rt2x00: Fix in_atomic() usage
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         unsigned int activity =
254             led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
255         u32 reg;
256
257         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
258
259         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
261                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
262         }
263
264         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 }
266 #else
267 #define rt2500pci_led_brightness        NULL
268 #endif /* CONFIG_RT2500PCI_LEDS */
269
270 /*
271  * Configuration handlers.
272  */
273 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
274                                     const unsigned int filter_flags)
275 {
276         u32 reg;
277
278         /*
279          * Start configuration steps.
280          * Note that the version error will always be dropped
281          * and broadcast frames will always be accepted since
282          * there is no filter for it at this time.
283          */
284         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
285         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
286                            !(filter_flags & FIF_FCSFAIL));
287         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
288                            !(filter_flags & FIF_PLCPFAIL));
289         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
290                            !(filter_flags & FIF_CONTROL));
291         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
292                            !(filter_flags & FIF_PROMISC_IN_BSS));
293         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
294                            !(filter_flags & FIF_PROMISC_IN_BSS));
295         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
296         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
297                            !(filter_flags & FIF_ALLMULTI));
298         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
299         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
300 }
301
302 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
303                                   struct rt2x00_intf *intf,
304                                   struct rt2x00intf_conf *conf,
305                                   const unsigned int flags)
306 {
307         struct data_queue *queue =
308             rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
309         unsigned int bcn_preload;
310         u32 reg;
311
312         if (flags & CONFIG_UPDATE_TYPE) {
313                 /*
314                  * Enable beacon config
315                  */
316                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
317                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
318                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
319                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
320                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
321
322                 /*
323                  * Enable synchronisation.
324                  */
325                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
326                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
327                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
328                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
329                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
330         }
331
332         if (flags & CONFIG_UPDATE_MAC)
333                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
334                                               conf->mac, sizeof(conf->mac));
335
336         if (flags & CONFIG_UPDATE_BSSID)
337                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
338                                               conf->bssid, sizeof(conf->bssid));
339 }
340
341 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
342                                  struct rt2x00lib_erp *erp)
343 {
344         int preamble_mask;
345         u32 reg;
346
347         /*
348          * When short preamble is enabled, we should set bit 0x08
349          */
350         preamble_mask = erp->short_preamble << 3;
351
352         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
353         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
354                            erp->ack_timeout);
355         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
356                            erp->ack_consume_time);
357         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
358
359         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
360         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
361         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
362         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
363         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
364
365         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
366         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
367         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
368         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
369         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
370
371         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
372         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
373         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
374         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
375         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
376
377         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
378         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
379         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
380         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
381         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
382 }
383
384 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
385                                      const int basic_rate_mask)
386 {
387         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
388 }
389
390 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
391                                      struct rf_channel *rf, const int txpower)
392 {
393         u8 r70;
394
395         /*
396          * Set TXpower.
397          */
398         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
399
400         /*
401          * Switch on tuning bits.
402          * For RT2523 devices we do not need to update the R1 register.
403          */
404         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
405                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
406         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
407
408         /*
409          * For RT2525 we should first set the channel to half band higher.
410          */
411         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
412                 static const u32 vals[] = {
413                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
414                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
415                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
416                         0x00080d2e, 0x00080d3a
417                 };
418
419                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
420                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
421                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
422                 if (rf->rf4)
423                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
424         }
425
426         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
427         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
428         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
429         if (rf->rf4)
430                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
431
432         /*
433          * Channel 14 requires the Japan filter bit to be set.
434          */
435         r70 = 0x46;
436         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
437         rt2500pci_bbp_write(rt2x00dev, 70, r70);
438
439         msleep(1);
440
441         /*
442          * Switch off tuning bits.
443          * For RT2523 devices we do not need to update the R1 register.
444          */
445         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
446                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
447                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
448         }
449
450         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
451         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
452
453         /*
454          * Clear false CRC during channel switch.
455          */
456         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
457 }
458
459 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
460                                      const int txpower)
461 {
462         u32 rf3;
463
464         rt2x00_rf_read(rt2x00dev, 3, &rf3);
465         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
466         rt2500pci_rf_write(rt2x00dev, 3, rf3);
467 }
468
469 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
470                                      struct antenna_setup *ant)
471 {
472         u32 reg;
473         u8 r14;
474         u8 r2;
475
476         /*
477          * We should never come here because rt2x00lib is supposed
478          * to catch this and send us the correct antenna explicitely.
479          */
480         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
481                ant->tx == ANTENNA_SW_DIVERSITY);
482
483         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
484         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
485         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
486
487         /*
488          * Configure the TX antenna.
