a95cf531f083210c5ce7d07419e22096fbe465b7
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Ring handler.
35  */
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37                                      const unsigned int queue)
38 {
39         int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
40
41         /*
42          * Check if we are requesting a reqular TX ring,
43          * or if we are requesting a Beacon or Atim ring.
44          * For Atim rings, we should check if it is supported.
45          */
46         if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47                 return &rt2x00dev->tx[queue];
48
49         if (!rt2x00dev->bcn || !beacon)
50                 return NULL;
51
52         if (queue == IEEE80211_TX_QUEUE_BEACON)
53                 return &rt2x00dev->bcn[0];
54         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55                 return &rt2x00dev->bcn[1];
56
57         return NULL;
58 }
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
60
61 /*
62  * Link tuning handlers
63  */
64 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
65 {
66         rt2x00dev->link.count = 0;
67         rt2x00dev->link.vgc_level = 0;
68
69         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
70
71         /*
72          * The RX and TX percentage should start at 50%
73          * this will assure we will get at least get some
74          * decent value when the link tuner starts.
75          * The value will be dropped and overwritten with
76          * the correct (measured )value anyway during the
77          * first run of the link tuner.
78          */
79         rt2x00dev->link.qual.rx_percentage = 50;
80         rt2x00dev->link.qual.tx_percentage = 50;
81
82         /*
83          * Reset the link tuner.
84          */
85         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
86
87         queue_delayed_work(rt2x00dev->hw->workqueue,
88                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
89 }
90
91 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
92 {
93         cancel_delayed_work_sync(&rt2x00dev->link.work);
94 }
95
96 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
97 {
98         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
99                 return;
100
101         rt2x00lib_stop_link_tuner(rt2x00dev);
102         rt2x00lib_start_link_tuner(rt2x00dev);
103 }
104
105 /*
106  * Radio control handlers.
107  */
108 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
109 {
110         int status;
111
112         /*
113          * Don't enable the radio twice.
114          * And check if the hardware button has been disabled.
115          */
116         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
117             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
118                 return 0;
119
120         /*
121          * Enable radio.
122          */
123         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
124                                                        STATE_RADIO_ON);
125         if (status)
126                 return status;
127
128         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
129
130         /*
131          * Enable RX.
132          */
133         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
134
135         /*
136          * Start the TX queues.
137          */
138         ieee80211_start_queues(rt2x00dev->hw);
139
140         return 0;
141 }
142
143 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
144 {
145         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
146                 return;
147
148         /*
149          * Stop all scheduled work.
150          */
151         if (work_pending(&rt2x00dev->beacon_work))
152                 cancel_work_sync(&rt2x00dev->beacon_work);
153         if (work_pending(&rt2x00dev->filter_work))
154                 cancel_work_sync(&rt2x00dev->filter_work);
155         if (work_pending(&rt2x00dev->config_work))
156                 cancel_work_sync(&rt2x00dev->config_work);
157
158         /*
159          * Stop the TX queues.
160          */
161         ieee80211_stop_queues(rt2x00dev->hw);
162
163         /*
164          * Disable RX.
165          */
166         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
167
168         /*
169          * Disable radio.
170          */
171         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
172 }
173
174 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
175 {
176         /*
177          * When we are disabling the RX, we should also stop the link tuner.
178          */
179         if (state == STATE_RADIO_RX_OFF)
180                 rt2x00lib_stop_link_tuner(rt2x00dev);
181
182         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
183
184         /*
185          * When we are enabling the RX, we should also start the link tuner.
186          */
187         if (state == STATE_RADIO_RX_ON &&
188             is_interface_present(&rt2x00dev->interface))
189                 rt2x00lib_start_link_tuner(rt2x00dev);
190 }
191
192 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
193 {
194         enum antenna rx = rt2x00dev->link.ant.active.rx;
195         enum antenna tx = rt2x00dev->link.ant.active.tx;
196         int sample_a =
197             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
198         int sample_b =
199             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
200
201         /*
202          * We are done sampling. Now we should evaluate the results.
203          */
204         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
205
206         /*
207          * During the last period we have sampled the RSSI
208          * from both antenna's. It now is time to determine
209          * which antenna demonstrated the best performance.
210          * When we are already on the antenna with the best
211          * performance, then there really is nothing for us
212          * left to do.
