100_priv *priv)
4350 {
4351         IPW_DEBUG_INFO("enter\n");
4352
4353         if (priv->status_queue.drv) {
4354                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4355                                     priv->status_queue.drv,
4356                                     priv->status_queue.nic);
4357                 priv->status_queue.drv = NULL;
4358         }
4359
4360         IPW_DEBUG_INFO("exit\n");
4361 }
4362
4363 static int bd_queue_allocate(struct ipw2100_priv *priv,
4364                              struct ipw2100_bd_queue *q, int entries)
4365 {
4366         IPW_DEBUG_INFO("enter\n");
4367
4368         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4369
4370         q->entries = entries;
4371         q->size = entries * sizeof(struct ipw2100_bd);
4372         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4373         if (!q->drv) {
4374                 IPW_DEBUG_INFO
4375                     ("can't allocate shared memory for buffer descriptors\n");
4376                 return -ENOMEM;
4377         }
4378
4379         IPW_DEBUG_INFO("exit\n");
4380
4381         return 0;
4382 }
4383
4384 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4385 {
4386         IPW_DEBUG_INFO("enter\n");
4387
4388         if (!q)
4389                 return;
4390
4391         if (q->drv) {
4392                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4393                 q->drv = NULL;
4394         }
4395
4396         IPW_DEBUG_INFO("exit\n");
4397 }
4398
4399 static void bd_queue_initialize(struct ipw2100_priv *priv,
4400                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4401                                 u32 r, u32 w)
4402 {
4403         IPW_DEBUG_INFO("enter\n");
4404
4405         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4406                        (u32) q->nic);
4407
4408         write_register(priv->net_dev, base, q->nic);
4409         write_register(priv->net_dev, size, q->entries);
4410         write_register(priv->net_dev, r, q->oldest);
4411         write_register(priv->net_dev, w, q->next);
4412
4413         IPW_DEBUG_INFO("exit\n");
4414 }
4415
4416 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4417 {
4418         priv->stop_rf_kill = 1;
4419         priv->stop_hang_check = 1;
4420         cancel_delayed_work_sync(&priv->reset_work);
4421         cancel_delayed_work_sync(&priv->security_work);
4422         cancel_delayed_work_sync(&priv->wx_event_work);
4423         cancel_delayed_work_sync(&priv->hang_check);
4424         cancel_delayed_work_sync(&priv->rf_kill);
4425         cancel_delayed_work_sync(&priv->scan_event);
4426 }
4427
4428 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4429 {
4430         int i, j, err = -EINVAL;
4431         void *v;
4432         dma_addr_t p;
4433
4434         IPW_DEBUG_INFO("enter\n");
4435
4436         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4437         if (err) {
4438                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4439                                 priv->net_dev->name);
4440                 return err;
4441         }
4442
4443         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4444                                          sizeof(struct ipw2100_tx_packet),
4445                                          GFP_ATOMIC);
4446         if (!priv->tx_buffers) {
4447                 bd_queue_free(priv, &priv->tx_queue);
4448                 return -ENOMEM;
4449         }
4450
4451         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4452                 v = pci_alloc_consistent(priv->pci_dev,
4453                                          sizeof(struct ipw2100_data_header),
4454                                          &p);
4455                 if (!v) {
4456                         printk(KERN_ERR DRV_NAME
4457                                ": %s: PCI alloc failed for tx " "buffers.\n",
4458                                priv->net_dev->name);
4459                         err = -ENOMEM;
4460                         break;
4461                 }
4462
4463                 priv->tx_buffers[i].type = DATA;
4464                 priv->tx_buffers[i].info.d_struct.data =
4465                     (struct ipw2100_data_header *)v;
4466                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4467                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4468         }
4469
4470         if (i == TX_PENDED_QUEUE_LENGTH)
4471                 return 0;
4472
4473         for (j = 0; j < i; j++) {
4474                 pci_free_consistent(priv->pci_dev,
4475                                     sizeof(struct ipw2100_data_header),
4476                                     priv->tx_buffers[j].info.d_struct.data,
4477                                     priv->tx_buffers[j].info.d_struct.
4478                                     data_phys);
4479         }
4480
4481         kfree(priv->tx_buffers);
4482         priv->tx_buffers = NULL;
4483
4484         return err;
4485 }
4486
4487 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4488 {
4489         int i;
4490
4491         IPW_DEBUG_INFO("enter\n");
4492
4493         /*
4494          * reinitialize packet info lists
4495          */
4496         INIT_LIST_HEAD(&priv->fw_pend_list);
4497         INIT_STAT(&priv->fw_pend_stat);
4498
4499         /*
4500          * reinitialize lists
4501          */
4502         INIT_LIST_HEAD(&priv->tx_pend_list);
4503         INIT_LIST_HEAD(&priv->tx_free_list);
4504         INIT_STAT(&priv->tx_pend_stat);
4505         INIT_STAT(&priv->tx_free_stat);
4506
4507         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4508                 /* We simply drop any SKBs that have been queued for
4509                  * transmit */
4510                 if (priv->tx_buffers[i].info.d_struct.txb) {
4511                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4512                                            txb);
4513                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4514                 }
4515
4516                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4517         }
4518
4519         SET_STAT(&priv->tx_free_stat, i);
4520
4521         priv->tx_queue.oldest = 0;
4522         priv->tx_queue.available = priv->tx_queue.entries;
4523         priv->tx_queue.next = 0;
4524         INIT_STAT(&priv->txq_stat);
4525         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4526
4527         bd_queue_initialize(priv, &priv->tx_queue,
4528                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4529                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4530                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4531                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4532
4533         IPW_DEBUG_INFO("exit\n");
4534
4535 }
4536
4537 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4538 {
4539         int i;
4540
4541         IPW_DEBUG_INFO("enter\n");
4542
4543         bd_queue_free(priv, &priv->tx_queue);
4544
4545         if (!priv->tx_buffers)
4546                 return;
4547
4548         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4549                 if (priv->tx_buffers[i].info.d_struct.txb) {
4550                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4551                                            txb);
4552                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4553                 }
4554                 if (priv->tx_buffers[i].info.d_struct.data)
4555                         pci_free_consistent(priv->pci_dev,
4556                                             sizeof(struct ipw2100_data_header),
4557                                             priv->tx_buffers[i].info.d_struct.
4558                                             data,
4559                                             priv->tx_buffers[i].info.d_struct.
4560                                             data_phys);
4561         }
4562
4563         kfree(priv->tx_buffers);
4564         priv->tx_buffers = NULL;
4565
4566         IPW_DEBUG_INFO("exit\n");
4567 }
4568
4569 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4570 {
4571         int i, j, err = -EINVAL;
4572
4573         IPW_DEBUG_INFO("enter\n");
4574
4575         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4576         if (err) {
4577                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4578                 return err;
4579         }
4580
4581         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4582         if (err) {
4583                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4584                 bd_queue_free(priv, &priv->rx_queue);
4585                 return err;
4586         }
4587
4588         /*
4589          * allocate packets
4590          */
4591         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4592                                    sizeof(struct ipw2100_rx_packet),
4593                                    GFP_KERNEL);
4594         if (!priv->rx_buffers) {
4595                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4596
4597                 bd_queue_free(priv, &priv->rx_queue);
4598
4599                 status_queue_free(priv);
4600
4601                 return -ENOMEM;
4602         }
4603
4604         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4605                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4606
4607                 err = ipw2100_alloc_skb(priv, packet);
4608                 if (unlikely(err)) {
4609                         err = -ENOMEM;
4610                         break;
4611                 }
4612
4613                 /* The BD holds the cache aligned address */
4614                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4615                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4616                 priv->status_queue.drv[i].status_fields = 0;
4617         }
4618
4619         if (i == RX_QUEUE_LENGTH)
4620                 return 0;
4621
4622         for (j = 0; j < i; j++) {
4623                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4624                                  sizeof(struct ipw2100_rx_packet),
4625                                  PCI_DMA_FROMDEVICE);
4626                 dev_kfree_skb(priv->rx_buffers[j].skb);
4627         }
4628
4629         kfree(priv->rx_buffers);
4630         priv->rx_buffers = NULL;
4631
4632         bd_queue_free(priv, &priv->rx_queue);
4633
4634         status_queue_free(priv);
4635
4636         return err;
4637 }
4638
4639 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4640 {
4641         IPW_DEBUG_INFO("enter\n");
4642
4643         priv->rx_queue.oldest = 0;
4644         priv->rx_queue.available = priv->rx_queue.entries - 1;
4645         priv->rx_queue.next = priv->rx_queue.entries - 1;
4646
4647         INIT_STAT(&priv->rxq_stat);
4648         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4649
4650         bd_queue_initialize(priv, &priv->rx_queue,
4651                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4652                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4653                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4654                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4655
4656         /* set up the status queue */
4657         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4658                        priv->status_queue.nic);
4659
4660         IPW_DEBUG_INFO("exit\n");
4661 }
4662
4663 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4664 {
4665         int i;
4666
4667         IPW_DEBUG_INFO("enter\n");
4668
4669         bd_queue_free(priv, &priv->rx_queue);
4670         status_queue_free(priv);
4671
4672         if (!priv->rx_buffers)
4673                 return;
4674
4675         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4676                 if (priv->rx_buffers[i].rxp) {
4677                         pci_unmap_single(priv->pci_dev,
4678                                          priv->rx_buffers[i].dma_addr,
4679                                          sizeof(struct ipw2100_rx),
4680                                          PCI_DMA_FROMDEVICE);
4681                         dev_kfree_skb(priv->rx_buffers[i].skb);
4682                 }
4683         }
4684
4685         kfree(priv->rx_buffers);
4686         priv->rx_buffers = NULL;
4687
4688         IPW_DEBUG_INFO("exit\n");
4689 }
4690
4691 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4692 {
4693         u32 length = ETH_ALEN;
4694         u8 addr[ETH_ALEN];
4695
4696         int err;
4697
4698         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4699         if (err) {
4700                 IPW_DEBUG_INFO("MAC address read failed\n");
4701                 return -EIO;
4702         }
4703
4704         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4705         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4706
4707         return 0;
4708 }
4709
4710 /********************************************************************
4711  *
4712  * Firmware Commands
4713  *
4714  ********************************************************************/
4715
4716 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4717 {
4718         struct host_command cmd = {
4719                 .host_command = ADAPTER_ADDRESS,
4720                 .host_command_sequence = 0,
4721                 .host_command_length = ETH_ALEN
4722         };
4723         int err;
4724
4725         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4726
4727         IPW_DEBUG_INFO("enter\n");
4728
4729         if (priv->config & CFG_CUSTOM_MAC) {
4730                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4731                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4732         } else
4733                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4734                        ETH_ALEN);
4735
4736         err = ipw2100_hw_send_command(priv, &cmd);
4737
4738         IPW_DEBUG_INFO("exit\n");
4739         return err;
4740 }
4741
4742 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4743                                  int batch_mode)
4744 {
4745         struct host_command cmd = {
4746                 .host_command = PORT_TYPE,
4747                 .host_command_sequence = 0,
4748                 .host_command_length = sizeof(u32)
4749         };
4750         int err;
4751
4752         switch (port_type) {
4753         case IW_MODE_INFRA:
4754                 cmd.host_command_parameters[0] = IPW_BSS;
4755                 break;
4756         case IW_MODE_ADHOC:
4757                 cmd.host_command_parameters[0] = IPW_IBSS;
4758                 break;
4759         }
4760
4761         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4762                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4763
4764         if (!batch_mode) {
4765                 err = ipw2100_disable_adapter(priv);
4766                 if (err) {
4767                         printk(KERN_ERR DRV_NAME
4768                                ": %s: Could not disable adapter %d\n",
4769                                priv->net_dev->name, err);
4770                         return err;
4771                 }
4772         }
4773
4774         /* send cmd to firmware */
4775         err = ipw2100_hw_send_command(priv, &cmd);
4776
4777         if (!batch_mode)
4778                 ipw2100_enable_adapter(priv);
4779
4780         return err;
4781 }
4782
4783 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4784                                int batch_mode)
4785 {
4786         struct host_command cmd = {
4787                 .host_command = CHANNEL,
4788                 .host_command_sequence = 0,
4789                 .host_command_length = sizeof(u32)
4790         };
4791         int err;
4792
4793         cmd.host_command_parameters[0] = channel;
4794
4795         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4796
4797         /* If BSS then we don't support channel selection */
4798         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4799                 return 0;
4800
4801         if ((channel != 0) &&
4802             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4803                 return -EINVAL;
4804
4805         if (!batch_mode) {
4806                 err = ipw2100_disable_adapter(priv);
4807                 if (err)
4808                         return err;
4809         }
4810
4811         err = ipw2100_hw_send_command(priv, &cmd);
4812         if (err) {
4813                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4814                 return err;
4815         }
4816
4817         if (channel)
4818                 priv->config |= CFG_STATIC_CHANNEL;
4819         else
4820                 priv->config &= ~CFG_STATIC_CHANNEL;
4821
4822         priv->channel = channel;
4823
4824         if (!batch_mode) {
4825                 err = ipw2100_enable_adapter(priv);
4826                 if (err)
4827                         return err;
4828         }
4829
4830         return 0;
4831 }
4832
4833 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4834 {
4835         struct host_command cmd = {
4836                 .host_command = SYSTEM_CONFIG,
4837                 .host_command_sequence = 0,
4838                 .host_command_length = 12,
4839         };
4840         u32 ibss_mask, len = sizeof(u32);
4841         int err;
4842
4843         /* Set system configuration */
4844
4845         if (!batch_mode) {
4846                 err = ipw2100_disable_adapter(priv);
4847                 if (err)
4848                         return err;
4849         }
4850
4851         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4852                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4853
4854         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4855             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4856
4857         if (!(priv->config & CFG_LONG_PREAMBLE))
4858                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4859
4860         err = ipw2100_get_ordinal(priv,
4861                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4862                                   &ibss_mask, &len);
4863         if (err)
4864                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4865
4866         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4867         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4868
4869         /* 11b only */
4870         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4871
4872         err = ipw2100_hw_send_command(priv, &cmd);
4873         if (err)
4874                 return err;
4875
4876 /* If IPv6 is configured in the kernel then we don't want to filter out all
4877  * of the multicast packets as IPv6 needs some. */
4878 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4879         cmd.host_command = ADD_MULTICAST;
4880         cmd.host_command_sequence = 0;
4881         cmd.host_command_length = 0;
4882
4883         ipw2100_hw_send_command(priv, &cmd);
4884 #endif
4885         if (!batch_mode) {
4886                 err = ipw2100_enable_adapter(priv);
4887                 if (err)
4888                         return err;
4889         }
4890
4891         return 0;
4892 }
4893
4894 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4895                                 int batch_mode)
4896 {
4897         struct host_command cmd = {
4898                 .host_command = BASIC_TX_RATES,
4899                 .host_command_sequence = 0,
4900                 .host_command_length = 4
4901         };
4902         int err;
4903
4904         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4905
4906         if (!batch_mode) {
4907                 err = ipw2100_disable_adapter(priv);
4908                 if (err)
4909                         return err;
4910         }
4911
4912         /* Set BASIC TX Rate first */
4913         ipw2100_hw_send_command(priv, &cmd);
4914
4915         /* Set TX Rate */
4916         cmd.host_command = TX_RATES;
4917         ipw2100_hw_send_command(priv, &cmd);
4918
4919         /* Set MSDU TX Rate */
4920         cmd.host_command = MSDU_TX_RATES;
4921         ipw2100_hw_send_command(priv, &cmd);
4922
4923         if (!batch_mode) {
4924                 err = ipw2100_enable_adapter(priv);
4925                 if (err)
4926                         return err;
4927         }
4928
4929         priv->tx_rates = rate;
4930
4931         return 0;
4932 }
4933
4934 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4935 {
4936         struct host_command cmd = {
4937                 .host_command = POWER_MODE,
4938                 .host_command_sequence = 0,
4939                 .host_command_length = 4
4940         };
4941         int err;
4942
4943         cmd.host_command_parameters[0] = power_level;
4944
4945         err = ipw2100_hw_send_command(priv, &cmd);
4946         if (err)
4947                 return err;