489          */
490         switch (ant->tx) {
491         case ANTENNA_A:
492                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
493                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
494                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
495                 break;
496         case ANTENNA_B:
497         default:
498                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
499                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
500                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
501                 break;
502         }
503
504         /*
505          * Configure the RX antenna.
506          */
507         switch (ant->rx) {
508         case ANTENNA_A:
509                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
510                 break;
511         case ANTENNA_B:
512         default:
513                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
514                 break;
515         }
516
517         /*
518          * RT2525E and RT5222 need to flip TX I/Q
519          */
520         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
521             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
522                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
523                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
524                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
525
526                 /*
527                  * RT2525E does not need RX I/Q Flip.
528                  */
529                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
530                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
531         } else {
532                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
533                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
534         }
535
536         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
537         rt2500pci_bbp_write(rt2x00dev, 14, r14);
538         rt2500pci_bbp_write(rt2x00dev, 2, r2);
539 }
540
541 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
542                                       struct rt2x00lib_conf *libconf)
543 {
544         u32 reg;
545
546         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
547         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
548         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
549
550         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
551         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
552         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
553         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
554
555         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
556         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
557         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
558         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
559
560         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
561         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
562         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
563         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
564
565         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
566         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
567                            libconf->conf->beacon_int * 16);
568         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
569                            libconf->conf->beacon_int * 16);
570         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
571 }
572
573 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
574                              struct rt2x00lib_conf *libconf,
575                              const unsigned int flags)
576 {
577         if (flags & CONFIG_UPDATE_PHYMODE)
578                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
579         if (flags & CONFIG_UPDATE_CHANNEL)
580                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
581                                          libconf->conf->power_level);
582         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
583                 rt2500pci_config_txpower(rt2x00dev,
584                                          libconf->conf->power_level);
585         if (flags & CONFIG_UPDATE_ANTENNA)
586                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
587         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
588                 rt2500pci_config_duration(rt2x00dev, libconf);
589 }
590
591 /*
592  * Link tuning
593  */
594 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
595                                  struct link_qual *qual)
596 {
597         u32 reg;
598
599         /*
600          * Update FCS error count from register.
601          */
602         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
603         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
604
605         /*
606          * Update False CCA count from register.
607          */
608         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
609         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
610 }
611
612 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
613 {
614         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
615         rt2x00dev->link.vgc_level = 0x48;
616 }
617
618 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
619 {
620         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
621         u8 r17;
622
623         /*
624          * To prevent collisions with MAC ASIC on chipsets
625          * up to version C the link tuning should halt after 20
626          * seconds while being associated.
627          */
628         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
629             rt2x00dev->intf_associated &&
630             rt2x00dev->link.count > 20)
631                 return;
632
633         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
634
635         /*
636          * Chipset versions C and lower should directly continue
637          * to the dynamic CCA tuning. Chipset version D and higher
638          * should go straight to dynamic CCA tuning when they
639          * are not associated.
640          */
641         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
642             !rt2x00dev->intf_associated)
643                 goto dynamic_cca_tune;
644
645         /*
646          * A too low RSSI will cause too much false CCA which will
647          * then corrupt the R17 tuning. To remidy this the tuning should
648          * be stopped (While making sure the R17 value will not exceed limits)
649          */
650         if (rssi < -80 && rt2x00dev->link.count > 20) {
651                 if (r17 >= 0x41) {
652                         r17 = rt2x00dev->link.vgc_level;
653                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
654                 }
655                 return;
656         }
657
658         /*
659          * Special big-R17 for short distance
660          */
661         if (rssi >= -58) {
662                 if (r17 != 0x50)
663                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
664                 return;
665         }
666
667         /*
668          * Special mid-R17 for middle distance
669          */
670         if (rssi >= -74) {
671                 if (r17 != 0x41)
672                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
673                 return;
674         }
675
676         /*
677          * Leave short or middle distance condition, restore r17
678          * to the dynamic tuning range.
679          */
680         if (r17 >= 0x41) {
681                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
682                 return;
683         }
684
685 dynamic_cca_tune:
686
687         /*
688          * R17 is inside the dynamic tuning range,
689          * start tuning the link based on the false cca counter.
690          */
691         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
692                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
693                 rt2x00dev->link.vgc_level = r17;
694         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
695                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
696                 rt2x00dev->link.vgc_level = r17;
697         }
698 }
699
700 /*
701  * Initialization functions.
