netfilter: fix description of expected checkentry return code on xt_target
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
40
41 /*
42  * Allow hardware encryption to be disabled.
43  */
44 static int modparam_nohwcrypt = 0;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47
48 /*
49  * Register access.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attempt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  */
59 #define WAIT_FOR_BBP(__dev, __reg) \
60         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65                                H2M_MAILBOX_CSR_OWNER, (__reg))
66
67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                               const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         mutex_lock(&rt2x00dev->csr_mutex);
73
74         /*
75          * Wait until the BBP becomes available, afterwards we
76          * can safely write the new data into the register.
77          */
78         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79                 reg = 0;
80                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84
85                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86         }
87
88         mutex_unlock(&rt2x00dev->csr_mutex);
89 }
90
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92                              const unsigned int word, u8 *value)
93 {
94         u32 reg;
95
96         mutex_lock(&rt2x00dev->csr_mutex);
97
98         /*
99          * Wait until the BBP becomes available, afterwards we
100          * can safely write the read request into the register.
101          * After the data has been written, we wait until hardware
102          * returns the correct value, if at any time the register
103          * doesn't become available in time, reg will be 0xffffffff
104          * which means we return 0xff to the caller.
105          */
106         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107                 reg = 0;
108                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111
112                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113
114                 WAIT_FOR_BBP(rt2x00dev, &reg);
115         }
116
117         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118
119         mutex_unlock(&rt2x00dev->csr_mutex);
120 }
121
122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123                              const unsigned int word, const u32 value)
124 {
125         u32 reg;
126
127         mutex_lock(&rt2x00dev->csr_mutex);
128
129         /*
130          * Wait until the RF becomes available, afterwards we
131          * can safely write the new data into the register.
132          */
133         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134                 reg = 0;
135                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139
140                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141                 rt2x00_rf_write(rt2x00dev, word, value);
142         }
143
144         mutex_unlock(&rt2x00dev->csr_mutex);
145 }
146
147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148                                 const u8 command, const u8 token,
149                                 const u8 arg0, const u8 arg1)
150 {
151         u32 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the MCU becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165
166                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170         }
171
172         mutex_unlock(&rt2x00dev->csr_mutex);
173
174 }
175
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177 {
178         struct rt2x00_dev *rt2x00dev = eeprom->data;
179         u32 reg;
180
181         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182
183         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185         eeprom->reg_data_clock =
186             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187         eeprom->reg_chip_select =
188             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189 }
190
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192 {
193         struct rt2x00_dev *rt2x00dev = eeprom->data;
194         u32 reg = 0;
195
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199                            !!eeprom->reg_data_clock);
200         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201                            !!eeprom->reg_chip_select);
202
203         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204 }
205
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208         .owner  = THIS_MODULE,
209         .csr    = {
210                 .read           = rt2x00pci_register_read,
211                 .write          = rt2x00pci_register_write,
212                 .flags          = RT2X00DEBUGFS_OFFSET,
213                 .word_base      = CSR_REG_BASE,
214                 .word_size      = sizeof(u32),
215                 .word_count     = CSR_REG_SIZE / sizeof(u32),
216         },
217         .eeprom = {
218                 .read           = rt2x00_eeprom_read,
219                 .write          = rt2x00_eeprom_write,
220                 .word_base      = EEPROM_BASE,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt61pci_bbp_read,
226                 .write          = rt61pci_bbp_write,
227                 .word_base      = BBP_BASE,
228                 .word_size      = sizeof(u8),
229                 .word_count     = BBP_SIZE / sizeof(u8),
230         },
231         .rf     = {
232                 .read           = rt2x00_rf_read,
233                 .write          = rt61pci_rf_write,
234                 .word_base      = RF_BASE,
235                 .word_size      = sizeof(u32),
236                 .word_count     = RF_SIZE / sizeof(u32),
237         },
238 };
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243         u32 reg;
244
245         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251                                    enum led_brightness brightness)
252 {
253         struct rt2x00_led *led =
254             container_of(led_cdev, struct rt2x00_led, led_dev);
255         unsigned int enabled = brightness != LED_OFF;
256         unsigned int a_mode =
257             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258         unsigned int bg_mode =
259             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260
261         if (led->type == LED_TYPE_RADIO) {
262                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263                                    MCU_LEDCS_RADIO_STATUS, enabled);
264
265                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266                                     (led->rt2x00dev->led_mcu_reg & 0xff),
267                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
268         } else if (led->type == LED_TYPE_ASSOC) {
269                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
273
274                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275                                     (led->rt2x00dev->led_mcu_reg & 0xff),
276                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
277         } else if (led->type == LED_TYPE_QUALITY) {
278                 /*
279                  * The brightness is divided into 6 levels (0 - 5),
280                  * this means we need to convert the brightness
281                  * argument into the matching level within that range.
282                  */
283                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284                                     brightness / (LED_FULL / 6), 0);
285         }
286 }
287
288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289                              unsigned long *delay_on,
290                              unsigned long *delay_off)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         u32 reg;
295
296         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300
301         return 0;
302 }
303
304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305                              struct rt2x00_led *led,
306                              enum led_type type)
307 {
308         led->rt2x00dev = rt2x00dev;
309         led->type = type;
310         led->led_dev.brightness_set = rt61pci_brightness_set;
311         led->led_dev.blink_set = rt61pci_blink_set;
312         led->flags = LED_INITIALIZED;
313 }
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
315
316 /*
317  * Configuration handlers.
318  */
319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320                                      struct rt2x00lib_crypto *crypto,
321                                      struct ieee80211_key_conf *key)
322 {
323         struct hw_key_entry key_entry;
324         struct rt2x00_field32 field;
325         u32 mask;
326         u32 reg;
327
328         if (crypto->cmd == SET_KEY) {
329                 /*
330                  * rt2x00lib can't determine the correct free
331                  * key_idx for shared keys. We have 1 register
332                  * with key valid bits. The goal is simple, read
333                  * the register, if that is full we have no slots
334                  * left.
335                  * Note that each BSS is allowed to have up to 4
336                  * shared keys, so put a mask over the allowed
337                  * entries.
338                  */
339                 mask = (0xf << crypto->bssidx);
340
341                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342                 reg &= mask;
343
344                 if (reg && reg == mask)
345                         return -ENOSPC;
346
347                 key->hw_key_idx += reg ? ffz(reg) : 0;
348
349                 /*
350                  * Upload key to hardware
351                  */
352                 memcpy(key_entry.key, crypto->key,
353                        sizeof(key_entry.key));
354                 memcpy(key_entry.tx_mic, crypto->tx_mic,
355                        sizeof(key_entry.tx_mic));
356                 memcpy(key_entry.rx_mic, crypto->rx_mic,
357                        sizeof(key_entry.rx_mic));
358
359                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361                                               &key_entry, sizeof(key_entry));
362
363                 /*
364                  * The cipher types are stored over 2 registers.
365                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
367                  * Using the correct defines correctly will cause overhead,
368                  * so just calculate the correct offset.
369                  */
370                 if (key->hw_key_idx < 8) {
371                         field.bit_offset = (3 * key->hw_key_idx);
372                         field.bit_mask = 0x7 << field.bit_offset;
373
374                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375                         rt2x00_set_field32(&reg, field, crypto->cipher);
376                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377                 } else {
378                         field.bit_offset = (3 * (key->hw_key_idx - 8));
379                         field.bit_mask = 0x7 << field.bit_offset;
380
381                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382                         rt2x00_set_field32(&reg, field, crypto->cipher);
383                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384                 }
385
386                 /*
387                  * The driver does not support the IV/EIV generation
388                  * in hardware. However it doesn't support the IV/EIV
389                  * inside the ieee80211 frame either, but requires it
390                  * to be provided separately for the descriptor.
391                  * rt2x00lib will cut the IV/EIV data out of all frames
392                  * given to us by mac80211, but we must tell mac80211
393                  * to generate the IV/EIV data.
