Merge git://1984.lsi.us.es/nf-next
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212                 break;
213         default:
214                 break;
215         }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221         struct queue_entry *entry;
222
223         switch (queue->qid) {
224         case QID_AC_VO:
225         case QID_AC_VI:
226         case QID_AC_BE:
227         case QID_AC_BK:
228                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230                                          entry->entry_idx);
231                 break;
232         case QID_MGMT:
233                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235                                          entry->entry_idx);
236                 break;
237         default:
238                 break;
239         }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245         u32 reg;
246
247         switch (queue->qid) {
248         case QID_RX:
249                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252                 break;
253         case QID_BEACON:
254                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264                 /*
265                  * Wait for current invocation to finish. The tasklet
266                  * won't be scheduled anymore afterwards since we disabled
267                  * the TBTT and PRE TBTT timer.
268                  */
269                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272                 break;
273         default:
274                 break;
275         }
276 }
277
278 /*
279  * Firmware functions
280  */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283         /*
284          * Chip rt3290 use specific 4KB firmware named rt3290.bin.
285          */
286         if (rt2x00_rt(rt2x00dev, RT3290))
287                 return FIRMWARE_RT3290;
288         else
289                 return FIRMWARE_RT2860;
290 }
291
292 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
293                                     const u8 *data, const size_t len)
294 {
295         u32 reg;
296
297         /*
298          * enable Host program ram write selection
299          */
300         reg = 0;
301         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
302         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
303
304         /*
305          * Write firmware to device.
306          */
307         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
308                                       data, len);
309
310         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
311         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
312
313         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
314         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
315
316         return 0;
317 }
318
319 /*
320  * Initialization functions.
321  */
322 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
323 {
324         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
325         u32 word;
326
327         if (entry->queue->qid == QID_RX) {
328                 rt2x00_desc_read(entry_priv->desc, 1, &word);
329
330                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
331         } else {
332                 rt2x00_desc_read(entry_priv->desc, 1, &word);
333
334                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
335         }
336 }
337
338 static void rt2800pci_clear_entry(struct queue_entry *entry)
339 {
340         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
341         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
342         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
343         u32 word;
344
345         if (entry->queue->qid == QID_RX) {
346                 rt2x00_desc_read(entry_priv->desc, 0, &word);
347                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
348                 rt2x00_desc_write(entry_priv->desc, 0, word);
349
350                 rt2x00_desc_read(entry_priv->desc, 1, &word);
351                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
352                 rt2x00_desc_write(entry_priv->desc, 1, word);
353
354                 /*
355                  * Set RX IDX in register to inform hardware that we have
356                  * handled this entry and it is available for reuse again.
357                  */
358                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
359                                       entry->entry_idx);
360         } else {
361                 rt2x00_desc_read(entry_priv->desc, 1, &word);
362                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
363                 rt2x00_desc_write(entry_priv->desc, 1, word);
364         }
365 }
366
367 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
368 {
369         struct queue_entry_priv_pci *entry_priv;
370
371         /*
372          * Initialize registers.
373          */
374         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
375         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
376         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
377                                  rt2x00dev->tx[0].limit);
378         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
379         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
380
381         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
382         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
383         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
384                                  rt2x00dev->tx[1].limit);
385         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
386         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
387
388         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
389         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
390         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
391                                  rt2x00dev->tx[2].limit);
392         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
393         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
394
395         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
396         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
397         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
398                                  rt2x00dev->tx[3].limit);
399         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
400         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
401
402         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
403         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
404         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
405         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
406
407         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
408         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
409         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
410         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
411
412         entry_priv = rt2x00dev->rx->entries[0].priv_data;
413         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
414         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
415                                  rt2x00dev->rx[0].limit);
416         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
417                                  rt2x00dev->rx[0].limit - 1);
418         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
419
420         rt2800_disable_wpdma(rt2x00dev);
421
422         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
423
424         return 0;
425 }
426
427 /*
428  * Device state switch handlers.
429  */
430 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
431                                  enum dev_state state)
432 {
433         u32 reg;
434         unsigned long flags;
435
436         /*
437          * When interrupts are being enabled, the interrupt registers
438          * should clear the register to assure a clean state.