702  */
703 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
704                                    struct queue_entry *entry)
705 {
706         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
707         u32 word;
708
709         rt2x00_desc_read(priv_rx->desc, 1, &word);
710         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
711         rt2x00_desc_write(priv_rx->desc, 1, word);
712
713         rt2x00_desc_read(priv_rx->desc, 0, &word);
714         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
715         rt2x00_desc_write(priv_rx->desc, 0, word);
716 }
717
718 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
719                                    struct queue_entry *entry)
720 {
721         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
722         u32 word;
723
724         rt2x00_desc_read(priv_tx->desc, 1, &word);
725         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
726         rt2x00_desc_write(priv_tx->desc, 1, word);
727
728         rt2x00_desc_read(priv_tx->desc, 0, &word);
729         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
730         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
731         rt2x00_desc_write(priv_tx->desc, 0, word);
732 }
733
734 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
735 {
736         struct queue_entry_priv_pci_rx *priv_rx;
737         struct queue_entry_priv_pci_tx *priv_tx;
738         u32 reg;
739
740         /*
741          * Initialize registers.
742          */
743         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
744         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
745         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
746         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
747         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
748         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
749
750         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
751         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
752         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
753                            priv_tx->desc_dma);
754         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
755
756         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
757         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
758         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
759                            priv_tx->desc_dma);
760         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
761
762         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
763         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
764         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
765                            priv_tx->desc_dma);
766         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
767
768         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
769         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
770         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
771                            priv_tx->desc_dma);
772         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
773
774         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
775         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
776         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
777         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
778
779         priv_rx = rt2x00dev->rx->entries[0].priv_data;
780         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
781         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
782         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
783
784         return 0;
785 }
786
787 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
788 {
789         u32 reg;
790
791         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
792         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
793         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
794         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
795
796         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
797         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
798         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
799         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
800         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
801
802         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
803         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
804                            rt2x00dev->rx->data_size / 128);
805         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
806
807         /*
808          * Always use CWmin and CWmax set in descriptor.
809          */
810         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
811         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
812         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
813
814         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
815         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
816         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
817         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
818
819         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
820
821         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
822         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
823         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
824         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
825         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
826         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
827         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
828         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
829         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
830         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
831
832         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
833         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
834         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
835         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
836         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
837         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
838
839         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
840         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
841         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
842         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
843         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
844         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
845
846         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
847         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
848         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
849         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
850         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
851         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
852
853         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
854         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
855         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
856         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
857         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
858         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
859         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
860         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
861         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
862         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
863
864         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
865         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
866         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
867         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
868         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
869         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
870         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
871         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
872         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
873
874         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
875
876         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
877         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
878
879         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
880                 return -EBUSY;
881
882         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
883         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
884
885         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
886         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
887         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
888
889         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
890         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
891         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
892         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
893         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
894         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
895         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
896         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
897
898         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
899
900         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
901
902         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
903         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
904         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
905         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
906         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
907
908         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
909         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
910         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
911         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
912
913         /*
914          * We must clear the FCS and FIFO error count.
915          * These registers are cleared on read,
916          * so we may pass a useless variable to store the value.
917          */
918         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
919         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
920
921         return 0;
922 }
923
924 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
925 {
926         unsigned int i;
927         u16 eeprom;
928         u8 reg_id;
929         u8 value;
930
931         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
932                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
933                 if ((value != 0xff) && (value != 0x00))
934                         goto continue_csr_init;
935                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
936                 udelay(REGISTER_BUSY_DELAY);
937         }
938
939         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
940         return -EACCES;
941
942 continue_csr_init:
943         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
944         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
945         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
946         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
947         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
948         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
949         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
950         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
951         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
952         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
953         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
954         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
955         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
956         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
957         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
958         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
959         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
960         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
961         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
962         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
963         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
964         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
965         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
966         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
967         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
968         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
969         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
970         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
971         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
972         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
973
974         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
975                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
976
977                 if (eeprom != 0xffff && eeprom != 0x0000) {
978                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
979                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
980                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
981                 }
982         }
983
984         return 0;
985 }
986
987 /*
988  * Device state switch handlers.
989  */
990 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
991                                 enum dev_state state)
992 {
993         u32 reg;
994
995         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
996         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
997                            state == STATE_RADIO_RX_OFF);
998         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
999 }
1000
1001 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1002                                  enum dev_state state)
1003 {
1004         int mask = (state == STATE_RADIO_IRQ_OFF);
1005         u32 reg;
1006
1007         /*
1008          * When interrupts are being enabled, the interrupt registers
1009          * should clear the register to assure a clean state.
1010          */
1011         if (state == STATE_RADIO_IRQ_ON) {
1012                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1013                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1014         }
1015
1016         /*
1017          * Only toggle the interrupts bits we are going to use.
1018          * Non-checked interrupt bits are disabled by default.
1019          */
1020         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1021         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1022         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1023         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1024         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1025         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1026         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1027 }
1028
1029 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1030 {
1031         /*
1032          * Initialize all registers.