394                  */
395                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396         }
397
398         /*
399          * SEC_CSR0 contains only single-bit fields to indicate
400          * a particular key is valid. Because using the FIELD32()
401          * defines directly will cause a lot of overhead, we use
402          * a calculation to determine the correct bit directly.
403          */
404         mask = 1 << key->hw_key_idx;
405
406         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407         if (crypto->cmd == SET_KEY)
408                 reg |= mask;
409         else if (crypto->cmd == DISABLE_KEY)
410                 reg &= ~mask;
411         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412
413         return 0;
414 }
415
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417                                        struct rt2x00lib_crypto *crypto,
418                                        struct ieee80211_key_conf *key)
419 {
420         struct hw_pairwise_ta_entry addr_entry;
421         struct hw_key_entry key_entry;
422         u32 mask;
423         u32 reg;
424
425         if (crypto->cmd == SET_KEY) {
426                 /*
427                  * rt2x00lib can't determine the correct free
428                  * key_idx for pairwise keys. We have 2 registers
429                  * with key valid bits. The goal is simple: read
430                  * the first register. If that is full, move to
431                  * the next register.
432                  * When both registers are full, we drop the key.
433                  * Otherwise, we use the first invalid entry.
434                  */
435                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436                 if (reg && reg == ~0) {
437                         key->hw_key_idx = 32;
438                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439                         if (reg && reg == ~0)
440                                 return -ENOSPC;
441                 }
442
443                 key->hw_key_idx += reg ? ffz(reg) : 0;
444
445                 /*
446                  * Upload key to hardware
447                  */
448                 memcpy(key_entry.key, crypto->key,
449                        sizeof(key_entry.key));
450                 memcpy(key_entry.tx_mic, crypto->tx_mic,
451                        sizeof(key_entry.tx_mic));
452                 memcpy(key_entry.rx_mic, crypto->rx_mic,
453                        sizeof(key_entry.rx_mic));
454
455                 memset(&addr_entry, 0, sizeof(addr_entry));
456                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457                 addr_entry.cipher = crypto->cipher;
458
459                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461                                               &key_entry, sizeof(key_entry));
462
463                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465                                               &addr_entry, sizeof(addr_entry));
466
467                 /*
468                  * Enable pairwise lookup table for given BSS idx.
469                  * Without this, received frames will not be decrypted
470                  * by the hardware.
471                  */
472                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473                 reg |= (1 << crypto->bssidx);
474                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475
476                 /*
477                  * The driver does not support the IV/EIV generation
478                  * in hardware. However it doesn't support the IV/EIV
479                  * inside the ieee80211 frame either, but requires it
480                  * to be provided separately for the descriptor.
481                  * rt2x00lib will cut the IV/EIV data out of all frames
482                  * given to us by mac80211, but we must tell mac80211
483                  * to generate the IV/EIV data.
484                  */
485                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486         }
487
488         /*
489          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490          * a particular key is valid. Because using the FIELD32()
491          * defines directly will cause a lot of overhead, we use
492          * a calculation to determine the correct bit directly.
493          */
494         if (key->hw_key_idx < 32) {
495                 mask = 1 << key->hw_key_idx;
496
497                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498                 if (crypto->cmd == SET_KEY)
499                         reg |= mask;
500                 else if (crypto->cmd == DISABLE_KEY)
501                         reg &= ~mask;
502                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503         } else {
504                 mask = 1 << (key->hw_key_idx - 32);
505
506                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507                 if (crypto->cmd == SET_KEY)
508                         reg |= mask;
509                 else if (crypto->cmd == DISABLE_KEY)
510                         reg &= ~mask;
511                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512         }
513
514         return 0;
515 }
516
517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518                                   const unsigned int filter_flags)
519 {
520         u32 reg;
521
522         /*
523          * Start configuration steps.
524          * Note that the version error will always be dropped
525          * and broadcast frames will always be accepted since
526          * there is no filter for it at this time.
527          */
528         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530                            !(filter_flags & FIF_FCSFAIL));
531         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532                            !(filter_flags & FIF_PLCPFAIL));
533         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536                            !(filter_flags & FIF_PROMISC_IN_BSS));
537         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
539                            !rt2x00dev->intf_ap_count);
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542                            !(filter_flags & FIF_ALLMULTI));
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545                            !(filter_flags & FIF_CONTROL));
546         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547 }
548
549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550                                 struct rt2x00_intf *intf,
551                                 struct rt2x00intf_conf *conf,
552                                 const unsigned int flags)
553 {
554         unsigned int beacon_base;
555         u32 reg;
556
557         if (flags & CONFIG_UPDATE_TYPE) {
558                 /*
559                  * Clear current synchronisation setup.
560                  * For the Beacon base registers, we only need to clear
561                  * the first byte since that byte contains the VALID and OWNER
562                  * bits which (when set to 0) will invalidate the entire beacon.
563                  */
564                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
565                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
566
567                 /*
568                  * Enable synchronisation.
569                  */
570                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
571                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
572                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
573                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
574                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
575         }
576
577         if (flags & CONFIG_UPDATE_MAC) {
578                 reg = le32_to_cpu(conf->mac[1]);
579                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
580                 conf->mac[1] = cpu_to_le32(reg);
581
582                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
583                                               conf->mac, sizeof(conf->mac));
584         }
585
586         if (flags & CONFIG_UPDATE_BSSID) {
587                 reg = le32_to_cpu(conf->bssid[1]);
588                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
589                 conf->bssid[1] = cpu_to_le32(reg);
590
591                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
592                                               conf->bssid, sizeof(conf->bssid));
593         }
594 }
595
596 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
597                                struct rt2x00lib_erp *erp)
598 {
599         u32 reg;
600
601         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
602         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
603         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
604         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
605
606         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
607         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
608         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
609                            !!erp->short_preamble);
610         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
611
612         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
613
614         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
615         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
616                            erp->beacon_int * 16);
617         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
618
619         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
620         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
621         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622
623         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
624         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
625         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
626         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
627         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
628 }
629
630 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
631                                       struct antenna_setup *ant)
632 {
633         u8 r3;
634         u8 r4;
635         u8 r77;
636
637         rt61pci_bbp_read(rt2x00dev, 3, &r3);
638         rt61pci_bbp_read(rt2x00dev, 4, &r4);
639         rt61pci_bbp_read(rt2x00dev, 77, &r77);
640
641         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
642
643         /*
644          * Configure the RX antenna.
645          */
646         switch (ant->rx) {
647         case ANTENNA_HW_DIVERSITY:
648                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651                 break;
652         case ANTENNA_A:
653                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657                 else
658                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659                 break;
660         case ANTENNA_B:
661         default:
662                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666                 else
667                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668                 break;
669         }
670
671         rt61pci_bbp_write(rt2x00dev, 77, r77);
672         rt61pci_bbp_write(rt2x00dev, 3, r3);
673         rt61pci_bbp_write(rt2x00dev, 4, r4);
674 }
675
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677                                       struct antenna_setup *ant)
678 {
679         u8 r3;
680         u8 r4;
681         u8 r77;
682
683         rt61pci_bbp_read(rt2x00dev, 3, &r3);
684         rt61pci_bbp_read(rt2x00dev, 4, &r4);
685         rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
688         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
689                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
690
691         /*
692          * Configure the RX antenna.
693          */
694         switch (ant->rx) {
695         case ANTENNA_HW_DIVERSITY:
696                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
697                 break;
698         case ANTENNA_A:
699                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
700                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
701                 break;
702         case ANTENNA_B:
703         default:
704                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
705                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
706                 break;
707         }
708
709         rt61pci_bbp_write(rt2x00dev, 77, r77);
710         rt61pci_bbp_write(rt2x00dev, 3, r3);
711         rt61pci_bbp_write(rt2x00dev, 4, r4);
712 }
713
714 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
715                                            const int p1, const int p2)
716 {
717         u32 reg;
718
719         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
720
721         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
722         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
723
724         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
725         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
726
727         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
728 }
729
730 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
731                                         struct antenna_setup *ant)
732 {
733         u8 r3;
734         u8 r4;
735         u8 r77;
736
737         rt61pci_bbp_read(rt2x00dev, 3, &r3);
738         rt61pci_bbp_read(rt2x00dev, 4, &r4);
739         rt61pci_bbp_read(rt2x00dev, 77, &r77);
740
741         /*
742          * Configure the RX antenna.
