Merge remote-tracking branches 'spi/fix/qup' and 'spi/fix/topcliff-pch' into spi...
[cascardo/linux.git] / drivers / net / wireless / rsi / rsi_91x_mgmt.c
1 /**
2  * Copyright (c) 2014 Redpine Signals Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
20
21 static struct bootup_params boot_params_20 = {
22         .magic_number = cpu_to_le16(0x5aa5),
23         .crystal_good_time = 0x0,
24         .valid = cpu_to_le32(VALID_20),
25         .reserved_for_valids = 0x0,
26         .bootup_mode_info = 0x0,
27         .digital_loop_back_params = 0x0,
28         .rtls_timestamp_en = 0x0,
29         .host_spi_intr_cfg = 0x0,
30         .device_clk_info = {{
31                 .pll_config_g = {
32                         .tapll_info_g = {
33                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34                                               (TA_PLL_M_VAL_20)),
35                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36                         },
37                         .pll960_info_g = {
38                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39                                                          (PLL960_N_VAL_20)),
40                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41                                 .pll_reg_3 = 0x0,
42                         },
43                         .afepll_info_g = {
44                                 .pll_reg = cpu_to_le16(0x9f0),
45                         }
46                 },
47                 .switch_clk_g = {
48                         .switch_clk_info = cpu_to_le16(BIT(3)),
49                         .bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50                         .umac_clock_reg_config = 0x0,
51                         .qspi_uart_clock_reg_config = 0x0
52                 }
53         },
54         {
55                 .pll_config_g = {
56                         .tapll_info_g = {
57                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58                                                          (TA_PLL_M_VAL_20)),
59                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60                         },
61                         .pll960_info_g = {
62                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63                                                          (PLL960_N_VAL_20)),
64                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65                                 .pll_reg_3 = 0x0,
66                         },
67                         .afepll_info_g = {
68                                 .pll_reg = cpu_to_le16(0x9f0),
69                         }
70                 },
71                 .switch_clk_g = {
72                         .switch_clk_info = 0x0,
73                         .bbp_lmac_clk_reg_val = 0x0,
74                         .umac_clock_reg_config = 0x0,
75                         .qspi_uart_clock_reg_config = 0x0
76                 }
77         },
78         {
79                 .pll_config_g = {
80                         .tapll_info_g = {
81                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82                                                          (TA_PLL_M_VAL_20)),
83                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84                         },
85                         .pll960_info_g = {
86                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87                                                          (PLL960_N_VAL_20)),
88                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89                                 .pll_reg_3 = 0x0,
90                         },
91                         .afepll_info_g = {
92                                 .pll_reg = cpu_to_le16(0x9f0),
93                         }
94                 },
95                 .switch_clk_g = {
96                         .switch_clk_info = 0x0,
97                         .bbp_lmac_clk_reg_val = 0x0,
98                         .umac_clock_reg_config = 0x0,
99                         .qspi_uart_clock_reg_config = 0x0
100                 }
101         } },
102         .buckboost_wakeup_cnt = 0x0,
103         .pmu_wakeup_wait = 0x0,
104         .shutdown_wait_time = 0x0,
105         .pmu_slp_clkout_sel = 0x0,
106         .wdt_prog_value = 0x0,
107         .wdt_soc_rst_delay = 0x0,
108         .dcdc_operation_mode = 0x0,
109         .soc_reset_wait_cnt = 0x0
110 };
111
112 static struct bootup_params boot_params_40 = {
113         .magic_number = cpu_to_le16(0x5aa5),
114         .crystal_good_time = 0x0,
115         .valid = cpu_to_le32(VALID_40),
116         .reserved_for_valids = 0x0,
117         .bootup_mode_info = 0x0,
118         .digital_loop_back_params = 0x0,
119         .rtls_timestamp_en = 0x0,
120         .host_spi_intr_cfg = 0x0,
121         .device_clk_info = {{
122                 .pll_config_g = {
123                         .tapll_info_g = {
124                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125                                                          (TA_PLL_M_VAL_40)),
126                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127                         },
128                         .pll960_info_g = {
129                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130                                                          (PLL960_N_VAL_40)),
131                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132                                 .pll_reg_3 = 0x0,
133                         },
134                         .afepll_info_g = {
135                                 .pll_reg = cpu_to_le16(0x9f0),
136                         }
137                 },
138                 .switch_clk_g = {
139                         .switch_clk_info = cpu_to_le16(0x09),
140                         .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141                         .umac_clock_reg_config = cpu_to_le16(0x48),
142                         .qspi_uart_clock_reg_config = 0x0
143                 }
144         },
145         {
146                 .pll_config_g = {
147                         .tapll_info_g = {
148                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149                                                          (TA_PLL_M_VAL_40)),
150                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151                         },
152                         .pll960_info_g = {
153                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154                                                          (PLL960_N_VAL_40)),
155                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156                                 .pll_reg_3 = 0x0,
157                         },
158                         .afepll_info_g = {
159                                 .pll_reg = cpu_to_le16(0x9f0),
160                         }
161                 },
162                 .switch_clk_g = {
163                         .switch_clk_info = 0x0,
164                         .bbp_lmac_clk_reg_val = 0x0,
165                         .umac_clock_reg_config = 0x0,
166                         .qspi_uart_clock_reg_config = 0x0
167                 }
168         },
169         {
170                 .pll_config_g = {
171                         .tapll_info_g = {
172                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173                                                          (TA_PLL_M_VAL_40)),
174                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175                         },
176                         .pll960_info_g = {
177                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178                                                          (PLL960_N_VAL_40)),
179                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180                                 .pll_reg_3 = 0x0,
181                         },
182                         .afepll_info_g = {
183                                 .pll_reg = cpu_to_le16(0x9f0),
184                         }
185                 },
186                 .switch_clk_g = {
187                         .switch_clk_info = 0x0,
188                         .bbp_lmac_clk_reg_val = 0x0,
189                         .umac_clock_reg_config = 0x0,
190                         .qspi_uart_clock_reg_config = 0x0
191                 }
192         } },
193         .buckboost_wakeup_cnt = 0x0,
194         .pmu_wakeup_wait = 0x0,
195         .shutdown_wait_time = 0x0,
196         .pmu_slp_clkout_sel = 0x0,
197         .wdt_prog_value = 0x0,
198         .wdt_soc_rst_delay = 0x0,
199         .dcdc_operation_mode = 0x0,
200         .soc_reset_wait_cnt = 0x0
201 };
202
203 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204
205 /**
206  * rsi_set_default_parameters() - This function sets default parameters.