439          */
440         if (state == STATE_RADIO_IRQ_ON) {
441                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
442                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
443         }
444
445         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
446         reg = 0;
447         if (state == STATE_RADIO_IRQ_ON) {
448                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
449                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
450                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
451                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
452                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
453         }
454         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
455         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
456
457         if (state == STATE_RADIO_IRQ_OFF) {
458                 /*
459                  * Wait for possibly running tasklets to finish.
460                  */
461                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
462                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
463                 tasklet_kill(&rt2x00dev->autowake_tasklet);
464                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
465                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
466         }
467 }
468
469 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
470 {
471         u32 reg;
472
473         /*
474          * Reset DMA indexes
475          */
476         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
477         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
478         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
479         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
480         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
481         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
482         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
483         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
484         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
485
486         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
487         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
488
489         if (rt2x00_is_pcie(rt2x00dev) &&
490             (rt2x00_rt(rt2x00dev, RT3572) ||
491              rt2x00_rt(rt2x00dev, RT5390) ||
492              rt2x00_rt(rt2x00dev, RT5392))) {
493                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
494                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
495                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
496                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
497         }
498
499         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
500
501         reg = 0;
502         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
503         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
504         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
505
506         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
507
508         return 0;
509 }
510
511 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
512 {
513         int retval;
514
515         /* Wait for DMA, ignore error until we initialize queues. */
516         rt2800_wait_wpdma_ready(rt2x00dev);
517
518         if (unlikely(rt2800pci_init_queues(rt2x00dev)))
519                 return -EIO;
520
521         retval = rt2800_enable_radio(rt2x00dev);
522         if (retval)
523                 return retval;
524
525         /* After resume MCU_BOOT_SIGNAL will trash these. */
526         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
527         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
528
529         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
530         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
531
532         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
533         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
534
535         return retval;
536 }
537
538 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
539 {
540         if (rt2x00_is_soc(rt2x00dev)) {
541                 rt2800_disable_radio(rt2x00dev);
542                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
543                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
544         }
545 }
546
547 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
548                                enum dev_state state)
549 {
550         if (state == STATE_AWAKE) {
551                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
552                                    0, 0x02);
553                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
554         } else if (state == STATE_SLEEP) {
555                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
556                                          0xffffffff);
557                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
558                                          0xffffffff);
559                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
560                                    0xff, 0x01);
561         }
562
563         return 0;
564 }
565
566 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
567                                       enum dev_state state)
568 {
569         int retval = 0;
570
571         switch (state) {
572         case STATE_RADIO_ON:
573                 retval = rt2800pci_enable_radio(rt2x00dev);
574                 break;
575         case STATE_RADIO_OFF:
576                 /*
577                  * After the radio has been disabled, the device should
578                  * be put to sleep for powersaving.
579                  */
580                 rt2800pci_disable_radio(rt2x00dev);
581                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
582                 break;
583         case STATE_RADIO_IRQ_ON:
584         case STATE_RADIO_IRQ_OFF:
585                 rt2800pci_toggle_irq(rt2x00dev, state);
586                 break;
587         case STATE_DEEP_SLEEP:
588         case STATE_SLEEP:
589         case STATE_STANDBY:
590         case STATE_AWAKE:
591                 retval = rt2800pci_set_state(rt2x00dev, state);
592                 break;
593         default:
594                 retval = -ENOTSUPP;
595                 break;
596         }
597
598         if (unlikely(retval))
599                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
600                       state, retval);
601
602         return retval;
603 }
604
605 /*
606  * TX descriptor initialization
607  */
608 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
609 {
610         return (__le32 *) entry->skb->data;
611 }
612
613 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
614                                     struct txentry_desc *txdesc)
615 {
616         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
617         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
618         __le32 *txd = entry_priv->desc;
619         u32 word;
620
621         /*
622          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
623          * must contains a TXWI structure + 802.11 header + padding + 802.11
624          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
625          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
626          * data. It means that LAST_SEC0 is always 0.
627          */
628
629         /*
630          * Initialize TX descriptor
631          */
632         word = 0;
633         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
634         rt2x00_desc_write(txd, 0, word);
635
636         word = 0;
637         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
638         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
639                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
640         rt2x00_set_field32(&word, TXD_W1_BURST,
641                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
642         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
643         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
644         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
645         rt2x00_desc_write(txd, 1, word);
646
647         word = 0;
648         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
649                            skbdesc->skb_dma + TXWI_DESC_SIZE);
650         rt2x00_desc_write(txd, 2, word);
651
652         word = 0;
653         rt2x00_set_field32(&word, TXD_W3_WIV,
654                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
655         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
656         rt2x00_desc_write(txd, 3, word);
657
658         /*
659          * Register descriptor details in skb frame descriptor.
