Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt73usb
23         Abstract: rt73usb device specific routines.
24         Supported chipsets: rt2571W & rt2671.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt73usb_register_read and rt73usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * The _lock versions must be used if you already hold the csr_mutex
59  */
60 static inline void rt73usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                          const unsigned int offset, u32 *value)
62 {
63         __le32 reg;
64         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
65                                       USB_VENDOR_REQUEST_IN, offset,
66                                       &reg, sizeof(u32), REGISTER_TIMEOUT);
67         *value = le32_to_cpu(reg);
68 }
69
70 static inline void rt73usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
71                                               const unsigned int offset, u32 *value)
72 {
73         __le32 reg;
74         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75                                        USB_VENDOR_REQUEST_IN, offset,
76                                        &reg, sizeof(u32), REGISTER_TIMEOUT);
77         *value = le32_to_cpu(reg);
78 }
79
80 static inline void rt73usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81                                               const unsigned int offset,
82                                               void *value, const u32 length)
83 {
84         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85                                       USB_VENDOR_REQUEST_IN, offset,
86                                       value, length,
87                                       REGISTER_TIMEOUT32(length));
88 }
89
90 static inline void rt73usb_register_write(struct rt2x00_dev *rt2x00dev,
91                                           const unsigned int offset, u32 value)
92 {
93         __le32 reg = cpu_to_le32(value);
94         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95                                       USB_VENDOR_REQUEST_OUT, offset,
96                                       &reg, sizeof(u32), REGISTER_TIMEOUT);
97 }
98
99 static inline void rt73usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100                                                const unsigned int offset, u32 value)
101 {
102         __le32 reg = cpu_to_le32(value);
103         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
104                                        USB_VENDOR_REQUEST_OUT, offset,
105                                       &reg, sizeof(u32), REGISTER_TIMEOUT);
106 }
107
108 static inline void rt73usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
109                                                const unsigned int offset,
110                                                void *value, const u32 length)
111 {
112         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
113                                       USB_VENDOR_REQUEST_OUT, offset,
114                                       value, length,
115                                       REGISTER_TIMEOUT32(length));
116 }
117
118 static u32 rt73usb_bbp_check(struct rt2x00_dev *rt2x00dev)
119 {
120         u32 reg;
121         unsigned int i;
122
123         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
124                 rt73usb_register_read_lock(rt2x00dev, PHY_CSR3, &reg);
125                 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
126                         break;
127                 udelay(REGISTER_BUSY_DELAY);
128         }
129
130         return reg;
131 }
132
133 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
134                               const unsigned int word, const u8 value)
135 {
136         u32 reg;
137
138         mutex_lock(&rt2x00dev->csr_mutex);
139
140         /*
141          * Wait until the BBP becomes ready.
142          */
143         reg = rt73usb_bbp_check(rt2x00dev);
144         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
145                 goto exit_fail;
146
147         /*
148          * Write the data into the BBP.
149          */
150         reg = 0;
151         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
152         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
153         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
154         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
155
156         rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
157         mutex_unlock(&rt2x00dev->csr_mutex);
158
159         return;
160
161 exit_fail:
162         mutex_unlock(&rt2x00dev->csr_mutex);
163
164         ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
165 }
166
167 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168                              const unsigned int word, u8 *value)
169 {
170         u32 reg;
171
172         mutex_lock(&rt2x00dev->csr_mutex);
173
174         /*
175          * Wait until the BBP becomes ready.
176          */
177         reg = rt73usb_bbp_check(rt2x00dev);
178         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
179                 goto exit_fail;
180
181         /*
182          * Write the request into the BBP.
183          */
184         reg = 0;
185         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
186         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
187         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
188
189         rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
190
191         /*
192          * Wait until the BBP becomes ready.
193          */
194         reg = rt73usb_bbp_check(rt2x00dev);
195         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
196                 goto exit_fail;
197
198         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
199         mutex_unlock(&rt2x00dev->csr_mutex);
200
201         return;
202
203 exit_fail:
204         mutex_unlock(&rt2x00dev->csr_mutex);
205
206         ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
207         *value = 0xff;
208 }
209
210 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
211                              const unsigned int word, const u32 value)
212 {
213         u32 reg;
214         unsigned int i;
215
216         if (!word)
217                 return;
218
219         mutex_lock(&rt2x00dev->csr_mutex);
220
221         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
222                 rt73usb_register_read_lock(rt2x00dev, PHY_CSR4, &reg);
223                 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
224                         goto rf_write;
225                 udelay(REGISTER_BUSY_DELAY);
226         }
227
228         mutex_unlock(&rt2x00dev->csr_mutex);
229         ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
230         return;
231
232 rf_write:
233         reg = 0;
234         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
235
236         /*
237          * RF5225 and RF2527 contain 21 bits per RF register value,
238          * all others contain 20 bits.
239          */
240         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
241                            20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
242                                  rt2x00_rf(&rt2x00dev->chip, RF2527)));
243         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
244         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
245
246         rt73usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
247         rt2x00_rf_write(rt2x00dev, word, value);
248
249         mutex_unlock(&rt2x00dev->csr_mutex);
250 }
251
252 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
253 static const struct rt2x00debug rt73usb_rt2x00debug = {
254         .owner  = THIS_MODULE,
255         .csr    = {
256                 .read           = rt73usb_register_read,
257                 .write          = rt73usb_register_write,
258                 .flags          = RT2X00DEBUGFS_OFFSET,
259                 .word_base      = CSR_REG_BASE,
260                 .word_size      = sizeof(u32),
261                 .word_count     = CSR_REG_SIZE / sizeof(u32),
262         },
263         .eeprom = {
264                 .read           = rt2x00_eeprom_read,
265                 .write          = rt2x00_eeprom_write,
266                 .word_base      = EEPROM_BASE,
267                 .word_size      = sizeof(u16),
268                 .word_count     = EEPROM_SIZE / sizeof(u16),
269         },
270         .bbp    = {
271                 .read           = rt73usb_bbp_read,
272                 .write          = rt73usb_bbp_write,
273                 .word_base      = BBP_BASE,
274                 .word_size      = sizeof(u8),
275                 .word_count     = BBP_SIZE / sizeof(u8),
276         },
277         .rf     = {
278                 .read           = rt2x00_rf_read,
279                 .write          = rt73usb_rf_write,
280                 .word_base      = RF_BASE,
281                 .word_size      = sizeof(u32),
282                 .word_count     = RF_SIZE / sizeof(u32),
283         },
284 };
285 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
286
287 #ifdef CONFIG_RT2X00_LIB_LEDS
288 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
289                                    enum led_brightness brightness)
290 {
291         struct rt2x00_led *led =
292            container_of(led_cdev, struct rt2x00_led, led_dev);
293         unsigned int enabled = brightness != LED_OFF;
294         unsigned int a_mode =
295             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
296         unsigned int bg_mode =
297             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
298
299         if (led->type == LED_TYPE_RADIO) {
300                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
301                                    MCU_LEDCS_RADIO_STATUS, enabled);
302
303                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
304                                             0, led->rt2x00dev->led_mcu_reg,
305                                             REGISTER_TIMEOUT);
306         } else if (led->type == LED_TYPE_ASSOC) {
307                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
308                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
309                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
310                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
311
312                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
313                                             0, led->rt2x00dev->led_mcu_reg,
314                                             REGISTER_TIMEOUT);
315         } else if (led->type == LED_TYPE_QUALITY) {
316                 /*
317                  * The brightness is divided into 6 levels (0 - 5),
318                  * this means we need to convert the brightness
319                  * argument into the matching level within that range.