4948
4949         if (power_level == IPW_POWER_MODE_CAM)
4950                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4951         else
4952                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4953
4954 #ifdef IPW2100_TX_POWER
4955         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4956                 /* Set beacon interval */
4957                 cmd.host_command = TX_POWER_INDEX;
4958                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4959
4960                 err = ipw2100_hw_send_command(priv, &cmd);
4961                 if (err)
4962                         return err;
4963         }
4964 #endif
4965
4966         return 0;
4967 }
4968
4969 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4970 {
4971         struct host_command cmd = {
4972                 .host_command = RTS_THRESHOLD,
4973                 .host_command_sequence = 0,
4974                 .host_command_length = 4
4975         };
4976         int err;
4977
4978         if (threshold & RTS_DISABLED)
4979                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4980         else
4981                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4982
4983         err = ipw2100_hw_send_command(priv, &cmd);
4984         if (err)
4985                 return err;
4986
4987         priv->rts_threshold = threshold;
4988
4989         return 0;
4990 }
4991
4992 #if 0
4993 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4994                                         u32 threshold, int batch_mode)
4995 {
4996         struct host_command cmd = {
4997                 .host_command = FRAG_THRESHOLD,
4998                 .host_command_sequence = 0,
4999                 .host_command_length = 4,
5000                 .host_command_parameters[0] = 0,
5001         };
5002         int err;
5003
5004         if (!batch_mode) {
5005                 err = ipw2100_disable_adapter(priv);
5006                 if (err)
5007                         return err;
5008         }
5009
5010         if (threshold == 0)
5011                 threshold = DEFAULT_FRAG_THRESHOLD;
5012         else {
5013                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5014                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5015         }
5016
5017         cmd.host_command_parameters[0] = threshold;
5018
5019         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5020
5021         err = ipw2100_hw_send_command(priv, &cmd);
5022
5023         if (!batch_mode)
5024                 ipw2100_enable_adapter(priv);
5025
5026         if (!err)
5027                 priv->frag_threshold = threshold;
5028
5029         return err;
5030 }
5031 #endif
5032
5033 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5034 {
5035         struct host_command cmd = {
5036                 .host_command = SHORT_RETRY_LIMIT,
5037                 .host_command_sequence = 0,
5038                 .host_command_length = 4
5039         };
5040         int err;
5041
5042         cmd.host_command_parameters[0] = retry;
5043
5044         err = ipw2100_hw_send_command(priv, &cmd);
5045         if (err)
5046                 return err;
5047
5048         priv->short_retry_limit = retry;
5049
5050         return 0;
5051 }
5052
5053 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5054 {
5055         struct host_command cmd = {
5056                 .host_command = LONG_RETRY_LIMIT,
5057                 .host_command_sequence = 0,
5058                 .host_command_length = 4
5059         };
5060         int err;
5061
5062         cmd.host_command_parameters[0] = retry;
5063
5064         err = ipw2100_hw_send_command(priv, &cmd);
5065         if (err)
5066                 return err;
5067
5068         priv->long_retry_limit = retry;
5069
5070         return 0;
5071 }
5072
5073 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5074                                        int batch_mode)
5075 {
5076         struct host_command cmd = {
5077                 .host_command = MANDATORY_BSSID,
5078                 .host_command_sequence = 0,
5079                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5080         };
5081         int err;
5082
5083 #ifdef CONFIG_IPW2100_DEBUG
5084         if (bssid != NULL)
5085                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5086         else
5087                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5088 #endif
5089         /* if BSSID is empty then we disable mandatory bssid mode */
5090         if (bssid != NULL)
5091                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5092
5093         if (!batch_mode) {
5094                 err = ipw2100_disable_adapter(priv);
5095                 if (err)
5096                         return err;
5097         }
5098
5099         err = ipw2100_hw_send_command(priv, &cmd);
5100
5101         if (!batch_mode)
5102                 ipw2100_enable_adapter(priv);
5103
5104         return err;
5105 }
5106
5107 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5108 {
5109         struct host_command cmd = {
5110                 .host_command = DISASSOCIATION_BSSID,
5111                 .host_command_sequence = 0,
5112                 .host_command_length = ETH_ALEN
5113         };
5114         int err;
5115         int len;
5116
5117         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5118
5119         len = ETH_ALEN;
5120         /* The Firmware currently ignores the BSSID and just disassociates from
5121          * the currently associated AP -- but in the off chance that a future
5122          * firmware does use the BSSID provided here, we go ahead and try and
5123          * set it to the currently associated AP's BSSID */
5124         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5125
5126         err = ipw2100_hw_send_command(priv, &cmd);
5127
5128         return err;
5129 }
5130
5131 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5132                               struct ipw2100_wpa_assoc_frame *, int)
5133     __attribute__ ((unused));
5134
5135 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5136                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5137                               int batch_mode)
5138 {
5139         struct host_command cmd = {
5140                 .host_command = SET_WPA_IE,
5141                 .host_command_sequence = 0,
5142                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5143         };
5144         int err;
5145
5146         IPW_DEBUG_HC("SET_WPA_IE\n");
5147
5148         if (!batch_mode) {
5149                 err = ipw2100_disable_adapter(priv);
5150                 if (err)
5151                         return err;
5152         }
5153
5154         memcpy(cmd.host_command_parameters, wpa_frame,
5155                sizeof(struct ipw2100_wpa_assoc_frame));
5156
5157         err = ipw2100_hw_send_command(priv, &cmd);
5158
5159         if (!batch_mode) {
5160                 if (ipw2100_enable_adapter(priv))
5161                         err = -EIO;
5162         }
5163
5164         return err;
5165 }
5166
5167 struct security_info_params {
5168         u32 allowed_ciphers;
5169         u16 version;
5170         u8 auth_mode;
5171         u8 replay_counters_number;
5172         u8 unicast_using_group;
5173 } __packed;
5174
5175 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5176                                             int auth_mode,
5177                                             int security_level,
5178                                             int unicast_using_group,
5179                                             int batch_mode)
5180 {
5181         struct host_command cmd = {
5182                 .host_command = SET_SECURITY_INFORMATION,
5183                 .host_command_sequence = 0,
5184                 .host_command_length = sizeof(struct security_info_params)
5185         };
5186         struct security_info_params *security =
5187             (struct security_info_params *)&cmd.host_command_parameters;
5188         int err;
5189         memset(security, 0, sizeof(*security));
5190
5191         /* If shared key AP authentication is turned on, then we need to
5192          * configure the firmware to try and use it.
5193          *
5194          * Actual data encryption/decryption is handled by the host. */
5195         security->auth_mode = auth_mode;
5196         security->unicast_using_group = unicast_using_group;
5197
5198         switch (security_level) {
5199         default:
5200         case SEC_LEVEL_0:
5201                 security->allowed_ciphers = IPW_NONE_CIPHER;
5202                 break;
5203         case SEC_LEVEL_1:
5204                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5205                     IPW_WEP104_CIPHER;
5206                 break;
5207         case SEC_LEVEL_2:
5208                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5209                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5210                 break;
5211         case SEC_LEVEL_2_CKIP:
5212                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5213                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5214                 break;
5215         case SEC_LEVEL_3:
5216                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5217                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5218                 break;
5219         }
5220
5221         IPW_DEBUG_HC
5222             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5223              security->auth_mode, security->allowed_ciphers, security_level);
5224
5225         security->replay_counters_number = 0;
5226
5227         if (!batch_mode) {
5228                 err = ipw2100_disable_adapter(priv);
5229                 if (err)
5230                         return err;
5231         }
5232
5233         err = ipw2100_hw_send_command(priv, &cmd);
5234
5235         if (!batch_mode)
5236                 ipw2100_enable_adapter(priv);
5237
5238         return err;
5239 }
5240
5241 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5242 {
5243         struct host_command cmd = {
5244                 .host_command = TX_POWER_INDEX,
5245                 .host_command_sequence = 0,
5246                 .host_command_length = 4
5247         };
5248         int err = 0;
5249         u32 tmp = tx_power;
5250
5251         if (tx_power != IPW_TX_POWER_DEFAULT)
5252                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5253                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5254
5255         cmd.host_command_parameters[0] = tmp;
5256
5257         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5258                 err = ipw2100_hw_send_command(priv, &cmd);
5259         if (!err)
5260                 priv->tx_power = tx_power;
5261
5262         return 0;
5263 }
5264
5265 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5266                                             u32 interval, int batch_mode)
5267 {
5268         struct host_command cmd = {
5269                 .host_command = BEACON_INTERVAL,
5270                 .host_command_sequence = 0,
5271                 .host_command_length = 4
5272         };
5273         int err;
5274
5275         cmd.host_command_parameters[0] = interval;
5276
5277         IPW_DEBUG_INFO("enter\n");
5278
5279         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5280                 if (!batch_mode) {
5281                         err = ipw2100_disable_adapter(priv);
5282                         if (err)
5283                                 return err;
5284                 }
5285
5286                 ipw2100_hw_send_command(priv, &cmd);
5287
5288                 if (!batch_mode) {
5289                         err = ipw2100_enable_adapter(priv);
5290                         if (err)
5291                                 return err;
5292                 }
5293         }
5294
5295         IPW_DEBUG_INFO("exit\n");
5296
5297         return 0;
5298 }
5299
5300 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5301 {
5302         ipw2100_tx_initialize(priv);
5303         ipw2100_rx_initialize(priv);
5304         ipw2100_msg_initialize(priv);
5305 }
5306
5307 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5308 {
5309         ipw2100_tx_free(priv);
5310         ipw2100_rx_free(priv);
5311         ipw2100_msg_free(priv);
5312 }
5313
5314 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5315 {
5316         if (ipw2100_tx_allocate(priv) ||
5317             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5318                 goto fail;
5319
5320         return 0;
5321
5322       fail:
5323         ipw2100_tx_free(priv);
5324         ipw2100_rx_free(priv);
5325         ipw2100_msg_free(priv);
5326         return -ENOMEM;
5327 }
5328
5329 #define IPW_PRIVACY_CAPABLE 0x0008
5330
5331 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5332                                  int batch_mode)
5333 {
5334         struct host_command cmd = {
5335                 .host_command = WEP_FLAGS,
5336                 .host_command_sequence = 0,
5337                 .host_command_length = 4
5338         };
5339         int err;
5340
5341         cmd.host_command_parameters[0] = flags;
5342
5343         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5344
5345         if (!batch_mode) {
5346                 err = ipw2100_disable_adapter(priv);
5347                 if (err) {
5348                         printk(KERN_ERR DRV_NAME
5349                                ": %s: Could not disable adapter %d\n",
5350                                priv->net_dev->name, err);
5351                         return err;
5352                 }
5353         }
5354
5355         /* send cmd to firmware */
5356         err = ipw2100_hw_send_command(priv, &cmd);
5357
5358         if (!batch_mode)
5359                 ipw2100_enable_adapter(priv);
5360
5361         return err;
5362 }
5363
5364 struct ipw2100_wep_key {
5365         u8 idx;
5366         u8 len;
5367         u8 key[13];
5368 };
5369
5370 /* Macros to ease up priting WEP keys */
5371 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5372 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5373 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5374 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5375
5376 /**
5377  * Set a the wep key
5378  *
5379  * @priv: struct to work on
5380  * @idx: index of the key we want to set
5381  * @key: ptr to the key data to set
5382  * @len: length of the buffer at @key
5383  * @batch_mode: FIXME perform the operation in batch mode, not
5384  *              disabling the device.
5385  *
5386  * @returns 0 if OK, < 0 errno code on error.
5387  *
5388  * Fill out a command structure with the new wep key, length an
5389  * index and send it down the wire.
5390  */
5391 static int ipw2100_set_key(struct ipw2100_priv *priv,
5392                            int idx, char *key, int len, int batch_mode)
5393 {
5394         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5395         struct host_command cmd = {
5396                 .host_command = WEP_KEY_INFO,
5397                 .host_command_sequence = 0,
5398                 .host_command_length = sizeof(struct ipw2100_wep_key),
5399         };
5400         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5401         int err;
5402
5403         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5404                      idx, keylen, len);
5405
5406         /* NOTE: We don't check cached values in case the firmware was reset
5407          * or some other problem is occurring.  If the user is setting the key,
5408          * then we push the change */
5409
5410         wep_key->idx = idx;
5411         wep_key->len = keylen;
5412
5413         if (keylen) {
5414                 memcpy(wep_key->key, key, len);
5415                 memset(wep_key->key + len, 0, keylen - len);
5416         }
5417
5418         /* Will be optimized out on debug not being configured in */
5419         if (keylen == 0)
5420                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5421                               priv->net_dev->name, wep_key->idx);
5422         else if (keylen == 5)
5423                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5424                               priv->net_dev->name, wep_key->idx, wep_key->len,
5425                               WEP_STR_64(wep_key->key));
5426         else
5427                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5428                               "\n",
5429                               priv->net_dev->name, wep_key->idx, wep_key->len,
5430                               WEP_STR_128(wep_key->key));
5431
5432         if (!batch_mode) {
5433                 err = ipw2100_disable_adapter(priv);
5434                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5435                 if (err) {
5436                         printk(KERN_ERR DRV_NAME
5437                                ": %s: Could not disable adapter %d\n",
5438                                priv->net_dev->name, err);
5439                         return err;
5440                 }
5441         }
5442
5443         /* send cmd to firmware */
5444         err = ipw2100_hw_send_command(priv, &cmd);
5445
5446         if (!batch_mode) {
5447                 int err2 = ipw2100_enable_adapter(priv);
5448                 if (err == 0)
5449                         err = err2;
5450         }
5451         return err;
5452 }
5453
5454 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5455                                  int idx, int batch_mode)
5456 {
5457         struct host_command cmd = {
5458                 .host_command = WEP_KEY_INDEX,
5459                 .host_command_sequence = 0,
5460                 .host_command_length = 4,
5461                 .host_command_parameters = {idx},
5462         };
5463         int err;
5464
5465         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5466
5467         if (idx < 0 || idx > 3)
5468                 return -EINVAL;
5469
5470         if (!batch_mode) {
5471                 err = ipw2100_disable_adapter(priv);
5472                 if (err) {
5473                         printk(KERN_ERR DRV_NAME
5474                                ": %s: Could not disable adapter %d\n",
5475                                priv->net_dev->name, err);
5476                         return err;
5477                 }
5478         }
5479
5480         /* send cmd to firmware */
5481         err = ipw2100_hw_send_command(priv, &cmd);
5482
5483         if (!batch_mode)
5484                 ipw2100_enable_adapter(priv);
5485
5486         return err;
5487 }
5488
5489 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5490 {
5491         int i, err, auth_mode, sec_level, use_group;
5492
5493         if (!(priv->status & STATUS_RUNNING))
5494                 return 0;
5495
5496         if (!batch_mode) {
5497                 err = ipw2100_disable_adapter(priv);
5498                 if (err)
5499                         return err;
5500         }
5501
5502         if (!priv->ieee->sec.enabled) {
5503                 err =
5504                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5505                                                      SEC_LEVEL_0, 0, 1);
5506         } else {
5507                 auth_mode = IPW_AUTH_OPEN;
5508                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5509                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5510                                 auth_mode = IPW_AUTH_SHARED;
5511                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5512                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5513                 }
5514
5515                 sec_level = SEC_LEVEL_0;
5516                 if (priv->ieee->sec.flags & SEC_LEVEL)
5517                         sec_level = priv->ieee->sec.level;
5518
5519                 use_group = 0;
5520                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5521                         use_group = priv->ieee->sec.unicast_uses_group;
5522
5523                 err =
5524                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5525                                                      use_group, 1);
5526         }
5527
5528         if (err)
5529                 goto exit;
5530
5531         if (priv->ieee->sec.enabled) {
5532                 for (i = 0; i < 4; i++) {
5533                         if (!(priv->ieee->sec.flags & (1 << i))) {
5534                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5535                                 priv->ieee->sec.key_sizes[i] = 0;
5536                         } else {
5537                                 err = ipw2100_set_key(priv, i,
5538                                                       priv->ieee->sec.keys[i],
5539                                                       priv->ieee->sec.