1033          */
1034         if (rt2500pci_init_queues(rt2x00dev) ||
1035             rt2500pci_init_registers(rt2x00dev) ||
1036             rt2500pci_init_bbp(rt2x00dev)) {
1037                 ERROR(rt2x00dev, "Register initialization failed.\n");
1038                 return -EIO;
1039         }
1040
1041         /*
1042          * Enable interrupts.
1043          */
1044         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1045
1046         return 0;
1047 }
1048
1049 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1050 {
1051         u32 reg;
1052
1053         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1054
1055         /*
1056          * Disable synchronisation.
1057          */
1058         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1059
1060         /*
1061          * Cancel RX and TX.
1062          */
1063         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1064         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1065         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1066
1067         /*
1068          * Disable interrupts.
1069          */
1070         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1071 }
1072
1073 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1074                                enum dev_state state)
1075 {
1076         u32 reg;
1077         unsigned int i;
1078         char put_to_sleep;
1079         char bbp_state;
1080         char rf_state;
1081
1082         put_to_sleep = (state != STATE_AWAKE);
1083
1084         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1085         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1086         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1087         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1088         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1089         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1090
1091         /*
1092          * Device is not guaranteed to be in the requested state yet.
1093          * We must wait until the register indicates that the
1094          * device has entered the correct state.
1095          */
1096         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1097                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1098                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1099                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1100                 if (bbp_state == state && rf_state == state)
1101                         return 0;
1102                 msleep(10);
1103         }
1104
1105         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1106                "current device state: bbp %d and rf %d.\n",
1107                state, bbp_state, rf_state);
1108
1109         return -EBUSY;
1110 }
1111
1112 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1113                                       enum dev_state state)
1114 {
1115         int retval = 0;
1116
1117         switch (state) {
1118         case STATE_RADIO_ON:
1119                 retval = rt2500pci_enable_radio(rt2x00dev);
1120                 break;
1121         case STATE_RADIO_OFF:
1122                 rt2500pci_disable_radio(rt2x00dev);
1123                 break;
1124         case STATE_RADIO_RX_ON:
1125         case STATE_RADIO_RX_ON_LINK:
1126                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1127                 break;
1128         case STATE_RADIO_RX_OFF:
1129         case STATE_RADIO_RX_OFF_LINK:
1130                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1131                 break;
1132         case STATE_DEEP_SLEEP:
1133         case STATE_SLEEP:
1134         case STATE_STANDBY:
1135         case STATE_AWAKE:
1136                 retval = rt2500pci_set_state(rt2x00dev, state);
1137                 break;
1138         default:
1139                 retval = -ENOTSUPP;
1140                 break;
1141         }
1142
1143         return retval;
1144 }
1145
1146 /*
1147  * TX descriptor initialization
1148  */
1149 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1150                                     struct sk_buff *skb,
1151                                     struct txentry_desc *txdesc,
1152                                     struct ieee80211_tx_control *control)
1153 {
1154         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1155         __le32 *txd = skbdesc->desc;
1156         u32 word;
1157
1158         /*
1159          * Start writing the descriptor words.
1160          */
1161         rt2x00_desc_read(txd, 2, &word);
1162         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1163         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1164         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1165         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1166         rt2x00_desc_write(txd, 2, word);
1167
1168         rt2x00_desc_read(txd, 3, &word);
1169         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1170         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1171         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1172         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1173         rt2x00_desc_write(txd, 3, word);
1174
1175         rt2x00_desc_read(txd, 10, &word);
1176         rt2x00_set_field32(&word, TXD_W10_RTS,
1177                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1178         rt2x00_desc_write(txd, 10, word);
1179
1180         rt2x00_desc_read(txd, 0, &word);
1181         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1182         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1183         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1184                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1185         rt2x00_set_field32(&word, TXD_W0_ACK,
1186                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1187         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1188                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1189         rt2x00_set_field32(&word, TXD_W0_OFDM,
1190                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1191         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1192         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1193         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1194                            !!(control->flags &
1195                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1196         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1197         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1198         rt2x00_desc_write(txd, 0, word);
1199 }
1200
1201 /*
1202  * TX data initialization
1203  */
1204 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1205                                     const unsigned int queue)
1206 {
1207         u32 reg;
1208
1209         if (queue == RT2X00_BCN_QUEUE_BEACON) {
1210                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1211                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1212                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1213                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1214                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1215                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1216                 }
1217                 return;
1218         }
1219
1220         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1221         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1222                            (queue == IEEE80211_TX_QUEUE_DATA0));
1223         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1224                            (queue == IEEE80211_TX_QUEUE_DATA1));
1225         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1226                            (queue == RT2X00_BCN_QUEUE_ATIM));
1227         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1228 }
1229
1230 /*
1231  * RX control handlers
1232  */
1233 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1234                                   struct rxdone_entry_desc *rxdesc)
1235 {
1236         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1237         u32 word0;
1238         u32 word2;
1239
1240         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1241         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1242
1243         rxdesc->flags = 0;
1244         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1245                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1246         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1247                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1248
1249         /*
1250          * Obtain the status about this packet.