213          */
214         if (sample_a == sample_b)
215                 return;
216
217         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) {
218                 if (sample_a > sample_b && rx == ANTENNA_B)
219                         rx = ANTENNA_A;
220                 else if (rx == ANTENNA_A)
221                         rx = ANTENNA_B;
222         }
223
224         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) {
225                 if (sample_a > sample_b && tx == ANTENNA_B)
226                         tx = ANTENNA_A;
227                 else if (tx == ANTENNA_A)
228                         tx = ANTENNA_B;
229         }
230
231         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
232 }
233
234 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
235 {
236         enum antenna rx = rt2x00dev->link.ant.active.rx;
237         enum antenna tx = rt2x00dev->link.ant.active.tx;
238         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
239         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
240
241         /*
242          * Legacy driver indicates that we should swap antenna's
243          * when the difference in RSSI is greater that 5. This
244          * also should be done when the RSSI was actually better
245          * then the previous sample.
246          * When the difference exceeds the threshold we should
247          * sample the rssi from the other antenna to make a valid
248          * comparison between the 2 antennas.
249          */
250         if ((rssi_curr - rssi_old) > -5 || (rssi_curr - rssi_old) < 5)
251                 return;
252
253         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
254
255         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
256                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
257
258         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
259                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
260
261         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
262 }
263
264 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
265 {
266         /*
267          * Determine if software diversity is enabled for
268          * either the TX or RX antenna (or both).
269          * Always perform this check since within the link
270          * tuner interval the configuration might have changed.
271          */
272         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
273         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
274
275         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
276             rt2x00dev->default_ant.rx != ANTENNA_SW_DIVERSITY)
277                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
278         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
279             rt2x00dev->default_ant.tx != ANTENNA_SW_DIVERSITY)
280                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
281
282         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
283             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
284                 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
285                 return;
286         }
287
288         /*
289          * If we have only sampled the data over the last period
290          * we should now harvest the data. Otherwise just evaluate
291          * the data. The latter should only be performed once
292          * every 2 seconds.
293          */
294         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
295                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
296         else if (rt2x00dev->link.count & 1)
297                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
298 }
299
300 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
301 {
302         int avg_rssi = rssi;
303
304         /*
305          * Update global RSSI
306          */
307         if (link->qual.avg_rssi)
308                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
309         link->qual.avg_rssi = avg_rssi;
310
311         /*
312          * Update antenna RSSI
313          */
314         if (link->ant.rssi_ant)
315                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
316         link->ant.rssi_ant = rssi;
317 }
318
319 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
320 {
321         if (qual->rx_failed || qual->rx_success)
322                 qual->rx_percentage =
323                     (qual->rx_success * 100) /
324                     (qual->rx_failed + qual->rx_success);
325         else
326                 qual->rx_percentage = 50;
327
328         if (qual->tx_failed || qual->tx_success)
329                 qual->tx_percentage =
330                     (qual->tx_success * 100) /
331                     (qual->tx_failed + qual->tx_success);
332         else
333                 qual->tx_percentage = 50;
334
335         qual->rx_success = 0;
336         qual->rx_failed = 0;
337         qual->tx_success = 0;
338         qual->tx_failed = 0;
339 }
340
341 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
342                                            int rssi)
343 {
344         int rssi_percentage = 0;
345         int signal;
346
347         /*
348          * We need a positive value for the RSSI.
349          */
350         if (rssi < 0)
351                 rssi += rt2x00dev->rssi_offset;
352
353         /*
354          * Calculate the different percentages,
355          * which will be used for the signal.
356          */
357         if (rt2x00dev->rssi_offset)
358                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
359
360         /*
361          * Add the individual percentages and use the WEIGHT
362          * defines to calculate the current link signal.
363          */
364         signal = ((WEIGHT_RSSI * rssi_percentage) +
365                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
366                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
367
368         return (signal > 100) ? 100 : signal;
369 }
370
371 static void rt2x00lib_link_tuner(struct work_struct *work)
372 {
373         struct rt2x00_dev *rt2x00dev =
374             container_of(work, struct rt2x00_dev, link.work.work);
375
376         /*
377          * When the radio is shutting down we should
378          * immediately cease all link tuning.
379          */
380         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
381                 return;
382
383         /*
384          * Update statistics.
385          */
386         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
387         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
388             rt2x00dev->link.qual.rx_failed;
389
390         /*
391          * Only perform the link tuning when Link tuning
392          * has been enabled (This could have been disabled from the EEPROM).
393          */
394         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
395                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
396
397         /*
398          * Evaluate antenna setup.
399          */
400         rt2x00lib_evaluate_antenna(rt2x00dev);
401
402         /*
403          * Precalculate a portion of the link signal which is
404          * in based on the tx/rx success/failure counters.
