Merge branches 'x86/mce' and 'x86/urgent' into perf/mce
[cascardo/linux.git] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/init.h>
67
68 #include <net/mac80211.h>
69
70 #include "iwl-commands.h"
71 #include "iwl-dev.h"
72 #include "iwl-core.h"
73 #include "iwl-debug.h"
74 #include "iwl-eeprom.h"
75 #include "iwl-io.h"
76
77 /************************** EEPROM BANDS ****************************
78  *
79  * The iwl_eeprom_band definitions below provide the mapping from the
80  * EEPROM contents to the specific channel number supported for each
81  * band.
82  *
83  * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
84  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
85  * The specific geography and calibration information for that channel
86  * is contained in the eeprom map itself.
87  *
88  * During init, we copy the eeprom information and channel map
89  * information into priv->channel_info_24/52 and priv->channel_map_24/52
90  *
91  * channel_map_24/52 provides the index in the channel_info array for a
92  * given channel.  We have to have two separate maps as there is channel
93  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
94  * band_2
95  *
96  * A value of 0xff stored in the channel_map indicates that the channel
97  * is not supported by the hardware at all.
98  *
99  * A value of 0xfe in the channel_map indicates that the channel is not
100  * valid for Tx with the current hardware.  This means that
101  * while the system can tune and receive on a given channel, it may not
102  * be able to associate or transmit any frames on that
103  * channel.  There is no corresponding channel information for that
104  * entry.
105  *
106  *********************************************************************/
107
108 /* 2.4 GHz */
109 const u8 iwl_eeprom_band_1[14] = {
110         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
111 };
112
113 /* 5.2 GHz bands */
114 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
115         183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
116 };
117
118 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
119         34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
120 };
121
122 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
123         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
124 };
125
126 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
127         145, 149, 153, 157, 161, 165
128 };
129
130 static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
131         1, 2, 3, 4, 5, 6, 7
132 };
133
134 static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
135         36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
136 };
137
138 /**
139  * struct iwl_txpwr_section: eeprom section information
140  * @offset: indirect address into eeprom image
141  * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
142  * @band: band type for the section
143  * @is_common - true: common section, false: channel section
144  * @is_cck - true: cck section, false: not cck section
145  * @is_ht_40 - true: all channel in the section are HT40 channel,
146  *             false: legacy or HT 20 MHz
147  *             ignore if it is common section
148  * @iwl_eeprom_section_channel: channel array in the section,
149  *             ignore if common section
150  */
151 struct iwl_txpwr_section {
152         u32 offset;
153         u8 count;
154         enum ieee80211_band band;
155         bool is_common;
156         bool is_cck;
157         bool is_ht40;
158         u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
159 };
160
161 /**
162  * section 1 - 3 are regulatory tx power apply to all channels based on
163  *    modulation: CCK, OFDM
164  *    Band: 2.4GHz, 5.2GHz
165  * section 4 - 10 are regulatory tx power apply to specified channels
166  *    For example:
167  *      1L - Channel 1 Legacy
168  *      1HT - Channel 1 HT
169  *      (1,+1) - Channel 1 HT40 "_above_"
170  *
171  * Section 1: all CCK channels
172  * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
173  * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
174  * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
175  * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
176  * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
177  * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
178  * Section 8: 2.4 GHz channel: 13L, 13HT
179  * Section 9: 2.4 GHz channel: 140L, 140HT
180  * Section 10: 2.4 GHz 40MHz channels: (132,+1)  (44,+1)
181  *
182  */
183 static const struct iwl_txpwr_section enhinfo[] = {
184         { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
185         { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
186         { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
187         { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
188                 false, false, false,
189                 {1, 1, 2, 2, 10, 10, 11, 11 } },
190         { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
191                 false, false, true,
192                 { 1, 2, 6, 7, 9 } },
193         { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
194                 false, false, false,
195                 { 36, 64, 100, 36, 64, 100 } },
196         { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
197                 false, false, true,
198                 { 36, 60, 100 } },
199         { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
200                 false, false, false,
201                 { 13, 13 } },
202         { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
203                 false, false, false,
204                 { 140, 140 } },
205         { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
206                 false, false, true,
207                 { 132, 44 } },
208 };
209
210 /******************************************************************************
211  *
212  * EEPROM related functions
213  *
214 ******************************************************************************/
215
216 int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
217 {
218         u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
219         if ((gp & CSR_EEPROM_GP_VALID_MSK) == CSR_EEPROM_GP_BAD_SIGNATURE) {
220                 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
221                 return -ENOENT;
222         }
223         return 0;
224 }
225 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
226
227 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
228 {
229         u32 otpgp;
230
231         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
232         if (mode == IWL_OTP_ACCESS_ABSOLUTE)
233                 iwl_clear_bit(priv, CSR_OTP_GP_REG,