1251          * When frame was received with an OFDM bitrate,
1252          * the signal is the PLCP value. If it was received with
1253          * a CCK bitrate the signal is the rate in 100kbit/s.
1254          */
1255         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1256         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1257             entry->queue->rt2x00dev->rssi_offset;
1258         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1259
1260         rxdesc->dev_flags = 0;
1261         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1262                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1263         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1264                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1265 }
1266
1267 /*
1268  * Interrupt functions.
1269  */
1270 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1271                              const enum ieee80211_tx_queue queue_idx)
1272 {
1273         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1274         struct queue_entry_priv_pci_tx *priv_tx;
1275         struct queue_entry *entry;
1276         struct txdone_entry_desc txdesc;
1277         u32 word;
1278
1279         while (!rt2x00queue_empty(queue)) {
1280                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1281                 priv_tx = entry->priv_data;
1282                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1283
1284                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1285                     !rt2x00_get_field32(word, TXD_W0_VALID))
1286                         break;
1287
1288                 /*
1289                  * Obtain the status about this packet.
1290                  */
1291                 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1292                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1293
1294                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1295         }
1296 }
1297
1298 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1299 {
1300         struct rt2x00_dev *rt2x00dev = dev_instance;
1301         u32 reg;
1302
1303         /*
1304          * Get the interrupt sources & saved to local variable.
1305          * Write register value back to clear pending interrupts.
1306          */
1307         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1308         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1309
1310         if (!reg)
1311                 return IRQ_NONE;
1312
1313         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1314                 return IRQ_HANDLED;
1315
1316         /*
1317          * Handle interrupts, walk through all bits
1318          * and run the tasks, the bits are checked in order of
1319          * priority.
1320          */
1321
1322         /*
1323          * 1 - Beacon timer expired interrupt.
1324          */
1325         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1326                 rt2x00lib_beacondone(rt2x00dev);
1327
1328         /*
1329          * 2 - Rx ring done interrupt.
1330          */
1331         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1332                 rt2x00pci_rxdone(rt2x00dev);
1333
1334         /*
1335          * 3 - Atim ring transmit done interrupt.
1336          */
1337         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1338                 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1339
1340         /*
1341          * 4 - Priority ring transmit done interrupt.
1342          */
1343         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1344                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1345
1346         /*
1347          * 5 - Tx ring transmit done interrupt.
1348          */
1349         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1350                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1351
1352         return IRQ_HANDLED;
1353 }
1354
1355 /*
1356  * Device probe functions.
1357  */
1358 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1359 {
1360         struct eeprom_93cx6 eeprom;
1361         u32 reg;
1362         u16 word;
1363         u8 *mac;
1364
1365         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1366
1367         eeprom.data = rt2x00dev;
1368         eeprom.register_read = rt2500pci_eepromregister_read;
1369         eeprom.register_write = rt2500pci_eepromregister_write;
1370         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1371             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1372         eeprom.reg_data_in = 0;
1373         eeprom.reg_data_out = 0;
1374         eeprom.reg_data_clock = 0;
1375         eeprom.reg_chip_select = 0;
1376
1377         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1378                                EEPROM_SIZE / sizeof(u16));
1379
1380         /*
1381          * Start validation of the data that has been read.
1382          */
1383         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1384         if (!is_valid_ether_addr(mac)) {
1385                 DECLARE_MAC_BUF(macbuf);
1386
1387                 random_ether_addr(mac);
1388                 EEPROM(rt2x00dev, "MAC: %s\n",
1389                        print_mac(macbuf, mac));
1390         }
1391
1392         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1393         if (word == 0xffff) {
1394                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1395                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1396                                    ANTENNA_SW_DIVERSITY);
1397                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1398                                    ANTENNA_SW_DIVERSITY);
1399                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1400                                    LED_MODE_DEFAULT);
1401                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1402                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1403                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1404                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1405                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1406         }
1407
1408         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1409         if (word == 0xffff) {
1410                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1411                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1412                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1413                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1414                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1415         }
1416
1417         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1418         if (word == 0xffff) {
1419                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1420                                    DEFAULT_RSSI_OFFSET);
1421                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1422                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1429 {
1430         u32 reg;
1431         u16 value;
1432         u16 eeprom;
1433
1434         /*
1435          * Read EEPROM word for configuration.
1436          */
1437         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1438
1439         /*
1440          * Identify RF chipset.