660          */
661         skbdesc->desc = txd;
662         skbdesc->desc_len = TXD_DESC_SIZE;
663 }
664
665 /*
666  * RX control handlers
667  */
668 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
669                                   struct rxdone_entry_desc *rxdesc)
670 {
671         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
672         __le32 *rxd = entry_priv->desc;
673         u32 word;
674
675         rt2x00_desc_read(rxd, 3, &word);
676
677         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
678                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
679
680         /*
681          * Unfortunately we don't know the cipher type used during
682          * decryption. This prevents us from correct providing
683          * correct statistics through debugfs.
684          */
685         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
686
687         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
688                 /*
689                  * Hardware has stripped IV/EIV data from 802.11 frame during
690                  * decryption. Unfortunately the descriptor doesn't contain
691                  * any fields with the EIV/IV data either, so they can't
692                  * be restored by rt2x00lib.
693                  */
694                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
695
696                 /*
697                  * The hardware has already checked the Michael Mic and has
698                  * stripped it from the frame. Signal this to mac80211.
699                  */
700                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
701
702                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
703                         rxdesc->flags |= RX_FLAG_DECRYPTED;
704                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
705                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
706         }
707
708         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
709                 rxdesc->dev_flags |= RXDONE_MY_BSS;
710
711         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
712                 rxdesc->dev_flags |= RXDONE_L2PAD;
713
714         /*
715          * Process the RXWI structure that is at the start of the buffer.
716          */
717         rt2800_process_rxwi(entry, rxdesc);
718 }
719
720 /*
721  * Interrupt functions.
722  */
723 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
724 {
725         struct ieee80211_conf conf = { .flags = 0 };
726         struct rt2x00lib_conf libconf = { .conf = &conf };
727
728         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
729 }
730
731 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
732 {
733         struct data_queue *queue;
734         struct queue_entry *entry;
735         u32 status;
736         u8 qid;
737         int max_tx_done = 16;
738
739         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
740                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
741                 if (unlikely(qid >= QID_RX)) {
742                         /*
743                          * Unknown queue, this shouldn't happen. Just drop
744                          * this tx status.
745                          */
746                         WARNING(rt2x00dev, "Got TX status report with "
747                                            "unexpected pid %u, dropping\n", qid);
748                         break;
749                 }
750
751                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
752                 if (unlikely(queue == NULL)) {
753                         /*
754                          * The queue is NULL, this shouldn't happen. Stop
755                          * processing here and drop the tx status
756                          */
757                         WARNING(rt2x00dev, "Got TX status for an unavailable "
758                                            "queue %u, dropping\n", qid);
759                         break;
760                 }
761
762                 if (unlikely(rt2x00queue_empty(queue))) {
763                         /*
764                          * The queue is empty. Stop processing here
765                          * and drop the tx status.
766                          */
767                         WARNING(rt2x00dev, "Got TX status for an empty "
768                                            "queue %u, dropping\n", qid);
769                         break;
770                 }
771
772                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
773                 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
774
775                 if (--max_tx_done == 0)
776                         break;
777         }
778
779         return !max_tx_done;
780 }
781
782 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
783                                               struct rt2x00_field32 irq_field)
784 {
785         u32 reg;
786
787         /*
788          * Enable a single interrupt. The interrupt mask register
789          * access needs locking.
790          */
791         spin_lock_irq(&rt2x00dev->irqmask_lock);
792         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
793         rt2x00_set_field32(&reg, irq_field, 1);
794         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
795         spin_unlock_irq(&rt2x00dev->irqmask_lock);
796 }
797
798 static void rt2800pci_txstatus_tasklet(unsigned long data)
799 {
800         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
801         if (rt2800pci_txdone(rt2x00dev))
802                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
803
804         /*
805          * No need to enable the tx status interrupt here as we always
806          * leave it enabled to minimize the possibility of a tx status
807          * register overflow. See comment in interrupt handler.