234                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
235         else
236                 iwl_set_bit(priv, CSR_OTP_GP_REG,
237                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
238 }
239
240 static int iwlcore_get_nvm_type(struct iwl_priv *priv)
241 {
242         u32 otpgp;
243         int nvm_type;
244
245         /* OTP only valid for CP/PP and after */
246         switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
247         case CSR_HW_REV_TYPE_NONE:
248                 IWL_ERR(priv, "Unknown hardware type\n");
249                 return -ENOENT;
250         case CSR_HW_REV_TYPE_3945:
251         case CSR_HW_REV_TYPE_4965:
252         case CSR_HW_REV_TYPE_5300:
253         case CSR_HW_REV_TYPE_5350:
254         case CSR_HW_REV_TYPE_5100:
255         case CSR_HW_REV_TYPE_5150:
256                 nvm_type = NVM_DEVICE_TYPE_EEPROM;
257                 break;
258         default:
259                 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
260                 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
261                         nvm_type = NVM_DEVICE_TYPE_OTP;
262                 else
263                         nvm_type = NVM_DEVICE_TYPE_EEPROM;
264                 break;
265         }
266         return  nvm_type;
267 }
268
269 /*
270  * The device's EEPROM semaphore prevents conflicts between driver and uCode
271  * when accessing the EEPROM; each access is a series of pulses to/from the
272  * EEPROM chip, not a single event, so even reads could conflict if they
273  * weren't arbitrated by the semaphore.
274  */
275 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
276 {
277         u16 count;
278         int ret;
279
280         for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
281                 /* Request semaphore */
282                 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
283                             CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
284
285                 /* See if we got it */
286                 ret = iwl_poll_direct_bit(priv, CSR_HW_IF_CONFIG_REG,
287                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
288                                 EEPROM_SEM_TIMEOUT);
289                 if (ret >= 0) {
290                         IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
291                                 count+1);
292                         return ret;
293                 }
294         }
295
296         return ret;
297 }
298 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
299
300 void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
301 {
302         iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
303                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
304
305 }
306 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
307
308 const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
309 {
310         BUG_ON(offset >= priv->cfg->eeprom_size);
311         return &priv->eeprom[offset];
312 }
313 EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
314
315 static int iwl_init_otp_access(struct iwl_priv *priv)
316 {
317         int ret;
318
319         /* Enable 40MHz radio clock */
320         _iwl_write32(priv, CSR_GP_CNTRL,
321                      _iwl_read32(priv, CSR_GP_CNTRL) |
322                      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
323
324         /* wait for clock to be ready */
325         ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
326                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
327                                   25000);
328         if (ret < 0)
329                 IWL_ERR(priv, "Time out access OTP\n");
330         else {
331                 iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
332                                   APMG_PS_CTRL_VAL_RESET_REQ);
333                 udelay(5);
334                 iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
335                                     APMG_PS_CTRL_VAL_RESET_REQ);
336         }
337         return ret;
338 }
339
340 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, u16 *eeprom_data)
341 {
342         int ret = 0;
343         u32 r;
344         u32 otpgp;
345
346         _iwl_write32(priv, CSR_EEPROM_REG,
347                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
348         ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
349                                   CSR_EEPROM_REG_READ_VALID_MSK,
350                                   IWL_EEPROM_ACCESS_TIMEOUT);
351         if (ret < 0) {
352                 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
353                 return ret;
354         }
355         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
356         /* check for ECC errors: */
357         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
358         if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
359                 /* stop in this case */
360                 /* set the uncorrectable OTP ECC bit for acknowledgement */
361                 iwl_set_bit(priv, CSR_OTP_GP_REG,
362                         CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
363                 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
364                 return -EINVAL;
365         }
366         if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
367                 /* continue in this case */
368                 /* set the correctable OTP ECC bit for acknowledgement */
369                 iwl_set_bit(priv, CSR_OTP_GP_REG,
370                                 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
371                 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
372         }
373         *eeprom_data = le16_to_cpu((__force __le16)(r >> 16));
374         return 0;
375 }
376
377 /*
378  * iwl_is_otp_empty: check for empty OTP
379  */
380 static bool iwl_is_otp_empty(struct iwl_priv *priv)
381 {
382         u16 next_link_addr = 0, link_value;
383         bool is_empty = false;
384
385         /* locate the beginning of OTP link list */
386         if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
387                 if (!link_value) {
388                         IWL_ERR(priv, "OTP is empty\n");
389                         is_empty = true;
390                 }
391         } else {
392                 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
393                 is_empty = true;
394         }
395
396         return is_empty;
397 }
398
399
400 /*
401  * iwl_find_otp_image: find EEPROM image in OTP
402  *   finding the OTP block that contains the EEPROM image.