5540                                                       key_sizes[i], 1);
5541                                 if (err)
5542                                         goto exit;
5543                         }
5544                 }
5545
5546                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5547         }
5548
5549         /* Always enable privacy so the Host can filter WEP packets if
5550          * encrypted data is sent up */
5551         err =
5552             ipw2100_set_wep_flags(priv,
5553                                   priv->ieee->sec.
5554                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5555         if (err)
5556                 goto exit;
5557
5558         priv->status &= ~STATUS_SECURITY_UPDATED;
5559
5560       exit:
5561         if (!batch_mode)
5562                 ipw2100_enable_adapter(priv);
5563
5564         return err;
5565 }
5566
5567 static void ipw2100_security_work(struct work_struct *work)
5568 {
5569         struct ipw2100_priv *priv =
5570                 container_of(work, struct ipw2100_priv, security_work.work);
5571
5572         /* If we happen to have reconnected before we get a chance to
5573          * process this, then update the security settings--which causes
5574          * a disassociation to occur */
5575         if (!(priv->status & STATUS_ASSOCIATED) &&
5576             priv->status & STATUS_SECURITY_UPDATED)
5577                 ipw2100_configure_security(priv, 0);
5578 }
5579
5580 static void shim__set_security(struct net_device *dev,
5581                                struct libipw_security *sec)
5582 {
5583         struct ipw2100_priv *priv = libipw_priv(dev);
5584         int i, force_update = 0;
5585
5586         mutex_lock(&priv->action_mutex);
5587         if (!(priv->status & STATUS_INITIALIZED))
5588                 goto done;
5589
5590         for (i = 0; i < 4; i++) {
5591                 if (sec->flags & (1 << i)) {
5592                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5593                         if (sec->key_sizes[i] == 0)
5594                                 priv->ieee->sec.flags &= ~(1 << i);
5595                         else
5596                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5597                                        sec->key_sizes[i]);
5598                         if (sec->level == SEC_LEVEL_1) {
5599                                 priv->ieee->sec.flags |= (1 << i);
5600                                 priv->status |= STATUS_SECURITY_UPDATED;
5601                         } else
5602                                 priv->ieee->sec.flags &= ~(1 << i);
5603                 }
5604         }
5605
5606         if ((sec->flags & SEC_ACTIVE_KEY) &&
5607             priv->ieee->sec.active_key != sec->active_key) {
5608                 if (sec->active_key <= 3) {
5609                         priv->ieee->sec.active_key = sec->active_key;
5610                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5611                 } else
5612                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5613
5614                 priv->status |= STATUS_SECURITY_UPDATED;
5615         }
5616
5617         if ((sec->flags & SEC_AUTH_MODE) &&
5618             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5619                 priv->ieee->sec.auth_mode = sec->auth_mode;
5620                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5621                 priv->status |= STATUS_SECURITY_UPDATED;
5622         }
5623
5624         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5625                 priv->ieee->sec.flags |= SEC_ENABLED;
5626                 priv->ieee->sec.enabled = sec->enabled;
5627                 priv->status |= STATUS_SECURITY_UPDATED;
5628                 force_update = 1;
5629         }
5630
5631         if (sec->flags & SEC_ENCRYPT)
5632                 priv->ieee->sec.encrypt = sec->encrypt;
5633
5634         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5635                 priv->ieee->sec.level = sec->level;
5636                 priv->ieee->sec.flags |= SEC_LEVEL;
5637                 priv->status |= STATUS_SECURITY_UPDATED;
5638         }
5639
5640         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5641                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5642                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5643                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5644                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5646                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5647                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5648                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5649                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5650
5651 /* As a temporary work around to enable WPA until we figure out why
5652  * wpa_supplicant toggles the security capability of the driver, which
5653  * forces a disassocation with force_update...
5654  *
5655  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5656         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5657                 ipw2100_configure_security(priv, 0);
5658       done:
5659         mutex_unlock(&priv->action_mutex);
5660 }
5661
5662 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5663 {
5664         int err;
5665         int batch_mode = 1;
5666         u8 *bssid;
5667
5668         IPW_DEBUG_INFO("enter\n");
5669
5670         err = ipw2100_disable_adapter(priv);
5671         if (err)
5672                 return err;
5673 #ifdef CONFIG_IPW2100_MONITOR
5674         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5675                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5676                 if (err)
5677                         return err;
5678
5679                 IPW_DEBUG_INFO("exit\n");
5680
5681                 return 0;
5682         }
5683 #endif                          /* CONFIG_IPW2100_MONITOR */
5684
5685         err = ipw2100_read_mac_address(priv);
5686         if (err)
5687                 return -EIO;
5688
5689         err = ipw2100_set_mac_address(priv, batch_mode);
5690         if (err)
5691                 return err;
5692
5693         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5694         if (err)
5695                 return err;
5696
5697         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5698                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5699                 if (err)
5700                         return err;
5701         }
5702
5703         err = ipw2100_system_config(priv, batch_mode);
5704         if (err)
5705                 return err;
5706
5707         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5708         if (err)
5709                 return err;
5710
5711         /* Default to power mode OFF */
5712         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5713         if (err)
5714                 return err;
5715
5716         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5717         if (err)
5718                 return err;
5719
5720         if (priv->config & CFG_STATIC_BSSID)
5721                 bssid = priv->bssid;
5722         else
5723                 bssid = NULL;
5724         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5725         if (err)
5726                 return err;
5727
5728         if (priv->config & CFG_STATIC_ESSID)
5729                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5730                                         batch_mode);
5731         else
5732                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5733         if (err)
5734                 return err;
5735
5736         err = ipw2100_configure_security(priv, batch_mode);
5737         if (err)
5738                 return err;
5739
5740         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5741                 err =
5742                     ipw2100_set_ibss_beacon_interval(priv,
5743                                                      priv->beacon_interval,
5744                                                      batch_mode);
5745                 if (err)
5746                         return err;
5747
5748                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5749                 if (err)
5750                         return err;
5751         }
5752
5753         /*
5754            err = ipw2100_set_fragmentation_threshold(
5755            priv, priv->frag_threshold, batch_mode);
5756            if (err)
5757            return err;
5758          */
5759
5760         IPW_DEBUG_INFO("exit\n");
5761
5762         return 0;
5763 }
5764
5765 /*************************************************************************
5766  *
5767  * EXTERNALLY CALLED METHODS
5768  *
5769  *************************************************************************/
5770
5771 /* This method is called by the network layer -- not to be confused with
5772  * ipw2100_set_mac_address() declared above called by this driver (and this
5773  * method as well) to talk to the firmware */
5774 static int ipw2100_set_address(struct net_device *dev, void *p)
5775 {
5776         struct ipw2100_priv *priv = libipw_priv(dev);
5777         struct sockaddr *addr = p;
5778         int err = 0;
5779
5780         if (!is_valid_ether_addr(addr->sa_data))
5781                 return -EADDRNOTAVAIL;
5782
5783         mutex_lock(&priv->action_mutex);
5784
5785         priv->config |= CFG_CUSTOM_MAC;
5786         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5787
5788         err = ipw2100_set_mac_address(priv, 0);
5789         if (err)
5790                 goto done;
5791
5792         priv->reset_backoff = 0;
5793         mutex_unlock(&priv->action_mutex);
5794         ipw2100_reset_adapter(&priv->reset_work.work);
5795         return 0;
5796
5797       done:
5798         mutex_unlock(&priv->action_mutex);
5799         return err;
5800 }
5801
5802 static int ipw2100_open(struct net_device *dev)
5803 {
5804         struct ipw2100_priv *priv = libipw_priv(dev);
5805         unsigned long flags;
5806         IPW_DEBUG_INFO("dev->open\n");
5807
5808         spin_lock_irqsave(&priv->low_lock, flags);
5809         if (priv->status & STATUS_ASSOCIATED) {
5810                 netif_carrier_on(dev);
5811                 netif_start_queue(dev);
5812         }
5813         spin_unlock_irqrestore(&priv->low_lock, flags);
5814
5815         return 0;
5816 }
5817
5818 static int ipw2100_close(struct net_device *dev)
5819 {
5820         struct ipw2100_priv *priv = libipw_priv(dev);
5821         unsigned long flags;
5822         struct list_head *element;
5823         struct ipw2100_tx_packet *packet;
5824
5825         IPW_DEBUG_INFO("enter\n");
5826
5827         spin_lock_irqsave(&priv->low_lock, flags);
5828
5829         if (priv->status & STATUS_ASSOCIATED)
5830                 netif_carrier_off(dev);
5831         netif_stop_queue(dev);
5832
5833         /* Flush the TX queue ... */
5834         while (!list_empty(&priv->tx_pend_list)) {
5835                 element = priv->tx_pend_list.next;
5836                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5837
5838                 list_del(element);
5839                 DEC_STAT(&priv->tx_pend_stat);
5840
5841                 libipw_txb_free(packet->info.d_struct.txb);
5842                 packet->info.d_struct.txb = NULL;
5843
5844                 list_add_tail(element, &priv->tx_free_list);
5845                 INC_STAT(&priv->tx_free_stat);
5846         }
5847         spin_unlock_irqrestore(&priv->low_lock, flags);
5848
5849         IPW_DEBUG_INFO("exit\n");
5850
5851         return 0;
5852 }
5853
5854 /*
5855  * TODO:  Fix this function... its just wrong
5856  */
5857 static void ipw2100_tx_timeout(struct net_device *dev)
5858 {
5859         struct ipw2100_priv *priv = libipw_priv(dev);
5860
5861         dev->stats.tx_errors++;
5862
5863 #ifdef CONFIG_IPW2100_MONITOR
5864         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5865                 return;
5866 #endif
5867
5868         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5869                        dev->name);
5870         schedule_reset(priv);
5871 }
5872
5873 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5874 {
5875         /* This is called when wpa_supplicant loads and closes the driver
5876          * interface. */
5877         priv->ieee->wpa_enabled = value;
5878         return 0;
5879 }
5880
5881 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5882 {
5883
5884         struct libipw_device *ieee = priv->ieee;
5885         struct libipw_security sec = {
5886                 .flags = SEC_AUTH_MODE,
5887         };
5888         int ret = 0;
5889
5890         if (value & IW_AUTH_ALG_SHARED_KEY) {
5891                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5892                 ieee->open_wep = 0;
5893         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5894                 sec.auth_mode = WLAN_AUTH_OPEN;
5895                 ieee->open_wep = 1;
5896         } else if (value & IW_AUTH_ALG_LEAP) {
5897                 sec.auth_mode = WLAN_AUTH_LEAP;
5898                 ieee->open_wep = 1;
5899         } else
5900                 return -EINVAL;
5901
5902         if (ieee->set_security)
5903                 ieee->set_security(ieee->dev, &sec);
5904         else
5905                 ret = -EOPNOTSUPP;
5906
5907         return ret;
5908 }
5909
5910 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5911                                     char *wpa_ie, int wpa_ie_len)
5912 {
5913
5914         struct ipw2100_wpa_assoc_frame frame;
5915
5916         frame.fixed_ie_mask = 0;
5917
5918         /* copy WPA IE */
5919         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5920         frame.var_ie_len = wpa_ie_len;
5921
5922         /* make sure WPA is enabled */
5923         ipw2100_wpa_enable(priv, 1);
5924         ipw2100_set_wpa_ie(priv, &frame, 0);
5925 }
5926
5927 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5928                                     struct ethtool_drvinfo *info)
5929 {
5930         struct ipw2100_priv *priv = libipw_priv(dev);
5931         char fw_ver[64], ucode_ver[64];
5932
5933         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5934         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5935
5936         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5937         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5938
5939         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5940                  fw_ver, priv->eeprom_version, ucode_ver);
5941
5942         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5943                 sizeof(info->bus_info));
5944 }
5945
5946 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5947 {
5948         struct ipw2100_priv *priv = libipw_priv(dev);
5949         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5950 }
5951
5952 static const struct ethtool_ops ipw2100_ethtool_ops = {
5953         .get_link = ipw2100_ethtool_get_link,
5954         .get_drvinfo = ipw_ethtool_get_drvinfo,
5955 };
5956
5957 static void ipw2100_hang_check(struct work_struct *work)
5958 {
5959         struct ipw2100_priv *priv =
5960                 container_of(work, struct ipw2100_priv, hang_check.work);
5961         unsigned long flags;
5962         u32 rtc = 0xa5a5a5a5;
5963         u32 len = sizeof(rtc);
5964         int restart = 0;
5965
5966         spin_lock_irqsave(&priv->low_lock, flags);
5967
5968         if (priv->fatal_error != 0) {
5969                 /* If fatal_error is set then we need to restart */
5970                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5971                                priv->net_dev->name);
5972
5973                 restart = 1;
5974         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5975                    (rtc == priv->last_rtc)) {
5976                 /* Check if firmware is hung */
5977                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5978                                priv->net_dev->name);
5979
5980                 restart = 1;
5981         }
5982
5983         if (restart) {
5984                 /* Kill timer */
5985                 priv->stop_hang_check = 1;
5986                 priv->hangs++;
5987
5988                 /* Restart the NIC */
5989                 schedule_reset(priv);
5990         }
5991
5992         priv->last_rtc = rtc;
5993
5994         if (!priv->stop_hang_check)
5995                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5996
5997         spin_unlock_irqrestore(&priv->low_lock, flags);
5998 }
5999
6000 static void ipw2100_rf_kill(struct work_struct *work)
6001 {
6002         struct ipw2100_priv *priv =
6003                 container_of(work, struct ipw2100_priv, rf_kill.work);
6004         unsigned long flags;
6005
6006         spin_lock_irqsave(&priv->low_lock, flags);
6007
6008         if (rf_kill_active(priv)) {
6009                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6010                 if (!priv->stop_rf_kill)
6011                         schedule_delayed_work(&priv->rf_kill,
6012                                               round_jiffies_relative(HZ));
6013                 goto exit_unlock;
6014         }
6015
6016         /* RF Kill is now disabled, so bring the device back up */
6017
6018         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6019                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6020                                   "device\n");
6021                 schedule_reset(priv);
6022         } else
6023                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6024                                   "enabled\n");
6025
6026       exit_unlock:
6027         spin_unlock_irqrestore(&priv->low_lock, flags);
6028 }
6029
6030 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6031
6032 static const struct net_device_ops ipw2100_netdev_ops = {
6033         .ndo_open               = ipw2100_open,
6034         .ndo_stop               = ipw2100_close,
6035         .ndo_start_xmit         = libipw_xmit,
6036         .ndo_change_mtu         = libipw_change_mtu,
6037         .ndo_tx_timeout         = ipw2100_tx_timeout,
6038         .ndo_set_mac_address    = ipw2100_set_address,
6039         .ndo_validate_addr      = eth_validate_addr,
6040 };
6041
6042 /* Look into using netdev destructor to shutdown libipw? */
6043
6044 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6045                                                void __iomem * ioaddr)
6046 {
6047         struct ipw2100_priv *priv;
6048         struct net_device *dev;
6049
6050         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6051         if (!dev)
6052                 return NULL;
6053         priv = libipw_priv(dev);
6054         priv->ieee = netdev_priv(dev);
6055         priv->pci_dev = pci_dev;
6056         priv->net_dev = dev;
6057         priv->ioaddr = ioaddr;
6058
6059         priv->ieee->hard_start_xmit = ipw2100_tx;
6060         priv->ieee->set_security = shim__set_security;
6061
6062         priv->ieee->perfect_rssi = -20;
6063         priv->ieee->worst_rssi = -85;
6064
6065         dev->netdev_ops = &ipw2100_netdev_ops;
6066         dev->ethtool_ops = &ipw2100_ethtool_ops;