808          */
809 }
810
811 static void rt2800pci_pretbtt_tasklet(unsigned long data)
812 {
813         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
814         rt2x00lib_pretbtt(rt2x00dev);
815         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
816                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
817 }
818
819 static void rt2800pci_tbtt_tasklet(unsigned long data)
820 {
821         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
822         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
823         u32 reg;
824
825         rt2x00lib_beacondone(rt2x00dev);
826
827         if (rt2x00dev->intf_ap_count) {
828                 /*
829                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
830                  * causing beacon skew and as a result causing problems with
831                  * some powersaving clients over time. Shorten the beacon
832                  * interval every 64 beacons by 64us to mitigate this effect.
833                  */
834                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
835                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
836                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
837                                            (rt2x00dev->beacon_int * 16) - 1);
838                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
839                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
840                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
841                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
842                                            (rt2x00dev->beacon_int * 16));
843                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
844                 }
845                 drv_data->tbtt_tick++;
846                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
847         }
848
849         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
850                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
851 }
852
853 static void rt2800pci_rxdone_tasklet(unsigned long data)
854 {
855         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
856         if (rt2x00pci_rxdone(rt2x00dev))
857                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
858         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
859                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
860 }
861
862 static void rt2800pci_autowake_tasklet(unsigned long data)
863 {
864         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
865         rt2800pci_wakeup(rt2x00dev);
866         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
867                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
868 }
869
870 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
871 {
872         u32 status;
873         int i;
874
875         /*
876          * The TX_FIFO_STATUS interrupt needs special care. We should
877          * read TX_STA_FIFO but we should do it immediately as otherwise
878          * the register can overflow and we would lose status reports.
879          *
880          * Hence, read the TX_STA_FIFO register and copy all tx status
881          * reports into a kernel FIFO which is handled in the txstatus
882          * tasklet. We use a tasklet to process the tx status reports
883          * because we can schedule the tasklet multiple times (when the
884          * interrupt fires again during tx status processing).
885          *
886          * Furthermore we don't disable the TX_FIFO_STATUS
887          * interrupt here but leave it enabled so that the TX_STA_FIFO
888          * can also be read while the tx status tasklet gets executed.
889          *
890          * Since we have only one producer and one consumer we don't
891          * need to lock the kfifo.
892          */
893         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
894                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
895
896                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
897                         break;
898
899                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
900                         WARNING(rt2x00dev, "TX status FIFO overrun,"
901                                 "drop tx status report.\n");
902                         break;
903                 }
904         }
905
906         /* Schedule the tasklet for processing the tx status. */
907         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
908 }
909
910 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
911 {
912         struct rt2x00_dev *rt2x00dev = dev_instance;
913         u32 reg, mask;
914
915         /* Read status and ACK all interrupts */
916         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
917         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
918
919         if (!reg)
920                 return IRQ_NONE;
921
922         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
923                 return IRQ_HANDLED;
924
925         /*
926          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
927          * for interrupts and interrupt masks we can just use the value of
928          * INT_SOURCE_CSR to create the interrupt mask.
929          */
930         mask = ~reg;
931
932         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
933                 rt2800pci_txstatus_interrupt(rt2x00dev);
934                 /*
935                  * Never disable the TX_FIFO_STATUS interrupt.
936                  */
937                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
938         }
939
940         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
941                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
942
943         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
944                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
945
946         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
947                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
948
949         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
950                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
951
952         /*
953          * Disable all interrupts for which a tasklet was scheduled right now,
954          * the tasklet will reenable the appropriate interrupts.
955          */
956         spin_lock(&rt2x00dev->irqmask_lock);
957         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
958         reg &= mask;
959         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
960         spin_unlock(&rt2x00dev->irqmask_lock);
961
962         return IRQ_HANDLED;
963 }
964
965 /*
966  * Device probe functions.
967  */
968 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
969 {
970         /*
971          * Read EEPROM into buffer
972          */
973         if (rt2x00_is_soc(rt2x00dev))
974                 rt2800pci_read_eeprom_soc(rt2x00dev);
975         else if (rt2800pci_efuse_detect(rt2x00dev))
976                 rt2800pci_read_eeprom_efuse(rt2x00dev);
977         else
978                 rt2800pci_read_eeprom_pci(rt2x00dev);
979
980         return rt2800_validate_eeprom(rt2x00dev);
981 }
982
983 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
984 {
985         int retval;
986
987         /*
988          * Allocate eeprom data.