403  *   the last valid block on the link list (the block _before_ the last block)
404  *   is the block we should read and used to configure the device.
405  *   If all the available OTP blocks are full, the last block will be the block
406  *   we should read and used to configure the device.
407  *   only perform this operation if shadow RAM is disabled
408  */
409 static int iwl_find_otp_image(struct iwl_priv *priv,
410                                         u16 *validblockaddr)
411 {
412         u16 next_link_addr = 0, link_value = 0, valid_addr;
413         int usedblocks = 0;
414
415         /* set addressing mode to absolute to traverse the link list */
416         iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
417
418         /* checking for empty OTP or error */
419         if (iwl_is_otp_empty(priv))
420                 return -EINVAL;
421
422         /*
423          * start traverse link list
424          * until reach the max number of OTP blocks
425          * different devices have different number of OTP blocks
426          */
427         do {
428                 /* save current valid block address
429                  * check for more block on the link list
430                  */
431                 valid_addr = next_link_addr;
432                 next_link_addr = link_value * sizeof(u16);
433                 IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
434                                usedblocks, next_link_addr);
435                 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
436                         return -EINVAL;
437                 if (!link_value) {
438                         /*
439                          * reach the end of link list, return success and
440                          * set address point to the starting address
441                          * of the image
442                          */
443                         *validblockaddr = valid_addr;
444                         /* skip first 2 bytes (link list pointer) */
445                         *validblockaddr += 2;
446                         return 0;
447                 }
448                 /* more in the link list, continue */
449                 usedblocks++;
450         } while (usedblocks <= priv->cfg->max_ll_items);
451
452         /* OTP has no valid blocks */
453         IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
454         return -EINVAL;
455 }
456
457 /**
458  * iwl_eeprom_init - read EEPROM contents
459  *
460  * Load the EEPROM contents from adapter into priv->eeprom
461  *
462  * NOTE:  This routine uses the non-debug IO access functions.