320                  */
321                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
322                                             brightness / (LED_FULL / 6),
323                                             led->rt2x00dev->led_mcu_reg,
324                                             REGISTER_TIMEOUT);
325         }
326 }
327
328 static int rt73usb_blink_set(struct led_classdev *led_cdev,
329                              unsigned long *delay_on,
330                              unsigned long *delay_off)
331 {
332         struct rt2x00_led *led =
333             container_of(led_cdev, struct rt2x00_led, led_dev);
334         u32 reg;
335
336         rt73usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
337         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
338         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
339         rt73usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
340
341         return 0;
342 }
343
344 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
345                              struct rt2x00_led *led,
346                              enum led_type type)
347 {
348         led->rt2x00dev = rt2x00dev;
349         led->type = type;
350         led->led_dev.brightness_set = rt73usb_brightness_set;
351         led->led_dev.blink_set = rt73usb_blink_set;
352         led->flags = LED_INITIALIZED;
353 }
354 #endif /* CONFIG_RT2X00_LIB_LEDS */
355
356 /*
357  * Configuration handlers.
358  */
359 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
360                                      struct rt2x00lib_crypto *crypto,
361                                      struct ieee80211_key_conf *key)
362 {
363         struct hw_key_entry key_entry;
364         struct rt2x00_field32 field;
365         int timeout;
366         u32 mask;
367         u32 reg;
368
369         if (crypto->cmd == SET_KEY) {
370                 /*
371                  * rt2x00lib can't determine the correct free
372                  * key_idx for shared keys. We have 1 register
373                  * with key valid bits. The goal is simple, read
374                  * the register, if that is full we have no slots
375                  * left.
376                  * Note that each BSS is allowed to have up to 4
377                  * shared keys, so put a mask over the allowed
378                  * entries.
379                  */
380                 mask = (0xf << crypto->bssidx);
381
382                 rt73usb_register_read(rt2x00dev, SEC_CSR0, &reg);
383                 reg &= mask;
384
385                 if (reg && reg == mask)
386                         return -ENOSPC;
387
388                 key->hw_key_idx += reg ? ffz(reg) : 0;
389
390                 /*
391                  * Upload key to hardware
392                  */
393                 memcpy(key_entry.key, crypto->key,
394                        sizeof(key_entry.key));
395                 memcpy(key_entry.tx_mic, crypto->tx_mic,
396                        sizeof(key_entry.tx_mic));
397                 memcpy(key_entry.rx_mic, crypto->rx_mic,
398                        sizeof(key_entry.rx_mic));
399
400                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
401                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
402                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
403                                                     USB_VENDOR_REQUEST_OUT, reg,
404                                                     &key_entry,
405                                                     sizeof(key_entry),
406                                                     timeout);
407
408                 /*
409                  * The cipher types are stored over 2 registers.
410                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
411                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
412                  * Using the correct defines correctly will cause overhead,
413                  * so just calculate the correct offset.
414                  */
415                 if (key->hw_key_idx < 8) {
416                         field.bit_offset = (3 * key->hw_key_idx);
417                         field.bit_mask = 0x7 << field.bit_offset;
418
419                         rt73usb_register_read(rt2x00dev, SEC_CSR1, &reg);
420                         rt2x00_set_field32(&reg, field, crypto->cipher);
421                         rt73usb_register_write(rt2x00dev, SEC_CSR1, reg);
422                 } else {
423                         field.bit_offset = (3 * (key->hw_key_idx - 8));
424                         field.bit_mask = 0x7 << field.bit_offset;
425
426                         rt73usb_register_read(rt2x00dev, SEC_CSR5, &reg);
427                         rt2x00_set_field32(&reg, field, crypto->cipher);
428                         rt73usb_register_write(rt2x00dev, SEC_CSR5, reg);
429                 }
430
431                 /*
432                  * The driver does not support the IV/EIV generation
433                  * in hardware. However it doesn't support the IV/EIV
434                  * inside the ieee80211 frame either, but requires it
435                  * to be provided seperately for the descriptor.
436                  * rt2x00lib will cut the IV/EIV data out of all frames
437                  * given to us by mac80211, but we must tell mac80211
438                  * to generate the IV/EIV data.
439                  */
440                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
441         }
442
443         /*
444          * SEC_CSR0 contains only single-bit fields to indicate
445          * a particular key is valid. Because using the FIELD32()
446          * defines directly will cause a lot of overhead we use
447          * a calculation to determine the correct bit directly.
448          */
449         mask = 1 << key->hw_key_idx;
450
451         rt73usb_register_read(rt2x00dev, SEC_CSR0, &reg);
452         if (crypto->cmd == SET_KEY)
453                 reg |= mask;
454         else if (crypto->cmd == DISABLE_KEY)
455                 reg &= ~mask;
456         rt73usb_register_write(rt2x00dev, SEC_CSR0, reg);
457
458         return 0;
459 }
460
461 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
462                                        struct rt2x00lib_crypto *crypto,
463                                        struct ieee80211_key_conf *key)
464 {
465         struct hw_pairwise_ta_entry addr_entry;
466         struct hw_key_entry key_entry;
467         int timeout;
468         u32 mask;
469         u32 reg;
470
471         if (crypto->cmd == SET_KEY) {
472                 /*
473                  * rt2x00lib can't determine the correct free
474                  * key_idx for pairwise keys. We have 2 registers
475                  * with key valid bits. The goal is simple, read
476                  * the first register, if that is full move to
477                  * the next register.
478                  * When both registers are full, we drop the key,
479                  * otherwise we use the first invalid entry.
480                  */
481                 rt73usb_register_read(rt2x00dev, SEC_CSR2, &reg);
482                 if (reg && reg == ~0) {
483                         key->hw_key_idx = 32;
484                         rt73usb_register_read(rt2x00dev, SEC_CSR3, &reg);
485                         if (reg && reg == ~0)
486                                 return -ENOSPC;
487                 }
488
489                 key->hw_key_idx += reg ? ffz(reg) : 0;
490
491                 /*
492                  * Upload key to hardware
493                  */
494                 memcpy(key_entry.key, crypto->key,
495                        sizeof(key_entry.key));
496                 memcpy(key_entry.tx_mic, crypto->tx_mic,
497                        sizeof(key_entry.tx_mic));
498                 memcpy(key_entry.rx_mic, crypto->rx_mic,
499                        sizeof(key_entry.rx_mic));
500
501                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
502                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
503                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
504                                                     USB_VENDOR_REQUEST_OUT, reg,
505                                                     &key_entry,
506                                                     sizeof(key_entry),
507                                                     timeout);
508
509                 /*
510                  * Send the address and cipher type to the hardware register.
511                  * This data fits within the CSR cache size, so we can use
512                  * rt73usb_register_multiwrite() directly.
513                  */
514                 memset(&addr_entry, 0, sizeof(addr_entry));
515                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
516                 addr_entry.cipher = crypto->cipher;
517
518                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
519                 rt73usb_register_multiwrite(rt2x00dev, reg,
520                                             &addr_entry, sizeof(addr_entry));
521
522                 /*
523                  * Enable pairwise lookup table for given BSS idx,
524                  * without this received frames will not be decrypted
525                  * by the hardware.
526                  */
527                 rt73usb_register_read(rt2x00dev, SEC_CSR4, &reg);
528                 reg |= (1 << crypto->bssidx);
529                 rt73usb_register_write(rt2x00dev, SEC_CSR4, reg);
530
531                 /*
532                  * The driver does not support the IV/EIV generation
533                  * in hardware. However it doesn't support the IV/EIV
534                  * inside the ieee80211 frame either, but requires it
535                  * to be provided seperately for the descriptor.
536                  * rt2x00lib will cut the IV/EIV data out of all frames
537                  * given to us by mac80211, but we must tell mac80211
538                  * to generate the IV/EIV data.
539                  */
540                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
541         }
542
543         /*
544          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
545          * a particular key is valid. Because using the FIELD32()
546          * defines directly will cause a lot of overhead we use
547          * a calculation to determine the correct bit directly.