207  * @common: Pointer to the driver private structure.
208  *
209  * Return: none
210  */
211 static void rsi_set_default_parameters(struct rsi_common *common)
212 {
213         common->band = IEEE80211_BAND_2GHZ;
214         common->channel_width = BW_20MHZ;
215         common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216         common->channel = 1;
217         common->min_rate = 0xffff;
218         common->fsm_state = FSM_CARD_NOT_READY;
219         common->iface_down = true;
220 }
221
222 /**
223  * rsi_set_contention_vals() - This function sets the contention values for the
224  *                             backoff procedure.
225  * @common: Pointer to the driver private structure.
226  *
227  * Return: None.
228  */
229 static void rsi_set_contention_vals(struct rsi_common *common)
230 {
231         u8 ii = 0;
232
233         for (; ii < NUM_EDCA_QUEUES; ii++) {
234                 common->tx_qinfo[ii].wme_params =
235                         (((common->edca_params[ii].cw_min / 2) +
236                           (common->edca_params[ii].aifs)) *
237                           WMM_SHORT_SLOT_TIME + SIFS_DURATION);
238                 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
239                 common->tx_qinfo[ii].pkt_contended = 0;
240         }
241 }
242
243 /**
244  * rsi_send_internal_mgmt_frame() - This function sends management frames to
245  *                                  firmware.Also schedules packet to queue
246  *                                  for transmission.
247  * @common: Pointer to the driver private structure.
248  * @skb: Pointer to the socket buffer structure.
249  *
250  * Return: 0 on success, -1 on failure.
251  */
252 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
253                                         struct sk_buff *skb)
254 {
255         struct skb_info *tx_params;
256
257         if (skb == NULL) {
258                 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
259                 return -ENOMEM;
260         }
261         tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
262         tx_params->flags |= INTERNAL_MGMT_PKT;
263         skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
264         rsi_set_event(&common->tx_thread.event);
265         return 0;
266 }
267
268 /**
269  * rsi_load_radio_caps() - This function is used to send radio capabilities
270  *                         values to firmware.
271  * @common: Pointer to the driver private structure.
272  *
273  * Return: 0 on success, corresponding negative error code on failure.
274  */
275 static int rsi_load_radio_caps(struct rsi_common *common)
276 {
277         struct rsi_radio_caps *radio_caps;
278         struct rsi_hw *adapter = common->priv;
279         struct ieee80211_hw *hw = adapter->hw;
280         u16 inx = 0;
281         u8 ii;
282         u8 radio_id = 0;
283         u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284                       0xf0, 0xf0, 0xf0, 0xf0,
285                       0xf0, 0xf0, 0xf0, 0xf0,
286                       0xf0, 0xf0, 0xf0, 0xf0,
287                       0xf0, 0xf0, 0xf0, 0xf0};
288         struct ieee80211_conf *conf = &hw->conf;
289         struct sk_buff *skb;
290
291         rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
292
293         skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
294
295         if (!skb) {
296                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
297                         __func__);
298                 return -ENOMEM;
299         }
300
301         memset(skb->data, 0, sizeof(struct rsi_radio_caps));
302         radio_caps = (struct rsi_radio_caps *)skb->data;
303
304         radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
305         radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
306
307         if (common->channel_width == BW_40MHZ) {
308                 radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
309                 radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
310                 if (common->channel_width) {
311                         radio_caps->desc_word[5] =
312                                 cpu_to_le16(common->channel_width << 12);
313                         radio_caps->desc_word[5] |= cpu_to_le16(FULL40M_ENABLE);
314                 }
315
316                 if (conf_is_ht40_minus(conf)) {
317                         radio_caps->desc_word[5] = 0;
318                         radio_caps->desc_word[5] |=
319                                 cpu_to_le16(LOWER_20_ENABLE);
320                         radio_caps->desc_word[5] |=
321                                 cpu_to_le16(LOWER_20_ENABLE >> 12);
322                 }
323
324                 if (conf_is_ht40_plus(conf)) {
325                         radio_caps->desc_word[5] = 0;
326                         radio_caps->desc_word[5] |=
327                                 cpu_to_le16(UPPER_20_ENABLE);
328                         radio_caps->desc_word[5] |=
329                                 cpu_to_le16(UPPER_20_ENABLE >> 12);
330                 }
331         }
332
333         radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
334
335         for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
336                 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
337                 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
338                 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
339                 radio_caps->qos_params[ii].txop_q = 0;
340         }
341
342         for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
343                 radio_caps->qos_params[ii].cont_win_min_q =
344                         cpu_to_le16(common->edca_params[ii].cw_min);
345                 radio_caps->qos_params[ii].cont_win_max_q =
346                         cpu_to_le16(common->edca_params[ii].cw_max);
347                 radio_caps->qos_params[ii].aifsn_val_q =