743          */
744         switch (ant->rx) {
745         case ANTENNA_A:
746                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
747                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
748                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
749                 break;
750         case ANTENNA_HW_DIVERSITY:
751                 /*
752                  * FIXME: Antenna selection for the rf 2529 is very confusing
753                  * in the legacy driver. Just default to antenna B until the
754                  * legacy code can be properly translated into rt2x00 code.
755                  */
756         case ANTENNA_B:
757         default:
758                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
759                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
760                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
761                 break;
762         }
763
764         rt61pci_bbp_write(rt2x00dev, 77, r77);
765         rt61pci_bbp_write(rt2x00dev, 3, r3);
766         rt61pci_bbp_write(rt2x00dev, 4, r4);
767 }
768
769 struct antenna_sel {
770         u8 word;
771         /*
772          * value[0] -> non-LNA
773          * value[1] -> LNA
774          */
775         u8 value[2];
776 };
777
778 static const struct antenna_sel antenna_sel_a[] = {
779         { 96,  { 0x58, 0x78 } },
780         { 104, { 0x38, 0x48 } },
781         { 75,  { 0xfe, 0x80 } },
782         { 86,  { 0xfe, 0x80 } },
783         { 88,  { 0xfe, 0x80 } },
784         { 35,  { 0x60, 0x60 } },
785         { 97,  { 0x58, 0x58 } },
786         { 98,  { 0x58, 0x58 } },
787 };
788
789 static const struct antenna_sel antenna_sel_bg[] = {
790         { 96,  { 0x48, 0x68 } },
791         { 104, { 0x2c, 0x3c } },
792         { 75,  { 0xfe, 0x80 } },
793         { 86,  { 0xfe, 0x80 } },
794         { 88,  { 0xfe, 0x80 } },
795         { 35,  { 0x50, 0x50 } },
796         { 97,  { 0x48, 0x48 } },
797         { 98,  { 0x48, 0x48 } },
798 };
799
800 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
801                                struct antenna_setup *ant)
802 {
803         const struct antenna_sel *sel;
804         unsigned int lna;
805         unsigned int i;
806         u32 reg;
807
808         /*
809          * We should never come here because rt2x00lib is supposed
810          * to catch this and send us the correct antenna explicitely.
811          */
812         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
813                ant->tx == ANTENNA_SW_DIVERSITY);
814
815         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
816                 sel = antenna_sel_a;
817                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
818         } else {
819                 sel = antenna_sel_bg;
820                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
821         }
822
823         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
824                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
825
826         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
827
828         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
829                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
830         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
831                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
832
833         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
834
835         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
836                 rt61pci_config_antenna_5x(rt2x00dev, ant);
837         else if (rt2x00_rf(rt2x00dev, RF2527))
838                 rt61pci_config_antenna_2x(rt2x00dev, ant);
839         else if (rt2x00_rf(rt2x00dev, RF2529)) {
840                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
841                         rt61pci_config_antenna_2x(rt2x00dev, ant);
842                 else
843                         rt61pci_config_antenna_2529(rt2x00dev, ant);
844         }
845 }
846
847 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
848                                     struct rt2x00lib_conf *libconf)
849 {
850         u16 eeprom;
851         short lna_gain = 0;
852
853         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
854                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
855                         lna_gain += 14;
856
857                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
858                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
859         } else {
860                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
861                         lna_gain += 14;
862
863                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
864                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
865         }
866
867         rt2x00dev->lna_gain = lna_gain;
868 }
869
870 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
871                                    struct rf_channel *rf, const int txpower)
872 {
873         u8 r3;
874         u8 r94;
875         u8 smart;
876
877         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
878         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
879
880         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
881
882         rt61pci_bbp_read(rt2x00dev, 3, &r3);
883         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
884         rt61pci_bbp_write(rt2x00dev, 3, r3);
885
886         r94 = 6;
887         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
888                 r94 += txpower - MAX_TXPOWER;
889         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
890                 r94 += txpower;
891         rt61pci_bbp_write(rt2x00dev, 94, r94);
892
893         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
894         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
895         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
896         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
897
898         udelay(200);
899
900         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
901         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
902         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
903         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
904
905         udelay(200);
906
907         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
908         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
909         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
910         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
911
912         msleep(1);
913 }
914
915 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
916                                    const int txpower)
917 {
918         struct rf_channel rf;
919
920         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
921         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
922         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
923         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
924
925         rt61pci_config_channel(rt2x00dev, &rf, txpower);
926 }
927
928 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929                                     struct rt2x00lib_conf *libconf)
930 {
931         u32 reg;
932
933         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
934         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
935                            libconf->conf->long_frame_max_tx_count);
936         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
937                            libconf->conf->short_frame_max_tx_count);
938         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
939 }
940
941 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
942                                 struct rt2x00lib_conf *libconf)
943 {
944         enum dev_state state =
945             (libconf->conf->flags & IEEE80211_CONF_PS) ?
946                 STATE_SLEEP : STATE_AWAKE;
947         u32 reg;
948
949         if (state == STATE_SLEEP) {
950                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
951                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
952                                    rt2x00dev->beacon_int - 10);
953                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
954                                    libconf->conf->listen_interval - 1);
955                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
956
957                 /* We must first disable autowake before it can be enabled */
958                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
959                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
960
961                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
962                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963
964                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
965                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
966                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
967
968                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
969         } else {
970                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
971                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
972                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
973                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
974                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
975                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
976
977                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
978                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
979                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
980
981                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
982         }
983 }
984
985 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986                            struct rt2x00lib_conf *libconf,
987                            const unsigned int flags)
988 {
989         /* Always recalculate LNA gain before changing configuration */
990         rt61pci_config_lna_gain(rt2x00dev, libconf);
991
992         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
994                                        libconf->conf->power_level);
995         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
996             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
999                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1000         if (flags & IEEE80211_CONF_CHANGE_PS)
1001                 rt61pci_config_ps(rt2x00dev, libconf);
1002 }
1003
1004 /*
1005  * Link tuning
1006  */
1007 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008                                struct link_qual *qual)
1009 {
1010         u32 reg;
1011
1012         /*
1013          * Update FCS error count from register.
1014          */
1015         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017
1018         /*
1019          * Update False CCA count from register.
1020          */
1021         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 }
1024
1025 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1026                                    struct link_qual *qual, u8 vgc_level)
1027 {
1028         if (qual->vgc_level != vgc_level) {
1029                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030                 qual->vgc_level = vgc_level;
1031                 qual->vgc_level_reg = vgc_level;
1032         }
1033 }
1034
1035 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1036                                 struct link_qual *qual)
1037 {
1038         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039 }
1040
1041 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1042                                struct link_qual *qual, const u32 count)
1043 {
1044         u8 up_bound;
1045         u8 low_bound;
1046
1047         /*
1048          * Determine r17 bounds.
1049          */
1050         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1051                 low_bound = 0x28;
1052                 up_bound = 0x48;
1053                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1054                         low_bound += 0x10;
1055                         up_bound += 0x10;
1056                 }
1057         } else {
1058                 low_bound = 0x20;
1059                 up_bound = 0x40;
1060                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1061                         low_bound += 0x10;
1062                         up_bound += 0x10;
1063                 }
1064         }
1065
1066         /*
1067          * If we are not associated, we should go straight to the
1068          * dynamic CCA tuning.
