Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[cascardo/linux.git] / drivers / net / wireless / iwlwifi / mvm / tt.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2013 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called COPYING.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  *****************************************************************************/
63
64 #include "mvm.h"
65 #include "iwl-config.h"
66 #include "iwl-io.h"
67 #include "iwl-csr.h"
68 #include "iwl-prph.h"
69
70 #define OTP_DTS_DIODE_DEVIATION 96 /*in words*/
71 /* VBG - Voltage Band Gap error data (temperature offset) */
72 #define OTP_WP_DTS_VBG                  (OTP_DTS_DIODE_DEVIATION + 2)
73 #define MEAS_VBG_MIN_VAL                2300
74 #define MEAS_VBG_MAX_VAL                3000
75 #define MEAS_VBG_DEFAULT_VAL            2700
76 #define DTS_DIODE_VALID(flags)          (flags & DTS_DIODE_REG_FLAGS_PASS_ONCE)
77 #define MIN_TEMPERATURE                 0
78 #define MAX_TEMPERATURE                 125
79 #define TEMPERATURE_ERROR               (MAX_TEMPERATURE + 1)
80 #define PTAT_DIGITAL_VALUE_MIN_VALUE    0
81 #define PTAT_DIGITAL_VALUE_MAX_VALUE    0xFF
82 #define DTS_VREFS_NUM                   5
83 static inline u32 DTS_DIODE_GET_VREFS_ID(u32 flags)
84 {
85         return (flags & DTS_DIODE_REG_FLAGS_VREFS_ID) >>
86                                         DTS_DIODE_REG_FLAGS_VREFS_ID_POS;
87 }
88
89 #define CALC_VREFS_MIN_DIFF     43
90 #define CALC_VREFS_MAX_DIFF     51
91 #define CALC_LUT_SIZE           (1 + CALC_VREFS_MAX_DIFF - CALC_VREFS_MIN_DIFF)
92 #define CALC_LUT_INDEX_OFFSET   CALC_VREFS_MIN_DIFF
93 #define CALC_TEMPERATURE_RESULT_SHIFT_OFFSET    23
94
95 /*
96  * @digital_value: The diode's digital-value sampled (temperature/voltage)
97  * @vref_low: The lower voltage-reference (the vref just below the diode's
98  *      sampled digital-value)
99  * @vref_high: The higher voltage-reference (the vref just above the diode's
100  *      sampled digital-value)
101  * @flags: bits[1:0]: The ID of the Vrefs pair (lowVref,highVref)
102  *      bits[6:2]: Reserved.
103  *      bits[7:7]: Indicates completion of at least 1 successful sample
104  *      since last DTS reset.
105  */
106 struct iwl_mvm_dts_diode_bits {
107         u8 digital_value;
108         u8 vref_low;
109         u8 vref_high;
110         u8 flags;
111 } __packed;
112
113 union dts_diode_results {
114         u32 reg_value;
115         struct iwl_mvm_dts_diode_bits bits;
116 } __packed;
117
118 static s16 iwl_mvm_dts_get_volt_band_gap(struct iwl_mvm *mvm)
119 {
120         struct iwl_nvm_section calib_sec;
121         const __le16 *calib;
122         u16 vbg;
123
124         /* TODO: move parsing to NVM code */
125         calib_sec = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION];
126         calib = (__le16 *)calib_sec.data;
127
128         vbg = le16_to_cpu(calib[OTP_WP_DTS_VBG]);
129
130         if (vbg < MEAS_VBG_MIN_VAL || vbg > MEAS_VBG_MAX_VAL)
131                 vbg = MEAS_VBG_DEFAULT_VAL;
132
133         return vbg;
134 }
135
136 static u16 iwl_mvm_dts_get_ptat_deviation_offset(struct iwl_mvm *mvm)
137 {
138         const u8 *calib;
139         u8 ptat, pa1, pa2, median;
140
141         /* TODO: move parsing to NVM code */
142         calib = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION].data;
143         ptat = calib[OTP_DTS_DIODE_DEVIATION];
144         pa1 = calib[OTP_DTS_DIODE_DEVIATION + 1];
145         pa2 = calib[OTP_DTS_DIODE_DEVIATION + 2];
146
147         /* get the median: */
148         if (ptat > pa1) {
149                 if (ptat > pa2)
150                         median = (pa1 > pa2) ? pa1 : pa2;
151                 else
152                         median = ptat;
153         } else {
154                 if (pa1 > pa2)
155                         median = (ptat > pa2) ? ptat : pa2;
156                 else
157                         median = pa1;