405          */
406         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
407
408         /*
409          * Increase tuner counter, and reschedule the next link tuner run.
410          */
411         rt2x00dev->link.count++;
412         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
413                            LINK_TUNE_INTERVAL);
414 }
415
416 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
417 {
418         struct rt2x00_dev *rt2x00dev =
419             container_of(work, struct rt2x00_dev, filter_work);
420         unsigned int filter = rt2x00dev->packet_filter;
421
422         /*
423          * Since we had stored the filter inside interface.filter,
424          * we should now clear that field. Otherwise the driver will
425          * assume nothing has changed (*total_flags will be compared
426          * to interface.filter to determine if any action is required).
427          */
428         rt2x00dev->packet_filter = 0;
429
430         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
431                                              filter, &filter, 0, NULL);
432 }
433
434 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
435 {
436         struct rt2x00_dev *rt2x00dev =
437             container_of(work, struct rt2x00_dev, config_work);
438         int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
439
440         rt2x00mac_erp_ie_changed(rt2x00dev->hw,
441                                  IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
442 }
443
444 /*
445  * Interrupt context handlers.
446  */
447 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
448 {
449         struct rt2x00_dev *rt2x00dev =
450             container_of(work, struct rt2x00_dev, beacon_work);
451         struct data_ring *ring =
452             rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
453         struct data_entry *entry = rt2x00_get_data_entry(ring);
454         struct sk_buff *skb;
455
456         skb = ieee80211_beacon_get(rt2x00dev->hw,
457                                    rt2x00dev->interface.id,
458                                    &entry->tx_status.control);
459         if (!skb)
460                 return;
461
462         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
463                                           &entry->tx_status.control);
464
465         dev_kfree_skb(skb);
466 }
467
468 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
469 {
470         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
471                 return;
472
473         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
474 }
475 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
476
477 void rt2x00lib_txdone(struct data_entry *entry,
478                       const int status, const int retry)
479 {
480         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
481         struct ieee80211_tx_status *tx_status = &entry->tx_status;
482         struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
483         int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
484         int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
485                       status == TX_FAIL_OTHER);
486
487         /*
488          * Update TX statistics.
489          */
490         tx_status->flags = 0;
491         tx_status->ack_signal = 0;
492         tx_status->excessive_retries = (status == TX_FAIL_RETRY);
493         tx_status->retry_count = retry;
494         rt2x00dev->link.qual.tx_success += success;
495         rt2x00dev->link.qual.tx_failed += retry + fail;
496
497         if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
498                 if (success)
499                         tx_status->flags |= IEEE80211_TX_STATUS_ACK;
500                 else
501                         stats->dot11ACKFailureCount++;
502         }
503
504         tx_status->queue_length = entry->ring->stats.limit;
505         tx_status->queue_number = tx_status->control.queue;
506
507         if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
508                 if (success)
509                         stats->dot11RTSSuccessCount++;
510                 else
511                         stats->dot11RTSFailureCount++;
512         }
513
514         /*
515          * Send the tx_status to mac80211 & debugfs.
516          * mac80211 will clean up the skb structure.
517          */
518         get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
519         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
520         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
521         entry->skb = NULL;
522 }
523 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
524
525 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
526                       struct rxdata_entry_desc *desc)
527 {
528         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
529         struct interface *intf = &rt2x00dev->interface;
530         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
531         struct ieee80211_hw_mode *mode;
532         struct ieee80211_rate *rate;
533         struct ieee80211_hdr *hdr;
534         unsigned int i;
535         int val = 0;
536         u16 fc;
537
538         /*
539          * Update RX statistics.
540          */
541         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
542         for (i = 0; i < mode->num_rates; i++) {
543                 rate = &mode->rates[i];
544
545                 /*
546                  * When frame was received with an OFDM bitrate,
547                  * the signal is the PLCP value. If it was received with
548                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
549                  */
550                 if (!desc->ofdm)
551                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
552                 else
553                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
554
555                 if (val == desc->signal) {
556                         val = rate->val;
557                         break;
558                 }
559         }
560
561         /*
562          * Only update link status if this is a beacon frame carrying our
563          * bssid.