1441          */
1442         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1443         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1444         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1445
1446         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1447             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1448             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1449             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1450             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1451             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1452                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1453                 return -ENODEV;
1454         }
1455
1456         /*
1457          * Identify default antenna configuration.
1458          */
1459         rt2x00dev->default_ant.tx =
1460             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1461         rt2x00dev->default_ant.rx =
1462             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1463
1464         /*
1465          * Store led mode, for correct led behaviour.
1466          */
1467 #ifdef CONFIG_RT2500PCI_LEDS
1468         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1469
1470         switch (value) {
1471         case LED_MODE_ASUS:
1472         case LED_MODE_ALPHA:
1473         case LED_MODE_DEFAULT:
1474                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1475                 break;
1476         case LED_MODE_TXRX_ACTIVITY:
1477                 rt2x00dev->led_flags =
1478                     LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1479                 break;
1480         case LED_MODE_SIGNAL_STRENGTH:
1481                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1482                 break;
1483         }
1484 #endif /* CONFIG_RT2500PCI_LEDS */
1485
1486         /*
1487          * Detect if this device has an hardware controlled radio.
1488          */
1489 #ifdef CONFIG_RT2500PCI_RFKILL
1490         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1491                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1492 #endif /* CONFIG_RT2500PCI_RFKILL */
1493
1494         /*
1495          * Check if the BBP tuning should be enabled.
1496          */
1497         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1498
1499         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1500                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1501
1502         /*
1503          * Read the RSSI <-> dBm offset information.
1504          */
1505         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1506         rt2x00dev->rssi_offset =
1507             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1508
1509         return 0;
1510 }
1511
1512 /*
1513  * RF value list for RF2522
1514  * Supports: 2.4 GHz
1515  */
1516 static const struct rf_channel rf_vals_bg_2522[] = {
1517         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1518         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1519         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1520         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1521         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1522         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1523         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1524         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1525         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1526         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1527         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1528         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1529         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1530         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1531 };
1532
1533 /*
1534  * RF value list for RF2523
1535  * Supports: 2.4 GHz
1536  */
1537 static const struct rf_channel rf_vals_bg_2523[] = {
1538         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1539         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1540         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1541         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1542         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1543         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1544         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1545         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1546         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1547         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1548         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1549         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1550         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1551         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1552 };
1553
1554 /*
1555  * RF value list for RF2524
1556  * Supports: 2.4 GHz
1557  */
1558 static const struct rf_channel rf_vals_bg_2524[] = {
1559         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1560         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1561         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1562         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1563         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1564         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1565         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1566         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1567         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1568         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1569         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1570         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1571         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1572         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1573 };
1574
1575 /*
1576  * RF value list for RF2525
1577  * Supports: 2.4 GHz
1578  */
1579 static const struct rf_channel rf_vals_bg_2525[] = {
1580         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1581         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1582         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1583         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1584         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1585         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1586         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1587         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1588         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1589         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1590         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1591         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1592         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1593         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1594 };
1595
1596 /*
1597  * RF value list for RF2525e
1598  * Supports: 2.4 GHz
1599  */
1600 static const struct rf_channel rf_vals_bg_2525e[] = {
1601         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1602         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1603         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1604         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1605         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1606         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1607         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1608         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1609         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1610         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1611         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1612         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1613         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1614         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1615 };
1616
1617 /*
1618  * RF value list for RF5222
1619  * Supports: 2.4 GHz & 5.2 GHz
1620  */
1621 static const struct rf_channel rf_vals_5222[] = {
1622         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1623         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1624         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1625         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1626         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1627         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1628         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1629         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1630         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1631         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1632         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1633         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1634         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1635         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1636
1637         /* 802.11 UNI / HyperLan 2 */
1638         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1639         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1640         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1641         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1642         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1643         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1644         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1645         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1646
1647         /* 802.11 HyperLan 2 */
1648         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1649         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1650         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1651         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1652         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1653         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1654         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1655         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1656         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1657         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1658
1659         /* 802.11 UNII */
1660         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1661         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1662         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1663         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1664         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1665 };
1666
1667 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1668 {
1669         struct hw_mode_spec *spec = &rt2x00dev->spec;
1670         u8 *txpower;
1671         unsigned int i;
1672
1673         /*
1674          * Initialize all hw fields.
1675          */
1676         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1677         rt2x00dev->hw->extra_tx_headroom = 0;
1678         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1679         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1680         rt2x00dev->hw->queues = 2;
1681
1682         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1683         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1684                                 rt2x00_eeprom_addr(rt2x00dev,
1685                                                    EEPROM_MAC_ADDR_0));
1686
1687         /*
1688          * Convert tx_power array in eeprom.