158         }
159
160         return ptat - median;
161 }
162
163 static u8 iwl_mvm_dts_calibrate_ptat_deviation(struct iwl_mvm *mvm, u8 value)
164 {
165         /* Calibrate the PTAT digital value, based on PTAT deviation data: */
166         s16 new_val = value - iwl_mvm_dts_get_ptat_deviation_offset(mvm);
167
168         if (new_val > PTAT_DIGITAL_VALUE_MAX_VALUE)
169                 new_val = PTAT_DIGITAL_VALUE_MAX_VALUE;
170         else if (new_val < PTAT_DIGITAL_VALUE_MIN_VALUE)
171                 new_val = PTAT_DIGITAL_VALUE_MIN_VALUE;
172
173         return new_val;
174 }
175
176 static bool dts_get_adjacent_vrefs(struct iwl_mvm *mvm,
177                                    union dts_diode_results *avg_ptat)
178 {
179         u8 vrefs_results[DTS_VREFS_NUM];
180         u8 low_vref_index = 0, flags;
181         u32 reg;
182
183         reg = iwl_read_prph(mvm->trans, DTSC_VREF_AVG);
184         memcpy(vrefs_results, &reg, sizeof(reg));
185         reg = iwl_read_prph(mvm->trans, DTSC_VREF5_AVG);
186         vrefs_results[4] = reg & 0xff;
187
188         if (avg_ptat->bits.digital_value < vrefs_results[0] ||
189             avg_ptat->bits.digital_value > vrefs_results[4])
190                 return false;
191
192         if (avg_ptat->bits.digital_value > vrefs_results[3])
193                 low_vref_index = 3;
194         else if (avg_ptat->bits.digital_value > vrefs_results[2])
195                 low_vref_index = 2;
196         else if (avg_ptat->bits.digital_value > vrefs_results[1])
197                 low_vref_index = 1;
198
199         avg_ptat->bits.vref_low  = vrefs_results[low_vref_index];
200         avg_ptat->bits.vref_high = vrefs_results[low_vref_index + 1];
201         flags = avg_ptat->bits.flags;
202         avg_ptat->bits.flags =
203                 (flags & ~DTS_DIODE_REG_FLAGS_VREFS_ID) |
204                 (low_vref_index & DTS_DIODE_REG_FLAGS_VREFS_ID);
205         return true;
206 }
207
208 /*
209  * return true it the results are valid, and false otherwise.
210  */
211 static bool dts_read_ptat_avg_results(struct iwl_mvm *mvm,
212                                       union dts_diode_results *avg_ptat)
213 {
214         u32 reg;
215         u8 tmp;
216
217         /* fill the diode value and pass_once with avg-reg results */
218         reg = iwl_read_prph(mvm->trans, DTSC_PTAT_AVG);
219         reg &= DTS_DIODE_REG_DIG_VAL | DTS_DIODE_REG_PASS_ONCE;
220         avg_ptat->reg_value = reg;
221
222         /* calibrate the PTAT digital value */
223         tmp = avg_ptat->bits.digital_value;
224         tmp = iwl_mvm_dts_calibrate_ptat_deviation(mvm, tmp);
225         avg_ptat->bits.digital_value = tmp;
226
227         /*
228          * fill vrefs fields, based on the avgVrefs results
229          * and the diode value
230          */
231         return dts_get_adjacent_vrefs(mvm, avg_ptat) &&
232                 DTS_DIODE_VALID(avg_ptat->bits.flags);
233 }
234
235 static s32 calculate_nic_temperature(union dts_diode_results avg_ptat,
236                                      u16 volt_band_gap)
237 {
238         u32 tmp_result;
239         u8 vrefs_diff;
240         /*
241          * For temperature calculation (at the end, shift right by 23)
242          * LUT[(D2-D1)] = ROUND{ 2^23 / ((D2-D1)*9*10) }
243          * (D2-D1) ==   43    44    45    46    47    48    49    50    51
244          */
245         static const u16 calc_lut[CALC_LUT_SIZE] = {
246                 2168, 2118, 2071, 2026, 1983, 1942, 1902, 1864, 1828,
247         };
248
249         /*
250          * The diff between the high and low voltage-references is assumed
251          * to be strictly be in range of [60,68]
252          */
253         vrefs_diff = avg_ptat.bits.vref_high - avg_ptat.bits.vref_low;
254
255         if (vrefs_diff < CALC_VREFS_MIN_DIFF ||
256             vrefs_diff > CALC_VREFS_MAX_DIFF)
257                 return TEMPERATURE_ERROR;
258