348                         cpu_to_le16((common->edca_params[ii].aifs) << 8);
349                 radio_caps->qos_params[ii].txop_q =
350                         cpu_to_le16(common->edca_params[ii].txop);
351         }
352
353         memcpy(&common->rate_pwr[0], &gc[0], 40);
354         for (ii = 0; ii < 20; ii++)
355                 radio_caps->gcpd_per_rate[inx++] =
356                         cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
357
358         radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
359                                                 FRAME_DESC_SZ) |
360                                                (RSI_WIFI_MGMT_Q << 12));
361
362
363         skb_put(skb, (sizeof(struct rsi_radio_caps)));
364
365         return rsi_send_internal_mgmt_frame(common, skb);
366 }
367
368 /**
369  * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
370  * @common: Pointer to the driver private structure.
371  * @msg: Pointer to received packet.
372  * @msg_len: Length of the recieved packet.
373  * @type: Type of recieved packet.
374  *
375  * Return: 0 on success, -1 on failure.
376  */
377 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
378                                 u8 *msg,
379                                 s32 msg_len,
380                                 u8 type)
381 {
382         struct rsi_hw *adapter = common->priv;
383         struct ieee80211_tx_info *info;
384         struct skb_info *rx_params;
385         u8 pad_bytes = msg[4];
386         u8 pkt_recv;
387         struct sk_buff *skb;
388         char *buffer;
389
390         if (type == RX_DOT11_MGMT) {
391                 if (!adapter->sc_nvifs)
392                         return -ENOLINK;
393
394                 msg_len -= pad_bytes;
395                 if ((msg_len <= 0) || (!msg)) {
396                         rsi_dbg(MGMT_RX_ZONE,
397                                 "%s: Invalid rx msg of len = %d\n",
398                                 __func__, msg_len);
399                         return -EINVAL;
400                 }
401
402                 skb = dev_alloc_skb(msg_len);
403                 if (!skb) {
404                         rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
405                                 __func__);
406                         return -ENOMEM;
407                 }
408
409                 buffer = skb_put(skb, msg_len);
410
411                 memcpy(buffer,
412                        (u8 *)(msg +  FRAME_DESC_SZ + pad_bytes),
413                        msg_len);
414
415                 pkt_recv = buffer[0];
416
417                 info = IEEE80211_SKB_CB(skb);
418                 rx_params = (struct skb_info *)info->driver_data;
419                 rx_params->rssi = rsi_get_rssi(msg);
420                 rx_params->channel = rsi_get_channel(msg);
421                 rsi_indicate_pkt_to_os(common, skb);
422         } else {
423                 rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
424         }
425
426         return 0;
427 }
428
429 /**
430  * rsi_hal_send_sta_notify_frame() - This function sends the station notify
431  *                                   frame to firmware.
432  * @common: Pointer to the driver private structure.
433  * @opmode: Operating mode of device.
434  * @notify_event: Notification about station connection.
435  * @bssid: bssid.
436  * @qos_enable: Qos is enabled.
437  * @aid: Aid (unique for all STA).
438  *
439  * Return: status: 0 on success, corresponding negative error code on failure.
440  */
441 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
442                                          u8 opmode,
443                                          u8 notify_event,
444                                          const unsigned char *bssid,
445                                          u8 qos_enable,
446                                          u16 aid)
447 {
448         struct sk_buff *skb = NULL;
449         struct rsi_peer_notify *peer_notify;
450         u16 vap_id = 0;
451         int status;
452
453         rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
454
455         skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
456
457         if (!skb) {
458                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
459                         __func__);
460                 return -ENOMEM;
461         }
462
463         memset(skb->data, 0, sizeof(struct rsi_peer_notify));
464         peer_notify = (struct rsi_peer_notify *)skb->data;
465
466         peer_notify->command = cpu_to_le16(opmode << 1);
467
468         switch (notify_event) {
469         case STA_CONNECTED:
470                 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
471                 break;
472         case STA_DISCONNECTED:
473                 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
474                 break;
475         default:
476                 break;
477         }
478
479         peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
480         ether_addr_copy(peer_notify->mac_addr, bssid);
481
482         peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
483
484         peer_notify->desc_word[0] =
485                 cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
486                             (RSI_WIFI_MGMT_Q << 12));
487         peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
488         peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
489
490         skb_put(skb, sizeof(struct rsi_peer_notify));
491
492         status = rsi_send_internal_mgmt_frame(common, skb);
493
494         if (!status && qos_enable) {
495                 rsi_set_contention_vals(common);
496                 status = rsi_load_radio_caps(common);
497         }
498         return status;
499 }
500
501 /**
502  * rsi_send_aggregation_params_frame() - This function sends the ampdu
503  *                                       indication frame to firmware.