1069          */
1070         if (!rt2x00dev->intf_associated)
1071                 goto dynamic_cca_tune;
1072
1073         /*
1074          * Special big-R17 for very short distance
1075          */
1076         if (qual->rssi >= -35) {
1077                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078                 return;
1079         }
1080
1081         /*
1082          * Special big-R17 for short distance
1083          */
1084         if (qual->rssi >= -58) {
1085                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086                 return;
1087         }
1088
1089         /*
1090          * Special big-R17 for middle-short distance
1091          */
1092         if (qual->rssi >= -66) {
1093                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094                 return;
1095         }
1096
1097         /*
1098          * Special mid-R17 for middle distance
1099          */
1100         if (qual->rssi >= -74) {
1101                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102                 return;
1103         }
1104
1105         /*
1106          * Special case: Change up_bound based on the rssi.
1107          * Lower up_bound when rssi is weaker then -74 dBm.
1108          */
1109         up_bound -= 2 * (-74 - qual->rssi);
1110         if (low_bound > up_bound)
1111                 up_bound = low_bound;
1112
1113         if (qual->vgc_level > up_bound) {
1114                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115                 return;
1116         }
1117
1118 dynamic_cca_tune:
1119
1120         /*
1121          * r17 does not yet exceed upper limit, continue and base
1122          * the r17 tuning on the false CCA count.
1123          */
1124         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1125                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1126         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1127                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128 }
1129
1130 /*
1131  * Firmware functions
1132  */
1133 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1134 {
1135         u16 chip;
1136         char *fw_name;
1137
1138         pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1139         switch (chip) {
1140         case RT2561_PCI_ID:
1141                 fw_name = FIRMWARE_RT2561;
1142                 break;
1143         case RT2561s_PCI_ID:
1144                 fw_name = FIRMWARE_RT2561s;
1145                 break;
1146         case RT2661_PCI_ID:
1147                 fw_name = FIRMWARE_RT2661;
1148                 break;
1149         default:
1150                 fw_name = NULL;
1151                 break;
1152         }
1153
1154         return fw_name;
1155 }
1156
1157 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1158                                   const u8 *data, const size_t len)
1159 {
1160         u16 fw_crc;
1161         u16 crc;
1162
1163         /*
1164          * Only support 8kb firmware files.
1165          */
1166         if (len != 8192)
1167                 return FW_BAD_LENGTH;
1168
1169         /*
1170          * The last 2 bytes in the firmware array are the crc checksum itself.
1171          * This means that we should never pass those 2 bytes to the crc
1172          * algorithm.
1173          */
1174         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1175
1176         /*
1177          * Use the crc itu-t algorithm.
1178          */
1179         crc = crc_itu_t(0, data, len - 2);
1180         crc = crc_itu_t_byte(crc, 0);
1181         crc = crc_itu_t_byte(crc, 0);
1182
1183         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1184 }
1185
1186 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1187                                  const u8 *data, const size_t len)
1188 {
1189         int i;
1190         u32 reg;
1191
1192         /*
1193          * Wait for stable hardware.
1194          */
1195         for (i = 0; i < 100; i++) {
1196                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1197                 if (reg)
1198                         break;
1199                 msleep(1);
1200         }
1201
1202         if (!reg) {
1203                 ERROR(rt2x00dev, "Unstable hardware.\n");
1204                 return -EBUSY;
1205         }
1206
1207         /*
1208          * Prepare MCU and mailbox for firmware loading.
1209          */
1210         reg = 0;
1211         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1212         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1213         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1214         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1215         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1216
1217         /*
1218          * Write firmware to device.
1219          */
1220         reg = 0;
1221         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1222         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1223         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1224
1225         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1226                                       data, len);
1227
1228         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1229         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1230
1231         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1232         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1233
1234         for (i = 0; i < 100; i++) {
1235                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1236                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1237                         break;
1238                 msleep(1);
1239         }
1240
1241         if (i == 100) {
1242                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1243                 return -EBUSY;
1244         }
1245
1246         /*
1247          * Hardware needs another millisecond before it is ready.
1248          */
1249         msleep(1);
1250
1251         /*
1252          * Reset MAC and BBP registers.
1253          */
1254         reg = 0;
1255         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1256         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1257         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1258
1259         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1260         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1261         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1262         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1263
1264         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1265         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1266         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1267
1268         return 0;
1269 }
1270
1271 /*
1272  * Initialization functions.
1273  */
1274 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1275 {
1276         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1277         u32 word;
1278
1279         if (entry->queue->qid == QID_RX) {
1280                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1281
1282                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1283         } else {
1284                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1285
1286                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1287                         rt2x00_get_field32(word, TXD_W0_VALID));
1288         }
1289 }
1290
1291 static void rt61pci_clear_entry(struct queue_entry *entry)
1292 {
1293         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1294         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1295         u32 word;
1296
1297         if (entry->queue->qid == QID_RX) {
1298                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1299                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1300                                    skbdesc->skb_dma);
1301                 rt2x00_desc_write(entry_priv->desc, 5, word);
1302
1303                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1304                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1305                 rt2x00_desc_write(entry_priv->desc, 0, word);
1306         } else {
1307                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1308                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1309                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1310                 rt2x00_desc_write(entry_priv->desc, 0, word);
1311         }
1312 }
1313
1314 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1315 {
1316         struct queue_entry_priv_pci *entry_priv;
1317         u32 reg;
1318
1319         /*
1320          * Initialize registers.
1321          */
1322         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1323         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1324                            rt2x00dev->tx[0].limit);
1325         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1326                            rt2x00dev->tx[1].limit);
1327         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1328                            rt2x00dev->tx[2].limit);
1329         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1330                            rt2x00dev->tx[3].limit);
1331         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1332
1333         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1334         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1335                            rt2x00dev->tx[0].desc_size / 4);
1336         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1337
1338         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1339         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1340         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1341                            entry_priv->desc_dma);
1342         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1343
1344         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1345         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1346         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1347                            entry_priv->desc_dma);
1348         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1349
1350         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1351         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1352         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1353                            entry_priv->desc_dma);
1354         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1355
1356         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1357         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1358         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1359                            entry_priv->desc_dma);
1360         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1361
1362         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1363         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1364         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1365                            rt2x00dev->rx->desc_size / 4);
1366         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1367         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1368
1369         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1370         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1371         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1372                            entry_priv->desc_dma);
1373         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1374
1375         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1376         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1377         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1378         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1379         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1380         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1381
1382         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1383         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1384         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1385         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1386         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1387         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1388
1389         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1390         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1391         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1392
1393         return 0;
1394 }
1395
1396 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1397 {
1398         u32 reg;
1399
1400         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1401         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1402         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1403         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1404         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1405
1406         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1407         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1408         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1409         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1410         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1411         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1412         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1413         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1414         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1415         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1416
1417         /*
1418          * CCK TXD BBP registers
1419          */
1420         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1421         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1422         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1423         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1424         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1425         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1426         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1427         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1428         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1429         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1430
1431         /*
1432          * OFDM TXD BBP registers
1433          */
1434         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1435         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1436         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1437         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1438         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1439         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1440         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1441         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1442
1443         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1444         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1445         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1446         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1447         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1448         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1449
1450         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1451         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1452         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1453         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1454         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1455         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1456
1457         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1458         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1459         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1460         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1461         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1462         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1463         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1464         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1465
1466         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1467
1468         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1469
1470         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1471         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1472         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1473
1474         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1475
1476         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1477                 return -EBUSY;
1478
1479         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1480
1481         /*
1482          * Invalidate all Shared Keys (SEC_CSR0),
1483          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1484          */
1485         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1486         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1487         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1488
1489         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1490         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1491         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1492         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1493
1494         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1495
1496         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1497
1498         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1499
1500         /*
1501          * Clear all beacons
1502          * For the Beacon base registers we only need to clear
1503          * the first byte since that byte contains the VALID and OWNER
1504          * bits which (when set to 0) will invalidate the entire beacon.
1505          */
1506         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1507         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1508         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1509         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1510
1511         /*
1512          * We must clear the error counters.
1513          * These registers are cleared on read,
1514          * so we may pass a useless variable to store the value.
1515          */
1516         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1517         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1518         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1519
1520         /*
1521          * Reset MAC and BBP registers.