548          */
549         if (key->hw_key_idx < 32) {
550                 mask = 1 << key->hw_key_idx;
551
552                 rt73usb_register_read(rt2x00dev, SEC_CSR2, &reg);
553                 if (crypto->cmd == SET_KEY)
554                         reg |= mask;
555                 else if (crypto->cmd == DISABLE_KEY)
556                         reg &= ~mask;
557                 rt73usb_register_write(rt2x00dev, SEC_CSR2, reg);
558         } else {
559                 mask = 1 << (key->hw_key_idx - 32);
560
561                 rt73usb_register_read(rt2x00dev, SEC_CSR3, &reg);
562                 if (crypto->cmd == SET_KEY)
563                         reg |= mask;
564                 else if (crypto->cmd == DISABLE_KEY)
565                         reg &= ~mask;
566                 rt73usb_register_write(rt2x00dev, SEC_CSR3, reg);
567         }
568
569         return 0;
570 }
571
572 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
573                                   const unsigned int filter_flags)
574 {
575         u32 reg;
576
577         /*
578          * Start configuration steps.
579          * Note that the version error will always be dropped
580          * and broadcast frames will always be accepted since
581          * there is no filter for it at this time.
582          */
583         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
584         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
585                            !(filter_flags & FIF_FCSFAIL));
586         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
587                            !(filter_flags & FIF_PLCPFAIL));
588         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
589                            !(filter_flags & FIF_CONTROL));
590         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
591                            !(filter_flags & FIF_PROMISC_IN_BSS));
592         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
593                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
594                            !rt2x00dev->intf_ap_count);
595         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
596         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
597                            !(filter_flags & FIF_ALLMULTI));
598         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
599         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
600                            !(filter_flags & FIF_CONTROL));
601         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
602 }
603
604 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
605                                 struct rt2x00_intf *intf,
606                                 struct rt2x00intf_conf *conf,
607                                 const unsigned int flags)
608 {
609         unsigned int beacon_base;
610         u32 reg;
611
612         if (flags & CONFIG_UPDATE_TYPE) {
613                 /*
614                  * Clear current synchronisation setup.
615                  * For the Beacon base registers we only need to clear
616                  * the first byte since that byte contains the VALID and OWNER
617                  * bits which (when set to 0) will invalidate the entire beacon.
618                  */
619                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
620                 rt73usb_register_write(rt2x00dev, beacon_base, 0);
621
622                 /*
623                  * Enable synchronisation.
624                  */
625                 rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
626                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
627                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
628                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
629                 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
630         }
631
632         if (flags & CONFIG_UPDATE_MAC) {
633                 reg = le32_to_cpu(conf->mac[1]);
634                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
635                 conf->mac[1] = cpu_to_le32(reg);
636
637                 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR2,
638                                             conf->mac, sizeof(conf->mac));
639         }
640
641         if (flags & CONFIG_UPDATE_BSSID) {
642                 reg = le32_to_cpu(conf->bssid[1]);
643                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
644                 conf->bssid[1] = cpu_to_le32(reg);
645
646                 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR4,
647                                             conf->bssid, sizeof(conf->bssid));
648         }
649 }
650
651 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
652                                struct rt2x00lib_erp *erp)
653 {
654         u32 reg;
655
656         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
657         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
658         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
659
660         rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
661         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
662                            !!erp->short_preamble);
663         rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
664
665         rt73usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
666
667         rt73usb_register_read(rt2x00dev, MAC_CSR9, &reg);
668         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
669         rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
670
671         rt73usb_register_read(rt2x00dev, MAC_CSR8, &reg);
672         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
673         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
674         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
675         rt73usb_register_write(rt2x00dev, MAC_CSR8, reg);
676 }
677
678 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
679                                       struct antenna_setup *ant)
680 {
681         u8 r3;
682         u8 r4;
683         u8 r77;
684         u8 temp;
685
686         rt73usb_bbp_read(rt2x00dev, 3, &r3);
687         rt73usb_bbp_read(rt2x00dev, 4, &r4);
688         rt73usb_bbp_read(rt2x00dev, 77, &r77);
689
690         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
691
692         /*
693          * Configure the RX antenna.
694          */
695         switch (ant->rx) {
696         case ANTENNA_HW_DIVERSITY:
697                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
698                 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
699                        && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
700                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
701                 break;
702         case ANTENNA_A:
703                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
704                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
705                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
706                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
707                 else
708                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
709                 break;
710         case ANTENNA_B:
711         default:
712                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
713                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
714                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
715                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
716                 else
717                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
718                 break;
719         }
720
721         rt73usb_bbp_write(rt2x00dev, 77, r77);
722         rt73usb_bbp_write(rt2x00dev, 3, r3);
723         rt73usb_bbp_write(rt2x00dev, 4, r4);
724 }
725
726 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
727                                       struct antenna_setup *ant)
728 {
729         u8 r3;
730         u8 r4;
731         u8 r77;
732
733         rt73usb_bbp_read(rt2x00dev, 3, &r3);
734         rt73usb_bbp_read(rt2x00dev, 4, &r4);
735         rt73usb_bbp_read(rt2x00dev, 77, &r77);
736
737         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
738         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
739                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
740
741         /*
742          * Configure the RX antenna.
743          */
744         switch (ant->rx) {
745         case ANTENNA_HW_DIVERSITY:
746                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
747                 break;
748         case ANTENNA_A:
749                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
750                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
751                 break;
752         case ANTENNA_B:
753         default:
754                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
755                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756                 break;
757         }
758
759         rt73usb_bbp_write(rt2x00dev, 77, r77);
760         rt73usb_bbp_write(rt2x00dev, 3, r3);
761         rt73usb_bbp_write(rt2x00dev, 4, r4);
762 }
763
764 struct antenna_sel {
765         u8 word;
766         /*
767          * value[0] -> non-LNA
768          * value[1] -> LNA
769          */
770         u8 value[2];
771 };
772
773 static const struct antenna_sel antenna_sel_a[] = {
774         { 96,  { 0x58, 0x78 } },
775         { 104, { 0x38, 0x48 } },
776         { 75,  { 0xfe, 0x80 } },
777         { 86,  { 0xfe, 0x80 } },
778         { 88,  { 0xfe, 0x80 } },
779         { 35,  { 0x60, 0x60 } },
780         { 97,  { 0x58, 0x58 } },
781         { 98,  { 0x58, 0x58 } },
782 };
783
784 static const struct antenna_sel antenna_sel_bg[] = {
785         { 96,  { 0x48, 0x68 } },
786         { 104, { 0x2c, 0x3c } },
787         { 75,  { 0xfe, 0x80 } },
788         { 86,  { 0xfe, 0x80 } },
789         { 88,  { 0xfe, 0x80 } },
790         { 35,  { 0x50, 0x50 } },
791         { 97,  { 0x48, 0x48 } },
792         { 98,  { 0x48, 0x48 } },
793 };
794
795 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
796                                struct antenna_setup *ant)
797 {
798         const struct antenna_sel *sel;
799         unsigned int lna;
800         unsigned int i;
801         u32 reg;
802
803         /*
804          * We should never come here because rt2x00lib is supposed
805          * to catch this and send us the correct antenna explicitely.