504  * @common: Pointer to the driver private structure.
505  * @tid: traffic identifier.
506  * @ssn: ssn.
507  * @buf_size: buffer size.
508  * @event: notification about station connection.
509  *
510  * Return: 0 on success, corresponding negative error code on failure.
511  */
512 int rsi_send_aggregation_params_frame(struct rsi_common *common,
513                                       u16 tid,
514                                       u16 ssn,
515                                       u8 buf_size,
516                                       u8 event)
517 {
518         struct sk_buff *skb = NULL;
519         struct rsi_mac_frame *mgmt_frame;
520         u8 peer_id = 0;
521
522         skb = dev_alloc_skb(FRAME_DESC_SZ);
523
524         if (!skb) {
525                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
526                         __func__);
527                 return -ENOMEM;
528         }
529
530         memset(skb->data, 0, FRAME_DESC_SZ);
531         mgmt_frame = (struct rsi_mac_frame *)skb->data;
532
533         rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
534
535         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
536         mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
537
538         if (event == STA_TX_ADDBA_DONE) {
539                 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
540                 mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
541                 mgmt_frame->desc_word[7] =
542                 cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
543         } else if (event == STA_RX_ADDBA_DONE) {
544                 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
545                 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
546                                                        (START_AMPDU_AGGR << 4) |
547                                                        (RX_BA_INDICATION << 5) |
548                                                        (peer_id << 8));
549         } else if (event == STA_TX_DELBA) {
550                 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
551                                                        (STOP_AMPDU_AGGR << 4) |
552                                                        (peer_id << 8));
553         } else if (event == STA_RX_DELBA) {
554                 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
555                                                        (STOP_AMPDU_AGGR << 4) |
556                                                        (RX_BA_INDICATION << 5) |
557                                                        (peer_id << 8));
558         }
559
560         skb_put(skb, FRAME_DESC_SZ);
561
562         return rsi_send_internal_mgmt_frame(common, skb);
563 }
564
565 /**
566  * rsi_program_bb_rf() - This function starts base band and RF programming.
567  *                       This is called after initial configurations are done.
568  * @common: Pointer to the driver private structure.
569  *
570  * Return: 0 on success, corresponding negative error code on failure.
571  */
572 static int rsi_program_bb_rf(struct rsi_common *common)
573 {
574         struct sk_buff *skb;
575         struct rsi_mac_frame *mgmt_frame;
576
577         rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
578
579         skb = dev_alloc_skb(FRAME_DESC_SZ);
580         if (!skb) {
581                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
582                         __func__);
583                 return -ENOMEM;
584         }
585
586         memset(skb->data, 0, FRAME_DESC_SZ);
587         mgmt_frame = (struct rsi_mac_frame *)skb->data;
588
589         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
590         mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
591         mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint << 8);
592
593         if (common->rf_reset) {
594                 mgmt_frame->desc_word[7] =  cpu_to_le16(RF_RESET_ENABLE);
595                 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
596                         __func__);
597                 common->rf_reset = 0;
598         }
599         common->bb_rf_prog_count = 1;
600         mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
601                                      BBP_REG_WRITE | (RSI_RF_TYPE << 4));
602         skb_put(skb, FRAME_DESC_SZ);
603
604         return rsi_send_internal_mgmt_frame(common, skb);
605 }
606
607 /**
608  * rsi_set_vap_capabilities() - This function send vap capability to firmware.
609  * @common: Pointer to the driver private structure.
610  * @opmode: Operating mode of device.
611  *
612  * Return: 0 on success, corresponding negative error code on failure.
613  */
614 int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
615 {
616         struct sk_buff *skb = NULL;
617         struct rsi_vap_caps *vap_caps;
618         u16 vap_id = 0;
619
620         rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
621
622         skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
623         if (!skb) {
624                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
625                         __func__);
626                 return -ENOMEM;
627         }
628
629         memset(skb->data, 0, sizeof(struct rsi_vap_caps));
630         vap_caps = (struct rsi_vap_caps *)skb->data;
631
632         vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
633                                              FRAME_DESC_SZ) |
634                                              (RSI_WIFI_MGMT_Q << 12));
635         vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
636         vap_caps->desc_word[4] = cpu_to_le16(mode |
637                                              (common->channel_width << 8));
638         vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
639                                              (common->mac_id << 4) |
640                                              common->radio_id);
641
642         memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
643         vap_caps->keep_alive_period = cpu_to_le16(90);
644         vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
645
646         vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
647         vap_caps->default_mgmt_rate = 0;
648         if (conf_is_ht40(&common->priv->hw->conf)) {
649                 vap_caps->default_ctrl_rate =
650                                 cpu_to_le32(RSI_RATE_6 | FULL40M_ENABLE << 16);
651         } else {
652                 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
653         }
654         vap_caps->default_data_rate = 0;
655         vap_caps->beacon_interval = cpu_to_le16(200);
656         vap_caps->dtim_period = cpu_to_le16(4);
657
658         skb_put(skb, sizeof(*vap_caps));
659
660         return rsi_send_internal_mgmt_frame(common, skb);
661 }
662
663 /**
664  * rsi_hal_load_key() - This function is used to load keys within the firmware.