564          */
565         hdr = (struct ieee80211_hdr *) skb->data;
566         if (skb->len >= sizeof(struct ieee80211_hdr *)) {
567                 fc = le16_to_cpu(hdr->frame_control);
568                 if ((intf->type == IEEE80211_IF_TYPE_STA
569                      || intf->type == IEEE80211_IF_TYPE_IBSS)
570                     && is_beacon(fc)
571                     && compare_ether_addr(hdr->addr3, intf->bssid) == 0)
572                         rt2x00lib_update_link_stats(&rt2x00dev->link,
573                                                     desc->rssi);
574         }
575
576         rt2x00dev->link.qual.rx_success++;
577
578         rx_status->rate = val;
579         rx_status->signal =
580             rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
581         rx_status->ssi = desc->rssi;
582         rx_status->flag = desc->flags;
583         rx_status->antenna = rt2x00dev->link.ant.active.rx;
584
585         /*
586          * Send frame to mac80211 & debugfs
587          */
588         get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
589         rt2x00debug_dump_frame(rt2x00dev, skb);
590         ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
591 }
592 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
593
594 /*
595  * TX descriptor initializer
596  */
597 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
598                              struct sk_buff *skb,
599                              struct ieee80211_tx_control *control)
600 {
601         struct txdata_entry_desc desc;
602         struct skb_desc *skbdesc = get_skb_desc(skb);
603         struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
604         int tx_rate;
605         int bitrate;
606         int length;
607         int duration;
608         int residual;
609         u16 frame_control;
610         u16 seq_ctrl;
611
612         memset(&desc, 0, sizeof(desc));
613
614         desc.cw_min = skbdesc->ring->tx_params.cw_min;
615         desc.cw_max = skbdesc->ring->tx_params.cw_max;
616         desc.aifs = skbdesc->ring->tx_params.aifs;
617
618         /*
619          * Identify queue
620          */
621         if (control->queue < rt2x00dev->hw->queues)
622                 desc.queue = control->queue;
623         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
624                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
625                 desc.queue = QUEUE_MGMT;
626         else
627                 desc.queue = QUEUE_OTHER;
628
629         /*
630          * Read required fields from ieee80211 header.
631          */
632         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
633         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
634
635         tx_rate = control->tx_rate;
636
637         /*
638          * Check whether this frame is to be acked
639          */
640         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
641                 __set_bit(ENTRY_TXD_ACK, &desc.flags);
642
643         /*
644          * Check if this is a RTS/CTS frame
645          */
646         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
647                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
648                 if (is_rts_frame(frame_control)) {
649                         __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
650                         __set_bit(ENTRY_TXD_ACK, &desc.flags);
651                 } else
652                         __clear_bit(ENTRY_TXD_ACK, &desc.flags);
653                 if (control->rts_cts_rate)
654                         tx_rate = control->rts_cts_rate;
655         }
656
657         /*
658          * Check for OFDM
659          */
660         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
661                 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
662
663         /*
664          * Check if more fragments are pending
665          */
666         if (ieee80211_get_morefrag(ieee80211hdr)) {
667                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
668                 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
669         }
670
671         /*
672          * Beacons and probe responses require the tsf timestamp
673          * to be inserted into the frame.
674          */
675         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
676             is_probe_resp(frame_control))
677                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
678
679         /*
680          * Determine with what IFS priority this frame should be send.
681          * Set ifs to IFS_SIFS when the this is not the first fragment,
682          * or this fragment came after RTS/CTS.
683          */
684         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
685             test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
686                 desc.ifs = IFS_SIFS;
687         else
688                 desc.ifs = IFS_BACKOFF;
689
690         /*
691          * PLCP setup
692          * Length calculation depends on OFDM/CCK rate.
693          */
694         desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
695         desc.service = 0x04;
696
697         length = skbdesc->data_len + FCS_LEN;
698         if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
699                 desc.length_high = (length >> 6) & 0x3f;
700                 desc.length_low = length & 0x3f;
701         } else {
702                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
703
704                 /*
705                  * Convert length to microseconds.
706                  */
707                 residual = get_duration_res(length, bitrate);
708                 duration = get_duration(length, bitrate);
709
710                 if (residual != 0) {
711                         duration++;
712
713                         /*
714                          * Check if we need to set the Length Extension
715                          */
716                         if (bitrate == 110 && residual <= 30)
717                                 desc.service |= 0x80;
718                 }
719
720                 desc.length_high = (duration >> 8) & 0xff;
721                 desc.length_low = duration & 0xff;
722
723                 /*
724                  * When preamble is enabled we should set the
725                  * preamble bit for the signal.
726                  */
727                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
728                         desc.signal |= 0x08;
729         }
730
731         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
732
733         /*
734          * Update ring entry.