1689          */
1690         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1691         for (i = 0; i < 14; i++)
1692                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1693
1694         /*
1695          * Initialize hw_mode information.
1696          */
1697         spec->supported_bands = SUPPORT_BAND_2GHZ;
1698         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1699         spec->tx_power_a = NULL;
1700         spec->tx_power_bg = txpower;
1701         spec->tx_power_default = DEFAULT_TXPOWER;
1702
1703         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1704                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1705                 spec->channels = rf_vals_bg_2522;
1706         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1707                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1708                 spec->channels = rf_vals_bg_2523;
1709         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1710                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1711                 spec->channels = rf_vals_bg_2524;
1712         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1713                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1714                 spec->channels = rf_vals_bg_2525;
1715         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1716                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1717                 spec->channels = rf_vals_bg_2525e;
1718         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1719                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1720                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1721                 spec->channels = rf_vals_5222;
1722         }
1723 }
1724
1725 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1726 {
1727         int retval;
1728
1729         /*
1730          * Allocate eeprom data.
1731          */
1732         retval = rt2500pci_validate_eeprom(rt2x00dev);
1733         if (retval)
1734                 return retval;
1735
1736         retval = rt2500pci_init_eeprom(rt2x00dev);
1737         if (retval)
1738                 return retval;
1739
1740         /*
1741          * Initialize hw specifications.
1742          */
1743         rt2500pci_probe_hw_mode(rt2x00dev);
1744
1745         /*
1746          * This device requires the atim queue
1747          */
1748         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1749
1750         /*
1751          * Set the rssi offset.
1752          */
1753         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1754
1755         return 0;
1756 }
1757
1758 /*
1759  * IEEE80211 stack callback functions.
1760  */
1761 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1762                                      u32 short_retry, u32 long_retry)
1763 {
1764         struct rt2x00_dev *rt2x00dev = hw->priv;
1765         u32 reg;
1766
1767         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1768         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1769         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1770         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1771
1772         return 0;
1773 }
1774
1775 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1776 {
1777         struct rt2x00_dev *rt2x00dev = hw->priv;
1778         u64 tsf;
1779         u32 reg;
1780
1781         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1782         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1783         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1784         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1785
1786         return tsf;
1787 }
1788
1789 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1790                                    struct ieee80211_tx_control *control)
1791 {
1792         struct rt2x00_dev *rt2x00dev = hw->priv;
1793         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1794         struct queue_entry_priv_pci_tx *priv_tx;
1795         struct skb_frame_desc *skbdesc;
1796         u32 reg;
1797
1798         if (unlikely(!intf->beacon))
1799                 return -ENOBUFS;
1800
1801         priv_tx = intf->beacon->priv_data;
1802
1803         /*
1804          * Fill in skb descriptor
1805          */
1806         skbdesc = get_skb_frame_desc(skb);
1807         memset(skbdesc, 0, sizeof(*skbdesc));
1808         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1809         skbdesc->data = skb->data;
1810         skbdesc->data_len = skb->len;
1811         skbdesc->desc = priv_tx->desc;
1812         skbdesc->desc_len = intf->beacon->queue->desc_size;
1813         skbdesc->entry = intf->beacon;
1814
1815         /*
1816          * Disable beaconing while we are reloading the beacon data,
1817          * otherwise we might be sending out invalid data.
1818          */
1819         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1820         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1821         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1822         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1823         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1824
1825         /*
1826          * mac80211 doesn't provide the control->queue variable
1827          * for beacons. Set our own queue identification so
1828          * it can be used during descriptor initialization.
1829          */
1830         control->queue = RT2X00_BCN_QUEUE_BEACON;
1831         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1832
1833         /*
1834          * Enable beacon generation.
1835          * Write entire beacon with descriptor to register,
1836          * and kick the beacon generator.