806          */
807         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
808                ant->tx == ANTENNA_SW_DIVERSITY);
809
810         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
811                 sel = antenna_sel_a;
812                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
813         } else {
814                 sel = antenna_sel_bg;
815                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
816         }
817
818         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
819                 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
820
821         rt73usb_register_read(rt2x00dev, PHY_CSR0, &reg);
822
823         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
824                            (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
825         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
826                            (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
827
828         rt73usb_register_write(rt2x00dev, PHY_CSR0, reg);
829
830         if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
831             rt2x00_rf(&rt2x00dev->chip, RF5225))
832                 rt73usb_config_antenna_5x(rt2x00dev, ant);
833         else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
834                  rt2x00_rf(&rt2x00dev->chip, RF2527))
835                 rt73usb_config_antenna_2x(rt2x00dev, ant);
836 }
837
838 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
839                                     struct rt2x00lib_conf *libconf)
840 {
841         u16 eeprom;
842         short lna_gain = 0;
843
844         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
845                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
846                         lna_gain += 14;
847
848                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
849                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
850         } else {
851                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
852                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
853         }
854
855         rt2x00dev->lna_gain = lna_gain;
856 }
857
858 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
859                                    struct rf_channel *rf, const int txpower)
860 {
861         u8 r3;
862         u8 r94;
863         u8 smart;
864
865         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
866         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
867
868         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
869                   rt2x00_rf(&rt2x00dev->chip, RF2527));
870
871         rt73usb_bbp_read(rt2x00dev, 3, &r3);
872         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
873         rt73usb_bbp_write(rt2x00dev, 3, r3);
874
875         r94 = 6;
876         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
877                 r94 += txpower - MAX_TXPOWER;
878         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
879                 r94 += txpower;
880         rt73usb_bbp_write(rt2x00dev, 94, r94);
881
882         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
883         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
884         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
885         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
886
887         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
888         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
889         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
890         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
891
892         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
893         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
894         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
895         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
896
897         udelay(10);
898 }
899
900 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
901                                    const int txpower)
902 {
903         struct rf_channel rf;
904
905         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
906         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
907         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
908         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
909
910         rt73usb_config_channel(rt2x00dev, &rf, txpower);
911 }
912
913 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
914                                        struct rt2x00lib_conf *libconf)
915 {
916         u32 reg;
917
918         rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
919         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
920                            libconf->conf->long_frame_max_tx_count);
921         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
922                            libconf->conf->short_frame_max_tx_count);
923         rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
924 }
925
926 static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
927                                     struct rt2x00lib_conf *libconf)
928 {
929         u32 reg;
930
931         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
932         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
933         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
934
935         rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
936         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
937         rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
938
939         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
940         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
941                            libconf->conf->beacon_int * 16);
942         rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
943 }
944
945 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
946                            struct rt2x00lib_conf *libconf,
947                            const unsigned int flags)
948 {
949         /* Always recalculate LNA gain before changing configuration */
950         rt73usb_config_lna_gain(rt2x00dev, libconf);
951
952         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
953                 rt73usb_config_channel(rt2x00dev, &libconf->rf,
954                                        libconf->conf->power_level);
955         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
956             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
957                 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
958         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
959                 rt73usb_config_retry_limit(rt2x00dev, libconf);
960         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
961                 rt73usb_config_duration(rt2x00dev, libconf);
962 }
963
964 /*
965  * Link tuning
966  */
967 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
968                                struct link_qual *qual)
969 {
970         u32 reg;
971
972         /*
973          * Update FCS error count from register.
974          */
975         rt73usb_register_read(rt2x00dev, STA_CSR0, &reg);
976         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
977
978         /*
979          * Update False CCA count from register.
980          */
981         rt73usb_register_read(rt2x00dev, STA_CSR1, &reg);
982         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
983 }
984
985 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
986 {
987         rt73usb_bbp_write(rt2x00dev, 17, 0x20);
988         rt2x00dev->link.vgc_level = 0x20;
989 }
990
991 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev)
992 {
993         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
994         u8 r17;
995         u8 up_bound;
996         u8 low_bound;
997
998         rt73usb_bbp_read(rt2x00dev, 17, &r17);
999
1000         /*
1001          * Determine r17 bounds.
1002          */
1003         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1004                 low_bound = 0x28;
1005                 up_bound = 0x48;
1006
1007                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1008                         low_bound += 0x10;
1009                         up_bound += 0x10;
1010                 }
1011         } else {
1012                 if (rssi > -82) {
1013                         low_bound = 0x1c;
1014                         up_bound = 0x40;
1015                 } else if (rssi > -84) {
1016                         low_bound = 0x1c;
1017                         up_bound = 0x20;
1018                 } else {
1019                         low_bound = 0x1c;
1020                         up_bound = 0x1c;
1021                 }
1022
1023                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1024                         low_bound += 0x14;
1025                         up_bound += 0x10;
1026                 }
1027         }
1028
1029         /*
1030          * If we are not associated, we should go straight to the
1031          * dynamic CCA tuning.
1032          */
1033         if (!rt2x00dev->intf_associated)
1034                 goto dynamic_cca_tune;
1035
1036         /*
1037          * Special big-R17 for very short distance
1038          */
1039         if (rssi > -35) {
1040                 if (r17 != 0x60)
1041                         rt73usb_bbp_write(rt2x00dev, 17, 0x60);
1042                 return;
1043         }
1044
1045         /*
1046          * Special big-R17 for short distance
1047          */
1048         if (rssi >= -58) {
1049                 if (r17 != up_bound)
1050                         rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1051                 return;
1052         }
1053
1054         /*
1055          * Special big-R17 for middle-short distance
1056          */
1057         if (rssi >= -66) {
1058                 low_bound += 0x10;
1059                 if (r17 != low_bound)
1060                         rt73usb_bbp_write(rt2x00dev, 17, low_bound);
1061                 return;
1062         }
1063
1064         /*
1065          * Special mid-R17 for middle distance
1066          */
1067         if (rssi >= -74) {
1068                 if (r17 != (low_bound + 0x10))
1069                         rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08);
1070                 return;
1071         }
1072
1073         /*
1074          * Special case: Change up_bound based on the rssi.
1075          * Lower up_bound when rssi is weaker then -74 dBm.
1076          */
1077         up_bound -= 2 * (-74 - rssi);
1078         if (low_bound > up_bound)
1079                 up_bound = low_bound;
1080
1081         if (r17 > up_bound) {
1082                 rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1083                 return;
1084         }
1085
1086 dynamic_cca_tune:
1087
1088         /*
1089          * r17 does not yet exceed upper limit, continue and base
1090          * the r17 tuning on the false CCA count.
1091          */
1092         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1093                 r17 += 4;
1094                 if (r17 > up_bound)
1095                         r17 = up_bound;
1096                 rt73usb_bbp_write(rt2x00dev, 17, r17);
1097         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1098                 r17 -= 4;
1099                 if (r17 < low_bound)
1100                         r17 = low_bound;
1101                 rt73usb_bbp_write(rt2x00dev, 17, r17);
1102         }
1103 }
1104
1105 /*
1106  * Firmware functions
1107  */
1108 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1109 {
1110         return FIRMWARE_RT2571;
1111 }
1112
1113 static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
1114 {
1115         u16 crc;
1116
1117         /*
1118          * Use the crc itu-t algorithm.
1119          * The last 2 bytes in the firmware array are the crc checksum itself,
1120          * this means that we should never pass those 2 bytes to the crc
1121          * algorithm.
1122          */
1123         crc = crc_itu_t(0, data, len - 2);
1124         crc = crc_itu_t_byte(crc, 0);
1125         crc = crc_itu_t_byte(crc, 0);
1126
1127         return crc;
1128 }
1129
1130 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1131                                  const size_t len)
1132 {
1133         unsigned int i;
1134         int status;
1135         u32 reg;
1136
1137         /*
1138          * Wait for stable hardware.
1139          */
1140         for (i = 0; i < 100; i++) {
1141                 rt73usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1142                 if (reg)
1143                         break;
1144                 msleep(1);
1145         }
1146
1147         if (!reg) {
1148                 ERROR(rt2x00dev, "Unstable hardware.\n");
1149                 return -EBUSY;
1150         }
1151
1152         /*
1153          * Write firmware to device.
