Merge branch 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2800mmio.c
1 /*      Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2  *      Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3  *      Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4  *      Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5  *      Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6  *      Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7  *      Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8  *      Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9  *      <http://rt2x00.serialmonkey.com>
10  *
11  *      This program is free software; you can redistribute it and/or modify
12  *      it under the terms of the GNU General Public License as published by
13  *      the Free Software Foundation; either version 2 of the License, or
14  *      (at your option) any later version.
15  *
16  *      This program is distributed in the hope that it will be useful,
17  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  *      GNU General Public License for more details.
20  *
21  *      You should have received a copy of the GNU General Public License
22  *      along with this program; if not, write to the
23  *      Free Software Foundation, Inc.,
24  *      59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25  */
26
27 /*      Module: rt2800mmio
28  *      Abstract: rt2800 MMIO device routines.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/export.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00mmio.h"
37 #include "rt2800.h"
38 #include "rt2800lib.h"
39 #include "rt2800mmio.h"
40
41 /*
42  * TX descriptor initialization
43  */
44 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
45 {
46         return (__le32 *) entry->skb->data;
47 }
48 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
49
50 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
51                               struct txentry_desc *txdesc)
52 {
53         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
54         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
55         __le32 *txd = entry_priv->desc;
56         u32 word;
57         const unsigned int txwi_size = entry->queue->winfo_size;
58
59         /*
60          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
61          * must contains a TXWI structure + 802.11 header + padding + 802.11
62          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
63          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
64          * data. It means that LAST_SEC0 is always 0.
65          */
66
67         /*
68          * Initialize TX descriptor
69          */
70         word = 0;
71         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
72         rt2x00_desc_write(txd, 0, word);
73
74         word = 0;
75         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
76         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
77                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
78         rt2x00_set_field32(&word, TXD_W1_BURST,
79                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
80         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
81         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
82         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
83         rt2x00_desc_write(txd, 1, word);
84
85         word = 0;
86         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
87                            skbdesc->skb_dma + txwi_size);
88         rt2x00_desc_write(txd, 2, word);
89
90         word = 0;
91         rt2x00_set_field32(&word, TXD_W3_WIV,
92                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
93         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
94         rt2x00_desc_write(txd, 3, word);
95
96         /*
97          * Register descriptor details in skb frame descriptor.
98          */
99         skbdesc->desc = txd;
100         skbdesc->desc_len = TXD_DESC_SIZE;
101 }
102 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
103
104 /*
105  * RX control handlers
106  */
107 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
108                             struct rxdone_entry_desc *rxdesc)
109 {
110         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
111         __le32 *rxd = entry_priv->desc;
112         u32 word;
113
114         rt2x00_desc_read(rxd, 3, &word);
115
116         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
117                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
118
119         /*
120          * Unfortunately we don't know the cipher type used during
121          * decryption. This prevents us from correct providing
122          * correct statistics through debugfs.
123          */
124         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
125
126         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
127                 /*
128                  * Hardware has stripped IV/EIV data from 802.11 frame during
129                  * decryption. Unfortunately the descriptor doesn't contain
130                  * any fields with the EIV/IV data either, so they can't
131                  * be restored by rt2x00lib.
132                  */
133                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
134
135                 /*
136                  * The hardware has already checked the Michael Mic and has
137                  * stripped it from the frame. Signal this to mac80211.
138                  */
139                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
140
141                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
142                         rxdesc->flags |= RX_FLAG_DECRYPTED;
143                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
144                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
145         }
146
147         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
148                 rxdesc->dev_flags |= RXDONE_MY_BSS;
149
150         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
151                 rxdesc->dev_flags |= RXDONE_L2PAD;
152
153         /*
154          * Process the RXWI structure that is at the start of the buffer.
155          */
156         rt2800_process_rxwi(entry, rxdesc);
157 }
158 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
159
160 /*
161  * Interrupt functions.