1522          */
1523         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1524         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1525         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1526         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1527
1528         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1529         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1530         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1531         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1532
1533         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1534         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1535         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1536
1537         return 0;
1538 }
1539
1540 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1541 {
1542         unsigned int i;
1543         u8 value;
1544
1545         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1546                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1547                 if ((value != 0xff) && (value != 0x00))
1548                         return 0;
1549                 udelay(REGISTER_BUSY_DELAY);
1550         }
1551
1552         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1553         return -EACCES;
1554 }
1555
1556 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1557 {
1558         unsigned int i;
1559         u16 eeprom;
1560         u8 reg_id;
1561         u8 value;
1562
1563         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1564                 return -EACCES;
1565
1566         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1567         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1568         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1569         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1570         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1571         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1572         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1573         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1574         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1575         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1576         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1577         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1578         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1579         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1580         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1581         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1582         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1583         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1584         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1585         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1586         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1587         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1588         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1589         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1590
1591         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1592                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1593
1594                 if (eeprom != 0xffff && eeprom != 0x0000) {
1595                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1596                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1597                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1598                 }
1599         }
1600
1601         return 0;
1602 }
1603
1604 /*
1605  * Device state switch handlers.
1606  */
1607 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1608                               enum dev_state state)
1609 {
1610         u32 reg;
1611
1612         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1613         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1614                            (state == STATE_RADIO_RX_OFF) ||
1615                            (state == STATE_RADIO_RX_OFF_LINK));
1616         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1617 }
1618
1619 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1620                                enum dev_state state)
1621 {
1622         int mask = (state == STATE_RADIO_IRQ_OFF);
1623         u32 reg;
1624
1625         /*
1626          * When interrupts are being enabled, the interrupt registers
1627          * should clear the register to assure a clean state.
1628          */
1629         if (state == STATE_RADIO_IRQ_ON) {
1630                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1631                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1632
1633                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1634                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1635         }
1636
1637         /*
1638          * Only toggle the interrupts bits we are going to use.
1639          * Non-checked interrupt bits are disabled by default.
1640          */
1641         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1642         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1643         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1644         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1645         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1646         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1647
1648         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1649         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1650         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1651         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1652         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1653         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1654         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1655         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1656         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1657         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1658 }
1659
1660 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1661 {
1662         u32 reg;
1663
1664         /*
1665          * Initialize all registers.
1666          */
1667         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1668                      rt61pci_init_registers(rt2x00dev) ||
1669                      rt61pci_init_bbp(rt2x00dev)))
1670                 return -EIO;
1671
1672         /*
1673          * Enable RX.
1674          */
1675         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1676         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1677         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1678
1679         return 0;
1680 }
1681
1682 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1683 {
1684         /*
1685          * Disable power
1686          */
1687         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1688 }
1689
1690 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1691 {
1692         u32 reg;
1693         unsigned int i;
1694         char put_to_sleep;
1695
1696         put_to_sleep = (state != STATE_AWAKE);
1697
1698         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1699         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1700         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1701         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1702
1703         /*
1704          * Device is not guaranteed to be in the requested state yet.
1705          * We must wait until the register indicates that the
1706          * device has entered the correct state.
1707          */
1708         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1709                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1710                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1711                 if (state == !put_to_sleep)
1712                         return 0;
1713                 msleep(10);
1714         }
1715
1716         return -EBUSY;
1717 }
1718
1719 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1720                                     enum dev_state state)
1721 {
1722         int retval = 0;
1723
1724         switch (state) {
1725         case STATE_RADIO_ON:
1726                 retval = rt61pci_enable_radio(rt2x00dev);
1727                 break;
1728         case STATE_RADIO_OFF:
1729                 rt61pci_disable_radio(rt2x00dev);
1730                 break;
1731         case STATE_RADIO_RX_ON:
1732         case STATE_RADIO_RX_ON_LINK:
1733         case STATE_RADIO_RX_OFF:
1734         case STATE_RADIO_RX_OFF_LINK:
1735                 rt61pci_toggle_rx(rt2x00dev, state);
1736                 break;
1737         case STATE_RADIO_IRQ_ON:
1738         case STATE_RADIO_IRQ_OFF:
1739                 rt61pci_toggle_irq(rt2x00dev, state);
1740                 break;
1741         case STATE_DEEP_SLEEP:
1742         case STATE_SLEEP:
1743         case STATE_STANDBY:
1744         case STATE_AWAKE:
1745                 retval = rt61pci_set_state(rt2x00dev, state);
1746                 break;
1747         default:
1748                 retval = -ENOTSUPP;
1749                 break;
1750         }
1751
1752         if (unlikely(retval))
1753                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1754                       state, retval);
1755
1756         return retval;
1757 }
1758
1759 /*
1760  * TX descriptor initialization
1761  */
1762 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1763                                   struct sk_buff *skb,
1764                                   struct txentry_desc *txdesc)
1765 {
1766         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1767         __le32 *txd = skbdesc->desc;
1768         u32 word;
1769
1770         /*
1771          * Start writing the descriptor words.
1772          */
1773         rt2x00_desc_read(txd, 1, &word);
1774         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1775         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1776         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1777         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1778         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1779         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1780                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1781         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1782         rt2x00_desc_write(txd, 1, word);
1783
1784         rt2x00_desc_read(txd, 2, &word);
1785         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1786         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1787         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1788         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1789         rt2x00_desc_write(txd, 2, word);
1790
1791         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1792                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1793                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1794         }
1795
1796         rt2x00_desc_read(txd, 5, &word);
1797         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1798         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1799                            skbdesc->entry->entry_idx);
1800         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1801                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1802         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1803         rt2x00_desc_write(txd, 5, word);
1804
1805         rt2x00_desc_read(txd, 6, &word);
1806         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1807                            skbdesc->skb_dma);
1808         rt2x00_desc_write(txd, 6, word);
1809
1810         if (skbdesc->desc_len > TXINFO_SIZE) {
1811                 rt2x00_desc_read(txd, 11, &word);
1812                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1813                                    txdesc->length);
1814                 rt2x00_desc_write(txd, 11, word);
1815         }
1816
1817         rt2x00_desc_read(txd, 0, &word);
1818         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1819         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1820         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1821                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1822         rt2x00_set_field32(&word, TXD_W0_ACK,
1823                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1824         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1825                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1826         rt2x00_set_field32(&word, TXD_W0_OFDM,
1827                            (txdesc->rate_mode == RATE_MODE_OFDM));
1828         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1829         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1830                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1831         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1832                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1833         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1834                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1835         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1836         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1837         rt2x00_set_field32(&word, TXD_W0_BURST,
1838                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1839         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1840         rt2x00_desc_write(txd, 0, word);
1841 }
1842
1843 /*
1844  * TX data initialization
1845  */
1846 static void rt61pci_write_beacon(struct queue_entry *entry)
1847 {
1848         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1849         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1850         unsigned int beacon_base;
1851         u32 reg;
1852
1853         /*
1854          * Disable beaconing while we are reloading the beacon data,
1855          * otherwise we might be sending out invalid data.
1856          */
1857         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1858         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1859         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1860
1861         /*
1862          * Write entire beacon with descriptor to register.
1863          */
1864         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1865         rt2x00pci_register_multiwrite(rt2x00dev,
1866                                       beacon_base,
1867                                       skbdesc->desc, skbdesc->desc_len);
1868         rt2x00pci_register_multiwrite(rt2x00dev,
1869                                       beacon_base + skbdesc->desc_len,
1870                                       entry->skb->data, entry->skb->len);
1871
1872         /*
1873          * Clean up beacon skb.