6067         dev->wireless_handlers = &ipw2100_wx_handler_def;
6068         priv->wireless_data.libipw = priv->ieee;
6069         dev->wireless_data = &priv->wireless_data;
6070         dev->watchdog_timeo = 3 * HZ;
6071         dev->irq = 0;
6072
6073         /* NOTE: We don't use the wireless_handlers hook
6074          * in dev as the system will start throwing WX requests
6075          * to us before we're actually initialized and it just
6076          * ends up causing problems.  So, we just handle
6077          * the WX extensions through the ipw2100_ioctl interface */
6078
6079         /* memset() puts everything to 0, so we only have explicitly set
6080          * those values that need to be something else */
6081
6082         /* If power management is turned on, default to AUTO mode */
6083         priv->power_mode = IPW_POWER_AUTO;
6084
6085 #ifdef CONFIG_IPW2100_MONITOR
6086         priv->config |= CFG_CRC_CHECK;
6087 #endif
6088         priv->ieee->wpa_enabled = 0;
6089         priv->ieee->drop_unencrypted = 0;
6090         priv->ieee->privacy_invoked = 0;
6091         priv->ieee->ieee802_1x = 1;
6092
6093         /* Set module parameters */
6094         switch (network_mode) {
6095         case 1:
6096                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6097                 break;
6098 #ifdef CONFIG_IPW2100_MONITOR
6099         case 2:
6100                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6101                 break;
6102 #endif
6103         default:
6104         case 0:
6105                 priv->ieee->iw_mode = IW_MODE_INFRA;
6106                 break;
6107         }
6108
6109         if (disable == 1)
6110                 priv->status |= STATUS_RF_KILL_SW;
6111
6112         if (channel != 0 &&
6113             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6114                 priv->config |= CFG_STATIC_CHANNEL;
6115                 priv->channel = channel;
6116         }
6117
6118         if (associate)
6119                 priv->config |= CFG_ASSOCIATE;
6120
6121         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6122         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6123         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6124         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6125         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6126         priv->tx_power = IPW_TX_POWER_DEFAULT;
6127         priv->tx_rates = DEFAULT_TX_RATES;
6128
6129         strcpy(priv->nick, "ipw2100");
6130
6131         spin_lock_init(&priv->low_lock);
6132         mutex_init(&priv->action_mutex);
6133         mutex_init(&priv->adapter_mutex);
6134
6135         init_waitqueue_head(&priv->wait_command_queue);
6136
6137         netif_carrier_off(dev);
6138
6139         INIT_LIST_HEAD(&priv->msg_free_list);
6140         INIT_LIST_HEAD(&priv->msg_pend_list);
6141         INIT_STAT(&priv->msg_free_stat);
6142         INIT_STAT(&priv->msg_pend_stat);
6143
6144         INIT_LIST_HEAD(&priv->tx_free_list);
6145         INIT_LIST_HEAD(&priv->tx_pend_list);
6146         INIT_STAT(&priv->tx_free_stat);
6147         INIT_STAT(&priv->tx_pend_stat);
6148
6149         INIT_LIST_HEAD(&priv->fw_pend_list);
6150         INIT_STAT(&priv->fw_pend_stat);
6151
6152         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6153         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6154         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6155         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6156         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6157         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6158
6159         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6160                      ipw2100_irq_tasklet, (unsigned long)priv);
6161
6162         /* NOTE:  We do not start the deferred work for status checks yet */
6163         priv->stop_rf_kill = 1;
6164         priv->stop_hang_check = 1;
6165
6166         return dev;
6167 }
6168
6169 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6170                                 const struct pci_device_id *ent)
6171 {
6172         void __iomem *ioaddr;
6173         struct net_device *dev = NULL;
6174         struct ipw2100_priv *priv = NULL;
6175         int err = 0;
6176         int registered = 0;
6177         u32 val;
6178
6179         IPW_DEBUG_INFO("enter\n");
6180
6181         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6182                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6183                 err = -ENODEV;
6184                 goto out;
6185         }
6186
6187         ioaddr = pci_iomap(pci_dev, 0, 0);
6188         if (!ioaddr) {
6189                 printk(KERN_WARNING DRV_NAME
6190                        "Error calling ioremap_nocache.\n");
6191                 err = -EIO;
6192                 goto fail;
6193         }
6194
6195         /* allocate and initialize our net_device */
6196         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6197         if (!dev) {
6198                 printk(KERN_WARNING DRV_NAME
6199                        "Error calling ipw2100_alloc_device.\n");
6200                 err = -ENOMEM;
6201                 goto fail;
6202         }
6203
6204         /* set up PCI mappings for device */
6205         err = pci_enable_device(pci_dev);
6206         if (err) {
6207                 printk(KERN_WARNING DRV_NAME
6208                        "Error calling pci_enable_device.\n");
6209                 return err;
6210         }
6211
6212         priv = libipw_priv(dev);
6213
6214         pci_set_master(pci_dev);
6215         pci_set_drvdata(pci_dev, priv);
6216
6217         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6218         if (err) {
6219                 printk(KERN_WARNING DRV_NAME
6220                        "Error calling pci_set_dma_mask.\n");
6221                 pci_disable_device(pci_dev);
6222                 return err;
6223         }
6224
6225         err = pci_request_regions(pci_dev, DRV_NAME);
6226         if (err) {
6227                 printk(KERN_WARNING DRV_NAME
6228                        "Error calling pci_request_regions.\n");
6229                 pci_disable_device(pci_dev);
6230                 return err;
6231         }
6232
6233         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6234          * PCI Tx retries from interfering with C3 CPU state */
6235         pci_read_config_dword(pci_dev, 0x40, &val);
6236         if ((val & 0x0000ff00) != 0)
6237                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6238
6239         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6240                 printk(KERN_WARNING DRV_NAME
6241                        "Device not found via register read.\n");
6242                 err = -ENODEV;
6243                 goto fail;
6244         }
6245
6246         SET_NETDEV_DEV(dev, &pci_dev->dev);
6247
6248         /* Force interrupts to be shut off on the device */
6249         priv->status |= STATUS_INT_ENABLED;
6250         ipw2100_disable_interrupts(priv);
6251
6252         /* Allocate and initialize the Tx/Rx queues and lists */
6253         if (ipw2100_queues_allocate(priv)) {
6254                 printk(KERN_WARNING DRV_NAME
6255                        "Error calling ipw2100_queues_allocate.\n");
6256                 err = -ENOMEM;
6257                 goto fail;
6258         }
6259         ipw2100_queues_initialize(priv);
6260
6261         err = request_irq(pci_dev->irq,
6262                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6263         if (err) {
6264                 printk(KERN_WARNING DRV_NAME
6265                        "Error calling request_irq: %d.\n", pci_dev->irq);
6266                 goto fail;
6267         }
6268         dev->irq = pci_dev->irq;
6269
6270         IPW_DEBUG_INFO("Attempting to register device...\n");
6271
6272         printk(KERN_INFO DRV_NAME
6273                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6274
6275         err = ipw2100_up(priv, 1);
6276         if (err)
6277                 goto fail;
6278
6279         err = ipw2100_wdev_init(dev);
6280         if (err)
6281                 goto fail;
6282         registered = 1;
6283
6284         /* Bring up the interface.  Pre 0.46, after we registered the
6285          * network device we would call ipw2100_up.  This introduced a race
6286          * condition with newer hotplug configurations (network was coming
6287          * up and making calls before the device was initialized).
6288          */
6289         err = register_netdev(dev);
6290         if (err) {
6291                 printk(KERN_WARNING DRV_NAME
6292                        "Error calling register_netdev.\n");
6293                 goto fail;
6294         }
6295         registered = 2;
6296
6297         mutex_lock(&priv->action_mutex);
6298
6299         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6300
6301         /* perform this after register_netdev so that dev->name is set */
6302         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6303         if (err)
6304                 goto fail_unlock;
6305
6306         /* If the RF Kill switch is disabled, go ahead and complete the
6307          * startup sequence */
6308         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6309                 /* Enable the adapter - sends HOST_COMPLETE */
6310                 if (ipw2100_enable_adapter(priv)) {
6311                         printk(KERN_WARNING DRV_NAME
6312                                ": %s: failed in call to enable adapter.\n",
6313                                priv->net_dev->name);
6314                         ipw2100_hw_stop_adapter(priv);
6315                         err = -EIO;
6316                         goto fail_unlock;
6317                 }
6318
6319                 /* Start a scan . . . */
6320                 ipw2100_set_scan_options(priv);
6321                 ipw2100_start_scan(priv);
6322         }
6323
6324         IPW_DEBUG_INFO("exit\n");
6325
6326         priv->status |= STATUS_INITIALIZED;
6327
6328         mutex_unlock(&priv->action_mutex);
6329 out:
6330         return err;
6331
6332       fail_unlock:
6333         mutex_unlock(&priv->action_mutex);
6334       fail:
6335         if (dev) {
6336                 if (registered >= 2)
6337                         unregister_netdev(dev);
6338
6339                 if (registered) {
6340                         wiphy_unregister(priv->ieee->wdev.wiphy);
6341                         kfree(priv->ieee->bg_band.channels);
6342                 }
6343
6344                 ipw2100_hw_stop_adapter(priv);
6345
6346                 ipw2100_disable_interrupts(priv);
6347
6348                 if (dev->irq)
6349                         free_irq(dev->irq, priv);
6350
6351                 ipw2100_kill_works(priv);
6352
6353                 /* These are safe to call even if they weren't allocated */
6354                 ipw2100_queues_free(priv);
6355                 sysfs_remove_group(&pci_dev->dev.kobj,
6356                                    &ipw2100_attribute_group);
6357
6358                 free_libipw(dev, 0);
6359         }
6360
6361         pci_iounmap(pci_dev, ioaddr);
6362
6363         pci_release_regions(pci_dev);
6364         pci_disable_device(pci_dev);
6365         goto out;
6366 }
6367
6368 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6369 {
6370         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6371         struct net_device *dev = priv->net_dev;
6372
6373         mutex_lock(&priv->action_mutex);
6374
6375         priv->status &= ~STATUS_INITIALIZED;
6376
6377         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6378
6379 #ifdef CONFIG_PM
6380         if (ipw2100_firmware.version)
6381                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6382 #endif
6383         /* Take down the hardware */
6384         ipw2100_down(priv);
6385
6386         /* Release the mutex so that the network subsystem can
6387          * complete any needed calls into the driver... */
6388         mutex_unlock(&priv->action_mutex);
6389
6390         /* Unregister the device first - this results in close()
6391          * being called if the device is open.  If we free storage
6392          * first, then close() will crash.
6393          * FIXME: remove the comment above. */
6394         unregister_netdev(dev);
6395
6396         ipw2100_kill_works(priv);
6397
6398         ipw2100_queues_free(priv);
6399
6400         /* Free potential debugging firmware snapshot */
6401         ipw2100_snapshot_free(priv);
6402
6403         free_irq(dev->irq, priv);
6404
6405         pci_iounmap(pci_dev, priv->ioaddr);
6406
6407         /* wiphy_unregister needs to be here, before free_libipw */
6408         wiphy_unregister(priv->ieee->wdev.wiphy);
6409         kfree(priv->ieee->bg_band.channels);
6410         free_libipw(dev, 0);
6411
6412         pci_release_regions(pci_dev);
6413         pci_disable_device(pci_dev);
6414
6415         IPW_DEBUG_INFO("exit\n");
6416 }
6417
6418 #ifdef CONFIG_PM
6419 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6420 {
6421         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6422         struct net_device *dev = priv->net_dev;
6423
6424         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6425
6426         mutex_lock(&priv->action_mutex);
6427         if (priv->status & STATUS_INITIALIZED) {
6428                 /* Take down the device; powers it off, etc. */
6429                 ipw2100_down(priv);
6430         }
6431
6432         /* Remove the PRESENT state of the device */
6433         netif_device_detach(dev);
6434
6435         pci_save_state(pci_dev);
6436         pci_disable_device(pci_dev);
6437         pci_set_power_state(pci_dev, PCI_D3hot);
6438
6439         priv->suspend_at = get_seconds();
6440
6441         mutex_unlock(&priv->action_mutex);
6442
6443         return 0;
6444 }
6445
6446 static int ipw2100_resume(struct pci_dev *pci_dev)
6447 {
6448         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6449         struct net_device *dev = priv->net_dev;
6450         int err;
6451         u32 val;
6452
6453         if (IPW2100_PM_DISABLED)
6454                 return 0;
6455
6456         mutex_lock(&priv->action_mutex);
6457
6458         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6459
6460         pci_set_power_state(pci_dev, PCI_D0);
6461         err = pci_enable_device(pci_dev);
6462         if (err) {
6463                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6464                        dev->name);
6465                 mutex_unlock(&priv->action_mutex);
6466                 return err;
6467         }
6468         pci_restore_state(pci_dev);
6469
6470         /*
6471          * Suspend/Resume resets the PCI configuration space, so we have to
6472          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6473          * from interfering with C3 CPU state. pci_restore_state won't help
6474          * here since it only restores the first 64 bytes pci config header.
6475          */
6476         pci_read_config_dword(pci_dev, 0x40, &val);
6477         if ((val & 0x0000ff00) != 0)
6478                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6479
6480         /* Set the device back into the PRESENT state; this will also wake
6481          * the queue of needed */
6482         netif_device_attach(dev);
6483
6484         priv->suspend_time = get_seconds() - priv->suspend_at;
6485
6486         /* Bring the device back up */
6487         if (!(priv->status & STATUS_RF_KILL_SW))
6488                 ipw2100_up(priv, 0);
6489
6490         mutex_unlock(&priv->action_mutex);
6491
6492         return 0;
6493 }
6494 #endif
6495
6496 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6497 {
6498         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6499
6500         /* Take down the device; powers it off, etc. */
6501         ipw2100_down(priv);
6502
6503         pci_disable_device(pci_dev);
6504 }
6505
6506 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6507
6508 static const struct pci_device_id ipw2100_pci_id_table[] = {
6509         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6510         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6511         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6512         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6513         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6514         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6515         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6516         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6517         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6518         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6519         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6520         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6521         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6522
6523         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6524         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6525         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6526         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6527         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6528
6529         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6530         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6531         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6532         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6533         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6534         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6535         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6536
6537         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6538
6539         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6540         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6541         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6542         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6543         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6544         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6546
6547         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6548         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6549         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6550         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6551         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6552         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6553
6554         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6555         {0,},
6556 };
6557
6558 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6559
6560 static struct pci_driver ipw2100_pci_driver = {
6561         .name = DRV_NAME,
6562         .id_table = ipw2100_pci_id_table,
6563         .probe = ipw2100_pci_init_one,
6564         .remove = ipw2100_pci_remove_one,
6565 #ifdef CONFIG_PM
6566         .suspend = ipw2100_suspend,
6567         .resume = ipw2100_resume,
6568 #endif
6569         .shutdown = ipw2100_shutdown,
6570 };
6571
6572 /**
6573  * Initialize the ipw2100 driver/module
6574  *
6575  * @returns 0 if ok, < 0 errno node con error.