162  */
163 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
164 {
165         struct ieee80211_conf conf = { .flags = 0 };
166         struct rt2x00lib_conf libconf = { .conf = &conf };
167
168         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
169 }
170
171 static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
172 {
173         __le32 *txwi;
174         u32 word;
175         int wcid, tx_wcid;
176
177         wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
178
179         txwi = rt2800_drv_get_txwi(entry);
180         rt2x00_desc_read(txwi, 1, &word);
181         tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
182
183         return (tx_wcid == wcid);
184 }
185
186 static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
187 {
188         u32 status = *(u32 *)data;
189
190         /*
191          * rt2800pci hardware might reorder frames when exchanging traffic
192          * with multiple BA enabled STAs.
193          *
194          * For example, a tx queue
195          *    [ STA1 | STA2 | STA1 | STA2 ]
196          * can result in tx status reports
197          *    [ STA1 | STA1 | STA2 | STA2 ]
198          * when the hw decides to aggregate the frames for STA1 into one AMPDU.
199          *
200          * To mitigate this effect, associate the tx status to the first frame
201          * in the tx queue with a matching wcid.
202          */
203         if (rt2800mmio_txdone_entry_check(entry, status) &&
204             !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
205                 /*
206                  * Got a matching frame, associate the tx status with
207                  * the frame
208                  */
209                 entry->status = status;
210                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
211                 return true;
212         }
213
214         /* Check the next frame */
215         return false;
216 }
217
218 static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
219 {
220         u32 status = *(u32 *)data;
221
222         /*
223          * Find the first frame without tx status and assign this status to it
224          * regardless if it matches or not.
225          */
226         if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
227                 /*
228                  * Got a matching frame, associate the tx status with
229                  * the frame
230                  */
231                 entry->status = status;
232                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
233                 return true;
234         }
235
236         /* Check the next frame */
237         return false;
238 }
239 static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
240                                               void *data)
241 {
242         if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
243                 rt2800_txdone_entry(entry, entry->status,
244                                     rt2800mmio_get_txwi(entry));
245                 return false;
246         }
247
248         /* No more frames to release */
249         return true;
250 }
251
252 static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
253 {
254         struct data_queue *queue;
255         u32 status;
256         u8 qid;
257         int max_tx_done = 16;
258
259         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
260                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
261                 if (unlikely(qid >= QID_RX)) {
262                         /*
263                          * Unknown queue, this shouldn't happen. Just drop
264                          * this tx status.
265                          */
266                         rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
267                                     qid);
268                         break;
269                 }
270
271                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
272                 if (unlikely(queue == NULL)) {
273                         /*
274                          * The queue is NULL, this shouldn't happen. Stop
275                          * processing here and drop the tx status
276                          */
277                         rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
278                                     qid);
279                         break;
280                 }
281
282                 if (unlikely(rt2x00queue_empty(queue))) {
283                         /*
284                          * The queue is empty. Stop processing here
285                          * and drop the tx status.
286                          */
287                         rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
288                                     qid);
289                         break;
290                 }
291
292                 /*
293                  * Let's associate this tx status with the first
294                  * matching frame.
295                  */
296                 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
297                                                 Q_INDEX, &status,
298                                                 rt2800mmio_txdone_find_entry)) {
299                         /*
300                          * We cannot match the tx status to any frame, so just
301                          * use the first one.
302                          */
303                         if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
304                                                         Q_INDEX, &status,
305                                                         rt2800mmio_txdone_match_first)) {
306                                 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
307                                             qid);
308                                 break;
309                         }
310                 }
311
312                 /*
313                  * Release all frames with a valid tx status.
314                  */
315                 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
316                                            Q_INDEX, NULL,
317                                            rt2800mmio_txdone_release_entries);
318
319                 if (--max_tx_done == 0)
320                         break;
321         }
322
323         return !max_tx_done;
324 }
325
326 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
327                                                struct rt2x00_field32 irq_field)
328 {
329         u32 reg;
330
331         /*
332          * Enable a single interrupt. The interrupt mask register
333          * access needs locking.