1874          */
1875         dev_kfree_skb_any(entry->skb);
1876         entry->skb = NULL;
1877 }
1878
1879 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1880                                   const enum data_queue_qid queue)
1881 {
1882         u32 reg;
1883
1884         if (queue == QID_BEACON) {
1885                 /*
1886                  * For Wi-Fi faily generated beacons between participating
1887                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1888                  */
1889                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1890
1891                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1892                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1893                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1894                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1895                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1896                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1897                 }
1898                 return;
1899         }
1900
1901         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1902         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1903         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1904         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1905         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1906         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1907 }
1908
1909 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1910                                   const enum data_queue_qid qid)
1911 {
1912         u32 reg;
1913
1914         if (qid == QID_BEACON) {
1915                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1916                 return;
1917         }
1918
1919         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1920         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1921         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1922         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1923         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1924         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1925 }
1926
1927 /*
1928  * RX control handlers
1929  */
1930 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1931 {
1932         u8 offset = rt2x00dev->lna_gain;
1933         u8 lna;
1934
1935         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1936         switch (lna) {
1937         case 3:
1938                 offset += 90;
1939                 break;
1940         case 2:
1941                 offset += 74;
1942                 break;
1943         case 1:
1944                 offset += 64;
1945                 break;
1946         default:
1947                 return 0;
1948         }
1949
1950         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1951                 if (lna == 3 || lna == 2)
1952                         offset += 10;
1953         }
1954
1955         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1956 }
1957
1958 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1959                                 struct rxdone_entry_desc *rxdesc)
1960 {
1961         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1962         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1963         u32 word0;
1964         u32 word1;
1965
1966         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1967         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1968
1969         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1970                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1971
1972         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1973                 rxdesc->cipher =
1974                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1975                 rxdesc->cipher_status =
1976                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1977         }
1978
1979         if (rxdesc->cipher != CIPHER_NONE) {
1980                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1981                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1982                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1983
1984                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1985                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1986
1987                 /*
1988                  * Hardware has stripped IV/EIV data from 802.11 frame during
1989                  * decryption. It has provided the data separately but rt2x00lib
1990                  * should decide if it should be reinserted.
1991                  */
1992                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1993
1994                 /*
1995                  * FIXME: Legacy driver indicates that the frame does
1996                  * contain the Michael Mic. Unfortunately, in rt2x00
1997                  * the MIC seems to be missing completely...
1998                  */
1999                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2000
2001                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2002                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2003                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2004                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2005         }
2006
2007         /*
2008          * Obtain the status about this packet.
2009          * When frame was received with an OFDM bitrate,
2010          * the signal is the PLCP value. If it was received with
2011          * a CCK bitrate the signal is the rate in 100kbit/s.
2012          */
2013         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2014         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2015         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2016
2017         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2018                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2019         else
2020                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2021         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2022                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2023 }
2024
2025 /*
2026  * Interrupt functions.
2027  */
2028 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2029 {
2030         struct data_queue *queue;
2031         struct queue_entry *entry;
2032         struct queue_entry *entry_done;
2033         struct queue_entry_priv_pci *entry_priv;
2034         struct txdone_entry_desc txdesc;
2035         u32 word;
2036         u32 reg;
2037         u32 old_reg;
2038         int type;
2039         int index;
2040
2041         /*
2042          * During each loop we will compare the freshly read
2043          * STA_CSR4 register value with the value read from
2044          * the previous loop. If the 2 values are equal then
2045          * we should stop processing because the chance is
2046          * quite big that the device has been unplugged and
2047          * we risk going into an endless loop.
2048          */
2049         old_reg = 0;
2050
2051         while (1) {
2052                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2053                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2054                         break;
2055
2056                 if (old_reg == reg)
2057                         break;
2058                 old_reg = reg;
2059
2060                 /*
2061                  * Skip this entry when it contains an invalid
2062                  * queue identication number.
2063                  */
2064                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2065                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2066                 if (unlikely(!queue))
2067                         continue;
2068
2069                 /*
2070                  * Skip this entry when it contains an invalid
2071                  * index number.
2072                  */
2073                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2074                 if (unlikely(index >= queue->limit))
2075                         continue;
2076
2077                 entry = &queue->entries[index];
2078                 entry_priv = entry->priv_data;
2079                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2080
2081                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2082                     !rt2x00_get_field32(word, TXD_W0_VALID))
2083                         return;
2084
2085                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2086                 while (entry != entry_done) {
2087                         /* Catch up.
2088                          * Just report any entries we missed as failed.
2089                          */
2090                         WARNING(rt2x00dev,
2091                                 "TX status report missed for entry %d\n",
2092                                 entry_done->entry_idx);
2093
2094                         txdesc.flags = 0;
2095                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2096                         txdesc.retry = 0;
2097
2098                         rt2x00lib_txdone(entry_done, &txdesc);
2099                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2100                 }
2101
2102                 /*
2103                  * Obtain the status about this packet.
2104                  */
2105                 txdesc.flags = 0;
2106                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2107                 case 0: /* Success, maybe with retry */
2108                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2109                         break;
2110                 case 6: /* Failure, excessive retries */
2111                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2112                         /* Don't break, this is a failed frame! */
2113                 default: /* Failure */
2114                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2115                 }
2116                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2117
2118                 rt2x00lib_txdone(entry, &txdesc);
2119         }
2120 }
2121
2122 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2123 {
2124         struct ieee80211_conf conf = { .flags = 0 };
2125         struct rt2x00lib_conf libconf = { .conf = &conf };
2126
2127         rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2128 }
2129
2130 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2131 {
2132         struct rt2x00_dev *rt2x00dev = dev_instance;
2133         u32 reg_mcu;
2134         u32 reg;
2135
2136         /*
2137          * Get the interrupt sources & saved to local variable.
2138          * Write register value back to clear pending interrupts.
2139          */
2140         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2141         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2142
2143         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2144         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2145
2146         if (!reg && !reg_mcu)
2147                 return IRQ_NONE;
2148
2149         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2150                 return IRQ_HANDLED;
2151
2152         /*
2153          * Handle interrupts, walk through all bits
2154          * and run the tasks, the bits are checked in order of
2155          * priority.
2156          */
2157
2158         /*
2159          * 1 - Rx ring done interrupt.
2160          */
2161         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2162                 rt2x00pci_rxdone(rt2x00dev);
2163
2164         /*
2165          * 2 - Tx ring done interrupt.
2166          */
2167         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2168                 rt61pci_txdone(rt2x00dev);
2169
2170         /*
2171          * 3 - Handle MCU command done.
2172          */
2173         if (reg_mcu)
2174                 rt2x00pci_register_write(rt2x00dev,
2175                                          M2H_CMD_DONE_CSR, 0xffffffff);
2176
2177         /*
2178          * 4 - MCU Autowakeup interrupt.
2179          */
2180         if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2181                 rt61pci_wakeup(rt2x00dev);
2182
2183         return IRQ_HANDLED;
2184 }
2185
2186 /*
2187  * Device probe functions.
2188  */
2189 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2190 {
2191         struct eeprom_93cx6 eeprom;
2192         u32 reg;
2193         u16 word;
2194         u8 *mac;
2195         s8 value;
2196
2197         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2198
2199         eeprom.data = rt2x00dev;
2200         eeprom.register_read = rt61pci_eepromregister_read;
2201         eeprom.register_write = rt61pci_eepromregister_write;
2202         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2203             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2204         eeprom.reg_data_in = 0;
2205         eeprom.reg_data_out = 0;
2206         eeprom.reg_data_clock = 0;
2207         eeprom.reg_chip_select = 0;
2208
2209         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2210                                EEPROM_SIZE / sizeof(u16));
2211
2212         /*
2213          * Start validation of the data that has been read.
2214          */
2215         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2216         if (!is_valid_ether_addr(mac)) {
2217                 random_ether_addr(mac);
2218                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2219         }
2220
2221         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2222         if (word == 0xffff) {
2223                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2224                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2225                                    ANTENNA_B);
2226                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2227                                    ANTENNA_B);
2228                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2229                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2230                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2231                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2232                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2233                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2234         }
2235
2236         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2237         if (word == 0xffff) {
2238                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2239                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2240                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2241                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2242                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2243                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2244                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2245                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2246                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2247         }
2248
2249         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2250         if (word == 0xffff) {
2251                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2252                                    LED_MODE_DEFAULT);
2253                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2254                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2255         }
2256
2257         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2258         if (word == 0xffff) {
2259                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2260                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2261                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2262                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2263         }
2264
2265         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2266         if (word == 0xffff) {
2267                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2268                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2269                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2270                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2271         } else {
2272                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2273                 if (value < -10 || value > 10)
2274                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2275                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2276                 if (value < -10 || value > 10)
2277                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2278                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2279         }
2280
2281         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2282         if (word == 0xffff) {
2283                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2284                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2285                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2286                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2287         } else {
2288                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2289                 if (value < -10 || value > 10)
2290                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2291                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2292                 if (value < -10 || value > 10)
2293                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2294                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2295         }
2296
2297         return 0;
2298 }
2299
2300 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2301 {
2302         u32 reg;
2303         u16 value;
2304         u16 eeprom;
2305
2306         /*
2307          * Read EEPROM word for configuration.