463  */
464 int iwl_eeprom_init(struct iwl_priv *priv)
465 {
466         u16 *e;
467         u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
468         int sz;
469         int ret;
470         u16 addr;
471         u16 validblockaddr = 0;
472         u16 cache_addr = 0;
473
474         priv->nvm_device_type = iwlcore_get_nvm_type(priv);
475         if (priv->nvm_device_type == -ENOENT)
476                 return -ENOENT;
477         /* allocate eeprom */
478         IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
479         sz = priv->cfg->eeprom_size;
480         priv->eeprom = kzalloc(sz, GFP_KERNEL);
481         if (!priv->eeprom) {
482                 ret = -ENOMEM;
483                 goto alloc_err;
484         }
485         e = (u16 *)priv->eeprom;
486
487         ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
488         if (ret < 0) {
489                 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
490                 ret = -ENOENT;
491                 goto err;
492         }
493
494         /* Make sure driver (instead of uCode) is allowed to read EEPROM */
495         ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
496         if (ret < 0) {
497                 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
498                 ret = -ENOENT;
499                 goto err;
500         }
501         if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
502                 ret = iwl_init_otp_access(priv);
503                 if (ret) {
504                         IWL_ERR(priv, "Failed to initialize OTP access.\n");
505                         ret = -ENOENT;
506                         goto done;
507                 }
508                 _iwl_write32(priv, CSR_EEPROM_GP,
509                              iwl_read32(priv, CSR_EEPROM_GP) &
510                              ~CSR_EEPROM_GP_IF_OWNER_MSK);
511
512                 iwl_set_bit(priv, CSR_OTP_GP_REG,
513                              CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
514                              CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
515                 /* traversing the linked list if no shadow ram supported */
516                 if (!priv->cfg->shadow_ram_support) {
517                         if (iwl_find_otp_image(priv, &validblockaddr)) {
518                                 ret = -ENOENT;
519                                 goto done;
520                         }
521                 }
522                 for (addr = validblockaddr; addr < validblockaddr + sz;
523                      addr += sizeof(u16)) {
524                         u16 eeprom_data;
525
526                         ret = iwl_read_otp_word(priv, addr, &eeprom_data);
527                         if (ret)
528                                 goto done;
529                         e[cache_addr / 2] = eeprom_data;
530                         cache_addr += sizeof(u16);
531                 }
532         } else {
533                 /* eeprom is an array of 16bit values */
534                 for (addr = 0; addr < sz; addr += sizeof(u16)) {
535                         u32 r;
536
537                         _iwl_write32(priv, CSR_EEPROM_REG,
538                                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
539
540                         ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
541                                                   CSR_EEPROM_REG_READ_VALID_MSK,
542                                                   IWL_EEPROM_ACCESS_TIMEOUT);
543                         if (ret < 0) {
544                                 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
545                                 goto done;
546                         }
547                         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
548                         e[addr / 2] = le16_to_cpu((__force __le16)(r >> 16));
549                 }
550         }
551         ret = 0;
552 done:
553         priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
554 err:
555         if (ret)
556                 iwl_eeprom_free(priv);
557 alloc_err:
558         return ret;
559 }
560 EXPORT_SYMBOL(iwl_eeprom_init);
561
562 void iwl_eeprom_free(struct iwl_priv *priv)
563 {
564         kfree(priv->eeprom);
565         priv->eeprom = NULL;
566 }
567 EXPORT_SYMBOL(iwl_eeprom_free);
568
569 int iwl_eeprom_check_version(struct iwl_priv *priv)
570 {
571         u16 eeprom_ver;
572         u16 calib_ver;
573
574         eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
575         calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
576
577         if (eeprom_ver < priv->cfg->eeprom_ver ||
578             calib_ver < priv->cfg->eeprom_calib_ver)
579                 goto err;
580
581         return 0;
582 err:
583         IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
584                   eeprom_ver, priv->cfg->eeprom_ver,
585                   calib_ver,  priv->cfg->eeprom_calib_ver);
586         return -EINVAL;
587
588 }
589 EXPORT_SYMBOL(iwl_eeprom_check_version);
590
591 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
592 {
593         return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
594 }
595 EXPORT_SYMBOL(iwl_eeprom_query_addr);
596
597 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
598 {
599         if (!priv->eeprom)
600                 return 0;
601         return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
602 }
603 EXPORT_SYMBOL(iwl_eeprom_query16);
604
605 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
606 {
607         const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
608                                         EEPROM_MAC_ADDRESS);
609         memcpy(mac, addr, ETH_ALEN);
610 }
611 EXPORT_SYMBOL(iwl_eeprom_get_mac);
612
613 static void iwl_init_band_reference(const struct iwl_priv *priv,
614                         int eep_band, int *eeprom_ch_count,
615                         const struct iwl_eeprom_channel **eeprom_ch_info,
616                         const u8 **eeprom_ch_index)
617 {
618         u32 offset = priv->cfg->ops->lib->
619                         eeprom_ops.regulatory_bands[eep_band - 1];
620         switch (eep_band) {
621         case 1:         /* 2.4GHz band */
622                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
623                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
624                                 iwl_eeprom_query_addr(priv, offset);
625                 *eeprom_ch_index = iwl_eeprom_band_1;
626                 break;
627         case 2:         /* 4.9GHz band */