334          */
335         spin_lock_irq(&rt2x00dev->irqmask_lock);
336         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
337         rt2x00_set_field32(&reg, irq_field, 1);
338         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
339         spin_unlock_irq(&rt2x00dev->irqmask_lock);
340 }
341
342 void rt2800mmio_txstatus_tasklet(unsigned long data)
343 {
344         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
345         if (rt2800mmio_txdone(rt2x00dev))
346                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
347
348         /*
349          * No need to enable the tx status interrupt here as we always
350          * leave it enabled to minimize the possibility of a tx status
351          * register overflow. See comment in interrupt handler.
352          */
353 }
354 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
355
356 void rt2800mmio_pretbtt_tasklet(unsigned long data)
357 {
358         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
359         rt2x00lib_pretbtt(rt2x00dev);
360         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
361                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
362 }
363 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
364
365 void rt2800mmio_tbtt_tasklet(unsigned long data)
366 {
367         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
368         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
369         u32 reg;
370
371         rt2x00lib_beacondone(rt2x00dev);
372
373         if (rt2x00dev->intf_ap_count) {
374                 /*
375                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
376                  * causing beacon skew and as a result causing problems with
377                  * some powersaving clients over time. Shorten the beacon
378                  * interval every 64 beacons by 64us to mitigate this effect.
379                  */
380                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
381                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
382                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
383                                            (rt2x00dev->beacon_int * 16) - 1);
384                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
385                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
386                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
387                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
388                                            (rt2x00dev->beacon_int * 16));
389                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
390                 }
391                 drv_data->tbtt_tick++;
392                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
393         }
394
395         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
396                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
397 }
398 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
399
400 void rt2800mmio_rxdone_tasklet(unsigned long data)
401 {
402         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
403         if (rt2x00mmio_rxdone(rt2x00dev))
404                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
405         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
406                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
407 }
408 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
409
410 void rt2800mmio_autowake_tasklet(unsigned long data)
411 {
412         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
413         rt2800mmio_wakeup(rt2x00dev);
414         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
415                 rt2800mmio_enable_interrupt(rt2x00dev,
416                                             INT_MASK_CSR_AUTO_WAKEUP);
417 }
418 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
419
420 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
421 {
422         u32 status;
423         int i;
424
425         /*
426          * The TX_FIFO_STATUS interrupt needs special care. We should
427          * read TX_STA_FIFO but we should do it immediately as otherwise
428          * the register can overflow and we would lose status reports.
429          *
430          * Hence, read the TX_STA_FIFO register and copy all tx status
431          * reports into a kernel FIFO which is handled in the txstatus
432          * tasklet. We use a tasklet to process the tx status reports
433          * because we can schedule the tasklet multiple times (when the
434          * interrupt fires again during tx status processing).
435          *
436          * Furthermore we don't disable the TX_FIFO_STATUS
437          * interrupt here but leave it enabled so that the TX_STA_FIFO
438          * can also be read while the tx status tasklet gets executed.
439          *
440          * Since we have only one producer and one consumer we don't
441          * need to lock the kfifo.
442          */
443         for (i = 0; i < rt2x00dev->tx->limit; i++) {
444                 rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
445
446                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
447                         break;
448
449                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
450                         rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
451                         break;
452                 }
453         }
454
455         /* Schedule the tasklet for processing the tx status. */
456         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
457 }
458
459 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
460 {
461         struct rt2x00_dev *rt2x00dev = dev_instance;
462         u32 reg, mask;
463
464         /* Read status and ACK all interrupts */
465         rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
466         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
467
468         if (!reg)
469                 return IRQ_NONE;
470
471         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
472                 return IRQ_HANDLED;
473
474         /*
475          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
476          * for interrupts and interrupt masks we can just use the value of
477          * INT_SOURCE_CSR to create the interrupt mask.
478          */
479         mask = ~reg;
480
481         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
482                 rt2800mmio_txstatus_interrupt(rt2x00dev);
483                 /*
484                  * Never disable the TX_FIFO_STATUS interrupt.
485                  */
486                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
487         }
488
489         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
490                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
491
492         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
493                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
494
495         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
496                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
497
498         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
499                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
500
501         /*
502          * Disable all interrupts for which a tasklet was scheduled right now,
503          * the tasklet will reenable the appropriate interrupts.