1154          */
1155         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1156                                             USB_VENDOR_REQUEST_OUT,
1157                                             FIRMWARE_IMAGE_BASE,
1158                                             data, len,
1159                                             REGISTER_TIMEOUT32(len));
1160
1161         /*
1162          * Send firmware request to device to load firmware,
1163          * we need to specify a long timeout time.
1164          */
1165         status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1166                                              0, USB_MODE_FIRMWARE,
1167                                              REGISTER_TIMEOUT_FIRMWARE);
1168         if (status < 0) {
1169                 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1170                 return status;
1171         }
1172
1173         return 0;
1174 }
1175
1176 /*
1177  * Initialization functions.
1178  */
1179 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1180 {
1181         u32 reg;
1182
1183         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1184         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1185         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1186         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1187         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1188
1189         rt73usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1190         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1191         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1192         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1193         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1194         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1195         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1196         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1197         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1198         rt73usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1199
1200         /*
1201          * CCK TXD BBP registers
1202          */
1203         rt73usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1204         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1205         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1206         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1207         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1208         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1209         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1210         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1211         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1212         rt73usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1213
1214         /*
1215          * OFDM TXD BBP registers
1216          */
1217         rt73usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1218         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1219         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1220         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1221         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1222         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1223         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1224         rt73usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1225
1226         rt73usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1227         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1228         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1229         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1230         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1231         rt73usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1232
1233         rt73usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1234         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1235         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1236         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1237         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1238         rt73usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1239
1240         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1241         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1242         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1243         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1244         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1245         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1246         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1247         rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1248
1249         rt73usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1250
1251         rt73usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1252         rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1253         rt73usb_register_write(rt2x00dev, MAC_CSR6, reg);
1254
1255         rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1256
1257         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1258                 return -EBUSY;
1259
1260         rt73usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1261
1262         /*
1263          * Invalidate all Shared Keys (SEC_CSR0),
1264          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1265          */
1266         rt73usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1267         rt73usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1268         rt73usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1269
1270         reg = 0x000023b0;
1271         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1272             rt2x00_rf(&rt2x00dev->chip, RF2527))
1273                 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1274         rt73usb_register_write(rt2x00dev, PHY_CSR1, reg);
1275
1276         rt73usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1277         rt73usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1278         rt73usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1279
1280         rt73usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1281         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1282         rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
1283
1284         /*
1285          * Clear all beacons
1286          * For the Beacon base registers we only need to clear
1287          * the first byte since that byte contains the VALID and OWNER
1288          * bits which (when set to 0) will invalidate the entire beacon.
1289          */
1290         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1291         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1292         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1293         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1294
1295         /*
1296          * We must clear the error counters.
1297          * These registers are cleared on read,
1298          * so we may pass a useless variable to store the value.
1299          */
1300         rt73usb_register_read(rt2x00dev, STA_CSR0, &reg);
1301         rt73usb_register_read(rt2x00dev, STA_CSR1, &reg);
1302         rt73usb_register_read(rt2x00dev, STA_CSR2, &reg);
1303
1304         /*
1305          * Reset MAC and BBP registers.
1306          */
1307         rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1308         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1309         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1310         rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1311
1312         rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1313         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1314         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1315         rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1316
1317         rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1318         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1319         rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1320
1321         return 0;
1322 }
1323
1324 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1325 {
1326         unsigned int i;
1327         u8 value;
1328
1329         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1330                 rt73usb_bbp_read(rt2x00dev, 0, &value);
1331                 if ((value != 0xff) && (value != 0x00))
1332                         return 0;
1333                 udelay(REGISTER_BUSY_DELAY);
1334         }
1335
1336         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1337         return -EACCES;
1338 }
1339
1340 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1341 {
1342         unsigned int i;
1343         u16 eeprom;
1344         u8 reg_id;
1345         u8 value;
1346
1347         if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1348                 return -EACCES;
1349
1350         rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1351         rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1352         rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1353         rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1354         rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1355         rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1356         rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1357         rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1358         rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1359         rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1360         rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1361         rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1362         rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1363         rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1364         rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1365         rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1366         rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1367         rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1368         rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1369         rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1370         rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1371         rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1372         rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1373         rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1374         rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1375
1376         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1377                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1378
1379                 if (eeprom != 0xffff && eeprom != 0x0000) {
1380                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1381                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1382                         rt73usb_bbp_write(rt2x00dev, reg_id, value);
1383                 }
1384         }
1385
1386         return 0;
1387 }
1388
1389 /*
1390  * Device state switch handlers.
1391  */
1392 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1393                               enum dev_state state)
1394 {
1395         u32 reg;
1396
1397         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1398         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1399                            (state == STATE_RADIO_RX_OFF) ||
1400                            (state == STATE_RADIO_RX_OFF_LINK));
1401         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1402 }
1403
1404 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1405 {
1406         /*
1407          * Initialize all registers.
1408          */
1409         if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1410                      rt73usb_init_bbp(rt2x00dev)))
1411                 return -EIO;
1412
1413         return 0;
1414 }
1415
1416 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1417 {
1418         rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1419
1420         /*
1421          * Disable synchronisation.
1422          */
1423         rt73usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1424
1425         rt2x00usb_disable_radio(rt2x00dev);
1426 }
1427
1428 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1429 {
1430         u32 reg;
1431         unsigned int i;
1432         char put_to_sleep;
1433
1434         put_to_sleep = (state != STATE_AWAKE);
1435
1436         rt73usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1437         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1438         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1439         rt73usb_register_write(rt2x00dev, MAC_CSR12, reg);
1440
1441         /*
1442          * Device is not guaranteed to be in the requested state yet.
1443          * We must wait until the register indicates that the
1444          * device has entered the correct state.
1445          */
1446         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1447                 rt73usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1448                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1449                 if (state == !put_to_sleep)
1450                         return 0;
1451                 msleep(10);
1452         }
1453
1454         return -EBUSY;
1455 }
1456
1457 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1458                                     enum dev_state state)
1459 {
1460         int retval = 0;
1461
1462         switch (state) {
1463         case STATE_RADIO_ON:
1464                 retval = rt73usb_enable_radio(rt2x00dev);
1465                 break;
1466         case STATE_RADIO_OFF:
1467                 rt73usb_disable_radio(rt2x00dev);
1468                 break;
1469         case STATE_RADIO_RX_ON:
1470         case STATE_RADIO_RX_ON_LINK:
1471         case STATE_RADIO_RX_OFF:
1472         case STATE_RADIO_RX_OFF_LINK:
1473                 rt73usb_toggle_rx(rt2x00dev, state);
1474                 break;
1475         case STATE_RADIO_IRQ_ON:
1476         case STATE_RADIO_IRQ_OFF:
1477                 /* No support, but no error either */
1478                 break;
1479         case STATE_DEEP_SLEEP:
1480         case STATE_SLEEP:
1481         case STATE_STANDBY:
1482         case STATE_AWAKE:
1483                 retval = rt73usb_set_state(rt2x00dev, state);
1484                 break;
1485         default:
1486                 retval = -ENOTSUPP;
1487                 break;
1488         }
1489
1490         if (unlikely(retval))
1491                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1492                       state, retval);
1493
1494         return retval;
1495 }
1496
1497 /*
1498  * TX descriptor initialization
1499  */
1500 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1501                                   struct sk_buff *skb,
1502                                   struct txentry_desc *txdesc)
1503 {
1504         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1505         __le32 *txd = skbdesc->desc;
1506         u32 word;
1507
1508         /*
1509          * Start writing the descriptor words.