735          */
736         skbdesc->entry->skb = skb;
737         memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
738
739         /*
740          * The frame has been completely initialized and ready
741          * for sending to the device. The caller will push the
742          * frame to the device, but we are going to push the
743          * frame to debugfs here.
744          */
745         skbdesc->frame_type = DUMP_FRAME_TX;
746         rt2x00debug_dump_frame(rt2x00dev, skb);
747 }
748 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
749
750 /*
751  * Driver initialization handlers.
752  */
753 static void rt2x00lib_channel(struct ieee80211_channel *entry,
754                               const int channel, const int tx_power,
755                               const int value)
756 {
757         entry->chan = channel;
758         if (channel <= 14)
759                 entry->freq = 2407 + (5 * channel);
760         else
761                 entry->freq = 5000 + (5 * channel);
762         entry->val = value;
763         entry->flag =
764             IEEE80211_CHAN_W_IBSS |
765             IEEE80211_CHAN_W_ACTIVE_SCAN |
766             IEEE80211_CHAN_W_SCAN;
767         entry->power_level = tx_power;
768         entry->antenna_max = 0xff;
769 }
770
771 static void rt2x00lib_rate(struct ieee80211_rate *entry,
772                            const int rate, const int mask,
773                            const int plcp, const int flags)
774 {
775         entry->rate = rate;
776         entry->val =
777             DEVICE_SET_RATE_FIELD(rate, RATE) |
778             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
779             DEVICE_SET_RATE_FIELD(plcp, PLCP);
780         entry->flags = flags;
781         entry->val2 = entry->val;
782         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
783                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
784         entry->min_rssi_ack = 0;
785         entry->min_rssi_ack_delta = 0;
786 }
787
788 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
789                                     struct hw_mode_spec *spec)
790 {
791         struct ieee80211_hw *hw = rt2x00dev->hw;
792         struct ieee80211_hw_mode *hwmodes;
793         struct ieee80211_channel *channels;
794         struct ieee80211_rate *rates;
795         unsigned int i;
796         unsigned char tx_power;
797
798         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
799         if (!hwmodes)
800                 goto exit;
801
802         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
803         if (!channels)
804                 goto exit_free_modes;
805
806         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
807         if (!rates)
808                 goto exit_free_channels;
809
810         /*
811          * Initialize Rate list.
812          */
813         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
814                        0x00, IEEE80211_RATE_CCK);
815         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
816                        0x01, IEEE80211_RATE_CCK_2);
817         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
818                        0x02, IEEE80211_RATE_CCK_2);
819         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
820                        0x03, IEEE80211_RATE_CCK_2);
821
822         if (spec->num_rates > 4) {
823                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
824                                0x0b, IEEE80211_RATE_OFDM);
825                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
826                                0x0f, IEEE80211_RATE_OFDM);
827                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
828                                0x0a, IEEE80211_RATE_OFDM);
829                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
830                                0x0e, IEEE80211_RATE_OFDM);
831                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
832                                0x09, IEEE80211_RATE_OFDM);
833                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
834                                0x0d, IEEE80211_RATE_OFDM);
835                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
836                                0x08, IEEE80211_RATE_OFDM);
837                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
838                                0x0c, IEEE80211_RATE_OFDM);
839         }
840
841         /*
842          * Initialize Channel list.
843          */
844         for (i = 0; i < spec->num_channels; i++) {
845                 if (spec->channels[i].channel <= 14)
846                         tx_power = spec->tx_power_bg[i];
847                 else if (spec->tx_power_a)
848                         tx_power = spec->tx_power_a[i];
849                 else
850                         tx_power = spec->tx_power_default;
851
852                 rt2x00lib_channel(&channels[i],
853                                   spec->channels[i].channel, tx_power, i);
854         }
855
856         /*
857          * Intitialize 802.11b
858          * Rates: CCK.
859          * Channels: OFDM.
860          */
861         if (spec->num_modes > HWMODE_B) {
862                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
863                 hwmodes[HWMODE_B].num_channels = 14;
864                 hwmodes[HWMODE_B].num_rates = 4;
865                 hwmodes[HWMODE_B].channels = channels;
866                 hwmodes[HWMODE_B].rates = rates;
867         }
868
869         /*
870          * Intitialize 802.11g
871          * Rates: CCK, OFDM.
872          * Channels: OFDM.
873          */
874         if (spec->num_modes > HWMODE_G) {
875                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
876                 hwmodes[HWMODE_G].num_channels = 14;
877                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
878                 hwmodes[HWMODE_G].channels = channels;
879                 hwmodes[HWMODE_G].rates = rates;
880         }
881
882         /*
883          * Intitialize 802.11a
884          * Rates: OFDM.