989          */
990         retval = rt2800pci_validate_eeprom(rt2x00dev);
991         if (retval)
992                 return retval;
993
994         retval = rt2800_init_eeprom(rt2x00dev);
995         if (retval)
996                 return retval;
997
998         /*
999          * Initialize hw specifications.
1000          */
1001         retval = rt2800_probe_hw_mode(rt2x00dev);
1002         if (retval)
1003                 return retval;
1004
1005         /*
1006          * This device has multiple filters for control frames
1007          * and has a separate filter for PS Poll frames.
1008          */
1009         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
1010         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1011
1012         /*
1013          * This device has a pre tbtt interrupt and thus fetches
1014          * a new beacon directly prior to transmission.
1015          */
1016         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1017
1018         /*
1019          * This device requires firmware.
1020          */
1021         if (!rt2x00_is_soc(rt2x00dev))
1022                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
1023         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1024         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
1025         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
1026         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1027         if (!modparam_nohwcrypt)
1028                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1029         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1030         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1031
1032         /*
1033          * Set the rssi offset.
1034          */
1035         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1036
1037         return 0;
1038 }
1039
1040 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1041         .tx                     = rt2x00mac_tx,
1042         .start                  = rt2x00mac_start,
1043         .stop                   = rt2x00mac_stop,
1044         .add_interface          = rt2x00mac_add_interface,
1045         .remove_interface       = rt2x00mac_remove_interface,
1046         .config                 = rt2x00mac_config,
1047         .configure_filter       = rt2x00mac_configure_filter,
1048         .set_key                = rt2x00mac_set_key,
1049         .sw_scan_start          = rt2x00mac_sw_scan_start,
1050         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1051         .get_stats              = rt2x00mac_get_stats,
1052         .get_tkip_seq           = rt2800_get_tkip_seq,
1053         .set_rts_threshold      = rt2800_set_rts_threshold,
1054         .sta_add                = rt2x00mac_sta_add,
1055         .sta_remove             = rt2x00mac_sta_remove,
1056         .bss_info_changed       = rt2x00mac_bss_info_changed,
1057         .conf_tx                = rt2800_conf_tx,
1058         .get_tsf                = rt2800_get_tsf,
1059         .rfkill_poll            = rt2x00mac_rfkill_poll,
1060         .ampdu_action           = rt2800_ampdu_action,
1061         .flush                  = rt2x00mac_flush,
1062         .get_survey             = rt2800_get_survey,
1063         .get_ringparam          = rt2x00mac_get_ringparam,
1064         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1065 };
1066
1067 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1068         .register_read          = rt2x00pci_register_read,
1069         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1070         .register_write         = rt2x00pci_register_write,
1071         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1072         .register_multiread     = rt2x00pci_register_multiread,
1073         .register_multiwrite    = rt2x00pci_register_multiwrite,
1074         .regbusy_read           = rt2x00pci_regbusy_read,
1075         .drv_write_firmware     = rt2800pci_write_firmware,
1076         .drv_init_registers     = rt2800pci_init_registers,
1077         .drv_get_txwi           = rt2800pci_get_txwi,
1078 };
1079
1080 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1081         .irq_handler            = rt2800pci_interrupt,