2308          */
2309         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2310
2311         /*
2312          * Identify RF chipset.
2313          */
2314         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2315         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2316         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2317                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2318
2319         if (!rt2x00_rf(rt2x00dev, RF5225) &&
2320             !rt2x00_rf(rt2x00dev, RF5325) &&
2321             !rt2x00_rf(rt2x00dev, RF2527) &&
2322             !rt2x00_rf(rt2x00dev, RF2529)) {
2323                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2324                 return -ENODEV;
2325         }
2326
2327         /*
2328          * Determine number of antennas.
2329          */
2330         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2331                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2332
2333         /*
2334          * Identify default antenna configuration.
2335          */
2336         rt2x00dev->default_ant.tx =
2337             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2338         rt2x00dev->default_ant.rx =
2339             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2340
2341         /*
2342          * Read the Frame type.
2343          */
2344         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2345                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2346
2347         /*
2348          * Detect if this device has a hardware controlled radio.
2349          */
2350         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2351                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2352
2353         /*
2354          * Read frequency offset and RF programming sequence.
2355          */
2356         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2357         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2358                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2359
2360         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2361
2362         /*
2363          * Read external LNA informations.
2364          */
2365         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2366
2367         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2368                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2369         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2370                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2371
2372         /*
2373          * When working with a RF2529 chip without double antenna,
2374          * the antenna settings should be gathered from the NIC
2375          * eeprom word.
2376          */
2377         if (rt2x00_rf(rt2x00dev, RF2529) &&
2378             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2379                 rt2x00dev->default_ant.rx =
2380                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2381                 rt2x00dev->default_ant.tx =
2382                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2383
2384                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2385                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2386                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2387                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2388         }
2389
2390         /*
2391          * Store led settings, for correct led behaviour.
2392          * If the eeprom value is invalid,
2393          * switch to default led mode.
2394          */
2395 #ifdef CONFIG_RT2X00_LIB_LEDS
2396         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2397         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2398
2399         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2400         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2401         if (value == LED_MODE_SIGNAL_STRENGTH)
2402                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2403                                  LED_TYPE_QUALITY);
2404
2405         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2406         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2407                            rt2x00_get_field16(eeprom,
2408                                               EEPROM_LED_POLARITY_GPIO_0));
2409         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2410                            rt2x00_get_field16(eeprom,
2411                                               EEPROM_LED_POLARITY_GPIO_1));
2412         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2413                            rt2x00_get_field16(eeprom,
2414                                               EEPROM_LED_POLARITY_GPIO_2));
2415         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2416                            rt2x00_get_field16(eeprom,
2417                                               EEPROM_LED_POLARITY_GPIO_3));
2418         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2419                            rt2x00_get_field16(eeprom,
2420                                               EEPROM_LED_POLARITY_GPIO_4));
2421         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2422                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2423         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2424                            rt2x00_get_field16(eeprom,
2425                                               EEPROM_LED_POLARITY_RDY_G));
2426         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2427                            rt2x00_get_field16(eeprom,
2428                                               EEPROM_LED_POLARITY_RDY_A));
2429 #endif /* CONFIG_RT2X00_LIB_LEDS */
2430
2431         return 0;
2432 }
2433
2434 /*
2435  * RF value list for RF5225 & RF5325
2436  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2437  */
2438 static const struct rf_channel rf_vals_noseq[] = {
2439         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2440         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2441         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2442         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2443         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2444         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2445         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2446         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2447         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2448         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2449         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2450         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2451         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2452         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2453
2454         /* 802.11 UNI / HyperLan 2 */
2455         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2456         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2457         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2458         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2459         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2460         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2461         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2462         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2463
2464         /* 802.11 HyperLan 2 */
2465         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2466         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2467         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2468         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2469         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2470         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2471         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2472         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2473         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2474         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2475
2476         /* 802.11 UNII */
2477         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2478         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2479         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2480         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2481         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2482         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2483
2484         /* MMAC(Japan)J52 ch 34,38,42,46 */
2485         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2486         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2487         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2488         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2489 };
2490
2491 /*
2492  * RF value list for RF5225 & RF5325
2493  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2494  */
2495 static const struct rf_channel rf_vals_seq[] = {
2496         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2497         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2498         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2499         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2500         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2501         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2502         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2503         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2504         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2505         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2506         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2507         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2508         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2509         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2510
2511         /* 802.11 UNI / HyperLan 2 */
2512         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2513         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2514         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2515         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2516         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2517         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2518         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2519         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2520
2521         /* 802.11 HyperLan 2 */
2522         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2523         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2524         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2525         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2526         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2527         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2528         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2529         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2530         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2531         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2532
2533         /* 802.11 UNII */
2534         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2535         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2536         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2537         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2538         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2539         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2540
2541         /* MMAC(Japan)J52 ch 34,38,42,46 */
2542         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2543         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2544         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2545         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2546 };
2547
2548 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2549 {
2550         struct hw_mode_spec *spec = &rt2x00dev->spec;
2551         struct channel_info *info;
2552         char *tx_power;
2553         unsigned int i;
2554
2555         /*
2556          * Disable powersaving as default.
2557          */
2558         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2559
2560         /*
2561          * Initialize all hw fields.
2562          */
2563         rt2x00dev->hw->flags =
2564             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2565             IEEE80211_HW_SIGNAL_DBM |
2566             IEEE80211_HW_SUPPORTS_PS |
2567             IEEE80211_HW_PS_NULLFUNC_STACK;
2568
2569         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2570         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2571                                 rt2x00_eeprom_addr(rt2x00dev,
2572                                                    EEPROM_MAC_ADDR_0));
2573
2574         /*
2575          * Initialize hw_mode information.
2576          */
2577         spec->supported_bands = SUPPORT_BAND_2GHZ;
2578         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2579
2580         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2581                 spec->num_channels = 14;
2582                 spec->channels = rf_vals_noseq;
2583         } else {
2584                 spec->num_channels = 14;
2585                 spec->channels = rf_vals_seq;
2586         }
2587
2588         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2589                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2590                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2591         }
2592
2593         /*
2594          * Create channel information array
2595          */
2596         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2597         if (!info)
2598                 return -ENOMEM;
2599
2600         spec->channels_info = info;
2601
2602         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2603         for (i = 0; i < 14; i++)
2604                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2605
2606         if (spec->num_channels > 14) {
2607                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2608                 for (i = 14; i < spec->num_channels; i++)
2609                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2610         }
2611
2612         return 0;
2613 }
2614
2615 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2616 {
2617         int retval;
2618
2619         /*
2620          * Disable power saving.
2621          */
2622         rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2623
2624         /*
2625          * Allocate eeprom data.
2626          */
2627         retval = rt61pci_validate_eeprom(rt2x00dev);
2628         if (retval)
2629                 return retval;
2630
2631         retval = rt61pci_init_eeprom(rt2x00dev);
2632         if (retval)
2633                 return retval;
2634
2635         /*
2636          * Initialize hw specifications.
2637          */
2638         retval = rt61pci_probe_hw_mode(rt2x00dev);
2639         if (retval)
2640                 return retval;
2641
2642         /*
2643          * This device has multiple filters for control frames,
2644          * but has no a separate filter for PS Poll frames.
2645          */
2646         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2647
2648         /*
2649          * This device requires firmware and DMA mapped skbs.