6576  *
6577  * Note: we cannot init the /proc stuff until the PCI driver is there,
6578  * or we risk an unlikely race condition on someone accessing
6579  * uninitialized data in the PCI dev struct through /proc.
6580  */
6581 static int __init ipw2100_init(void)
6582 {
6583         int ret;
6584
6585         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6586         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6587
6588         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6589                            PM_QOS_DEFAULT_VALUE);
6590
6591         ret = pci_register_driver(&ipw2100_pci_driver);
6592         if (ret)
6593                 goto out;
6594
6595 #ifdef CONFIG_IPW2100_DEBUG
6596         ipw2100_debug_level = debug;
6597         ret = driver_create_file(&ipw2100_pci_driver.driver,
6598                                  &driver_attr_debug_level);
6599 #endif
6600
6601 out:
6602         return ret;
6603 }
6604
6605 /**
6606  * Cleanup ipw2100 driver registration
6607  */
6608 static void __exit ipw2100_exit(void)
6609 {
6610         /* FIXME: IPG: check that we have no instances of the devices open */
6611 #ifdef CONFIG_IPW2100_DEBUG
6612         driver_remove_file(&ipw2100_pci_driver.driver,
6613                            &driver_attr_debug_level);
6614 #endif
6615         pci_unregister_driver(&ipw2100_pci_driver);
6616         pm_qos_remove_request(&ipw2100_pm_qos_req);
6617 }
6618
6619 module_init(ipw2100_init);
6620 module_exit(ipw2100_exit);
6621
6622 static int ipw2100_wx_get_name(struct net_device *dev,
6623                                struct iw_request_info *info,
6624                                union iwreq_data *wrqu, char *extra)
6625 {
6626         /*
6627          * This can be called at any time.  No action lock required
6628          */
6629
6630         struct ipw2100_priv *priv = libipw_priv(dev);
6631         if (!(priv->status & STATUS_ASSOCIATED))
6632                 strcpy(wrqu->name, "unassociated");
6633         else
6634                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6635
6636         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6637         return 0;
6638 }
6639
6640 static int ipw2100_wx_set_freq(struct net_device *dev,
6641                                struct iw_request_info *info,
6642                                union iwreq_data *wrqu, char *extra)
6643 {
6644         struct ipw2100_priv *priv = libipw_priv(dev);
6645         struct iw_freq *fwrq = &wrqu->freq;
6646         int err = 0;
6647
6648         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6649                 return -EOPNOTSUPP;
6650
6651         mutex_lock(&priv->action_mutex);
6652         if (!(priv->status & STATUS_INITIALIZED)) {
6653                 err = -EIO;
6654                 goto done;
6655         }
6656
6657         /* if setting by freq convert to channel */
6658         if (fwrq->e == 1) {
6659                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6660                         int f = fwrq->m / 100000;
6661                         int c = 0;
6662
6663                         while ((c < REG_MAX_CHANNEL) &&
6664                                (f != ipw2100_frequencies[c]))
6665                                 c++;
6666
6667                         /* hack to fall through */
6668                         fwrq->e = 0;
6669                         fwrq->m = c + 1;
6670                 }
6671         }
6672
6673         if (fwrq->e > 0 || fwrq->m > 1000) {
6674                 err = -EOPNOTSUPP;
6675                 goto done;
6676         } else {                /* Set the channel */
6677                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6678                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6679         }
6680
6681       done:
6682         mutex_unlock(&priv->action_mutex);
6683         return err;
6684 }
6685
6686 static int ipw2100_wx_get_freq(struct net_device *dev,
6687                                struct iw_request_info *info,
6688                                union iwreq_data *wrqu, char *extra)
6689 {
6690         /*
6691          * This can be called at any time.  No action lock required
6692          */
6693
6694         struct ipw2100_priv *priv = libipw_priv(dev);
6695
6696         wrqu->freq.e = 0;
6697
6698         /* If we are associated, trying to associate, or have a statically
6699          * configured CHANNEL then return that; otherwise return ANY */
6700         if (priv->config & CFG_STATIC_CHANNEL ||
6701             priv->status & STATUS_ASSOCIATED)
6702                 wrqu->freq.m = priv->channel;
6703         else
6704                 wrqu->freq.m = 0;
6705
6706         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6707         return 0;
6708
6709 }
6710
6711 static int ipw2100_wx_set_mode(struct net_device *dev,
6712                                struct iw_request_info *info,
6713                                union iwreq_data *wrqu, char *extra)
6714 {
6715         struct ipw2100_priv *priv = libipw_priv(dev);
6716         int err = 0;
6717
6718         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6719
6720         if (wrqu->mode == priv->ieee->iw_mode)
6721                 return 0;
6722
6723         mutex_lock(&priv->action_mutex);
6724         if (!(priv->status & STATUS_INITIALIZED)) {
6725                 err = -EIO;
6726                 goto done;
6727         }
6728
6729         switch (wrqu->mode) {
6730 #ifdef CONFIG_IPW2100_MONITOR
6731         case IW_MODE_MONITOR:
6732                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6733                 break;
6734 #endif                          /* CONFIG_IPW2100_MONITOR */
6735         case IW_MODE_ADHOC:
6736                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6737                 break;
6738         case IW_MODE_INFRA:
6739         case IW_MODE_AUTO:
6740         default:
6741                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6742                 break;
6743         }
6744
6745       done:
6746         mutex_unlock(&priv->action_mutex);
6747         return err;
6748 }
6749
6750 static int ipw2100_wx_get_mode(struct net_device *dev,
6751                                struct iw_request_info *info,
6752                                union iwreq_data *wrqu, char *extra)
6753 {
6754         /*
6755          * This can be called at any time.  No action lock required
6756          */
6757
6758         struct ipw2100_priv *priv = libipw_priv(dev);
6759
6760         wrqu->mode = priv->ieee->iw_mode;
6761         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6762
6763         return 0;
6764 }
6765
6766 #define POWER_MODES 5
6767
6768 /* Values are in microsecond */
6769 static const s32 timeout_duration[POWER_MODES] = {
6770         350000,
6771         250000,
6772         75000,
6773         37000,
6774         25000,
6775 };
6776
6777 static const s32 period_duration[POWER_MODES] = {
6778         400000,
6779         700000,
6780         1000000,
6781         1000000,
6782         1000000
6783 };
6784
6785 static int ipw2100_wx_get_range(struct net_device *dev,
6786                                 struct iw_request_info *info,
6787                                 union iwreq_data *wrqu, char *extra)
6788 {
6789         /*
6790          * This can be called at any time.  No action lock required
6791          */
6792
6793         struct ipw2100_priv *priv = libipw_priv(dev);
6794         struct iw_range *range = (struct iw_range *)extra;
6795         u16 val;
6796         int i, level;
6797
6798         wrqu->data.length = sizeof(*range);
6799         memset(range, 0, sizeof(*range));
6800
6801         /* Let's try to keep this struct in the same order as in
6802          * linux/include/wireless.h
6803          */
6804
6805         /* TODO: See what values we can set, and remove the ones we can't
6806          * set, or fill them with some default data.
6807          */
6808
6809         /* ~5 Mb/s real (802.11b) */
6810         range->throughput = 5 * 1000 * 1000;
6811
6812 //      range->sensitivity;     /* signal level threshold range */
6813
6814         range->max_qual.qual = 100;
6815         /* TODO: Find real max RSSI and stick here */
6816         range->max_qual.level = 0;
6817         range->max_qual.noise = 0;
6818         range->max_qual.updated = 7;    /* Updated all three */
6819
6820         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6821         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6822         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6823         range->avg_qual.noise = 0;
6824         range->avg_qual.updated = 7;    /* Updated all three */
6825
6826         range->num_bitrates = RATE_COUNT;
6827
6828         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6829                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6830         }
6831
6832         range->min_rts = MIN_RTS_THRESHOLD;
6833         range->max_rts = MAX_RTS_THRESHOLD;
6834         range->min_frag = MIN_FRAG_THRESHOLD;
6835         range->max_frag = MAX_FRAG_THRESHOLD;
6836
6837         range->min_pmp = period_duration[0];    /* Minimal PM period */
6838         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6839         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6840         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6841
6842         /* How to decode max/min PM period */
6843         range->pmp_flags = IW_POWER_PERIOD;
6844         /* How to decode max/min PM period */
6845         range->pmt_flags = IW_POWER_TIMEOUT;
6846         /* What PM options are supported */
6847         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6848
6849         range->encoding_size[0] = 5;
6850         range->encoding_size[1] = 13;   /* Different token sizes */
6851         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6852         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6853 //      range->encoding_login_index;            /* token index for login token */
6854
6855         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6856                 range->txpower_capa = IW_TXPOW_DBM;
6857                 range->num_txpower = IW_MAX_TXPOWER;
6858                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6859                      i < IW_MAX_TXPOWER;
6860                      i++, level -=
6861                      ((IPW_TX_POWER_MAX_DBM -
6862                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6863                         range->txpower[i] = level / 16;
6864         } else {
6865                 range->txpower_capa = 0;
6866                 range->num_txpower = 0;
6867         }
6868
6869         /* Set the Wireless Extension versions */
6870         range->we_version_compiled = WIRELESS_EXT;
6871         range->we_version_source = 18;
6872
6873 //      range->retry_capa;      /* What retry options are supported */
6874 //      range->retry_flags;     /* How to decode max/min retry limit */
6875 //      range->r_time_flags;    /* How to decode max/min retry life */
6876 //      range->min_retry;       /* Minimal number of retries */
6877 //      range->max_retry;       /* Maximal number of retries */
6878 //      range->min_r_time;      /* Minimal retry lifetime */
6879 //      range->max_r_time;      /* Maximal retry lifetime */
6880
6881         range->num_channels = FREQ_COUNT;
6882
6883         val = 0;
6884         for (i = 0; i < FREQ_COUNT; i++) {
6885                 // TODO: Include only legal frequencies for some countries
6886 //              if (local->channel_mask & (1 << i)) {
6887                 range->freq[val].i = i + 1;
6888                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6889                 range->freq[val].e = 1;
6890                 val++;
6891 //              }
6892                 if (val == IW_MAX_FREQUENCIES)
6893                         break;
6894         }
6895         range->num_frequency = val;
6896
6897         /* Event capability (kernel + driver) */
6898         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6899                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6900         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6901
6902         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6903                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6904
6905         IPW_DEBUG_WX("GET Range\n");
6906
6907         return 0;
6908 }
6909
6910 static int ipw2100_wx_set_wap(struct net_device *dev,
6911                               struct iw_request_info *info,
6912                               union iwreq_data *wrqu, char *extra)
6913 {
6914         struct ipw2100_priv *priv = libipw_priv(dev);
6915         int err = 0;
6916
6917         // sanity checks
6918         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6919                 return -EINVAL;
6920
6921         mutex_lock(&priv->action_mutex);
6922         if (!(priv->status & STATUS_INITIALIZED)) {
6923                 err = -EIO;
6924                 goto done;
6925         }
6926
6927         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6928             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6929                 /* we disable mandatory BSSID association */
6930                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6931                 priv->config &= ~CFG_STATIC_BSSID;
6932                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6933                 goto done;
6934         }
6935
6936         priv->config |= CFG_STATIC_BSSID;
6937         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6938
6939         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6940
6941         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6942
6943       done:
6944         mutex_unlock(&priv->action_mutex);
6945         return err;
6946 }
6947
6948 static int ipw2100_wx_get_wap(struct net_device *dev,
6949                               struct iw_request_info *info,
6950                               union iwreq_data *wrqu, char *extra)
6951 {
6952         /*
6953          * This can be called at any time.  No action lock required
6954          */
6955
6956         struct ipw2100_priv *priv = libipw_priv(dev);
6957
6958         /* If we are associated, trying to associate, or have a statically
6959          * configured BSSID then return that; otherwise return ANY */
6960         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6961                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6962                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6963         } else
6964                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6965
6966         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6967         return 0;
6968 }
6969
6970 static int ipw2100_wx_set_essid(struct net_device *dev,
6971                                 struct iw_request_info *info,
6972                                 union iwreq_data *wrqu, char *extra)
6973 {
6974         struct ipw2100_priv *priv = libipw_priv(dev);
6975         char *essid = "";       /* ANY */
6976         int length = 0;
6977         int err = 0;
6978         DECLARE_SSID_BUF(ssid);
6979
6980         mutex_lock(&priv->action_mutex);
6981         if (!(priv->status & STATUS_INITIALIZED)) {
6982                 err = -EIO;
6983                 goto done;
6984         }
6985
6986         if (wrqu->essid.flags && wrqu->essid.length) {
6987                 length = wrqu->essid.length;
6988                 essid = extra;
6989         }
6990
6991         if (length == 0) {
6992                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6993                 priv->config &= ~CFG_STATIC_ESSID;
6994                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6995                 goto done;
6996         }
6997
6998         length = min(length, IW_ESSID_MAX_SIZE);
6999
7000         priv->config |= CFG_STATIC_ESSID;
7001
7002         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7003                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7004                 err = 0;
7005                 goto done;
7006         }
7007
7008         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7009                      print_ssid(ssid, essid, length), length);
7010
7011         priv->essid_len = length;
7012         memcpy(priv->essid, essid, priv->essid_len);
7013
7014         err = ipw2100_set_essid(priv, essid, length, 0);
7015
7016       done:
7017         mutex_unlock(&priv->action_mutex);
7018         return err;
7019 }
7020
7021 static int ipw2100_wx_get_essid(struct net_device *dev,
7022                                 struct iw_request_info *info,
7023                                 union iwreq_data *wrqu, char *extra)
7024 {
7025         /*
7026          * This can be called at any time.  No action lock required
7027          */
7028
7029         struct ipw2100_priv *priv = libipw_priv(dev);
7030         DECLARE_SSID_BUF(ssid);
7031
7032         /* If we are associated, trying to associate, or have a statically
7033          * configured ESSID then return that; otherwise return ANY */
7034         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7035                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7036                              print_ssid(ssid, priv->essid, priv->essid_len));
7037                 memcpy(extra, priv->essid, priv->essid_len);
7038                 wrqu->essid.length = priv->essid_len;
7039                 wrqu->essid.flags = 1;  /* active */
7040         } else {
7041                 IPW_DEBUG_WX("Getting essid: ANY\n");
7042                 wrqu->essid.length = 0;
7043                 wrqu->essid.flags = 0;  /* active */
7044         }
7045
7046         return 0;
7047 }
7048
7049 static int ipw2100_wx_set_nick(struct net_device *dev,
7050                                struct iw_request_info *info,
7051                                union iwreq_data *wrqu, char *extra)
7052 {
7053         /*
7054          * This can be called at any time.  No action lock required
7055          */
7056
7057         struct ipw2100_priv *priv = libipw_priv(dev);
7058
7059         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7060                 return -E2BIG;
7061
7062         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7063         memset(priv->nick, 0, sizeof(priv->nick));
7064         memcpy(priv->nick, extra, wrqu->data.length);
7065
7066         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7067
7068         return 0;
7069 }
7070
7071 static int ipw2100_wx_get_nick(struct net_device *dev,
7072                                struct iw_request_info *info,
7073                                union iwreq_data *wrqu, char *extra)
7074 {
7075         /*
7076          * This can be called at any time.  No action lock required
7077          */
7078
7079         struct ipw2100_priv *priv = libipw_priv(dev);
7080
7081         wrqu->data.length = strlen(priv->nick);
7082         memcpy(extra, priv->nick, wrqu->data.length);
7083         wrqu->data.flags = 1;   /* active */
7084
7085         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7086
7087         return 0;
7088 }
7089
7090 static int ipw2100_wx_set_rate(struct net_device *dev,
7091                                struct iw_request_info *info,
7092                                union iwreq_data *wrqu, char *extra)
7093 {
7094         struct ipw2100_priv *priv = libipw_priv(dev);
7095         u32 target_rate = wrqu->bitrate.value;
7096         u32 rate;
7097         int err = 0;
7098
7099         mutex_lock(&priv->action_mutex);
7100         if (!(priv->status & STATUS_INITIALIZED)) {
7101                 err = -EIO;
7102                 goto done;
7103         }
7104
7105         rate = 0;
7106
7107         if (target_rate == 1000000 ||
7108             (!wrqu->bitrate.fixed && target_rate > 1000000))
7109                 rate |= TX_RATE_1_MBIT;
7110         if (target_rate == 2000000 ||
7111             (!wrqu->bitrate.fixed && target_rate > 2000000))
7112                 rate |= TX_RATE_2_MBIT;
7113         if (target_rate == 5500000 ||
7114             (!wrqu->bitrate.fixed && target_rate > 5500000))