1082         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1083         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1084         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1085         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1086         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1087         .probe_hw               = rt2800pci_probe_hw,
1088         .get_firmware_name      = rt2800pci_get_firmware_name,
1089         .check_firmware         = rt2800_check_firmware,
1090         .load_firmware          = rt2800_load_firmware,
1091         .initialize             = rt2x00pci_initialize,
1092         .uninitialize           = rt2x00pci_uninitialize,
1093         .get_entry_state        = rt2800pci_get_entry_state,
1094         .clear_entry            = rt2800pci_clear_entry,
1095         .set_device_state       = rt2800pci_set_device_state,
1096         .rfkill_poll            = rt2800_rfkill_poll,
1097         .link_stats             = rt2800_link_stats,
1098         .reset_tuner            = rt2800_reset_tuner,
1099         .link_tuner             = rt2800_link_tuner,
1100         .gain_calibration       = rt2800_gain_calibration,
1101         .vco_calibration        = rt2800_vco_calibration,
1102         .start_queue            = rt2800pci_start_queue,
1103         .kick_queue             = rt2800pci_kick_queue,
1104         .stop_queue             = rt2800pci_stop_queue,
1105         .flush_queue            = rt2x00pci_flush_queue,
1106         .write_tx_desc          = rt2800pci_write_tx_desc,
1107         .write_tx_data          = rt2800_write_tx_data,
1108         .write_beacon           = rt2800_write_beacon,
1109         .clear_beacon           = rt2800_clear_beacon,
1110         .fill_rxdone            = rt2800pci_fill_rxdone,
1111         .config_shared_key      = rt2800_config_shared_key,
1112         .config_pairwise_key    = rt2800_config_pairwise_key,
1113         .config_filter          = rt2800_config_filter,
1114         .config_intf            = rt2800_config_intf,
1115         .config_erp             = rt2800_config_erp,
1116         .config_ant             = rt2800_config_ant,
1117         .config                 = rt2800_config,
1118         .sta_add                = rt2800_sta_add,
1119         .sta_remove             = rt2800_sta_remove,
1120 };
1121
1122 static const struct data_queue_desc rt2800pci_queue_rx = {
1123         .entry_num              = 128,
1124         .data_size              = AGGREGATION_SIZE,
1125         .desc_size              = RXD_DESC_SIZE,
1126         .priv_size              = sizeof(struct queue_entry_priv_pci),
1127 };
1128
1129 static const struct data_queue_desc rt2800pci_queue_tx = {
1130         .entry_num              = 64,
1131         .data_size              = AGGREGATION_SIZE,
1132         .desc_size              = TXD_DESC_SIZE,
1133         .priv_size              = sizeof(struct queue_entry_priv_pci),
1134 };
1135
1136 static const struct data_queue_desc rt2800pci_queue_bcn = {
1137         .entry_num              = 8,
1138         .data_size              = 0, /* No DMA required for beacons */
1139         .desc_size              = TXWI_DESC_SIZE,
1140         .priv_size              = sizeof(struct queue_entry_priv_pci),
1141 };
1142
1143 static const struct rt2x00_ops rt2800pci_ops = {
1144         .name                   = KBUILD_MODNAME,
1145         .drv_data_size          = sizeof(struct rt2800_drv_data),
1146         .max_sta_intf           = 1,
1147         .max_ap_intf            = 8,
1148         .eeprom_size            = EEPROM_SIZE,
1149         .rf_size                = RF_SIZE,
1150         .tx_queues              = NUM_TX_QUEUES,
1151         .extra_tx_headroom      = TXWI_DESC_SIZE,
1152         .rx                     = &rt2800pci_queue_rx,
1153         .tx                     = &rt2800pci_queue_tx,
1154         .bcn                    = &rt2800pci_queue_bcn,
1155         .lib                    = &rt2800pci_rt2x00_ops,
1156         .drv                    = &rt2800pci_rt2800_ops,
1157         .hw                     = &rt2800pci_mac80211_ops,
1158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1159         .debugfs                = &rt2800_rt2x00debug,
1160 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1161 };
1162
1163 /*
1164  * RT2800pci module information.