665  * @common: Pointer to the driver private structure.
666  * @data: Pointer to the key data.
667  * @key_len: Key length to be loaded.
668  * @key_type: Type of key: GROUP/PAIRWISE.
669  * @key_id: Key index.
670  * @cipher: Type of cipher used.
671  *
672  * Return: 0 on success, -1 on failure.
673  */
674 int rsi_hal_load_key(struct rsi_common *common,
675                      u8 *data,
676                      u16 key_len,
677                      u8 key_type,
678                      u8 key_id,
679                      u32 cipher)
680 {
681         struct sk_buff *skb = NULL;
682         struct rsi_set_key *set_key;
683         u16 key_descriptor = 0;
684
685         rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
686
687         skb = dev_alloc_skb(sizeof(struct rsi_set_key));
688         if (!skb) {
689                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
690                         __func__);
691                 return -ENOMEM;
692         }
693
694         memset(skb->data, 0, sizeof(struct rsi_set_key));
695         set_key = (struct rsi_set_key *)skb->data;
696
697         if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
698             (cipher == WLAN_CIPHER_SUITE_WEP104)) {
699                 key_len += 1;
700                 key_descriptor |= BIT(2);
701                 if (key_len >= 13)
702                         key_descriptor |= BIT(3);
703         } else if (cipher != KEY_TYPE_CLEAR) {
704                 key_descriptor |= BIT(4);
705                 if (key_type == RSI_PAIRWISE_KEY)
706                         key_id = 0;
707                 if (cipher == WLAN_CIPHER_SUITE_TKIP)
708                         key_descriptor |= BIT(5);
709         }
710         key_descriptor |= (key_type | BIT(13) | (key_id << 14));
711
712         set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
713                                             FRAME_DESC_SZ) |
714                                             (RSI_WIFI_MGMT_Q << 12));
715         set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
716         set_key->desc_word[4] = cpu_to_le16(key_descriptor);
717
718         if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
719             (cipher == WLAN_CIPHER_SUITE_WEP104)) {
720                 memcpy(&set_key->key[key_id][1],
721                        data,
722                        key_len * 2);
723         } else {
724                 memcpy(&set_key->key[0][0], data, key_len);
725         }
726
727         memcpy(set_key->tx_mic_key, &data[16], 8);
728         memcpy(set_key->rx_mic_key, &data[24], 8);
729
730         skb_put(skb, sizeof(struct rsi_set_key));
731
732         return rsi_send_internal_mgmt_frame(common, skb);
733 }
734
735 /*
736  * rsi_load_bootup_params() - This function send bootup params to the firmware.
737  * @common: Pointer to the driver private structure.
738  *
739  * Return: 0 on success, corresponding error code on failure.
740  */
741 static int rsi_load_bootup_params(struct rsi_common *common)
742 {
743         struct sk_buff *skb;
744         struct rsi_boot_params *boot_params;
745
746         rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
747         skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
748         if (!skb) {
749                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
750                         __func__);
751                 return -ENOMEM;
752         }
753
754         memset(skb->data, 0, sizeof(struct rsi_boot_params));
755         boot_params = (struct rsi_boot_params *)skb->data;
756
757         rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
758
759         if (common->channel_width == BW_40MHZ) {
760                 memcpy(&boot_params->bootup_params,
761                        &boot_params_40,
762                        sizeof(struct bootup_params));
763                 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
764                         UMAC_CLK_40BW);
765                 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
766         } else {
767                 memcpy(&boot_params->bootup_params,
768                        &boot_params_20,
769                        sizeof(struct bootup_params));
770                 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
771                         boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
772                         rsi_dbg(MGMT_TX_ZONE,
773                                 "%s: Packet 20MHZ <=== %d\n", __func__,
774                                 UMAC_CLK_20BW);
775                 } else {
776                         boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
777                         rsi_dbg(MGMT_TX_ZONE,
778                                 "%s: Packet 20MHZ <=== %d\n", __func__,
779                                 UMAC_CLK_40MHZ);
780                 }
781         }
782
783         /**
784          * Bit{0:11} indicates length of the Packet
785          * Bit{12:15} indicates host queue number
786          */
787         boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
788                                     (RSI_WIFI_MGMT_Q << 12));
789         boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
790
791         skb_put(skb, sizeof(struct rsi_boot_params));
792
793         return rsi_send_internal_mgmt_frame(common, skb);
794 }
795
796 /**
797  * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
798  *                        internal management frame to indicate it to firmware.
799  * @common: Pointer to the driver private structure.
800  *
801  * Return: 0 on success, corresponding error code on failure.
802  */
803 static int rsi_send_reset_mac(struct rsi_common *common)
804 {
805         struct sk_buff *skb;
806         struct rsi_mac_frame *mgmt_frame;
807
808         rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
809
810         skb = dev_alloc_skb(FRAME_DESC_SZ);
811         if (!skb) {
812                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
813                         __func__);
814                 return -ENOMEM;
815         }
816
817         memset(skb->data, 0, FRAME_DESC_SZ);
818         mgmt_frame = (struct rsi_mac_frame *)skb->data;
819
820         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
821         mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
822         mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
823
824         skb_put(skb, FRAME_DESC_SZ);
825
826         return rsi_send_internal_mgmt_frame(common, skb);
827 }
828
829 /**
830  * rsi_set_channel() - This function programs the channel.