7115                 rate |= TX_RATE_5_5_MBIT;
7116         if (target_rate == 11000000 ||
7117             (!wrqu->bitrate.fixed && target_rate > 11000000))
7118                 rate |= TX_RATE_11_MBIT;
7119         if (rate == 0)
7120                 rate = DEFAULT_TX_RATES;
7121
7122         err = ipw2100_set_tx_rates(priv, rate, 0);
7123
7124         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7125       done:
7126         mutex_unlock(&priv->action_mutex);
7127         return err;
7128 }
7129
7130 static int ipw2100_wx_get_rate(struct net_device *dev,
7131                                struct iw_request_info *info,
7132                                union iwreq_data *wrqu, char *extra)
7133 {
7134         struct ipw2100_priv *priv = libipw_priv(dev);
7135         int val;
7136         unsigned int len = sizeof(val);
7137         int err = 0;
7138
7139         if (!(priv->status & STATUS_ENABLED) ||
7140             priv->status & STATUS_RF_KILL_MASK ||
7141             !(priv->status & STATUS_ASSOCIATED)) {
7142                 wrqu->bitrate.value = 0;
7143                 return 0;
7144         }
7145
7146         mutex_lock(&priv->action_mutex);
7147         if (!(priv->status & STATUS_INITIALIZED)) {
7148                 err = -EIO;
7149                 goto done;
7150         }
7151
7152         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7153         if (err) {
7154                 IPW_DEBUG_WX("failed querying ordinals.\n");
7155                 goto done;
7156         }
7157
7158         switch (val & TX_RATE_MASK) {
7159         case TX_RATE_1_MBIT:
7160                 wrqu->bitrate.value = 1000000;
7161                 break;
7162         case TX_RATE_2_MBIT:
7163                 wrqu->bitrate.value = 2000000;
7164                 break;
7165         case TX_RATE_5_5_MBIT:
7166                 wrqu->bitrate.value = 5500000;
7167                 break;
7168         case TX_RATE_11_MBIT:
7169                 wrqu->bitrate.value = 11000000;
7170                 break;
7171         default:
7172                 wrqu->bitrate.value = 0;
7173         }
7174
7175         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7176
7177       done:
7178         mutex_unlock(&priv->action_mutex);
7179         return err;
7180 }
7181
7182 static int ipw2100_wx_set_rts(struct net_device *dev,
7183                               struct iw_request_info *info,
7184                               union iwreq_data *wrqu, char *extra)
7185 {
7186         struct ipw2100_priv *priv = libipw_priv(dev);
7187         int value, err;
7188
7189         /* Auto RTS not yet supported */
7190         if (wrqu->rts.fixed == 0)
7191                 return -EINVAL;
7192
7193         mutex_lock(&priv->action_mutex);
7194         if (!(priv->status & STATUS_INITIALIZED)) {
7195                 err = -EIO;
7196                 goto done;
7197         }
7198
7199         if (wrqu->rts.disabled)
7200                 value = priv->rts_threshold | RTS_DISABLED;
7201         else {
7202                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7203                         err = -EINVAL;
7204                         goto done;
7205                 }
7206                 value = wrqu->rts.value;
7207         }
7208
7209         err = ipw2100_set_rts_threshold(priv, value);
7210
7211         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7212       done:
7213         mutex_unlock(&priv->action_mutex);
7214         return err;
7215 }
7216
7217 static int ipw2100_wx_get_rts(struct net_device *dev,
7218                               struct iw_request_info *info,
7219                               union iwreq_data *wrqu, char *extra)
7220 {
7221         /*
7222          * This can be called at any time.  No action lock required
7223          */
7224
7225         struct ipw2100_priv *priv = libipw_priv(dev);
7226
7227         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7228         wrqu->rts.fixed = 1;    /* no auto select */
7229
7230         /* If RTS is set to the default value, then it is disabled */
7231         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7232
7233         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7234
7235         return 0;
7236 }
7237
7238 static int ipw2100_wx_set_txpow(struct net_device *dev,
7239                                 struct iw_request_info *info,
7240                                 union iwreq_data *wrqu, char *extra)
7241 {
7242         struct ipw2100_priv *priv = libipw_priv(dev);
7243         int err = 0, value;
7244         
7245         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7246                 return -EINPROGRESS;
7247
7248         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7249                 return 0;
7250
7251         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7252                 return -EINVAL;
7253
7254         if (wrqu->txpower.fixed == 0)
7255                 value = IPW_TX_POWER_DEFAULT;
7256         else {
7257                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7258                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7259                         return -EINVAL;
7260
7261                 value = wrqu->txpower.value;
7262         }
7263
7264         mutex_lock(&priv->action_mutex);
7265         if (!(priv->status & STATUS_INITIALIZED)) {
7266                 err = -EIO;
7267                 goto done;
7268         }
7269
7270         err = ipw2100_set_tx_power(priv, value);
7271
7272         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7273
7274       done:
7275         mutex_unlock(&priv->action_mutex);
7276         return err;
7277 }
7278
7279 static int ipw2100_wx_get_txpow(struct net_device *dev,
7280                                 struct iw_request_info *info,
7281                                 union iwreq_data *wrqu, char *extra)
7282 {
7283         /*
7284          * This can be called at any time.  No action lock required
7285          */
7286
7287         struct ipw2100_priv *priv = libipw_priv(dev);
7288
7289         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7290
7291         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7292                 wrqu->txpower.fixed = 0;
7293                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7294         } else {
7295                 wrqu->txpower.fixed = 1;
7296                 wrqu->txpower.value = priv->tx_power;
7297         }
7298
7299         wrqu->txpower.flags = IW_TXPOW_DBM;
7300
7301         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7302
7303         return 0;
7304 }
7305
7306 static int ipw2100_wx_set_frag(struct net_device *dev,
7307                                struct iw_request_info *info,
7308                                union iwreq_data *wrqu, char *extra)
7309 {
7310         /*
7311          * This can be called at any time.  No action lock required
7312          */
7313
7314         struct ipw2100_priv *priv = libipw_priv(dev);
7315
7316         if (!wrqu->frag.fixed)
7317                 return -EINVAL;
7318
7319         if (wrqu->frag.disabled) {
7320                 priv->frag_threshold |= FRAG_DISABLED;
7321                 priv->ieee->fts = DEFAULT_FTS;
7322         } else {
7323                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7324                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7325                         return -EINVAL;
7326
7327                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7328                 priv->frag_threshold = priv->ieee->fts;
7329         }
7330
7331         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7332
7333         return 0;
7334 }
7335
7336 static int ipw2100_wx_get_frag(struct net_device *dev,
7337                                struct iw_request_info *info,
7338                                union iwreq_data *wrqu, char *extra)
7339 {
7340         /*
7341          * This can be called at any time.  No action lock required
7342          */
7343
7344         struct ipw2100_priv *priv = libipw_priv(dev);
7345         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7346         wrqu->frag.fixed = 0;   /* no auto select */
7347         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7348
7349         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7350
7351         return 0;
7352 }
7353
7354 static int ipw2100_wx_set_retry(struct net_device *dev,
7355                                 struct iw_request_info *info,
7356                                 union iwreq_data *wrqu, char *extra)
7357 {
7358         struct ipw2100_priv *priv = libipw_priv(dev);
7359         int err = 0;
7360
7361         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7362                 return -EINVAL;
7363
7364         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7365                 return 0;
7366
7367         mutex_lock(&priv->action_mutex);
7368         if (!(priv->status & STATUS_INITIALIZED)) {
7369                 err = -EIO;
7370                 goto done;
7371         }
7372
7373         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7374                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7376                              wrqu->retry.value);
7377                 goto done;
7378         }
7379
7380         if (wrqu->retry.flags & IW_RETRY_LONG) {
7381                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7383                              wrqu->retry.value);
7384                 goto done;
7385         }
7386
7387         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7388         if (!err)
7389                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7390
7391         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7392
7393       done:
7394         mutex_unlock(&priv->action_mutex);
7395         return err;
7396 }
7397
7398 static int ipw2100_wx_get_retry(struct net_device *dev,
7399                                 struct iw_request_info *info,
7400                                 union iwreq_data *wrqu, char *extra)
7401 {
7402         /*
7403          * This can be called at any time.  No action lock required
7404          */
7405
7406         struct ipw2100_priv *priv = libipw_priv(dev);
7407
7408         wrqu->retry.disabled = 0;       /* can't be disabled */
7409
7410         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7411                 return -EINVAL;
7412
7413         if (wrqu->retry.flags & IW_RETRY_LONG) {
7414                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7415                 wrqu->retry.value = priv->long_retry_limit;
7416         } else {
7417                 wrqu->retry.flags =
7418                     (priv->short_retry_limit !=
7419                      priv->long_retry_limit) ?
7420                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7421
7422                 wrqu->retry.value = priv->short_retry_limit;
7423         }
7424
7425         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7426
7427         return 0;
7428 }
7429
7430 static int ipw2100_wx_set_scan(struct net_device *dev,
7431                                struct iw_request_info *info,
7432                                union iwreq_data *wrqu, char *extra)
7433 {
7434         struct ipw2100_priv *priv = libipw_priv(dev);
7435         int err = 0;
7436
7437         mutex_lock(&priv->action_mutex);
7438         if (!(priv->status & STATUS_INITIALIZED)) {
7439                 err = -EIO;
7440                 goto done;
7441         }
7442
7443         IPW_DEBUG_WX("Initiating scan...\n");
7444
7445         priv->user_requested_scan = 1;
7446         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7447                 IPW_DEBUG_WX("Start scan failed.\n");
7448
7449                 /* TODO: Mark a scan as pending so when hardware initialized
7450                  *       a scan starts */
7451         }
7452
7453       done:
7454         mutex_unlock(&priv->action_mutex);
7455         return err;
7456 }
7457
7458 static int ipw2100_wx_get_scan(struct net_device *dev,
7459                                struct iw_request_info *info,
7460                                union iwreq_data *wrqu, char *extra)
7461 {
7462         /*
7463          * This can be called at any time.  No action lock required
7464          */
7465
7466         struct ipw2100_priv *priv = libipw_priv(dev);
7467         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7468 }
7469
7470 /*
7471  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7472  */
7473 static int ipw2100_wx_set_encode(struct net_device *dev,
7474                                  struct iw_request_info *info,
7475                                  union iwreq_data *wrqu, char *key)
7476 {
7477         /*
7478          * No check of STATUS_INITIALIZED required
7479          */
7480
7481         struct ipw2100_priv *priv = libipw_priv(dev);
7482         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7483 }
7484
7485 static int ipw2100_wx_get_encode(struct net_device *dev,
7486                                  struct iw_request_info *info,
7487                                  union iwreq_data *wrqu, char *key)
7488 {
7489         /*
7490          * This can be called at any time.  No action lock required
7491          */
7492
7493         struct ipw2100_priv *priv = libipw_priv(dev);
7494         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7495 }
7496
7497 static int ipw2100_wx_set_power(struct net_device *dev,
7498                                 struct iw_request_info *info,
7499                                 union iwreq_data *wrqu, char *extra)
7500 {
7501         struct ipw2100_priv *priv = libipw_priv(dev);
7502         int err = 0;
7503
7504         mutex_lock(&priv->action_mutex);
7505         if (!(priv->status & STATUS_INITIALIZED)) {
7506                 err = -EIO;
7507                 goto done;
7508         }
7509
7510         if (wrqu->power.disabled) {
7511                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7512                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7513                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7514                 goto done;
7515         }
7516
7517         switch (wrqu->power.flags & IW_POWER_MODE) {
7518         case IW_POWER_ON:       /* If not specified */
7519         case IW_POWER_MODE:     /* If set all mask */
7520         case IW_POWER_ALL_R:    /* If explicitly state all */
7521                 break;
7522         default:                /* Otherwise we don't support it */
7523                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7524                              wrqu->power.flags);
7525                 err = -EOPNOTSUPP;
7526                 goto done;
7527         }
7528
7529         /* If the user hasn't specified a power management mode yet, default
7530          * to BATTERY */
7531         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7532         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7533
7534         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7535
7536       done:
7537         mutex_unlock(&priv->action_mutex);
7538         return err;
7539
7540 }
7541
7542 static int ipw2100_wx_get_power(struct net_device *dev,
7543                                 struct iw_request_info *info,
7544                                 union iwreq_data *wrqu, char *extra)
7545 {
7546         /*
7547          * This can be called at any time.  No action lock required
7548          */
7549
7550         struct ipw2100_priv *priv = libipw_priv(dev);
7551
7552         if (!(priv->power_mode & IPW_POWER_ENABLED))
7553                 wrqu->power.disabled = 1;
7554         else {
7555                 wrqu->power.disabled = 0;
7556                 wrqu->power.flags = 0;
7557         }
7558
7559         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7560
7561         return 0;
7562 }
7563
7564 /*
7565  * WE-18 WPA support
7566  */
7567
7568 /* SIOCSIWGENIE */
7569 static int ipw2100_wx_set_genie(struct net_device *dev,
7570                                 struct iw_request_info *info,
7571                                 union iwreq_data *wrqu, char *extra)
7572 {
7573
7574         struct ipw2100_priv *priv = libipw_priv(dev);
7575         struct libipw_device *ieee = priv->ieee;
7576         u8 *buf;
7577
7578         if (!ieee->wpa_enabled)
7579                 return -EOPNOTSUPP;
7580
7581         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7582             (wrqu->data.length && extra == NULL))
7583                 return -EINVAL;
7584
7585         if (wrqu->data.length) {
7586                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7587                 if (buf == NULL)
7588                         return -ENOMEM;
7589
7590                 kfree(ieee->wpa_ie);
7591                 ieee->wpa_ie = buf;
7592                 ieee->wpa_ie_len = wrqu->data.length;
7593         } else {
7594                 kfree(ieee->wpa_ie);
7595                 ieee->wpa_ie = NULL;
7596                 ieee->wpa_ie_len = 0;
7597         }
7598
7599         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7600
7601         return 0;
7602 }
7603
7604 /* SIOCGIWGENIE */
7605 static int ipw2100_wx_get_genie(struct net_device *dev,
7606                                 struct iw_request_info *info,
7607                                 union iwreq_data *wrqu, char *extra)
7608 {
7609         struct ipw2100_priv *priv = libipw_priv(dev);
7610         struct libipw_device *ieee = priv->ieee;
7611
7612         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7613                 wrqu->data.length = 0;
7614                 return 0;
7615         }
7616
7617         if (wrqu->data.length < ieee->wpa_ie_len)
7618                 return -E2BIG;
7619
7620         wrqu->data.length = ieee->wpa_ie_len;
7621         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7622
7623         return 0;
7624 }
7625
7626 /* SIOCSIWAUTH */
7627 static int ipw2100_wx_set_auth(struct net_device *dev,
7628                                struct iw_request_info *info,
7629                                union iwreq_data *wrqu, char *extra)
7630 {
7631         struct ipw2100_priv *priv = libipw_priv(dev);
7632         struct libipw_device *ieee = priv->ieee;
7633         struct iw_param *param = &wrqu->param;
7634         struct lib80211_crypt_data *crypt;
7635         unsigned long flags;
7636         int ret = 0;
7637
7638         switch (param->flags & IW_AUTH_INDEX) {
7639         case IW_AUTH_WPA_VERSION:
7640         case IW_AUTH_CIPHER_PAIRWISE:
7641         case IW_AUTH_CIPHER_GROUP:
7642         case IW_AUTH_KEY_MGMT:
7643                 /*
7644                  * ipw2200 does not use these parameters
7645                  */
7646                 break;
7647
7648         case IW_AUTH_TKIP_COUNTERMEASURES:
7649                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7650                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7651                         break;
7652
7653                 flags = crypt->ops->get_flags(crypt->priv);
7654
7655                 if (param->value)
7656                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7657                 else
7658                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7659
7660                 crypt->ops->set_flags(flags, crypt->priv);
7661
7662                 break;
7663
7664         case IW_AUTH_DROP_UNENCRYPTED:{
7665                         /* HACK:
7666                          *
7667                          * wpa_supplicant calls set_wpa_enabled when the driver
7668                          * is loaded and unloaded, regardless of if WPA is being
7669                          * used.  No other calls are made which can be used to
7670                          * determine if encryption will be used or not prior to
7671                          * association being expected.  If encryption is not being
7672                          * used, drop_unencrypted is set to false, else true -- we
7673                          * can use this to determine if the CAP_PRIVACY_ON bit should
7674                          * be set.