1165  */
1166 #ifdef CONFIG_PCI
1167 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1168         { PCI_DEVICE(0x1814, 0x0601) },
1169         { PCI_DEVICE(0x1814, 0x0681) },
1170         { PCI_DEVICE(0x1814, 0x0701) },
1171         { PCI_DEVICE(0x1814, 0x0781) },
1172         { PCI_DEVICE(0x1814, 0x3090) },
1173         { PCI_DEVICE(0x1814, 0x3091) },
1174         { PCI_DEVICE(0x1814, 0x3092) },
1175         { PCI_DEVICE(0x1432, 0x7708) },
1176         { PCI_DEVICE(0x1432, 0x7727) },
1177         { PCI_DEVICE(0x1432, 0x7728) },
1178         { PCI_DEVICE(0x1432, 0x7738) },
1179         { PCI_DEVICE(0x1432, 0x7748) },
1180         { PCI_DEVICE(0x1432, 0x7758) },
1181         { PCI_DEVICE(0x1432, 0x7768) },
1182         { PCI_DEVICE(0x1462, 0x891a) },
1183         { PCI_DEVICE(0x1a3b, 0x1059) },
1184 #ifdef CONFIG_RT2800PCI_RT3290
1185         { PCI_DEVICE(0x1814, 0x3290) },
1186 #endif
1187 #ifdef CONFIG_RT2800PCI_RT33XX
1188         { PCI_DEVICE(0x1814, 0x3390) },
1189 #endif
1190 #ifdef CONFIG_RT2800PCI_RT35XX
1191         { PCI_DEVICE(0x1432, 0x7711) },
1192         { PCI_DEVICE(0x1432, 0x7722) },
1193         { PCI_DEVICE(0x1814, 0x3060) },
1194         { PCI_DEVICE(0x1814, 0x3062) },
1195         { PCI_DEVICE(0x1814, 0x3562) },
1196         { PCI_DEVICE(0x1814, 0x3592) },
1197         { PCI_DEVICE(0x1814, 0x3593) },
1198 #endif
1199 #ifdef CONFIG_RT2800PCI_RT53XX
1200         { PCI_DEVICE(0x1814, 0x5360) },
1201         { PCI_DEVICE(0x1814, 0x5362) },
1202         { PCI_DEVICE(0x1814, 0x5390) },
1203         { PCI_DEVICE(0x1814, 0x5392) },
1204         { PCI_DEVICE(0x1814, 0x539a) },
1205         { PCI_DEVICE(0x1814, 0x539b) },
1206         { PCI_DEVICE(0x1814, 0x539f) },
1207 #endif
1208         { 0, }
1209 };
1210 #endif /* CONFIG_PCI */
1211
1212 MODULE_AUTHOR(DRV_PROJECT);
1213 MODULE_VERSION(DRV_VERSION);
1214 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1215 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1216 #ifdef CONFIG_PCI
1217 MODULE_FIRMWARE(FIRMWARE_RT2860);
1218 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1219 #endif /* CONFIG_PCI */
1220 MODULE_LICENSE("GPL");
1221
1222 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1223 static int rt2800soc_probe(struct platform_device *pdev)
1224 {
1225         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1226 }
1227
1228 static struct platform_driver rt2800soc_driver = {
1229         .driver         = {
1230                 .name           = "rt2800_wmac",
1231                 .owner          = THIS_MODULE,
1232                 .mod_name       = KBUILD_MODNAME,
1233         },
1234         .probe          = rt2800soc_probe,
1235         .remove         = __devexit_p(rt2x00soc_remove),
1236         .suspend        = rt2x00soc_suspend,
1237         .resume         = rt2x00soc_resume,
1238 };
1239 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1240
1241 #ifdef CONFIG_PCI
1242 static int rt2800pci_probe(struct pci_dev *pci_dev,
1243                            const struct pci_device_id *id)
1244 {
1245         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1246 }
1247
1248 static struct pci_driver rt2800pci_driver = {
1249         .name           = KBUILD_MODNAME,
1250         .id_table       = rt2800pci_device_table,
1251         .probe          = rt2800pci_probe,
1252         .remove         = __devexit_p(rt2x00pci_remove),
1253         .suspend        = rt2x00pci_suspend,
1254         .resume         = rt2x00pci_resume,
1255 };
1256 #endif /* CONFIG_PCI */
1257
1258 static int __init rt2800pci_init(void)
1259 {
1260         int ret = 0;
1261
1262 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1263         ret = platform_driver_register(&rt2800soc_driver);
1264         if (ret)
1265                 return ret;
1266 #endif
1267 #ifdef CONFIG_PCI
1268         ret = pci_register_driver(&rt2800pci_driver);
1269         if (ret) {
1270 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1271                 platform_driver_unregister(&rt2800soc_driver);
1272 #endif
1273                 return ret;
1274         }
1275 #endif
1276
1277         return ret;
1278 }
1279
1280 static void __exit rt2800pci_exit(void)
1281 {
1282 #ifdef CONFIG_PCI
1283         pci_unregister_driver(&rt2800pci_driver);
1284 #endif
1285 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1286         platform_driver_unregister(&rt2800soc_driver);
1287 #endif
1288 }
1289
1290 module_init(rt2800pci_init);
1291 module_exit(rt2800pci_exit);