628                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
629                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
630                                 iwl_eeprom_query_addr(priv, offset);
631                 *eeprom_ch_index = iwl_eeprom_band_2;
632                 break;
633         case 3:         /* 5.2GHz band */
634                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
635                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
636                                 iwl_eeprom_query_addr(priv, offset);
637                 *eeprom_ch_index = iwl_eeprom_band_3;
638                 break;
639         case 4:         /* 5.5GHz band */
640                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
641                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
642                                 iwl_eeprom_query_addr(priv, offset);
643                 *eeprom_ch_index = iwl_eeprom_band_4;
644                 break;
645         case 5:         /* 5.7GHz band */
646                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
647                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
648                                 iwl_eeprom_query_addr(priv, offset);
649                 *eeprom_ch_index = iwl_eeprom_band_5;
650                 break;
651         case 6:         /* 2.4GHz ht40 channels */
652                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
653                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
654                                 iwl_eeprom_query_addr(priv, offset);
655                 *eeprom_ch_index = iwl_eeprom_band_6;
656                 break;
657         case 7:         /* 5 GHz ht40 channels */
658                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
659                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
660                                 iwl_eeprom_query_addr(priv, offset);
661                 *eeprom_ch_index = iwl_eeprom_band_7;
662                 break;
663         default:
664                 BUG();
665                 return;
666         }
667 }
668
669 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
670                             ? # x " " : "")
671
672 /**
673  * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
674  *
675  * Does not set up a command, or touch hardware.
676  */
677 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
678                               enum ieee80211_band band, u16 channel,
679                               const struct iwl_eeprom_channel *eeprom_ch,
680                               u8 clear_ht40_extension_channel)
681 {
682         struct iwl_channel_info *ch_info;
683
684         ch_info = (struct iwl_channel_info *)
685                         iwl_get_channel_info(priv, band, channel);
686
687         if (!is_channel_valid(ch_info))
688                 return -1;
689
690         IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
691                         " Ad-Hoc %ssupported\n",
692                         ch_info->channel,
693                         is_channel_a_band(ch_info) ?
694                         "5.2" : "2.4",
695                         CHECK_AND_PRINT(IBSS),
696                         CHECK_AND_PRINT(ACTIVE),
697                         CHECK_AND_PRINT(RADAR),
698                         CHECK_AND_PRINT(WIDE),
699                         CHECK_AND_PRINT(DFS),
700                         eeprom_ch->flags,
701                         eeprom_ch->max_power_avg,
702                         ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
703                          && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
704                         "" : "not ");
705
706         ch_info->ht40_eeprom = *eeprom_ch;
707         ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
708         ch_info->ht40_curr_txpow = eeprom_ch->max_power_avg;
709         ch_info->ht40_min_power = 0;
710         ch_info->ht40_scan_power = eeprom_ch->max_power_avg;
711         ch_info->ht40_flags = eeprom_ch->flags;
712         ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
713
714         return 0;
715 }
716
717 /**
718  * iwl_get_max_txpower_avg - get the highest tx power from all chains.
719  *     find the highest tx power from all chains for the channel
720  */
721 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
722                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element)
723 {
724         s8 max_txpower_avg = 0; /* (dBm) */
725
726         IWL_DEBUG_INFO(priv, "%d - "
727                         "chain_a: %d dB chain_b: %d dB "
728                         "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
729                         element,
730                         enhanced_txpower[element].chain_a_max >> 1,
731                         enhanced_txpower[element].chain_b_max >> 1,
732                         enhanced_txpower[element].chain_c_max >> 1,
733                         enhanced_txpower[element].mimo2_max >> 1,
734                         enhanced_txpower[element].mimo3_max >> 1);
735         /* Take the highest tx power from any valid chains */
736         if ((priv->cfg->valid_tx_ant & ANT_A) &&
737             (enhanced_txpower[element].chain_a_max > max_txpower_avg))
738                 max_txpower_avg = enhanced_txpower[element].chain_a_max;
739         if ((priv->cfg->valid_tx_ant & ANT_B) &&
740             (enhanced_txpower[element].chain_b_max > max_txpower_avg))
741                 max_txpower_avg = enhanced_txpower[element].chain_b_max;
742         if ((priv->cfg->valid_tx_ant & ANT_C) &&
743             (enhanced_txpower[element].chain_c_max > max_txpower_avg))
744                 max_txpower_avg = enhanced_txpower[element].chain_c_max;
745         if (((priv->cfg->valid_tx_ant == ANT_AB) |
746             (priv->cfg->valid_tx_ant == ANT_BC) |
747             (priv->cfg->valid_tx_ant == ANT_AC)) &&
748             (enhanced_txpower[element].mimo2_max > max_txpower_avg))
749                 max_txpower_avg =  enhanced_txpower[element].mimo2_max;
750         if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
751             (enhanced_txpower[element].mimo3_max > max_txpower_avg))
752                 max_txpower_avg = enhanced_txpower[element].mimo3_max;
753
754         /* max. tx power in EEPROM is in 1/2 dBm format
755          * convert from 1/2 dBm to dBm
756          */
757         return max_txpower_avg >> 1;
758 }
759
760 /**
761  * iwl_update_common_txpower: update channel tx power
762  *     update tx power per band based on EEPROM enhanced tx power info.