504          */
505         spin_lock(&rt2x00dev->irqmask_lock);
506         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
507         reg &= mask;
508         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
509         spin_unlock(&rt2x00dev->irqmask_lock);
510
511         return IRQ_HANDLED;
512 }
513 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
514
515 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
516                            enum dev_state state)
517 {
518         u32 reg;
519         unsigned long flags;
520
521         /*
522          * When interrupts are being enabled, the interrupt registers
523          * should clear the register to assure a clean state.
524          */
525         if (state == STATE_RADIO_IRQ_ON) {
526                 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
527                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
528         }
529
530         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
531         reg = 0;
532         if (state == STATE_RADIO_IRQ_ON) {
533                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
534                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
535                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
536                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
537                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
538         }
539         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
540         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
541
542         if (state == STATE_RADIO_IRQ_OFF) {
543                 /*
544                  * Wait for possibly running tasklets to finish.
545                  */
546                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
547                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
548                 tasklet_kill(&rt2x00dev->autowake_tasklet);
549                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
550                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
551         }
552 }
553 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
554
555 /*
556  * Queue handlers.
557  */
558 void rt2800mmio_start_queue(struct data_queue *queue)
559 {
560         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
561         u32 reg;
562
563         switch (queue->qid) {
564         case QID_RX:
565                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
566                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
567                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
568                 break;
569         case QID_BEACON:
570                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
571                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
572                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
573                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
574                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
575
576                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
577                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
578                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
579                 break;
580         default:
581                 break;
582         }
583 }
584 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
585
586 void rt2800mmio_kick_queue(struct data_queue *queue)
587 {
588         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
589         struct queue_entry *entry;
590
591         switch (queue->qid) {
592         case QID_AC_VO:
593         case QID_AC_VI:
594         case QID_AC_BE:
595         case QID_AC_BK:
596                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
597                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
598                                           entry->entry_idx);
599                 break;
600         case QID_MGMT:
601                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
602                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
603                                           entry->entry_idx);
604                 break;
605         default:
606                 break;
607         }
608 }
609 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
610
611 void rt2800mmio_stop_queue(struct data_queue *queue)
612 {
613         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
614         u32 reg;
615
616         switch (queue->qid) {
617         case QID_RX:
618                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
619                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
620                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
621                 break;
622         case QID_BEACON:
623                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
624                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
625                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
626                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
627                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
628
629                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
630                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
631                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
632
633                 /*
634                  * Wait for current invocation to finish. The tasklet
635                  * won't be scheduled anymore afterwards since we disabled
636                  * the TBTT and PRE TBTT timer.
637                  */
638                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
639                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
640
641                 break;
642         default:
643                 break;
644         }
645 }
646 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
647
648 void rt2800mmio_queue_init(struct data_queue *queue)
649 {
650         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
651         unsigned short txwi_size, rxwi_size;
652
653         rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
654
655         switch (queue->qid) {
656         case QID_RX:
657                 queue->limit = 128;
658                 queue->data_size = AGGREGATION_SIZE;
659                 queue->desc_size = RXD_DESC_SIZE;
660                 queue->winfo_size = rxwi_size;
661                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
662                 break;
663
664         case QID_AC_VO:
665         case QID_AC_VI:
666         case QID_AC_BE:
667         case QID_AC_BK:
668                 queue->limit = 64;
669                 queue->data_size = AGGREGATION_SIZE;
670                 queue->desc_size = TXD_DESC_SIZE;
671                 queue->winfo_size = txwi_size;
672                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
673                 break;
674
675         case QID_BEACON:
676                 queue->limit = 8;
677                 queue->data_size = 0; /* No DMA required for beacons */
678                 queue->desc_size = TXD_DESC_SIZE;
679                 queue->winfo_size = txwi_size;
680                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
681                 break;
682
683         case QID_ATIM:
684                 /* fallthrough */
685         default:
686                 BUG();
687                 break;
688         }
689 }
690 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
691
692 /*
693  * Initialization functions.