1510          */
1511         rt2x00_desc_read(txd, 1, &word);
1512         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1513         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1514         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1515         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1516         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1517         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1518                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1519         rt2x00_desc_write(txd, 1, word);
1520
1521         rt2x00_desc_read(txd, 2, &word);
1522         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1523         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1524         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1525         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1526         rt2x00_desc_write(txd, 2, word);
1527
1528         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1529                 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1530                 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1531         }
1532
1533         rt2x00_desc_read(txd, 5, &word);
1534         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1535                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1536         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1537         rt2x00_desc_write(txd, 5, word);
1538
1539         rt2x00_desc_read(txd, 0, &word);
1540         rt2x00_set_field32(&word, TXD_W0_BURST,
1541                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1542         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1543         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1544                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1545         rt2x00_set_field32(&word, TXD_W0_ACK,
1546                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1547         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1548                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1549         rt2x00_set_field32(&word, TXD_W0_OFDM,
1550                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1551         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1552         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1553                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1554         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1555                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1556         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1557                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1558         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1559         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1560         rt2x00_set_field32(&word, TXD_W0_BURST2,
1561                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1562         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1563         rt2x00_desc_write(txd, 0, word);
1564 }
1565
1566 /*
1567  * TX data initialization
1568  */
1569 static void rt73usb_write_beacon(struct queue_entry *entry)
1570 {
1571         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1572         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1573         unsigned int beacon_base;
1574         u32 reg;
1575
1576         /*
1577          * Add the descriptor in front of the skb.
1578          */
1579         skb_push(entry->skb, entry->queue->desc_size);
1580         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1581         skbdesc->desc = entry->skb->data;
1582
1583         /*
1584          * Disable beaconing while we are reloading the beacon data,
1585          * otherwise we might be sending out invalid data.
1586          */
1587         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1588         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1589         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1590         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1591         rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1592
1593         /*
1594          * Write entire beacon with descriptor to register.
1595          */
1596         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1597         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1598                                             USB_VENDOR_REQUEST_OUT, beacon_base,
1599                                             entry->skb->data, entry->skb->len,
1600                                             REGISTER_TIMEOUT32(entry->skb->len));
1601
1602         /*
1603          * Clean up the beacon skb.
1604          */
1605         dev_kfree_skb(entry->skb);
1606         entry->skb = NULL;
1607 }
1608
1609 static int rt73usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1610                                    struct sk_buff *skb)
1611 {
1612         int length;
1613
1614         /*
1615          * The length _must_ be a multiple of 4,
1616          * but it must _not_ be a multiple of the USB packet size.
1617          */
1618         length = roundup(skb->len, 4);
1619         length += (4 * !(length % rt2x00dev->usb_maxpacket));
1620
1621         return length;
1622 }
1623
1624 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1625                                   const enum data_queue_qid queue)
1626 {
1627         u32 reg;
1628
1629         if (queue != QID_BEACON) {
1630                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1631                 return;
1632         }
1633
1634         /*
1635          * For Wi-Fi faily generated beacons between participating stations.
1636          * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1637          */
1638         rt73usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1639
1640         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1641         if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1642                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1643                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1644                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1645                 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1646         }
1647 }
1648
1649 /*
1650  * RX control handlers
1651  */
1652 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1653 {
1654         u8 offset = rt2x00dev->lna_gain;
1655         u8 lna;
1656
1657         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1658         switch (lna) {
1659         case 3:
1660                 offset += 90;
1661                 break;
1662         case 2:
1663                 offset += 74;
1664                 break;
1665         case 1:
1666                 offset += 64;
1667                 break;
1668         default:
1669                 return 0;
1670         }
1671
1672         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1673                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1674                         if (lna == 3 || lna == 2)
1675                                 offset += 10;
1676                 } else {
1677                         if (lna == 3)
1678                                 offset += 6;
1679                         else if (lna == 2)
1680                                 offset += 8;
1681                 }
1682         }
1683
1684         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1685 }
1686
1687 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1688                                 struct rxdone_entry_desc *rxdesc)
1689 {
1690         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1691         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1692         __le32 *rxd = (__le32 *)entry->skb->data;
1693         u32 word0;
1694         u32 word1;
1695
1696         /*
1697          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1698          * frame data in rt2x00usb.
1699          */
1700         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1701         rxd = (__le32 *)skbdesc->desc;
1702
1703         /*
1704          * It is now safe to read the descriptor on all architectures.
1705          */
1706         rt2x00_desc_read(rxd, 0, &word0);
1707         rt2x00_desc_read(rxd, 1, &word1);
1708
1709         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1710                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1711
1712         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1713                 rxdesc->cipher =
1714                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1715                 rxdesc->cipher_status =
1716                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1717         }
1718
1719         if (rxdesc->cipher != CIPHER_NONE) {
1720                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv);
1721                 _rt2x00_desc_read(rxd, 3, &rxdesc->eiv);
1722                 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1723
1724                 /*
1725                  * Hardware has stripped IV/EIV data from 802.11 frame during
1726                  * decryption. It has provided the data seperately but rt2x00lib
1727                  * should decide if it should be reinserted.
1728                  */
1729                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1730
1731                 /*
1732                  * FIXME: Legacy driver indicates that the frame does
1733                  * contain the Michael Mic. Unfortunately, in rt2x00
1734                  * the MIC seems to be missing completely...
1735                  */
1736                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1737
1738                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1739                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1740                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1741                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1742         }
1743
1744         /*
1745          * Obtain the status about this packet.
1746          * When frame was received with an OFDM bitrate,
1747          * the signal is the PLCP value. If it was received with
1748          * a CCK bitrate the signal is the rate in 100kbit/s.
1749          */
1750         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1751         rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1752         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1753
1754         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1755                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1756         else
1757                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1758         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1759                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1760
1761         /*
1762          * Set skb pointers, and update frame information.
1763          */
1764         skb_pull(entry->skb, entry->queue->desc_size);
1765         skb_trim(entry->skb, rxdesc->size);
1766 }
1767
1768 /*
1769  * Device probe functions.
1770  */
1771 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1772 {
1773         u16 word;
1774         u8 *mac;
1775         s8 value;
1776
1777         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1778
1779         /*
1780          * Start validation of the data that has been read.
1781          */
1782         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1783         if (!is_valid_ether_addr(mac)) {
1784                 random_ether_addr(mac);
1785                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1786         }
1787
1788         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1789         if (word == 0xffff) {
1790                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1791                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1792                                    ANTENNA_B);
1793                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1794                                    ANTENNA_B);
1795                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1796                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1797                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1798                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1799                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1800                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1801         }
1802
1803         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1804         if (word == 0xffff) {
1805                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1806                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1807                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1808         }
1809
1810         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1811         if (word == 0xffff) {
1812                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1813                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1814                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1815                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1816                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1817                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1818                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1819                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1820                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1821                                    LED_MODE_DEFAULT);
1822                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1823                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1824         }
1825
1826         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1827         if (word == 0xffff) {
1828                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1829                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1830                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1831                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1832         }
1833
1834         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1835         if (word == 0xffff) {
1836                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1837                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1838                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1839                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1840         } else {
1841                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1842                 if (value < -10 || value > 10)
1843                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1844                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1845                 if (value < -10 || value > 10)
1846                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1847                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1848         }
1849
1850         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1851         if (word == 0xffff) {
1852                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1853                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1854                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1855                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1856         } else {
1857                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1858                 if (value < -10 || value > 10)
1859                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1860                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1861                 if (value < -10 || value > 10)
1862                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1863                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1864         }
1865
1866         return 0;
1867 }
1868
1869 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1870 {
1871         u32 reg;
1872         u16 value;
1873         u16 eeprom;
1874
1875         /*
1876          * Read EEPROM word for configuration.
1877          */
1878         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1879
1880         /*
1881          * Identify RF chipset.