885          * Channels: OFDM, UNII, HiperLAN2.
886          */
887         if (spec->num_modes > HWMODE_A) {
888                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
889                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
890                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
891                 hwmodes[HWMODE_A].channels = &channels[14];
892                 hwmodes[HWMODE_A].rates = &rates[4];
893         }
894
895         if (spec->num_modes > HWMODE_G &&
896             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
897                 goto exit_free_rates;
898
899         if (spec->num_modes > HWMODE_B &&
900             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
901                 goto exit_free_rates;
902
903         if (spec->num_modes > HWMODE_A &&
904             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
905                 goto exit_free_rates;
906
907         rt2x00dev->hwmodes = hwmodes;
908
909         return 0;
910
911 exit_free_rates:
912         kfree(rates);
913
914 exit_free_channels:
915         kfree(channels);
916
917 exit_free_modes:
918         kfree(hwmodes);
919
920 exit:
921         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
922         return -ENOMEM;
923 }
924
925 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
926 {
927         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
928                 ieee80211_unregister_hw(rt2x00dev->hw);
929
930         if (likely(rt2x00dev->hwmodes)) {
931                 kfree(rt2x00dev->hwmodes->channels);
932                 kfree(rt2x00dev->hwmodes->rates);
933                 kfree(rt2x00dev->hwmodes);
934                 rt2x00dev->hwmodes = NULL;
935         }
936 }
937
938 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
939 {
940         struct hw_mode_spec *spec = &rt2x00dev->spec;
941         int status;
942
943         /*
944          * Initialize HW modes.
945          */
946         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
947         if (status)
948                 return status;
949
950         /*
951          * Register HW.
952          */
953         status = ieee80211_register_hw(rt2x00dev->hw);
954         if (status) {
955                 rt2x00lib_remove_hw(rt2x00dev);
956                 return status;
957         }
958
959         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
960
961         return 0;
962 }
963
964 /*
965  * Initialization/uninitialization handlers.
966  */
967 static int rt2x00lib_alloc_entries(struct data_ring *ring,
968                                    const u16 max_entries, const u16 data_size,
969                                    const u16 desc_size)
970 {
971         struct data_entry *entry;
972         unsigned int i;
973
974         ring->stats.limit = max_entries;
975         ring->data_size = data_size;
976         ring->desc_size = desc_size;
977
978         /*
979          * Allocate all ring entries.
980          */
981         entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
982         if (!entry)
983                 return -ENOMEM;
984
985         for (i = 0; i < ring->stats.limit; i++) {
986                 entry[i].flags = 0;
987                 entry[i].ring = ring;
988                 entry[i].skb = NULL;
989                 entry[i].entry_idx = i;
990         }
991
992         ring->entry = entry;
993
994         return 0;
995 }
996
997 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
998 {
999         struct data_ring *ring;
1000
1001         /*
1002          * Allocate the RX ring.
1003          */
1004         if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
1005                                     rt2x00dev->ops->rxd_size))
1006                 return -ENOMEM;
1007
1008         /*
1009          * First allocate the TX rings.
1010          */
1011         txring_for_each(rt2x00dev, ring) {
1012                 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1013                                             rt2x00dev->ops->txd_size))
1014                         return -ENOMEM;
1015         }
1016
1017         if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1018                 return 0;
1019
1020         /*
1021          * Allocate the BEACON ring.
1022          */
1023         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1024                                     MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1025                 return -ENOMEM;
1026
1027         /*
1028          * Allocate the Atim ring.
1029          */
1030         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1031                                     DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1032                 return -ENOMEM;
1033
1034         return 0;
1035 }
1036
1037 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1038 {
1039         struct data_ring *ring;
1040
1041         ring_for_each(rt2x00dev, ring) {
1042                 kfree(ring->entry);
1043                 ring->entry = NULL;
1044         }
1045 }
1046
1047 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1048 {
1049         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1050                 return;
1051
1052         /*
1053          * Unregister rfkill.
1054          */
1055         rt2x00rfkill_unregister(rt2x00dev);
1056
1057         /*
1058          * Allow the HW to uninitialize.
1059          */
1060         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1061
1062         /*
1063          * Free allocated ring entries.
1064          */
1065         rt2x00lib_free_ring_entries(rt2x00dev);
1066 }
1067
1068 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1069 {
1070         int status;
1071
1072         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1073                 return 0;
1074
1075         /*
1076          * Allocate all ring entries.