259         /* calculate the result: */
260         tmp_result =
261                 vrefs_diff * (DTS_DIODE_GET_VREFS_ID(avg_ptat.bits.flags) + 9);
262         tmp_result += avg_ptat.bits.digital_value;
263         tmp_result -= avg_ptat.bits.vref_high;
264
265         /* multiply by the LUT value (based on the diff) */
266         tmp_result *= calc_lut[vrefs_diff - CALC_LUT_INDEX_OFFSET];
267
268         /*
269          * Get the BandGap (the voltage refereces source) error data
270          * (temperature offset)
271          */
272         tmp_result *= volt_band_gap;
273
274         /*
275          * here, tmp_result value can be up to 32-bits. We want to right-shift
276          * it *without* sign-extend.
277          */
278         tmp_result = tmp_result >> CALC_TEMPERATURE_RESULT_SHIFT_OFFSET;
279
280         /*
281          * at this point, tmp_result should be in the range:
282          * 200 <= tmp_result <= 365
283          */
284         return (s16)tmp_result - 240;
285 }
286
287 static s32 check_nic_temperature(struct iwl_mvm *mvm)
288 {
289         u16 volt_band_gap;
290         union dts_diode_results avg_ptat;
291
292         volt_band_gap = iwl_mvm_dts_get_volt_band_gap(mvm);
293
294         /* disable DTS */
295         iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0);
296
297         /* SV initialization */
298         iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 1);
299         iwl_write_prph(mvm->trans, DTSC_CFG_MODE,
300                        DTSC_CFG_MODE_PERIODIC);
301
302         /* wait for results */
303         msleep(100);
304         if (!dts_read_ptat_avg_results(mvm, &avg_ptat))
305                 return TEMPERATURE_ERROR;
306
307         /* disable DTS */
308         iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0);
309
310         return calculate_nic_temperature(avg_ptat, volt_band_gap);
311 }
312
313 static void iwl_mvm_enter_ctkill(struct iwl_mvm *mvm)
314 {
315         u32 duration = mvm->thermal_throttle.params->ct_kill_duration;
316
317         IWL_ERR(mvm, "Enter CT Kill\n");
318         iwl_mvm_set_hw_ctkill_state(mvm, true);
319         schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit,
320                               round_jiffies_relative(duration * HZ));
321 }
322
323 static void iwl_mvm_exit_ctkill(struct iwl_mvm *mvm)
324 {
325         IWL_ERR(mvm, "Exit CT Kill\n");
326         iwl_mvm_set_hw_ctkill_state(mvm, false);
327 }
328
329 static void check_exit_ctkill(struct work_struct *work)
330 {
331         struct iwl_mvm_tt_mgmt *tt;
332         struct iwl_mvm *mvm;
333         u32 duration;
334         s32 temp;
335
336         tt = container_of(work, struct iwl_mvm_tt_mgmt, ct_kill_exit.work);
337         mvm = container_of(tt, struct iwl_mvm, thermal_throttle);
338
339         duration = tt->params->ct_kill_duration;
340
341         iwl_trans_start_hw(mvm->trans);
342         temp = check_nic_temperature(mvm);
343         iwl_trans_stop_hw(mvm->trans, false);
344
345         if (temp < MIN_TEMPERATURE || temp > MAX_TEMPERATURE) {
346                 IWL_DEBUG_TEMP(mvm, "Failed to measure NIC temperature\n");
347                 goto reschedule;
348         }
349         IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", temp);
350
351         if (temp <= tt->params->ct_kill_exit) {
352                 iwl_mvm_exit_ctkill(mvm);
353                 return;
354         }
355
356 reschedule:
357         schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit,
358                               round_jiffies(duration * HZ));
359 }
360
361 static void iwl_mvm_tt_smps_iterator(void *_data, u8 *mac,
362                                      struct ieee80211_vif *vif)
363 {
364         struct iwl_mvm *mvm = _data;
365         enum ieee80211_smps_mode smps_mode;
366
367         lockdep_assert_held(&mvm->mutex);
368
369         if (mvm->thermal_throttle.dynamic_smps)