763  */
764 static s8 iwl_update_common_txpower(struct iwl_priv *priv,
765                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
766                 int section, int element)
767 {
768         struct iwl_channel_info *ch_info;
769         int ch;
770         bool is_ht40 = false;
771         s8 max_txpower_avg; /* (dBm) */
772
773         /* it is common section, contain all type (Legacy, HT and HT40)
774          * based on the element in the section to determine
775          * is it HT 40 or not
776          */
777         if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
778                 is_ht40 = true;
779         max_txpower_avg =
780                 iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
781         ch_info = priv->channel_info;
782
783         for (ch = 0; ch < priv->channel_count; ch++) {
784                 /* find matching band and update tx power if needed */
785                 if ((ch_info->band == enhinfo[section].band) &&
786                     (ch_info->max_power_avg < max_txpower_avg) && (!is_ht40)) {
787                         /* Update regulatory-based run-time data */
788                         ch_info->max_power_avg = ch_info->curr_txpow =
789                             max_txpower_avg;
790                         ch_info->scan_power = max_txpower_avg;
791                 }
792                 if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
793                     ch_info->ht40_max_power_avg &&
794                     (ch_info->ht40_max_power_avg < max_txpower_avg)) {
795                         /* Update regulatory-based run-time data */
796                         ch_info->ht40_max_power_avg = max_txpower_avg;
797                         ch_info->ht40_curr_txpow = max_txpower_avg;
798                         ch_info->ht40_scan_power = max_txpower_avg;
799                 }
800                 ch_info++;
801         }
802         return max_txpower_avg;
803 }
804
805 /**
806  * iwl_update_channel_txpower: update channel tx power
807  *      update channel tx power based on EEPROM enhanced tx power info.
808  */
809 static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
810                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
811                 int section, int element)
812 {
813         struct iwl_channel_info *ch_info;
814         int ch;
815         u8 channel;
816         s8 max_txpower_avg; /* (dBm) */
817
818         channel = enhinfo[section].iwl_eeprom_section_channel[element];
819         max_txpower_avg =
820                 iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
821
822         ch_info = priv->channel_info;
823         for (ch = 0; ch < priv->channel_count; ch++) {
824                 /* find matching channel and update tx power if needed */
825                 if (ch_info->channel == channel) {
826                         if ((ch_info->max_power_avg < max_txpower_avg) &&
827                             (!enhinfo[section].is_ht40)) {
828                                 /* Update regulatory-based run-time data */
829                                 ch_info->max_power_avg = max_txpower_avg;
830                                 ch_info->curr_txpow = max_txpower_avg;
831                                 ch_info->scan_power = max_txpower_avg;
832                         }
833                         if ((enhinfo[section].is_ht40) &&
834                             (ch_info->ht40_max_power_avg) &&
835                             (ch_info->ht40_max_power_avg < max_txpower_avg)) {
836                                 /* Update regulatory-based run-time data */
837                                 ch_info->ht40_max_power_avg = max_txpower_avg;
838                                 ch_info->ht40_curr_txpow = max_txpower_avg;
839                                 ch_info->ht40_scan_power = max_txpower_avg;
840                         }
841                         break;
842                 }
843                 ch_info++;
844         }
845         return max_txpower_avg;
846 }
847
848 /**
849  * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
850  */
851 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
852 {
853         int eeprom_section_count = 0;
854         int section, element;
855         struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
856         u32 offset;
857         s8 max_txpower_avg; /* (dBm) */
858
859         /* Loop through all the sections
860          * adjust bands and channel's max tx power
861          * Set the tx_power_user_lmt to the highest power
862          * supported by any channels and chains
863          */
864         for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
865                 eeprom_section_count = enhinfo[section].count;
866                 offset = enhinfo[section].offset;
867                 enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
868                                 iwl_eeprom_query_addr(priv, offset);
869
870                 for (element = 0; element < eeprom_section_count; element++) {