7675                          */
7676                         struct libipw_security sec = {
7677                                 .flags = SEC_ENABLED,
7678                                 .enabled = param->value,
7679                         };
7680                         priv->ieee->drop_unencrypted = param->value;
7681                         /* We only change SEC_LEVEL for open mode. Others
7682                          * are set by ipw_wpa_set_encryption.
7683                          */
7684                         if (!param->value) {
7685                                 sec.flags |= SEC_LEVEL;
7686                                 sec.level = SEC_LEVEL_0;
7687                         } else {
7688                                 sec.flags |= SEC_LEVEL;
7689                                 sec.level = SEC_LEVEL_1;
7690                         }
7691                         if (priv->ieee->set_security)
7692                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7693                         break;
7694                 }
7695
7696         case IW_AUTH_80211_AUTH_ALG:
7697                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7698                 break;
7699
7700         case IW_AUTH_WPA_ENABLED:
7701                 ret = ipw2100_wpa_enable(priv, param->value);
7702                 break;
7703
7704         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7705                 ieee->ieee802_1x = param->value;
7706                 break;
7707
7708                 //case IW_AUTH_ROAMING_CONTROL:
7709         case IW_AUTH_PRIVACY_INVOKED:
7710                 ieee->privacy_invoked = param->value;
7711                 break;
7712
7713         default:
7714                 return -EOPNOTSUPP;
7715         }
7716         return ret;
7717 }
7718
7719 /* SIOCGIWAUTH */
7720 static int ipw2100_wx_get_auth(struct net_device *dev,
7721                                struct iw_request_info *info,
7722                                union iwreq_data *wrqu, char *extra)
7723 {
7724         struct ipw2100_priv *priv = libipw_priv(dev);
7725         struct libipw_device *ieee = priv->ieee;
7726         struct lib80211_crypt_data *crypt;
7727         struct iw_param *param = &wrqu->param;
7728         int ret = 0;
7729
7730         switch (param->flags & IW_AUTH_INDEX) {
7731         case IW_AUTH_WPA_VERSION:
7732         case IW_AUTH_CIPHER_PAIRWISE:
7733         case IW_AUTH_CIPHER_GROUP:
7734         case IW_AUTH_KEY_MGMT:
7735                 /*
7736                  * wpa_supplicant will control these internally
7737                  */
7738                 ret = -EOPNOTSUPP;
7739                 break;
7740
7741         case IW_AUTH_TKIP_COUNTERMEASURES:
7742                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7743                 if (!crypt || !crypt->ops->get_flags) {
7744                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7745                                           "crypt not set!\n");
7746                         break;
7747                 }
7748
7749                 param->value = (crypt->ops->get_flags(crypt->priv) &
7750                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7751
7752                 break;
7753
7754         case IW_AUTH_DROP_UNENCRYPTED:
7755                 param->value = ieee->drop_unencrypted;
7756                 break;
7757
7758         case IW_AUTH_80211_AUTH_ALG:
7759                 param->value = priv->ieee->sec.auth_mode;
7760                 break;
7761
7762         case IW_AUTH_WPA_ENABLED:
7763                 param->value = ieee->wpa_enabled;
7764                 break;
7765
7766         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7767                 param->value = ieee->ieee802_1x;
7768                 break;
7769
7770         case IW_AUTH_ROAMING_CONTROL:
7771         case IW_AUTH_PRIVACY_INVOKED:
7772                 param->value = ieee->privacy_invoked;
7773                 break;
7774
7775         default:
7776                 return -EOPNOTSUPP;
7777         }
7778         return 0;
7779 }
7780
7781 /* SIOCSIWENCODEEXT */
7782 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7783                                     struct iw_request_info *info,
7784                                     union iwreq_data *wrqu, char *extra)
7785 {
7786         struct ipw2100_priv *priv = libipw_priv(dev);
7787         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7788 }
7789
7790 /* SIOCGIWENCODEEXT */
7791 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7792                                     struct iw_request_info *info,
7793                                     union iwreq_data *wrqu, char *extra)
7794 {
7795         struct ipw2100_priv *priv = libipw_priv(dev);
7796         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7797 }
7798
7799 /* SIOCSIWMLME */
7800 static int ipw2100_wx_set_mlme(struct net_device *dev,
7801                                struct iw_request_info *info,
7802                                union iwreq_data *wrqu, char *extra)
7803 {
7804         struct ipw2100_priv *priv = libipw_priv(dev);
7805         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7806         __le16 reason;
7807
7808         reason = cpu_to_le16(mlme->reason_code);
7809
7810         switch (mlme->cmd) {
7811         case IW_MLME_DEAUTH:
7812                 // silently ignore
7813                 break;
7814
7815         case IW_MLME_DISASSOC:
7816                 ipw2100_disassociate_bssid(priv);
7817                 break;
7818
7819         default:
7820                 return -EOPNOTSUPP;
7821         }
7822         return 0;
7823 }
7824
7825 /*
7826  *
7827  * IWPRIV handlers
7828  *
7829  */
7830 #ifdef CONFIG_IPW2100_MONITOR
7831 static int ipw2100_wx_set_promisc(struct net_device *dev,
7832                                   struct iw_request_info *info,
7833                                   union iwreq_data *wrqu, char *extra)
7834 {
7835         struct ipw2100_priv *priv = libipw_priv(dev);
7836         int *parms = (int *)extra;
7837         int enable = (parms[0] > 0);
7838         int err = 0;
7839
7840         mutex_lock(&priv->action_mutex);
7841         if (!(priv->status & STATUS_INITIALIZED)) {
7842                 err = -EIO;
7843                 goto done;
7844         }
7845
7846         if (enable) {
7847                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7848                         err = ipw2100_set_channel(priv, parms[1], 0);
7849                         goto done;
7850                 }
7851                 priv->channel = parms[1];
7852                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7853         } else {
7854                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7855                         err = ipw2100_switch_mode(priv, priv->last_mode);
7856         }
7857       done:
7858         mutex_unlock(&priv->action_mutex);
7859         return err;
7860 }
7861
7862 static int ipw2100_wx_reset(struct net_device *dev,
7863                             struct iw_request_info *info,
7864                             union iwreq_data *wrqu, char *extra)
7865 {
7866         struct ipw2100_priv *priv = libipw_priv(dev);
7867         if (priv->status & STATUS_INITIALIZED)
7868                 schedule_reset(priv);
7869         return 0;
7870 }
7871
7872 #endif
7873
7874 static int ipw2100_wx_set_powermode(struct net_device *dev,
7875                                     struct iw_request_info *info,
7876                                     union iwreq_data *wrqu, char *extra)
7877 {
7878         struct ipw2100_priv *priv = libipw_priv(dev);
7879         int err = 0, mode = *(int *)extra;
7880
7881         mutex_lock(&priv->action_mutex);
7882         if (!(priv->status & STATUS_INITIALIZED)) {
7883                 err = -EIO;
7884                 goto done;
7885         }
7886
7887         if ((mode < 0) || (mode > POWER_MODES))
7888                 mode = IPW_POWER_AUTO;
7889
7890         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7891                 err = ipw2100_set_power_mode(priv, mode);
7892       done:
7893         mutex_unlock(&priv->action_mutex);
7894         return err;
7895 }
7896
7897 #define MAX_POWER_STRING 80
7898 static int ipw2100_wx_get_powermode(struct net_device *dev,
7899                                     struct iw_request_info *info,
7900                                     union iwreq_data *wrqu, char *extra)
7901 {
7902         /*
7903          * This can be called at any time.  No action lock required
7904          */
7905
7906         struct ipw2100_priv *priv = libipw_priv(dev);
7907         int level = IPW_POWER_LEVEL(priv->power_mode);
7908         s32 timeout, period;
7909
7910         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7911                 snprintf(extra, MAX_POWER_STRING,
7912                          "Power save level: %d (Off)", level);
7913         } else {
7914                 switch (level) {
7915                 case IPW_POWER_MODE_CAM:
7916                         snprintf(extra, MAX_POWER_STRING,
7917                                  "Power save level: %d (None)", level);
7918                         break;
7919                 case IPW_POWER_AUTO:
7920                         snprintf(extra, MAX_POWER_STRING,
7921                                  "Power save level: %d (Auto)", level);
7922                         break;
7923                 default:
7924                         timeout = timeout_duration[level - 1] / 1000;
7925                         period = period_duration[level - 1] / 1000;
7926                         snprintf(extra, MAX_POWER_STRING,
7927                                  "Power save level: %d "
7928                                  "(Timeout %dms, Period %dms)",
7929                                  level, timeout, period);
7930                 }
7931         }
7932
7933         wrqu->data.length = strlen(extra) + 1;
7934
7935         return 0;
7936 }
7937
7938 static int ipw2100_wx_set_preamble(struct net_device *dev,
7939                                    struct iw_request_info *info,
7940                                    union iwreq_data *wrqu, char *extra)
7941 {
7942         struct ipw2100_priv *priv = libipw_priv(dev);
7943         int err, mode = *(int *)extra;
7944
7945         mutex_lock(&priv->action_mutex);
7946         if (!(priv->status & STATUS_INITIALIZED)) {
7947                 err = -EIO;
7948                 goto done;
7949         }
7950
7951         if (mode == 1)
7952                 priv->config |= CFG_LONG_PREAMBLE;
7953         else if (mode == 0)
7954                 priv->config &= ~CFG_LONG_PREAMBLE;
7955         else {
7956                 err = -EINVAL;
7957                 goto done;
7958         }
7959
7960         err = ipw2100_system_config(priv, 0);
7961
7962       done:
7963         mutex_unlock(&priv->action_mutex);
7964         return err;
7965 }
7966
7967 static int ipw2100_wx_get_preamble(struct net_device *dev,
7968                                    struct iw_request_info *info,
7969                                    union iwreq_data *wrqu, char *extra)
7970 {
7971         /*
7972          * This can be called at any time.  No action lock required
7973          */
7974
7975         struct ipw2100_priv *priv = libipw_priv(dev);
7976
7977         if (priv->config & CFG_LONG_PREAMBLE)
7978                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7979         else
7980                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7981
7982         return 0;
7983 }
7984
7985 #ifdef CONFIG_IPW2100_MONITOR
7986 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7987                                     struct iw_request_info *info,
7988                                     union iwreq_data *wrqu, char *extra)
7989 {
7990         struct ipw2100_priv *priv = libipw_priv(dev);
7991         int err, mode = *(int *)extra;
7992
7993         mutex_lock(&priv->action_mutex);
7994         if (!(priv->status & STATUS_INITIALIZED)) {
7995                 err = -EIO;
7996                 goto done;
7997         }
7998
7999         if (mode == 1)
8000                 priv->config |= CFG_CRC_CHECK;
8001         else if (mode == 0)
8002                 priv->config &= ~CFG_CRC_CHECK;
8003         else {
8004                 err = -EINVAL;
8005                 goto done;
8006         }
8007         err = 0;
8008
8009       done:
8010         mutex_unlock(&priv->action_mutex);
8011         return err;
8012 }
8013
8014 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8015                                     struct iw_request_info *info,
8016                                     union iwreq_data *wrqu, char *extra)
8017 {
8018         /*
8019          * This can be called at any time.  No action lock required
8020          */
8021
8022         struct ipw2100_priv *priv = libipw_priv(dev);
8023
8024         if (priv->config & CFG_CRC_CHECK)
8025                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8026         else
8027                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8028
8029         return 0;
8030 }
8031 #endif                          /* CONFIG_IPW2100_MONITOR */
8032
8033 static iw_handler ipw2100_wx_handlers[] = {
8034         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8035         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8036         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8037         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8038         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8039         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8040         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8041         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8042         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8043         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8044         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8045         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8046         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8047         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8048         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8049         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8050         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8051         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8052         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8053         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8054         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8055         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8056         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8057         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8058         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8059         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8060         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8061         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8062         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8063         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8064         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8065         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8066         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8067         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8068         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8069 };
8070
8071 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8072 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8073 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8074 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8075 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8076 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8077 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8078 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8079
8080 static const struct iw_priv_args ipw2100_private_args[] = {
8081
8082 #ifdef CONFIG_IPW2100_MONITOR
8083         {
8084          IPW2100_PRIV_SET_MONITOR,
8085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8086         {
8087          IPW2100_PRIV_RESET,
8088          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8089 #endif                          /* CONFIG_IPW2100_MONITOR */
8090
8091         {
8092          IPW2100_PRIV_SET_POWER,
8093          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8094         {
8095          IPW2100_PRIV_GET_POWER,
8096          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8097          "get_power"},
8098         {
8099          IPW2100_PRIV_SET_LONGPREAMBLE,
8100          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8101         {
8102          IPW2100_PRIV_GET_LONGPREAMBLE,
8103          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8104 #ifdef CONFIG_IPW2100_MONITOR
8105         {
8106          IPW2100_PRIV_SET_CRC_CHECK,
8107          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8108         {
8109          IPW2100_PRIV_GET_CRC_CHECK,
8110          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8111 #endif                          /* CONFIG_IPW2100_MONITOR */
8112 };
8113
8114 static iw_handler ipw2100_private_handler[] = {
8115 #ifdef CONFIG_IPW2100_MONITOR
8116         ipw2100_wx_set_promisc,
8117         ipw2100_wx_reset,
8118 #else                           /* CONFIG_IPW2100_MONITOR */
8119         NULL,
8120         NULL,
8121 #endif                          /* CONFIG_IPW2100_MONITOR */
8122         ipw2100_wx_set_powermode,
8123         ipw2100_wx_get_powermode,
8124         ipw2100_wx_set_preamble,
8125         ipw2100_wx_get_preamble,
8126 #ifdef CONFIG_IPW2100_MONITOR
8127         ipw2100_wx_set_crc_check,
8128         ipw2100_wx_get_crc_check,
8129 #else                           /* CONFIG_IPW2100_MONITOR */
8130         NULL,
8131         NULL,
8132 #endif                          /* CONFIG_IPW2100_MONITOR */
8133 };
8134
8135 /*
8136  * Get wireless statistics.