370                 smps_mode = IEEE80211_SMPS_DYNAMIC;
371         else
372                 smps_mode = IEEE80211_SMPS_AUTOMATIC;
373
374         if (vif->type != NL80211_IFTYPE_STATION)
375                 return;
376
377         iwl_mvm_update_smps(mvm, vif, IWL_MVM_SMPS_REQ_TT, smps_mode);
378 }
379
380 static void iwl_mvm_tt_tx_protection(struct iwl_mvm *mvm, bool enable)
381 {
382         struct ieee80211_sta *sta;
383         struct iwl_mvm_sta *mvmsta;
384         int i, err;
385
386         for (i = 0; i < IWL_MVM_STATION_COUNT; i++) {
387                 sta = rcu_dereference_protected(mvm->fw_id_to_mac_id[i],
388                                                 lockdep_is_held(&mvm->mutex));
389                 if (IS_ERR_OR_NULL(sta))
390                         continue;
391                 mvmsta = iwl_mvm_sta_from_mac80211(sta);
392                 if (enable == mvmsta->tt_tx_protection)
393                         continue;
394                 err = iwl_mvm_tx_protection(mvm, mvmsta, enable);
395                 if (err) {
396                         IWL_ERR(mvm, "Failed to %s Tx protection\n",
397                                 enable ? "enable" : "disable");
398                 } else {
399                         IWL_DEBUG_TEMP(mvm, "%s Tx protection\n",
400                                        enable ? "Enable" : "Disable");
401                         mvmsta->tt_tx_protection = enable;
402                 }
403         }
404 }
405
406 static void iwl_mvm_tt_tx_backoff(struct iwl_mvm *mvm, u32 backoff)
407 {
408         struct iwl_host_cmd cmd = {
409                 .id = REPLY_THERMAL_MNG_BACKOFF,
410                 .len = { sizeof(u32), },
411                 .data = { &backoff, },
412                 .flags = CMD_SYNC,
413         };
414
415         if (iwl_mvm_send_cmd(mvm, &cmd) == 0) {
416                 IWL_DEBUG_TEMP(mvm, "Set Thermal Tx backoff to: %u\n",
417                                backoff);
418                 mvm->thermal_throttle.tx_backoff = backoff;
419         } else {
420                 IWL_ERR(mvm, "Failed to change Thermal Tx backoff\n");
421         }
422 }
423
424 void iwl_mvm_tt_handler(struct iwl_mvm *mvm)
425 {
426         const struct iwl_tt_params *params = mvm->thermal_throttle.params;
427         struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle;
428         s32 temperature = mvm->temperature;
429         bool throttle_enable = false;
430         int i;
431         u32 tx_backoff;
432
433         IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", mvm->temperature);
434
435         if (params->support_ct_kill && temperature >= params->ct_kill_entry) {
436                 iwl_mvm_enter_ctkill(mvm);
437                 return;
438         }
439
440         if (params->support_dynamic_smps) {
441                 if (!tt->dynamic_smps &&
442                     temperature >= params->dynamic_smps_entry) {
443                         IWL_DEBUG_TEMP(mvm, "Enable dynamic SMPS\n");
444                         tt->dynamic_smps = true;
445                         ieee80211_iterate_active_interfaces_atomic(
446                                         mvm->hw, IEEE80211_IFACE_ITER_NORMAL,
447                                         iwl_mvm_tt_smps_iterator, mvm);
448                         throttle_enable = true;
449                 } else if (tt->dynamic_smps &&
450                            temperature <= params->dynamic_smps_exit) {
451                         IWL_DEBUG_TEMP(mvm, "Disable dynamic SMPS\n");
452                         tt->dynamic_smps = false;
453                         ieee80211_iterate_active_interfaces_atomic(
454                                         mvm->hw, IEEE80211_IFACE_ITER_NORMAL,
455                                         iwl_mvm_tt_smps_iterator, mvm);
456                 }
457         }
458
459         if (params->support_tx_protection) {
460                 if (temperature >= params->tx_protection_entry) {