871                         if (enhinfo[section].is_common)
872                                 max_txpower_avg =
873                                         iwl_update_common_txpower(priv,
874                                         enhanced_txpower, section, element);
875                         else
876                                 max_txpower_avg =
877                                         iwl_update_channel_txpower(priv,
878                                         enhanced_txpower, section, element);
879
880                         /* Update the tx_power_user_lmt to the highest power
881                          * supported by any channel */
882                         if (max_txpower_avg > priv->tx_power_user_lmt)
883                                 priv->tx_power_user_lmt = max_txpower_avg;
884                 }
885         }
886 }
887 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
888
889 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
890                             ? # x " " : "")
891
892 /**
893  * iwl_init_channel_map - Set up driver's info for all possible channels
894  */
895 int iwl_init_channel_map(struct iwl_priv *priv)
896 {
897         int eeprom_ch_count = 0;
898         const u8 *eeprom_ch_index = NULL;
899         const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
900         int band, ch;
901         struct iwl_channel_info *ch_info;
902
903         if (priv->channel_count) {
904                 IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
905                 return 0;
906         }
907
908         IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
909
910         priv->channel_count =
911             ARRAY_SIZE(iwl_eeprom_band_1) +
912             ARRAY_SIZE(iwl_eeprom_band_2) +
913             ARRAY_SIZE(iwl_eeprom_band_3) +
914             ARRAY_SIZE(iwl_eeprom_band_4) +
915             ARRAY_SIZE(iwl_eeprom_band_5);
916
917         IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
918
919         priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
920                                      priv->channel_count, GFP_KERNEL);
921         if (!priv->channel_info) {
922                 IWL_ERR(priv, "Could not allocate channel_info\n");
923                 priv->channel_count = 0;
924                 return -ENOMEM;
925         }
926
927         ch_info = priv->channel_info;
928
929         /* Loop through the 5 EEPROM bands adding them in order to the
930          * channel map we maintain (that contains additional information than
931          * what just in the EEPROM) */
932         for (band = 1; band <= 5; band++) {
933
934                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
935                                         &eeprom_ch_info, &eeprom_ch_index);
936
937                 /* Loop through each band adding each of the channels */
938                 for (ch = 0; ch < eeprom_ch_count; ch++) {
939                         ch_info->channel = eeprom_ch_index[ch];
940                         ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
941                             IEEE80211_BAND_5GHZ;
942
943                         /* permanently store EEPROM's channel regulatory flags
944                          *   and max power in channel info database. */
945                         ch_info->eeprom = eeprom_ch_info[ch];
946
947                         /* Copy the run-time flags so they are there even on
948                          * invalid channels */
949                         ch_info->flags = eeprom_ch_info[ch].flags;
950                         /* First write that ht40 is not enabled, and then enable
951                          * one by one */
952                         ch_info->ht40_extension_channel =
953                                         IEEE80211_CHAN_NO_HT40;
954
955                         if (!(is_channel_valid(ch_info))) {
956                                 IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
957                                                "No traffic\n",
958                                                ch_info->channel,
959                                                ch_info->flags,
960                                                is_channel_a_band(ch_info) ?
961                                                "5.2" : "2.4");
962                                 ch_info++;
963                                 continue;
964                         }
965
966                         /* Initialize regulatory-based run-time data */
967                         ch_info->max_power_avg = ch_info->curr_txpow =
968                             eeprom_ch_info[ch].max_power_avg;
969                         ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
970                         ch_info->min_power = 0;
971
972                         IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
973                                        " Ad-Hoc %ssupported\n",
974                                        ch_info->channel,
975                                        is_channel_a_band(ch_info) ?