694  */
695 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
696 {
697         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
698         u32 word;
699
700         if (entry->queue->qid == QID_RX) {
701                 rt2x00_desc_read(entry_priv->desc, 1, &word);
702
703                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
704         } else {
705                 rt2x00_desc_read(entry_priv->desc, 1, &word);
706
707                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
708         }
709 }
710 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
711
712 void rt2800mmio_clear_entry(struct queue_entry *entry)
713 {
714         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
715         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
716         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
717         u32 word;
718
719         if (entry->queue->qid == QID_RX) {
720                 rt2x00_desc_read(entry_priv->desc, 0, &word);
721                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
722                 rt2x00_desc_write(entry_priv->desc, 0, word);
723
724                 rt2x00_desc_read(entry_priv->desc, 1, &word);
725                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
726                 rt2x00_desc_write(entry_priv->desc, 1, word);
727
728                 /*
729                  * Set RX IDX in register to inform hardware that we have
730                  * handled this entry and it is available for reuse again.
731                  */
732                 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
733                                           entry->entry_idx);
734         } else {
735                 rt2x00_desc_read(entry_priv->desc, 1, &word);
736                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
737                 rt2x00_desc_write(entry_priv->desc, 1, word);
738         }
739 }
740 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
741
742 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
743 {
744         struct queue_entry_priv_mmio *entry_priv;
745
746         /*
747          * Initialize registers.
748          */
749         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
750         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
751                                   entry_priv->desc_dma);
752         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
753                                   rt2x00dev->tx[0].limit);
754         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
755         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
756
757         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
758         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
759                                   entry_priv->desc_dma);
760         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
761                                   rt2x00dev->tx[1].limit);
762         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
763         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
764
765         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
766         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
767                                   entry_priv->desc_dma);
768         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
769                                   rt2x00dev->tx[2].limit);
770         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
771         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
772
773         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
774         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
775                                   entry_priv->desc_dma);
776         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
777                                   rt2x00dev->tx[3].limit);
778         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
779         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
780
781         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
782         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
783         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
784         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
785
786         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
787         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
788         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
789         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
790
791         entry_priv = rt2x00dev->rx->entries[0].priv_data;
792         rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
793                                   entry_priv->desc_dma);
794         rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
795                                   rt2x00dev->rx[0].limit);
796         rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
797                                   rt2x00dev->rx[0].limit - 1);
798         rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
799
800         rt2800_disable_wpdma(rt2x00dev);
801
802         rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
803
804         return 0;
805 }
806 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
807
808 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
809 {
810         u32 reg;
811
812         /*
813          * Reset DMA indexes
814          */
815         rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
816         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
817         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
818         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
819         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
820         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
821         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
822         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
823         rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
824
825         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
826         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
827
828         if (rt2x00_is_pcie(rt2x00dev) &&
829             (rt2x00_rt(rt2x00dev, RT3090) ||
830              rt2x00_rt(rt2x00dev, RT3390) ||
831              rt2x00_rt(rt2x00dev, RT3572) ||
832              rt2x00_rt(rt2x00dev, RT3593) ||
833              rt2x00_rt(rt2x00dev, RT5390) ||
834              rt2x00_rt(rt2x00dev, RT5392) ||
835              rt2x00_rt(rt2x00dev, RT5592))) {
836                 rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
837                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
838                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
839                 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
840         }
841
842         rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
843
844         reg = 0;
845         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
846         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
847         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
848
849         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
850
851         return 0;
852 }
853 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
854
855 /*
856  * Device state switch handlers.
857  */
858 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
859 {
860         /* Wait for DMA, ignore error until we initialize queues. */
861         rt2800_wait_wpdma_ready(rt2x00dev);
862
863         if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
864                 return -EIO;
865
866         return rt2800_enable_radio(rt2x00dev);
867 }
868 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
869
870 MODULE_AUTHOR(DRV_PROJECT);
871 MODULE_VERSION(DRV_VERSION);
872 MODULE_DESCRIPTION("rt2800 MMIO library");
873 MODULE_LICENSE("GPL");