461                         iwl_mvm_tt_tx_protection(mvm, true);
462                         throttle_enable = true;
463                 } else if (temperature <= params->tx_protection_exit) {
464                         iwl_mvm_tt_tx_protection(mvm, false);
465                 }
466         }
467
468         if (params->support_tx_backoff) {
469                 tx_backoff = 0;
470                 for (i = 0; i < TT_TX_BACKOFF_SIZE; i++) {
471                         if (temperature < params->tx_backoff[i].temperature)
472                                 break;
473                         tx_backoff = params->tx_backoff[i].backoff;
474                 }
475                 if (tx_backoff != 0)
476                         throttle_enable = true;
477                 if (tt->tx_backoff != tx_backoff)
478                         iwl_mvm_tt_tx_backoff(mvm, tx_backoff);
479         }
480
481         if (!tt->throttle && throttle_enable) {
482                 IWL_WARN(mvm,
483                          "Due to high temperature thermal throttling initiated\n");
484                 tt->throttle = true;
485         } else if (tt->throttle && !tt->dynamic_smps && tt->tx_backoff == 0 &&
486                    temperature <= params->tx_protection_exit) {
487                 IWL_WARN(mvm,
488                          "Temperature is back to normal thermal throttling stopped\n");
489                 tt->throttle = false;
490         }
491 }
492
493 static const struct iwl_tt_params iwl7000_tt_params = {
494         .ct_kill_entry = 118,
495         .ct_kill_exit = 96,
496         .ct_kill_duration = 5,
497         .dynamic_smps_entry = 114,
498         .dynamic_smps_exit = 110,
499         .tx_protection_entry = 114,
500         .tx_protection_exit = 108,
501         .tx_backoff = {
502                 {.temperature = 112, .backoff = 200},
503                 {.temperature = 113, .backoff = 600},
504                 {.temperature = 114, .backoff = 1200},
505                 {.temperature = 115, .backoff = 2000},
506                 {.temperature = 116, .backoff = 4000},
507                 {.temperature = 117, .backoff = 10000},
508         },
509         .support_ct_kill = true,
510         .support_dynamic_smps = true,
511         .support_tx_protection = true,
512         .support_tx_backoff = true,
513 };
514
515 static const struct iwl_tt_params iwl7000_high_temp_tt_params = {
516         .ct_kill_entry = 118,
517         .ct_kill_exit = 96,
518         .ct_kill_duration = 5,
519         .dynamic_smps_entry = 114,
520         .dynamic_smps_exit = 110,
521         .tx_protection_entry = 114,
522         .tx_protection_exit = 108,
523         .tx_backoff = {
524                 {.temperature = 112, .backoff = 300},
525                 {.temperature = 113, .backoff = 800},
526                 {.temperature = 114, .backoff = 1500},
527                 {.temperature = 115, .backoff = 3000},
528                 {.temperature = 116, .backoff = 5000},
529                 {.temperature = 117, .backoff = 10000},
530         },
531         .support_ct_kill = true,
532         .support_dynamic_smps = true,
533         .support_tx_protection = true,
534         .support_tx_backoff = true,
535 };
536
537 void iwl_mvm_tt_initialize(struct iwl_mvm *mvm)
538 {
539         struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle;
540
541         IWL_DEBUG_TEMP(mvm, "Initialize Thermal Throttling\n");
542
543         if (mvm->cfg->high_temp)
544                 tt->params = &iwl7000_high_temp_tt_params;
545         else
546                 tt->params = &iwl7000_tt_params;
547
548         tt->throttle = false;
549         INIT_DELAYED_WORK(&tt->ct_kill_exit, check_exit_ctkill);
550 }
551
552 void iwl_mvm_tt_exit(struct iwl_mvm *mvm)
553 {
554         cancel_delayed_work_sync(&mvm->thermal_throttle.ct_kill_exit);
555         IWL_DEBUG_TEMP(mvm, "Exit Thermal Throttling\n");
556 }