1882          */
1883         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1884         rt73usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1885         rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1886
1887         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
1888                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1889                 return -ENODEV;
1890         }
1891
1892         if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1893             !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1894             !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1895             !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1896                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1897                 return -ENODEV;
1898         }
1899
1900         /*
1901          * Identify default antenna configuration.
1902          */
1903         rt2x00dev->default_ant.tx =
1904             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1905         rt2x00dev->default_ant.rx =
1906             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1907
1908         /*
1909          * Read the Frame type.
1910          */
1911         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1912                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1913
1914         /*
1915          * Read frequency offset.
1916          */
1917         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1918         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1919
1920         /*
1921          * Read external LNA informations.
1922          */
1923         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1924
1925         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1926                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1927                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1928         }
1929
1930         /*
1931          * Store led settings, for correct led behaviour.
1932          */
1933 #ifdef CONFIG_RT2X00_LIB_LEDS
1934         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1935
1936         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1937         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1938         if (value == LED_MODE_SIGNAL_STRENGTH)
1939                 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1940                                  LED_TYPE_QUALITY);
1941
1942         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1943         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1944                            rt2x00_get_field16(eeprom,
1945                                               EEPROM_LED_POLARITY_GPIO_0));
1946         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1947                            rt2x00_get_field16(eeprom,
1948                                               EEPROM_LED_POLARITY_GPIO_1));
1949         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1950                            rt2x00_get_field16(eeprom,
1951                                               EEPROM_LED_POLARITY_GPIO_2));
1952         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1953                            rt2x00_get_field16(eeprom,
1954                                               EEPROM_LED_POLARITY_GPIO_3));
1955         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1956                            rt2x00_get_field16(eeprom,
1957                                               EEPROM_LED_POLARITY_GPIO_4));
1958         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1959                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1960         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1961                            rt2x00_get_field16(eeprom,
1962                                               EEPROM_LED_POLARITY_RDY_G));
1963         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1964                            rt2x00_get_field16(eeprom,
1965                                               EEPROM_LED_POLARITY_RDY_A));
1966 #endif /* CONFIG_RT2X00_LIB_LEDS */
1967
1968         return 0;
1969 }
1970
1971 /*
1972  * RF value list for RF2528
1973  * Supports: 2.4 GHz
1974  */
1975 static const struct rf_channel rf_vals_bg_2528[] = {
1976         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1977         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1978         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1979         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1980         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1981         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1982         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1983         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1984         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1985         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1986         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1987         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1988         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1989         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1990 };
1991
1992 /*
1993  * RF value list for RF5226
1994  * Supports: 2.4 GHz & 5.2 GHz
1995  */
1996 static const struct rf_channel rf_vals_5226[] = {
1997         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1998         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1999         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
2000         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
2001         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
2002         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
2003         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2004         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2005         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2006         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2007         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2008         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2009         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2010         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2011
2012         /* 802.11 UNI / HyperLan 2 */
2013         { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2014         { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2015         { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2016         { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2017         { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2018         { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2019         { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2020         { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2021
2022         /* 802.11 HyperLan 2 */
2023         { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2024         { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2025         { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2026         { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2027         { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2028         { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2029         { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2030         { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2031         { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2032         { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2033
2034         /* 802.11 UNII */
2035         { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2036         { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2037         { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2038         { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2039         { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2040         { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2041
2042         /* MMAC(Japan)J52 ch 34,38,42,46 */
2043         { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2044         { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2045         { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2046         { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2047 };
2048
2049 /*
2050  * RF value list for RF5225 & RF2527
2051  * Supports: 2.4 GHz & 5.2 GHz
2052  */
2053 static const struct rf_channel rf_vals_5225_2527[] = {
2054         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2055         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2056         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2057         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2058         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2059         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2060         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2061         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2062         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2063         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2064         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2065         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2066         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2067         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2068
2069         /* 802.11 UNI / HyperLan 2 */
2070         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2071         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2072         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2073         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2074         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2075         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2076         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2077         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2078
2079         /* 802.11 HyperLan 2 */
2080         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2081         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2082         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2083         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2084         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2085         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2086         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2087         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2088         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2089         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2090
2091         /* 802.11 UNII */
2092         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2093         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2094         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2095         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2096         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2097         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2098
2099         /* MMAC(Japan)J52 ch 34,38,42,46 */
2100         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2101         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2102         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2103         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2104 };
2105
2106
2107 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2108 {
2109         struct hw_mode_spec *spec = &rt2x00dev->spec;
2110         struct channel_info *info;
2111         char *tx_power;
2112         unsigned int i;
2113
2114         /*
2115          * Initialize all hw fields.
2116          */
2117         rt2x00dev->hw->flags =
2118             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2119             IEEE80211_HW_SIGNAL_DBM;
2120         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2121
2122         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2123         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2124                                 rt2x00_eeprom_addr(rt2x00dev,
2125                                                    EEPROM_MAC_ADDR_0));
2126
2127         /*
2128          * Initialize hw_mode information.
2129          */
2130         spec->supported_bands = SUPPORT_BAND_2GHZ;
2131         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2132
2133         if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2134                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2135                 spec->channels = rf_vals_bg_2528;
2136         } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2137                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2138                 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2139                 spec->channels = rf_vals_5226;
2140         } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2141                 spec->num_channels = 14;
2142                 spec->channels = rf_vals_5225_2527;
2143         } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2144                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2145                 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2146                 spec->channels = rf_vals_5225_2527;
2147         }
2148
2149         /*
2150          * Create channel information array
2151          */
2152         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2153         if (!info)
2154                 return -ENOMEM;
2155
2156         spec->channels_info = info;
2157
2158         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2159         for (i = 0; i < 14; i++)
2160                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2161
2162         if (spec->num_channels > 14) {
2163                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2164                 for (i = 14; i < spec->num_channels; i++)
2165                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2166         }
2167
2168         return 0;
2169 }
2170
2171 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2172 {
2173         int retval;
2174
2175         /*
2176          * Allocate eeprom data.
2177          */
2178         retval = rt73usb_validate_eeprom(rt2x00dev);
2179         if (retval)
2180                 return retval;
2181
2182         retval = rt73usb_init_eeprom(rt2x00dev);
2183         if (retval)
2184                 return retval;
2185
2186         /*
2187          * Initialize hw specifications.
2188          */
2189         retval = rt73usb_probe_hw_mode(rt2x00dev);
2190         if (retval)
2191                 return retval;
2192
2193         /*
2194          * This device requires firmware.
2195          */
2196         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2197         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2198         if (!modparam_nohwcrypt)
2199                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2200
2201         /*
2202          * Set the rssi offset.
2203          */
2204         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2205
2206         return 0;
2207 }
2208
2209 /*
2210  * IEEE80211 stack callback functions.
2211  */
2212 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2213                            const struct ieee80211_tx_queue_params *params)
2214 {
2215         struct rt2x00_dev *rt2x00dev = hw->priv;
2216         struct data_queue *queue;
2217         struct rt2x00_field32 field;
2218         int retval;
2219         u32 reg;
2220
2221         /*
2222          * First pass the configuration through rt2x00lib, that will
2223          * update the queue settings and validate the input. After that
2224          * we are free to update the registers based on the value
2225          * in the queue parameter.