1077          */
1078         status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1079         if (status) {
1080                 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1081                 return status;
1082         }
1083
1084         /*
1085          * Initialize the device.
1086          */
1087         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1088         if (status)
1089                 goto exit;
1090
1091         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1092
1093         /*
1094          * Register the rfkill handler.
1095          */
1096         status = rt2x00rfkill_register(rt2x00dev);
1097         if (status)
1098                 goto exit_unitialize;
1099
1100         return 0;
1101
1102 exit_unitialize:
1103         rt2x00lib_uninitialize(rt2x00dev);
1104
1105 exit:
1106         rt2x00lib_free_ring_entries(rt2x00dev);
1107
1108         return status;
1109 }
1110
1111 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1112 {
1113         int retval;
1114
1115         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1116                 return 0;
1117
1118         /*
1119          * If this is the first interface which is added,
1120          * we should load the firmware now.
1121          */
1122         if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
1123                 retval = rt2x00lib_load_firmware(rt2x00dev);
1124                 if (retval)
1125                         return retval;
1126         }
1127
1128         /*
1129          * Initialize the device.
1130          */
1131         retval = rt2x00lib_initialize(rt2x00dev);
1132         if (retval)
1133                 return retval;
1134
1135         /*
1136          * Enable radio.
1137          */
1138         retval = rt2x00lib_enable_radio(rt2x00dev);
1139         if (retval) {
1140                 rt2x00lib_uninitialize(rt2x00dev);
1141                 return retval;
1142         }
1143
1144         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1145
1146         return 0;
1147 }
1148
1149 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1150 {
1151         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1152                 return;
1153
1154         /*
1155          * Perhaps we can add something smarter here,
1156          * but for now just disabling the radio should do.
1157          */
1158         rt2x00lib_disable_radio(rt2x00dev);
1159
1160         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1161 }
1162
1163 /*
1164  * driver allocation handlers.
1165  */
1166 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1167 {
1168         struct data_ring *ring;
1169         unsigned int index;
1170
1171         /*
1172          * We need the following rings:
1173          * RX: 1
1174          * TX: hw->queues
1175          * Beacon: 1 (if required)
1176          * Atim: 1 (if required)
1177          */
1178         rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1179             (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1180
1181         ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1182         if (!ring) {
1183                 ERROR(rt2x00dev, "Ring allocation failed.\n");
1184                 return -ENOMEM;
1185         }
1186
1187         /*
1188          * Initialize pointers
1189          */
1190         rt2x00dev->rx = ring;
1191         rt2x00dev->tx = &rt2x00dev->rx[1];
1192         if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1193                 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1194
1195         /*
1196          * Initialize ring parameters.
1197          * cw_min: 2^5 = 32.
1198          * cw_max: 2^10 = 1024.
1199          */
1200         index = 0;
1201         ring_for_each(rt2x00dev, ring) {
1202                 ring->rt2x00dev = rt2x00dev;
1203                 ring->queue_idx = index++;
1204                 ring->tx_params.aifs = 2;
1205                 ring->tx_params.cw_min = 5;
1206                 ring->tx_params.cw_max = 10;
1207         }
1208
1209         return 0;
1210 }
1211
1212 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1213 {
1214         kfree(rt2x00dev->rx);
1215         rt2x00dev->rx = NULL;
1216         rt2x00dev->tx = NULL;
1217         rt2x00dev->bcn = NULL;
1218 }
1219
1220 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1221 {
1222         int retval = -ENOMEM;
1223
1224         /*
1225          * Let the driver probe the device to detect the capabilities.
1226          */
1227         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1228         if (retval) {
1229                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1230                 goto exit;
1231         }
1232
1233         /*
1234          * Initialize configuration work.
1235          */
1236         INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1237         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1238         INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1239         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1240
1241         /*
1242          * Reset current working type.
1243          */
1244         rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1245
1246         /*
1247          * Allocate ring array.
1248          */
1249         retval = rt2x00lib_alloc_rings(rt2x00dev);
1250         if (retval)
1251                 goto exit;
1252
1253         /*
1254          * Initialize ieee80211 structure.
1255          */
1256         retval = rt2x00lib_probe_hw(rt2x00dev);
1257         if (retval) {
1258                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1259                 goto exit;
1260         }
1261
1262         /*
1263          * Allocatie rfkill.
1264          */
1265         retval = rt2x00rfkill_allocate(rt2x00dev);
1266         if (retval)
1267                 goto exit;
1268
1269         /*
1270          * Open the debugfs entry.