831  * @common: Pointer to the driver private structure.
832  * @channel: Channel value to be set.
833  *
834  * Return: 0 on success, corresponding error code on failure.
835  */
836 int rsi_set_channel(struct rsi_common *common, u16 channel)
837 {
838         struct sk_buff *skb = NULL;
839         struct rsi_mac_frame *mgmt_frame;
840
841         rsi_dbg(MGMT_TX_ZONE,
842                 "%s: Sending scan req frame\n", __func__);
843
844         if (common->band == IEEE80211_BAND_5GHZ) {
845                 if ((channel >= 36) && (channel <= 64))
846                         channel = ((channel - 32) / 4);
847                 else if ((channel > 64) && (channel <= 140))
848                         channel = ((channel - 102) / 4) + 8;
849                 else if (channel >= 149)
850                         channel = ((channel - 151) / 4) + 18;
851                 else
852                         return -EINVAL;
853         } else {
854                 if (channel > 14) {
855                         rsi_dbg(ERR_ZONE, "%s: Invalid chno %d, band = %d\n",
856                                 __func__, channel, common->band);
857                         return -EINVAL;
858                 }
859         }
860
861         skb = dev_alloc_skb(FRAME_DESC_SZ);
862         if (!skb) {
863                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
864                         __func__);
865                 return -ENOMEM;
866         }
867
868         memset(skb->data, 0, FRAME_DESC_SZ);
869         mgmt_frame = (struct rsi_mac_frame *)skb->data;
870
871         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
872         mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
873         mgmt_frame->desc_word[4] = cpu_to_le16(channel);
874
875         mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
876                                                BBP_REG_WRITE |
877                                                (RSI_RF_TYPE << 4));
878
879         mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
880
881         if (common->channel_width == BW_40MHZ)
882                 mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
883
884         common->channel = channel;
885
886         skb_put(skb, FRAME_DESC_SZ);
887
888         return rsi_send_internal_mgmt_frame(common, skb);
889 }
890
891 /**
892  * rsi_compare() - This function is used to compare two integers
893  * @a: pointer to the first integer
894  * @b: pointer to the second integer
895  *
896  * Return: 0 if both are equal, -1 if the first is smaller, else 1
897  */
898 static int rsi_compare(const void *a, const void *b)
899 {
900         u16 _a = *(const u16 *)(a);
901         u16 _b = *(const u16 *)(b);
902
903         if (_a > _b)
904                 return -1;
905
906         if (_a < _b)
907                 return 1;
908
909         return 0;
910 }
911
912 /**
913  * rsi_map_rates() - This function is used to map selected rates to hw rates.
914  * @rate: The standard rate to be mapped.
915  * @offset: Offset that will be returned.
916  *
917  * Return: 0 if it is a mcs rate, else 1
918  */
919 static bool rsi_map_rates(u16 rate, int *offset)
920 {
921         int kk;
922         for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
923                 if (rate == mcs[kk]) {
924                         *offset = kk;
925                         return false;
926                 }
927         }
928
929         for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
930                 if (rate == rsi_rates[kk].bitrate / 5) {
931                         *offset = kk;
932                         break;
933                 }
934         }
935         return true;
936 }
937
938 /**
939  * rsi_send_auto_rate_request() - This function is to set rates for connection
940  *                                and send autorate request to firmware.
941  * @common: Pointer to the driver private structure.
942  *
943  * Return: 0 on success, corresponding error code on failure.
944  */
945 static int rsi_send_auto_rate_request(struct rsi_common *common)
946 {
947         struct sk_buff *skb;
948         struct rsi_auto_rate *auto_rate;
949         int ii = 0, jj = 0, kk = 0;
950         struct ieee80211_hw *hw = common->priv->hw;
951         u8 band = hw->conf.chandef.chan->band;
952         u8 num_supported_rates = 0;
953         u8 rate_offset = 0;
954         u32 rate_bitmap = common->bitrate_mask[band];
955
956         u16 *selected_rates, min_rate;
957
958         skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
959         if (!skb) {
960                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
961                         __func__);
962                 return -ENOMEM;
963         }
964
965         selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
966         if (!selected_rates) {
967                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
968                         __func__);
969                 dev_kfree_skb(skb);
970                 return -ENOMEM;
971         }
972
973         memset(skb->data, 0, sizeof(struct rsi_auto_rate));
974         memset(selected_rates, 0, 2 * RSI_TBL_SZ);
975
976         auto_rate = (struct rsi_auto_rate *)skb->data;
977
978         auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
979         auto_rate->collision_tolerance = cpu_to_le16(3);
980         auto_rate->failure_limit = cpu_to_le16(3);
981         auto_rate->initial_boundary = cpu_to_le16(3);
982         auto_rate->max_threshold_limt = cpu_to_le16(27);
983
984         auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
985
986         if (common->channel_width == BW_40MHZ)
987                 auto_rate->desc_word[7] |= cpu_to_le16(1);
988
989         if (band == IEEE80211_BAND_2GHZ)
990                 min_rate = STD_RATE_01;
991         else
992                 min_rate = STD_RATE_06;
993
994         for (ii = 0, jj = 0; ii < ARRAY_SIZE(rsi_rates); ii++) {
995                 if (rate_bitmap & BIT(ii)) {
996                         selected_rates[jj++] = (rsi_rates[ii].bitrate / 5);
997                         rate_offset++;
998                 }
999         }
1000         num_supported_rates = jj;
1001