2226          */
2227         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2228         if (retval)
2229                 return retval;
2230
2231         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2232
2233         /* Update WMM TXOP register */
2234         if (queue_idx < 2) {
2235                 field.bit_offset = queue_idx * 16;
2236                 field.bit_mask = 0xffff << field.bit_offset;
2237
2238                 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2239                 rt2x00_set_field32(&reg, field, queue->txop);
2240                 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2241         } else if (queue_idx < 4) {
2242                 field.bit_offset = (queue_idx - 2) * 16;
2243                 field.bit_mask = 0xffff << field.bit_offset;
2244
2245                 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2246                 rt2x00_set_field32(&reg, field, queue->txop);
2247                 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2248         }
2249
2250         /* Update WMM registers */
2251         field.bit_offset = queue_idx * 4;
2252         field.bit_mask = 0xf << field.bit_offset;
2253
2254         rt73usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2255         rt2x00_set_field32(&reg, field, queue->aifs);
2256         rt73usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2257
2258         rt73usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2259         rt2x00_set_field32(&reg, field, queue->cw_min);
2260         rt73usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2261
2262         rt73usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2263         rt2x00_set_field32(&reg, field, queue->cw_max);
2264         rt73usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2265
2266         return 0;
2267 }
2268
2269 #if 0
2270 /*
2271  * Mac80211 demands get_tsf must be atomic.
2272  * This is not possible for rt73usb since all register access
2273  * functions require sleeping. Untill mac80211 no longer needs
2274  * get_tsf to be atomic, this function should be disabled.
2275  */
2276 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2277 {
2278         struct rt2x00_dev *rt2x00dev = hw->priv;
2279         u64 tsf;
2280         u32 reg;
2281
2282         rt73usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2283         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2284         rt73usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2285         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2286
2287         return tsf;
2288 }
2289 #else
2290 #define rt73usb_get_tsf NULL
2291 #endif
2292
2293 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2294         .tx                     = rt2x00mac_tx,
2295         .start                  = rt2x00mac_start,
2296         .stop                   = rt2x00mac_stop,
2297         .add_interface          = rt2x00mac_add_interface,
2298         .remove_interface       = rt2x00mac_remove_interface,
2299         .config                 = rt2x00mac_config,
2300         .config_interface       = rt2x00mac_config_interface,
2301         .configure_filter       = rt2x00mac_configure_filter,
2302         .set_key                = rt2x00mac_set_key,
2303         .get_stats              = rt2x00mac_get_stats,
2304         .bss_info_changed       = rt2x00mac_bss_info_changed,
2305         .conf_tx                = rt73usb_conf_tx,
2306         .get_tx_stats           = rt2x00mac_get_tx_stats,
2307         .get_tsf                = rt73usb_get_tsf,
2308 };
2309
2310 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2311         .probe_hw               = rt73usb_probe_hw,
2312         .get_firmware_name      = rt73usb_get_firmware_name,
2313         .get_firmware_crc       = rt73usb_get_firmware_crc,
2314         .load_firmware          = rt73usb_load_firmware,
2315         .initialize             = rt2x00usb_initialize,
2316         .uninitialize           = rt2x00usb_uninitialize,
2317         .clear_entry            = rt2x00usb_clear_entry,
2318         .set_device_state       = rt73usb_set_device_state,
2319         .link_stats             = rt73usb_link_stats,
2320         .reset_tuner            = rt73usb_reset_tuner,
2321         .link_tuner             = rt73usb_link_tuner,
2322         .write_tx_desc          = rt73usb_write_tx_desc,
2323         .write_tx_data          = rt2x00usb_write_tx_data,
2324         .write_beacon           = rt73usb_write_beacon,
2325         .get_tx_data_len        = rt73usb_get_tx_data_len,
2326         .kick_tx_queue          = rt73usb_kick_tx_queue,
2327         .fill_rxdone            = rt73usb_fill_rxdone,
2328         .config_shared_key      = rt73usb_config_shared_key,
2329         .config_pairwise_key    = rt73usb_config_pairwise_key,
2330         .config_filter          = rt73usb_config_filter,
2331         .config_intf            = rt73usb_config_intf,
2332         .config_erp             = rt73usb_config_erp,
2333         .config_ant             = rt73usb_config_ant,
2334         .config                 = rt73usb_config,
2335 };
2336
2337 static const struct data_queue_desc rt73usb_queue_rx = {
2338         .entry_num              = RX_ENTRIES,
2339         .data_size              = DATA_FRAME_SIZE,
2340         .desc_size              = RXD_DESC_SIZE,
2341         .priv_size              = sizeof(struct queue_entry_priv_usb),
2342 };
2343
2344 static const struct data_queue_desc rt73usb_queue_tx = {
2345         .entry_num              = TX_ENTRIES,
2346         .data_size              = DATA_FRAME_SIZE,
2347         .desc_size              = TXD_DESC_SIZE,
2348         .priv_size              = sizeof(struct queue_entry_priv_usb),
2349 };
2350
2351 static const struct data_queue_desc rt73usb_queue_bcn = {
2352         .entry_num              = 4 * BEACON_ENTRIES,
2353         .data_size              = MGMT_FRAME_SIZE,
2354         .desc_size              = TXINFO_SIZE,
2355         .priv_size              = sizeof(struct queue_entry_priv_usb),
2356 };
2357
2358 static const struct rt2x00_ops rt73usb_ops = {
2359         .name           = KBUILD_MODNAME,
2360         .max_sta_intf   = 1,
2361         .max_ap_intf    = 4,
2362         .eeprom_size    = EEPROM_SIZE,
2363         .rf_size        = RF_SIZE,
2364         .tx_queues      = NUM_TX_QUEUES,
2365         .rx             = &rt73usb_queue_rx,
2366         .tx             = &rt73usb_queue_tx,
2367         .bcn            = &rt73usb_queue_bcn,
2368         .lib            = &rt73usb_rt2x00_ops,
2369         .hw             = &rt73usb_mac80211_ops,
2370 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2371         .debugfs        = &rt73usb_rt2x00debug,
2372 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2373 };
2374
2375 /*
2376  * rt73usb module information.
2377  */
2378 static struct usb_device_id rt73usb_device_table[] = {
2379         /* AboCom */
2380         { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2381         /* Askey */
2382         { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2383         /* ASUS */
2384         { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2385         { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2386         /* Belkin */
2387         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2388         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2389         { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2390         { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2391         /* Billionton */
2392         { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2393         /* Buffalo */
2394         { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2395         /* CNet */
2396         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2397         { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2398         /* Conceptronic */
2399         { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2400         /* Corega */
2401         { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2402         /* D-Link */
2403         { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2404         { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2405         { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2406         { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2407         /* Gemtek */
2408         { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2409         /* Gigabyte */
2410         { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2411         { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2412         /* Huawei-3Com */
2413         { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2414         /* Hercules */
2415         { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2416         { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2417         /* Linksys */
2418         { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2419         { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2420         /* MSI */
2421         { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2422         { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2423         { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2424         { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2425         /* Ralink */
2426         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2427         { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2428         /* Qcom */
2429         { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2430         { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2431         { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2432         /* Senao */
2433         { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2434         /* Sitecom */
2435         { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2436         { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2437         /* Surecom */
2438         { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2439         /* Planex */
2440         { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2441         { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2442         { 0, }
2443 };
2444
2445 MODULE_AUTHOR(DRV_PROJECT);
2446 MODULE_VERSION(DRV_VERSION);
2447 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2448 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2449 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2450 MODULE_FIRMWARE(FIRMWARE_RT2571);
2451 MODULE_LICENSE("GPL");
2452
2453 static struct usb_driver rt73usb_driver = {
2454         .name           = KBUILD_MODNAME,
2455         .id_table       = rt73usb_device_table,
2456         .probe          = rt2x00usb_probe,
2457         .disconnect     = rt2x00usb_disconnect,
2458         .suspend        = rt2x00usb_suspend,
2459         .resume         = rt2x00usb_resume,
2460 };
2461
2462 static int __init rt73usb_init(void)
2463 {
2464         return usb_register(&rt73usb_driver);
2465 }
2466
2467 static void __exit rt73usb_exit(void)
2468 {
2469         usb_deregister(&rt73usb_driver);
2470 }
2471
2472 module_init(rt73usb_init);
2473 module_exit(rt73usb_exit);