1837          */
1838         memcpy(priv_tx->data, skb->data, skb->len);
1839         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1840
1841         return 0;
1842 }
1843
1844 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1845 {
1846         struct rt2x00_dev *rt2x00dev = hw->priv;
1847         u32 reg;
1848
1849         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1850         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1851 }
1852
1853 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1854         .tx                     = rt2x00mac_tx,
1855         .start                  = rt2x00mac_start,
1856         .stop                   = rt2x00mac_stop,
1857         .add_interface          = rt2x00mac_add_interface,
1858         .remove_interface       = rt2x00mac_remove_interface,
1859         .config                 = rt2x00mac_config,
1860         .config_interface       = rt2x00mac_config_interface,
1861         .configure_filter       = rt2x00mac_configure_filter,
1862         .get_stats              = rt2x00mac_get_stats,
1863         .set_retry_limit        = rt2500pci_set_retry_limit,
1864         .bss_info_changed       = rt2x00mac_bss_info_changed,
1865         .conf_tx                = rt2x00mac_conf_tx,
1866         .get_tx_stats           = rt2x00mac_get_tx_stats,
1867         .get_tsf                = rt2500pci_get_tsf,
1868         .beacon_update          = rt2500pci_beacon_update,
1869         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1870 };
1871
1872 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1873         .irq_handler            = rt2500pci_interrupt,
1874         .probe_hw               = rt2500pci_probe_hw,
1875         .initialize             = rt2x00pci_initialize,
1876         .uninitialize           = rt2x00pci_uninitialize,
1877         .init_rxentry           = rt2500pci_init_rxentry,
1878         .init_txentry           = rt2500pci_init_txentry,
1879         .set_device_state       = rt2500pci_set_device_state,
1880         .rfkill_poll            = rt2500pci_rfkill_poll,
1881         .link_stats             = rt2500pci_link_stats,
1882         .reset_tuner            = rt2500pci_reset_tuner,
1883         .link_tuner             = rt2500pci_link_tuner,
1884         .led_brightness         = rt2500pci_led_brightness,
1885         .write_tx_desc          = rt2500pci_write_tx_desc,
1886         .write_tx_data          = rt2x00pci_write_tx_data,
1887         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1888         .fill_rxdone            = rt2500pci_fill_rxdone,
1889         .config_filter          = rt2500pci_config_filter,
1890         .config_intf            = rt2500pci_config_intf,
1891         .config_erp             = rt2500pci_config_erp,
1892         .config                 = rt2500pci_config,
1893 };
1894
1895 static const struct data_queue_desc rt2500pci_queue_rx = {
1896         .entry_num              = RX_ENTRIES,
1897         .data_size              = DATA_FRAME_SIZE,
1898         .desc_size              = RXD_DESC_SIZE,
1899         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1900 };
1901
1902 static const struct data_queue_desc rt2500pci_queue_tx = {
1903         .entry_num              = TX_ENTRIES,
1904         .data_size              = DATA_FRAME_SIZE,
1905         .desc_size              = TXD_DESC_SIZE,
1906         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1907 };
1908
1909 static const struct data_queue_desc rt2500pci_queue_bcn = {
1910         .entry_num              = BEACON_ENTRIES,
1911         .data_size              = MGMT_FRAME_SIZE,
1912         .desc_size              = TXD_DESC_SIZE,
1913         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1914 };
1915
1916 static const struct data_queue_desc rt2500pci_queue_atim = {
1917         .entry_num              = ATIM_ENTRIES,
1918         .data_size              = DATA_FRAME_SIZE,
1919         .desc_size              = TXD_DESC_SIZE,
1920         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1921 };
1922
1923 static const struct rt2x00_ops rt2500pci_ops = {
1924         .name           = KBUILD_MODNAME,
1925         .max_sta_intf   = 1,
1926         .max_ap_intf    = 1,
1927         .eeprom_size    = EEPROM_SIZE,
1928         .rf_size        = RF_SIZE,
1929         .rx             = &rt2500pci_queue_rx,
1930         .tx             = &rt2500pci_queue_tx,
1931         .bcn            = &rt2500pci_queue_bcn,
1932         .atim           = &rt2500pci_queue_atim,
1933         .lib            = &rt2500pci_rt2x00_ops,
1934         .hw             = &rt2500pci_mac80211_ops,
1935 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1936         .debugfs        = &rt2500pci_rt2x00debug,
1937 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1938 };
1939
1940 /*
1941  * RT2500pci module information.
1942  */
1943 static struct pci_device_id rt2500pci_device_table[] = {
1944         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1945         { 0, }
1946 };
1947
1948 MODULE_AUTHOR(DRV_PROJECT);
1949 MODULE_VERSION(DRV_VERSION);
1950 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1951 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1952 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1953 MODULE_LICENSE("GPL");
1954
1955 static struct pci_driver rt2500pci_driver = {
1956         .name           = KBUILD_MODNAME,
1957         .id_table       = rt2500pci_device_table,
1958         .probe          = rt2x00pci_probe,
1959         .remove         = __devexit_p(rt2x00pci_remove),
1960         .suspend        = rt2x00pci_suspend,
1961         .resume         = rt2x00pci_resume,
1962 };
1963
1964 static int __init rt2500pci_init(void)
1965 {
1966         return pci_register_driver(&rt2500pci_driver);
1967 }
1968
1969 static void __exit rt2500pci_exit(void)
1970 {
1971         pci_unregister_driver(&rt2500pci_driver);
1972 }
1973
1974 module_init(rt2500pci_init);
1975 module_exit(rt2500pci_exit);