8137  * Called by /proc/net/wireless
8138  * Also called by SIOCGIWSTATS
8139  */
8140 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8141 {
8142         enum {
8143                 POOR = 30,
8144                 FAIR = 60,
8145                 GOOD = 80,
8146                 VERY_GOOD = 90,
8147                 EXCELLENT = 95,
8148                 PERFECT = 100
8149         };
8150         int rssi_qual;
8151         int tx_qual;
8152         int beacon_qual;
8153         int quality;
8154
8155         struct ipw2100_priv *priv = libipw_priv(dev);
8156         struct iw_statistics *wstats;
8157         u32 rssi, tx_retries, missed_beacons, tx_failures;
8158         u32 ord_len = sizeof(u32);
8159
8160         if (!priv)
8161                 return (struct iw_statistics *)NULL;
8162
8163         wstats = &priv->wstats;
8164
8165         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8166          * ipw2100_wx_wireless_stats seems to be called before fw is
8167          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8168          * and associated; if not associcated, the values are all meaningless
8169          * anyway, so set them all to NULL and INVALID */
8170         if (!(priv->status & STATUS_ASSOCIATED)) {
8171                 wstats->miss.beacon = 0;
8172                 wstats->discard.retries = 0;
8173                 wstats->qual.qual = 0;
8174                 wstats->qual.level = 0;
8175                 wstats->qual.noise = 0;
8176                 wstats->qual.updated = 7;
8177                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8178                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8179                 return wstats;
8180         }
8181
8182         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8183                                 &missed_beacons, &ord_len))
8184                 goto fail_get_ordinal;
8185
8186         /* If we don't have a connection the quality and level is 0 */
8187         if (!(priv->status & STATUS_ASSOCIATED)) {
8188                 wstats->qual.qual = 0;
8189                 wstats->qual.level = 0;
8190         } else {
8191                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8192                                         &rssi, &ord_len))
8193                         goto fail_get_ordinal;
8194                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8195                 if (rssi < 10)
8196                         rssi_qual = rssi * POOR / 10;
8197                 else if (rssi < 15)
8198                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8199                 else if (rssi < 20)
8200                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8201                 else if (rssi < 30)
8202                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8203                             10 + GOOD;
8204                 else
8205                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8206                             10 + VERY_GOOD;
8207
8208                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8209                                         &tx_retries, &ord_len))
8210                         goto fail_get_ordinal;
8211
8212                 if (tx_retries > 75)
8213                         tx_qual = (90 - tx_retries) * POOR / 15;
8214                 else if (tx_retries > 70)
8215                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8216                 else if (tx_retries > 65)
8217                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8218                 else if (tx_retries > 50)
8219                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8220                             15 + GOOD;
8221                 else
8222                         tx_qual = (50 - tx_retries) *
8223                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8224
8225                 if (missed_beacons > 50)
8226                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8227                 else if (missed_beacons > 40)
8228                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8229                             10 + POOR;
8230                 else if (missed_beacons > 32)
8231                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8232                             18 + FAIR;
8233                 else if (missed_beacons > 20)
8234                         beacon_qual = (32 - missed_beacons) *
8235                             (VERY_GOOD - GOOD) / 20 + GOOD;
8236                 else
8237                         beacon_qual = (20 - missed_beacons) *
8238                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8239
8240                 quality = min(tx_qual, rssi_qual);
8241                 quality = min(beacon_qual, quality);
8242
8243 #ifdef CONFIG_IPW2100_DEBUG
8244                 if (beacon_qual == quality)
8245                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246                 else if (tx_qual == quality)
8247                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248                 else if (quality != 100)
8249                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250                 else
8251                         IPW_DEBUG_WX("Quality not clamped.\n");
8252 #endif
8253
8254                 wstats->qual.qual = quality;
8255                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8256         }
8257
8258         wstats->qual.noise = 0;
8259         wstats->qual.updated = 7;
8260         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8261
8262         /* FIXME: this is percent and not a # */
8263         wstats->miss.beacon = missed_beacons;
8264
8265         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266                                 &tx_failures, &ord_len))
8267                 goto fail_get_ordinal;
8268         wstats->discard.retries = tx_failures;
8269
8270         return wstats;
8271
8272       fail_get_ordinal:
8273         IPW_DEBUG_WX("failed querying ordinals.\n");
8274
8275         return (struct iw_statistics *)NULL;
8276 }
8277
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279         .standard = ipw2100_wx_handlers,
8280         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8281         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8282         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8283         .private = (iw_handler *) ipw2100_private_handler,
8284         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285         .get_wireless_stats = ipw2100_wx_wireless_stats,
8286 };
8287
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8289 {
8290         struct ipw2100_priv *priv =
8291                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292         union iwreq_data wrqu;
8293         unsigned int len = ETH_ALEN;
8294
8295         if (priv->status & STATUS_STOPPING)
8296                 return;
8297
8298         mutex_lock(&priv->action_mutex);
8299
8300         IPW_DEBUG_WX("enter\n");
8301
8302         mutex_unlock(&priv->action_mutex);
8303
8304         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8305
8306         /* Fetch BSSID from the hardware */
8307         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308             priv->status & STATUS_RF_KILL_MASK ||
8309             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310                                 &priv->bssid, &len)) {
8311                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8312         } else {
8313                 /* We now have the BSSID, so can finish setting to the full
8314                  * associated state */
8315                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317                 priv->status &= ~STATUS_ASSOCIATING;
8318                 priv->status |= STATUS_ASSOCIATED;
8319                 netif_carrier_on(priv->net_dev);
8320                 netif_wake_queue(priv->net_dev);
8321         }
8322
8323         if (!(priv->status & STATUS_ASSOCIATED)) {
8324                 IPW_DEBUG_WX("Configuring ESSID\n");
8325                 mutex_lock(&priv->action_mutex);
8326                 /* This is a disassociation event, so kick the firmware to
8327                  * look for another AP */
8328                 if (priv->config & CFG_STATIC_ESSID)
8329                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8330                                           0);
8331                 else
8332                         ipw2100_set_essid(priv, NULL, 0, 0);
8333                 mutex_unlock(&priv->action_mutex);
8334         }
8335
8336         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8337 }
8338
8339 #define IPW2100_FW_MAJOR_VERSION 1
8340 #define IPW2100_FW_MINOR_VERSION 3
8341
8342 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8343 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8344
8345 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8346                              IPW2100_FW_MAJOR_VERSION)
8347
8348 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8349 "." __stringify(IPW2100_FW_MINOR_VERSION)
8350
8351 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8352
8353 /*
8354
8355 BINARY FIRMWARE HEADER FORMAT
8356
8357 offset      length   desc
8358 0           2        version
8359 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8360 4           4        fw_len
8361 8           4        uc_len
8362 C           fw_len   firmware data
8363 12 + fw_len uc_len   microcode data
8364
8365 */
8366
8367 struct ipw2100_fw_header {
8368         short version;
8369         short mode;
8370         unsigned int fw_size;
8371         unsigned int uc_size;
8372 } __packed;
8373
8374 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8375 {
8376         struct ipw2100_fw_header *h =
8377             (struct ipw2100_fw_header *)fw->fw_entry->data;
8378
8379         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8380                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8381                        "(detected version id of %u). "
8382                        "See Documentation/networking/README.ipw2100\n",
8383                        h->version);
8384                 return 1;
8385         }
8386
8387         fw->version = h->version;
8388         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8389         fw->fw.size = h->fw_size;
8390         fw->uc.data = fw->fw.data + h->fw_size;
8391         fw->uc.size = h->uc_size;
8392
8393         return 0;
8394 }
8395
8396 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8397                                 struct ipw2100_fw *fw)
8398 {
8399         char *fw_name;
8400         int rc;
8401
8402         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8403                        priv->net_dev->name);
8404
8405         switch (priv->ieee->iw_mode) {
8406         case IW_MODE_ADHOC:
8407                 fw_name = IPW2100_FW_NAME("-i");
8408                 break;
8409 #ifdef CONFIG_IPW2100_MONITOR
8410         case IW_MODE_MONITOR:
8411                 fw_name = IPW2100_FW_NAME("-p");
8412                 break;
8413 #endif
8414         case IW_MODE_INFRA:
8415         default:
8416                 fw_name = IPW2100_FW_NAME("");
8417                 break;
8418         }
8419
8420         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8421
8422         if (rc < 0) {
8423                 printk(KERN_ERR DRV_NAME ": "
8424                        "%s: Firmware '%s' not available or load failed.\n",
8425                        priv->net_dev->name, fw_name);
8426                 return rc;
8427         }
8428         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8429                        fw->fw_entry->size);
8430
8431         ipw2100_mod_firmware_load(fw);
8432
8433         return 0;
8434 }
8435
8436 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8437 #ifdef CONFIG_IPW2100_MONITOR
8438 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8439 #endif
8440 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8441
8442 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8443                                      struct ipw2100_fw *fw)
8444 {
8445         fw->version = 0;
8446         release_firmware(fw->fw_entry);
8447         fw->fw_entry = NULL;
8448 }
8449
8450 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8451                                  size_t max)
8452 {
8453         char ver[MAX_FW_VERSION_LEN];
8454         u32 len = MAX_FW_VERSION_LEN;
8455         u32 tmp;
8456         int i;
8457         /* firmware version is an ascii string (max len of 14) */
8458         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8459                 return -EIO;
8460         tmp = max;
8461         if (len >= max)
8462                 len = max - 1;
8463         for (i = 0; i < len; i++)
8464                 buf[i] = ver[i];
8465         buf[i] = '\0';
8466         return tmp;
8467 }
8468
8469 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8470                                     size_t max)
8471 {
8472         u32 ver;
8473         u32 len = sizeof(ver);
8474         /* microcode version is a 32 bit integer */
8475         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8476                 return -EIO;
8477         return snprintf(buf, max, "%08X", ver);
8478 }
8479
8480 /*
8481  * On exit, the firmware will have been freed from the fw list
8482  */
8483 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8484 {
8485         /* firmware is constructed of N contiguous entries, each entry is
8486          * structured as:
8487          *
8488          * offset    sie         desc
8489          * 0         4           address to write to
8490          * 4         2           length of data run
8491          * 6         length      data
8492          */
8493         unsigned int addr;
8494         unsigned short len;
8495
8496         const unsigned char *firmware_data = fw->fw.data;
8497         unsigned int firmware_data_left = fw->fw.size;
8498
8499         while (firmware_data_left > 0) {
8500                 addr = *(u32 *) (firmware_data);
8501                 firmware_data += 4;
8502                 firmware_data_left -= 4;
8503
8504                 len = *(u16 *) (firmware_data);
8505                 firmware_data += 2;
8506                 firmware_data_left -= 2;
8507
8508                 if (len > 32) {
8509                         printk(KERN_ERR DRV_NAME ": "
8510                                "Invalid firmware run-length of %d bytes\n",
8511                                len);
8512                         return -EINVAL;
8513                 }
8514
8515                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8516                 firmware_data += len;
8517                 firmware_data_left -= len;
8518         }
8519
8520         return 0;
8521 }
8522
8523 struct symbol_alive_response {
8524         u8 cmd_id;
8525         u8 seq_num;
8526         u8 ucode_rev;
8527         u8 eeprom_valid;
8528         u16 valid_flags;
8529         u8 IEEE_addr[6];
8530         u16 flags;
8531         u16 pcb_rev;
8532         u16 clock_settle_time;  // 1us LSB
8533         u16 powerup_settle_time;        // 1us LSB
8534         u16 hop_settle_time;    // 1us LSB
8535         u8 date[3];             // month, day, year
8536         u8 time[2];             // hours, minutes
8537         u8 ucode_valid;
8538 };
8539
8540 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8541                                   struct ipw2100_fw *fw)
8542 {
8543         struct net_device *dev = priv->net_dev;
8544         const unsigned char *microcode_data = fw->uc.data;
8545         unsigned int microcode_data_left = fw->uc.size;
8546         void __iomem *reg = priv->ioaddr;
8547
8548         struct symbol_alive_response response;
8549         int i, j;
8550         u8 data;
8551
8552         /* Symbol control */
8553         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8554         readl(reg);
8555         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8556         readl(reg);
8557
8558         /* HW config */
8559         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8560         readl(reg);
8561         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8562         readl(reg);
8563
8564         /* EN_CS_ACCESS bit to reset control store pointer */
8565         write_nic_byte(dev, 0x210000, 0x40);
8566         readl(reg);
8567         write_nic_byte(dev, 0x210000, 0x0);
8568         readl(reg);
8569         write_nic_byte(dev, 0x210000, 0x40);
8570         readl(reg);
8571
8572         /* copy microcode from buffer into Symbol */
8573
8574         while (microcode_data_left > 0) {
8575                 write_nic_byte(dev, 0x210010, *microcode_data++);
8576                 write_nic_byte(dev, 0x210010, *microcode_data++);
8577                 microcode_data_left -= 2;
8578         }
8579
8580         /* EN_CS_ACCESS bit to reset the control store pointer */
8581         write_nic_byte(dev, 0x210000, 0x0);
8582         readl(reg);
8583
8584         /* Enable System (Reg 0)
8585          * first enable causes garbage in RX FIFO */
8586         write_nic_byte(dev, 0x210000, 0x0);
8587         readl(reg);
8588         write_nic_byte(dev, 0x210000, 0x80);
8589         readl(reg);
8590
8591         /* Reset External Baseband Reg */
8592         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8593         readl(reg);
8594         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8595         readl(reg);
8596
8597         /* HW Config (Reg 5) */
8598         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8599         readl(reg);
8600         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8601         readl(reg);
8602
8603         /* Enable System (Reg 0)
8604          * second enable should be OK */
8605         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8606         readl(reg);
8607         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8608
8609         /* check Symbol is enabled - upped this from 5 as it wasn't always
8610          * catching the update */
8611         for (i = 0; i < 10; i++) {
8612                 udelay(10);
8613
8614                 /* check Dino is enabled bit */
8615                 read_nic_byte(dev, 0x210000, &data);
8616                 if (data & 0x1)
8617                         break;
8618         }
8619
8620         if (i == 10) {
8621                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8622                        dev->name);
8623                 return -EIO;
8624         }
8625
8626         /* Get Symbol alive response */
8627         for (i = 0; i < 30; i++) {
8628                 /* Read alive response structure */
8629                 for (j = 0;
8630                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8631                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8632
8633                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8634                         break;
8635                 udelay(10);
8636         }
8637
8638         if (i == 30) {
8639                 printk(KERN_ERR DRV_NAME
8640                        ": %s: No response from Symbol - hw not alive\n",
8641                        dev->name);
8642                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8643                 return -EIO;
8644         }
8645
8646         return 0;
8647 }