2650          */
2651         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2652         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2653         if (!modparam_nohwcrypt)
2654                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2655
2656         /*
2657          * Set the rssi offset.
2658          */
2659         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2660
2661         return 0;
2662 }
2663
2664 /*
2665  * IEEE80211 stack callback functions.
2666  */
2667 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2668                            const struct ieee80211_tx_queue_params *params)
2669 {
2670         struct rt2x00_dev *rt2x00dev = hw->priv;
2671         struct data_queue *queue;
2672         struct rt2x00_field32 field;
2673         int retval;
2674         u32 reg;
2675         u32 offset;
2676
2677         /*
2678          * First pass the configuration through rt2x00lib, that will
2679          * update the queue settings and validate the input. After that
2680          * we are free to update the registers based on the value
2681          * in the queue parameter.
2682          */
2683         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2684         if (retval)
2685                 return retval;
2686
2687         /*
2688          * We only need to perform additional register initialization
2689          * for WMM queues.
2690          */
2691         if (queue_idx >= 4)
2692                 return 0;
2693
2694         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2695
2696         /* Update WMM TXOP register */
2697         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2698         field.bit_offset = (queue_idx & 1) * 16;
2699         field.bit_mask = 0xffff << field.bit_offset;
2700
2701         rt2x00pci_register_read(rt2x00dev, offset, &reg);
2702         rt2x00_set_field32(&reg, field, queue->txop);
2703         rt2x00pci_register_write(rt2x00dev, offset, reg);
2704
2705         /* Update WMM registers */
2706         field.bit_offset = queue_idx * 4;
2707         field.bit_mask = 0xf << field.bit_offset;
2708
2709         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2710         rt2x00_set_field32(&reg, field, queue->aifs);
2711         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2712
2713         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2714         rt2x00_set_field32(&reg, field, queue->cw_min);
2715         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2716
2717         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2718         rt2x00_set_field32(&reg, field, queue->cw_max);
2719         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2720
2721         return 0;
2722 }
2723
2724 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2725 {
2726         struct rt2x00_dev *rt2x00dev = hw->priv;
2727         u64 tsf;
2728         u32 reg;
2729
2730         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2731         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2732         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2733         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2734
2735         return tsf;
2736 }
2737
2738 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2739         .tx                     = rt2x00mac_tx,
2740         .start                  = rt2x00mac_start,
2741         .stop                   = rt2x00mac_stop,
2742         .add_interface          = rt2x00mac_add_interface,
2743         .remove_interface       = rt2x00mac_remove_interface,
2744         .config                 = rt2x00mac_config,
2745         .configure_filter       = rt2x00mac_configure_filter,
2746         .set_tim                = rt2x00mac_set_tim,
2747         .set_key                = rt2x00mac_set_key,
2748         .get_stats              = rt2x00mac_get_stats,
2749         .bss_info_changed       = rt2x00mac_bss_info_changed,
2750         .conf_tx                = rt61pci_conf_tx,
2751         .get_tsf                = rt61pci_get_tsf,
2752         .rfkill_poll            = rt2x00mac_rfkill_poll,
2753 };
2754
2755 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2756         .irq_handler            = rt61pci_interrupt,
2757         .probe_hw               = rt61pci_probe_hw,
2758         .get_firmware_name      = rt61pci_get_firmware_name,
2759         .check_firmware         = rt61pci_check_firmware,
2760         .load_firmware          = rt61pci_load_firmware,
2761         .initialize             = rt2x00pci_initialize,
2762         .uninitialize           = rt2x00pci_uninitialize,
2763         .get_entry_state        = rt61pci_get_entry_state,
2764         .clear_entry            = rt61pci_clear_entry,
2765         .set_device_state       = rt61pci_set_device_state,
2766         .rfkill_poll            = rt61pci_rfkill_poll,
2767         .link_stats             = rt61pci_link_stats,
2768         .reset_tuner            = rt61pci_reset_tuner,
2769         .link_tuner             = rt61pci_link_tuner,
2770         .write_tx_desc          = rt61pci_write_tx_desc,
2771         .write_tx_data          = rt2x00pci_write_tx_data,
2772         .write_beacon           = rt61pci_write_beacon,
2773         .kick_tx_queue          = rt61pci_kick_tx_queue,
2774         .kill_tx_queue          = rt61pci_kill_tx_queue,
2775         .fill_rxdone            = rt61pci_fill_rxdone,
2776         .config_shared_key      = rt61pci_config_shared_key,
2777         .config_pairwise_key    = rt61pci_config_pairwise_key,
2778         .config_filter          = rt61pci_config_filter,
2779         .config_intf            = rt61pci_config_intf,
2780         .config_erp             = rt61pci_config_erp,
2781         .config_ant             = rt61pci_config_ant,
2782         .config                 = rt61pci_config,
2783 };
2784
2785 static const struct data_queue_desc rt61pci_queue_rx = {
2786         .entry_num              = RX_ENTRIES,
2787         .data_size              = DATA_FRAME_SIZE,
2788         .desc_size              = RXD_DESC_SIZE,
2789         .priv_size              = sizeof(struct queue_entry_priv_pci),
2790 };
2791
2792 static const struct data_queue_desc rt61pci_queue_tx = {
2793         .entry_num              = TX_ENTRIES,
2794         .data_size              = DATA_FRAME_SIZE,
2795         .desc_size              = TXD_DESC_SIZE,
2796         .priv_size              = sizeof(struct queue_entry_priv_pci),
2797 };
2798
2799 static const struct data_queue_desc rt61pci_queue_bcn = {
2800         .entry_num              = 4 * BEACON_ENTRIES,
2801         .data_size              = 0, /* No DMA required for beacons */
2802         .desc_size              = TXINFO_SIZE,
2803         .priv_size              = sizeof(struct queue_entry_priv_pci),
2804 };
2805
2806 static const struct rt2x00_ops rt61pci_ops = {
2807         .name                   = KBUILD_MODNAME,
2808         .max_sta_intf           = 1,
2809         .max_ap_intf            = 4,
2810         .eeprom_size            = EEPROM_SIZE,
2811         .rf_size                = RF_SIZE,
2812         .tx_queues              = NUM_TX_QUEUES,
2813         .extra_tx_headroom      = 0,
2814         .rx                     = &rt61pci_queue_rx,
2815         .tx                     = &rt61pci_queue_tx,
2816         .bcn                    = &rt61pci_queue_bcn,
2817         .lib                    = &rt61pci_rt2x00_ops,
2818         .hw                     = &rt61pci_mac80211_ops,
2819 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2820         .debugfs                = &rt61pci_rt2x00debug,
2821 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2822 };
2823
2824 /*
2825  * RT61pci module information.
2826  */
2827 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2828         /* RT2561s */
2829         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2830         /* RT2561 v2 */
2831         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2832         /* RT2661 */
2833         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2834         { 0, }
2835 };
2836
2837 MODULE_AUTHOR(DRV_PROJECT);
2838 MODULE_VERSION(DRV_VERSION);
2839 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2840 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2841                         "PCI & PCMCIA chipset based cards");
2842 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2843 MODULE_FIRMWARE(FIRMWARE_RT2561);
2844 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2845 MODULE_FIRMWARE(FIRMWARE_RT2661);
2846 MODULE_LICENSE("GPL");
2847
2848 static struct pci_driver rt61pci_driver = {
2849         .name           = KBUILD_MODNAME,
2850         .id_table       = rt61pci_device_table,
2851         .probe          = rt2x00pci_probe,
2852         .remove         = __devexit_p(rt2x00pci_remove),
2853         .suspend        = rt2x00pci_suspend,
2854         .resume         = rt2x00pci_resume,
2855 };
2856
2857 static int __init rt61pci_init(void)
2858 {
2859         return pci_register_driver(&rt61pci_driver);
2860 }
2861
2862 static void __exit rt61pci_exit(void)
2863 {
2864         pci_unregister_driver(&rt61pci_driver);
2865 }
2866
2867 module_init(rt61pci_init);
2868 module_exit(rt61pci_exit);