1002         if (common->vif_info[0].is_ht) {
1003                 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1004                         selected_rates[jj++] = mcs[ii];
1005                 num_supported_rates += ARRAY_SIZE(mcs);
1006                 rate_offset += ARRAY_SIZE(mcs);
1007         }
1008
1009         if (rate_offset < (RSI_TBL_SZ / 2) - 1) {
1010                 for (ii = jj; ii < (RSI_TBL_SZ / 2); ii++) {
1011                         selected_rates[jj++] = min_rate;
1012                         rate_offset++;
1013                 }
1014         }
1015
1016         sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1017
1018         /* mapping the rates to RSI rates */
1019         for (ii = 0; ii < jj; ii++) {
1020                 if (rsi_map_rates(selected_rates[ii], &kk)) {
1021                         auto_rate->supported_rates[ii] =
1022                                 cpu_to_le16(rsi_rates[kk].hw_value);
1023                 } else {
1024                         auto_rate->supported_rates[ii] =
1025                                 cpu_to_le16(rsi_mcsrates[kk]);
1026                 }
1027         }
1028
1029         /* loading HT rates in the bottom half of the auto rate table */
1030         if (common->vif_info[0].is_ht) {
1031                 if (common->vif_info[0].sgi)
1032                         auto_rate->supported_rates[rate_offset++] =
1033                                 cpu_to_le16(RSI_RATE_MCS7_SG);
1034
1035                 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1036                      ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1037                         if (common->vif_info[0].sgi)
1038                                 auto_rate->supported_rates[ii++] =
1039                                         cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1040                         auto_rate->supported_rates[ii] =
1041                                 cpu_to_le16(rsi_mcsrates[kk--]);
1042                 }
1043
1044                 for (; ii < RSI_TBL_SZ; ii++) {
1045                         auto_rate->supported_rates[ii] =
1046                                 cpu_to_le16(rsi_mcsrates[0]);
1047                 }
1048         }
1049
1050         auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1051         auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1052         auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1053         num_supported_rates *= 2;
1054
1055         auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1056                                                FRAME_DESC_SZ) |
1057                                                (RSI_WIFI_MGMT_Q << 12));
1058
1059         skb_put(skb,
1060                 sizeof(struct rsi_auto_rate));
1061         kfree(selected_rates);
1062
1063         return rsi_send_internal_mgmt_frame(common, skb);
1064 }
1065
1066 /**
1067  * rsi_inform_bss_status() - This function informs about bss status with the
1068  *                           help of sta notify params by sending an internal
1069  *                           management frame to firmware.
1070  * @common: Pointer to the driver private structure.
1071  * @status: Bss status type.
1072  * @bssid: Bssid.
1073  * @qos_enable: Qos is enabled.
1074  * @aid: Aid (unique for all STAs).
1075  *
1076  * Return: None.
1077  */
1078 void rsi_inform_bss_status(struct rsi_common *common,
1079                            u8 status,
1080                            const unsigned char *bssid,
1081                            u8 qos_enable,
1082                            u16 aid)
1083 {
1084         if (status) {
1085                 rsi_hal_send_sta_notify_frame(common,
1086                                               NL80211_IFTYPE_STATION,
1087                                               STA_CONNECTED,
1088                                               bssid,
1089                                               qos_enable,
1090                                               aid);
1091                 if (common->min_rate == 0xffff)
1092                         rsi_send_auto_rate_request(common);
1093         } else {
1094                 rsi_hal_send_sta_notify_frame(common,
1095                                               NL80211_IFTYPE_STATION,
1096                                               STA_DISCONNECTED,
1097                                               bssid,
1098                                               qos_enable,
1099                                               aid);
1100         }
1101 }
1102
1103 /**
1104  * rsi_eeprom_read() - This function sends a frame to read the mac address
1105  *                     from the eeprom.
1106  * @common: Pointer to the driver private structure.
1107  *
1108  * Return: 0 on success, -1 on failure.
1109  */
1110 static int rsi_eeprom_read(struct rsi_common *common)
1111 {
1112         struct rsi_mac_frame *mgmt_frame;
1113         struct sk_buff *skb;
1114
1115         rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1116
1117         skb = dev_alloc_skb(FRAME_DESC_SZ);
1118         if (!skb) {
1119                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1120                         __func__);
1121                 return -ENOMEM;
1122         }
1123
1124         memset(skb->data, 0, FRAME_DESC_SZ);
1125         mgmt_frame = (struct rsi_mac_frame *)skb->data;
1126
1127         /* FrameType */
1128         mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1129         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1130         /* Number of bytes to read */
1131         mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1132                                                WLAN_MAC_MAGIC_WORD_LEN +
1133                                                WLAN_HOST_MODE_LEN +
1134                                                WLAN_FW_VERSION_LEN);
1135         /* Address to read */
1136         mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1137
1138         skb_put(skb, FRAME_DESC_SZ);
1139
1140         return rsi_send_internal_mgmt_frame(common, skb);
1141 }
1142
1143 /**
1144  * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1145  * @common: Pointer to the driver private structure.