976                                        "5.2" : "2.4",
977                                        CHECK_AND_PRINT_I(VALID),
978                                        CHECK_AND_PRINT_I(IBSS),
979                                        CHECK_AND_PRINT_I(ACTIVE),
980                                        CHECK_AND_PRINT_I(RADAR),
981                                        CHECK_AND_PRINT_I(WIDE),
982                                        CHECK_AND_PRINT_I(DFS),
983                                        eeprom_ch_info[ch].flags,
984                                        eeprom_ch_info[ch].max_power_avg,
985                                        ((eeprom_ch_info[ch].
986                                          flags & EEPROM_CHANNEL_IBSS)
987                                         && !(eeprom_ch_info[ch].
988                                              flags & EEPROM_CHANNEL_RADAR))
989                                        ? "" : "not ");
990
991                         /* Set the tx_power_user_lmt to the highest power
992                          * supported by any channel */
993                         if (eeprom_ch_info[ch].max_power_avg >
994                                                 priv->tx_power_user_lmt)
995                                 priv->tx_power_user_lmt =
996                                     eeprom_ch_info[ch].max_power_avg;
997
998                         ch_info++;
999                 }
1000         }
1001
1002         /* Check if we do have HT40 channels */
1003         if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
1004             EEPROM_REGULATORY_BAND_NO_HT40 &&
1005             priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
1006             EEPROM_REGULATORY_BAND_NO_HT40)
1007                 return 0;
1008
1009         /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1010         for (band = 6; band <= 7; band++) {
1011                 enum ieee80211_band ieeeband;
1012
1013                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1014                                         &eeprom_ch_info, &eeprom_ch_index);
1015
1016                 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1017                 ieeeband =
1018                         (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1019
1020                 /* Loop through each band adding each of the channels */
1021                 for (ch = 0; ch < eeprom_ch_count; ch++) {
1022                         /* Set up driver's info for lower half */
1023                         iwl_mod_ht40_chan_info(priv, ieeeband,
1024                                                 eeprom_ch_index[ch],
1025                                                 &eeprom_ch_info[ch],
1026                                                 IEEE80211_CHAN_NO_HT40PLUS);
1027
1028                         /* Set up driver's info for upper half */
1029                         iwl_mod_ht40_chan_info(priv, ieeeband,
1030                                                 eeprom_ch_index[ch] + 4,
1031                                                 &eeprom_ch_info[ch],
1032                                                 IEEE80211_CHAN_NO_HT40MINUS);
1033                 }
1034         }
1035
1036         /* for newer device (6000 series and up)
1037          * EEPROM contain enhanced tx power information
1038          * driver need to process addition information
1039          * to determine the max channel tx power limits
1040          */
1041         if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
1042                 priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
1043
1044         return 0;
1045 }
1046 EXPORT_SYMBOL(iwl_init_channel_map);
1047
1048 /*
1049  * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1050  */
1051 void iwl_free_channel_map(struct iwl_priv *priv)
1052 {
1053         kfree(priv->channel_info);
1054         priv->channel_count = 0;
1055 }
1056 EXPORT_SYMBOL(iwl_free_channel_map);
1057
1058 /**
1059  * iwl_get_channel_info - Find driver's private channel info
1060  *
1061  * Based on band and channel number.
1062  */
1063 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1064                                         enum ieee80211_band band, u16 channel)
1065 {
1066         int i;
1067
1068         switch (band) {
1069         case IEEE80211_BAND_5GHZ:
1070                 for (i = 14; i < priv->channel_count; i++) {
1071                         if (priv->channel_info[i].channel == channel)
1072                                 return &priv->channel_info[i];
1073                 }
1074                 break;
1075         case IEEE80211_BAND_2GHZ:
1076                 if (channel >= 1 && channel <= 14)
1077                         return &priv->channel_info[channel - 1];
1078                 break;
1079         default:
1080                 BUG();
1081         }
1082
1083         return NULL;
1084 }
1085 EXPORT_SYMBOL(iwl_get_channel_info);
1086