1271          */
1272         rt2x00debug_register(rt2x00dev);
1273
1274         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1275
1276         return 0;
1277
1278 exit:
1279         rt2x00lib_remove_dev(rt2x00dev);
1280
1281         return retval;
1282 }
1283 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1284
1285 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1286 {
1287         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1288
1289         /*
1290          * Disable radio.
1291          */
1292         rt2x00lib_disable_radio(rt2x00dev);
1293
1294         /*
1295          * Uninitialize device.
1296          */
1297         rt2x00lib_uninitialize(rt2x00dev);
1298
1299         /*
1300          * Close debugfs entry.
1301          */
1302         rt2x00debug_deregister(rt2x00dev);
1303
1304         /*
1305          * Free rfkill
1306          */
1307         rt2x00rfkill_free(rt2x00dev);
1308
1309         /*
1310          * Free ieee80211_hw memory.
1311          */
1312         rt2x00lib_remove_hw(rt2x00dev);
1313
1314         /*
1315          * Free firmware image.
1316          */
1317         rt2x00lib_free_firmware(rt2x00dev);
1318
1319         /*
1320          * Free ring structures.
1321          */
1322         rt2x00lib_free_rings(rt2x00dev);
1323 }
1324 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1325
1326 /*
1327  * Device state handlers
1328  */
1329 #ifdef CONFIG_PM
1330 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1331 {
1332         int retval;
1333
1334         NOTICE(rt2x00dev, "Going to sleep.\n");
1335         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1336
1337         /*
1338          * Only continue if mac80211 has open interfaces.
1339          */
1340         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1341                 goto exit;
1342         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1343
1344         /*
1345          * Disable radio and unitialize all items
1346          * that must be recreated on resume.
1347          */
1348         rt2x00lib_stop(rt2x00dev);
1349         rt2x00lib_uninitialize(rt2x00dev);
1350         rt2x00debug_deregister(rt2x00dev);
1351
1352 exit:
1353         /*
1354          * Set device mode to sleep for power management.
1355          */
1356         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1357         if (retval)
1358                 return retval;
1359
1360         return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1363
1364 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1365 {
1366         struct interface *intf = &rt2x00dev->interface;
1367         int retval;
1368
1369         NOTICE(rt2x00dev, "Waking up.\n");
1370
1371         /*
1372          * Open the debugfs entry.
1373          */
1374         rt2x00debug_register(rt2x00dev);
1375
1376         /*
1377          * Only continue if mac80211 had open interfaces.
1378          */
1379         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1380                 return 0;
1381
1382         /*
1383          * Reinitialize device and all active interfaces.
1384          */
1385         retval = rt2x00lib_start(rt2x00dev);
1386         if (retval)
1387                 goto exit;
1388
1389         /*
1390          * Reconfigure device.
1391          */
1392         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1393         if (!rt2x00dev->hw->conf.radio_enabled)
1394                 rt2x00lib_disable_radio(rt2x00dev);
1395
1396         rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1397         rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1398         rt2x00lib_config_type(rt2x00dev, intf->type);
1399
1400         /*
1401          * We are ready again to receive requests from mac80211.
1402          */
1403         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1404
1405         /*
1406          * It is possible that during that mac80211 has attempted
1407          * to send frames while we were suspending or resuming.
1408          * In that case we have disabled the TX queue and should
1409          * now enable it again
1410          */
1411         ieee80211_start_queues(rt2x00dev->hw);
1412
1413         /*
1414          * When in Master or Ad-hoc mode,
1415          * restart Beacon transmitting by faking a beacondone event.
1416          */
1417         if (intf->type == IEEE80211_IF_TYPE_AP ||
1418             intf->type == IEEE80211_IF_TYPE_IBSS)
1419                 rt2x00lib_beacondone(rt2x00dev);
1420
1421         return 0;
1422
1423 exit:
1424         rt2x00lib_disable_radio(rt2x00dev);
1425         rt2x00lib_uninitialize(rt2x00dev);
1426         rt2x00debug_deregister(rt2x00dev);
1427
1428         return retval;
1429 }
1430 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1431 #endif /* CONFIG_PM */
1432
1433 /*
1434  * rt2x00lib module information.
1435  */
1436 MODULE_AUTHOR(DRV_PROJECT);
1437 MODULE_VERSION(DRV_VERSION);
1438 MODULE_DESCRIPTION("rt2x00 library");
1439 MODULE_LICENSE("GPL");