1146  * @msg: Pointer to received packet.
1147  *
1148  * Return: 0 on success, -1 on failure.
1149  */
1150 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1151                                       u8 *msg)
1152 {
1153         u8 sub_type = (msg[15] & 0xff);
1154
1155         switch (sub_type) {
1156         case BOOTUP_PARAMS_REQUEST:
1157                 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1158                         __func__);
1159                 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1160                         if (rsi_eeprom_read(common)) {
1161                                 common->fsm_state = FSM_CARD_NOT_READY;
1162                                 goto out;
1163                         } else {
1164                                 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1165                         }
1166                 } else {
1167                         rsi_dbg(ERR_ZONE,
1168                                 "%s: Received bootup params cfm in %d state\n",
1169                                  __func__, common->fsm_state);
1170                         return 0;
1171                 }
1172                 break;
1173
1174         case EEPROM_READ_TYPE:
1175                 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1176                         if (msg[16] == MAGIC_WORD) {
1177                                 u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1178                                              + WLAN_MAC_MAGIC_WORD_LEN);
1179                                 memcpy(common->mac_addr,
1180                                        &msg[offset],
1181                                        ETH_ALEN);
1182                                 memcpy(&common->fw_ver,
1183                                        &msg[offset + ETH_ALEN],
1184                                        sizeof(struct version_info));
1185
1186                         } else {
1187                                 common->fsm_state = FSM_CARD_NOT_READY;
1188                                 break;
1189                         }
1190                         if (rsi_send_reset_mac(common))
1191                                 goto out;
1192                         else
1193                                 common->fsm_state = FSM_RESET_MAC_SENT;
1194                 } else {
1195                         rsi_dbg(ERR_ZONE,
1196                                 "%s: Received eeprom mac addr in %d state\n",
1197                                 __func__, common->fsm_state);
1198                         return 0;
1199                 }
1200                 break;
1201
1202         case RESET_MAC_REQ:
1203                 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1204                         rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1205                                 __func__);
1206
1207                         if (rsi_load_radio_caps(common))
1208                                 goto out;
1209                         else
1210                                 common->fsm_state = FSM_RADIO_CAPS_SENT;
1211                 } else {
1212                         rsi_dbg(ERR_ZONE,
1213                                 "%s: Received reset mac cfm in %d state\n",
1214                                  __func__, common->fsm_state);
1215                         return 0;
1216                 }
1217                 break;
1218
1219         case RADIO_CAPABILITIES:
1220                 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1221                         common->rf_reset = 1;
1222                         if (rsi_program_bb_rf(common)) {
1223                                 goto out;
1224                         } else {
1225                                 common->fsm_state = FSM_BB_RF_PROG_SENT;
1226                                 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1227                                         __func__);
1228                         }
1229                 } else {
1230                         rsi_dbg(ERR_ZONE,
1231                                 "%s: Received radio caps cfm in %d state\n",
1232                                  __func__, common->fsm_state);
1233                         return 0;
1234                 }
1235                 break;
1236
1237         case BB_PROG_VALUES_REQUEST:
1238         case RF_PROG_VALUES_REQUEST:
1239         case BBP_PROG_IN_TA:
1240                 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1241                 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1242                         common->bb_rf_prog_count--;
1243                         if (!common->bb_rf_prog_count) {
1244                                 common->fsm_state = FSM_MAC_INIT_DONE;
1245                                 return rsi_mac80211_attach(common);
1246                         }
1247                 } else {
1248                         goto out;
1249                 }
1250                 break;
1251
1252         default:
1253                 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1254                         __func__);
1255                 break;
1256         }
1257         return 0;
1258 out:
1259         rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1260                 __func__);
1261         return -EINVAL;
1262 }
1263
1264 /**
1265  * rsi_mgmt_pkt_recv() - This function processes the management packets
1266  *                       recieved from the hardware.
1267  * @common: Pointer to the driver private structure.
1268  * @msg: Pointer to the received packet.
1269  *
1270  * Return: 0 on success, -1 on failure.
1271  */
1272 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1273 {
1274         s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1275         u16 msg_type = (msg[2]);
1276         int ret;
1277
1278         rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1279                 __func__, msg_len, msg_type);
1280
1281         if (msg_type == TA_CONFIRM_TYPE) {
1282                 return rsi_handle_ta_confirm_type(common, msg);
1283         } else if (msg_type == CARD_READY_IND) {
1284                 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1285                         __func__);
1286                 if (common->fsm_state == FSM_CARD_NOT_READY) {
1287                         rsi_set_default_parameters(common);
1288
1289                         ret = rsi_load_bootup_params(common);
1290                         if (ret)
1291                                 return ret;
1292                         else
1293                                 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1294                 } else {
1295                         return -EINVAL;
1296                 }
1297         } else if (msg_type == TX_STATUS_IND) {
1298                 if (msg[15] == PROBEREQ_CONFIRM) {
1299                         common->mgmt_q_block = false;
1300                         rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1301                                 __func__);
1302                 }
1303         } else {
1304                 return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1305         }
1306         return 0;
1307 }