x86: minor polishing to top-level arch Makefile
[cascardo/linux.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <net/mac80211.h>
31 #include <asm/unaligned.h>
32
33 #include "zd_def.h"
34 #include "zd_mac.h"
35 #include "zd_usb.h"
36
37 static struct usb_device_id usb_ids[] = {
38         /* ZD1211 */
39         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61         /* ZD1211B */
62         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
63         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
64         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
83         /* "Driverless" devices that need ejecting */
84         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
85         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
86         {}
87 };
88
89 MODULE_LICENSE("GPL");
90 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
91 MODULE_AUTHOR("Ulrich Kunitz");
92 MODULE_AUTHOR("Daniel Drake");
93 MODULE_VERSION("1.0");
94 MODULE_DEVICE_TABLE(usb, usb_ids);
95
96 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
97 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
98
99 /* USB device initialization */
100 static void int_urb_complete(struct urb *urb);
101
102 static int request_fw_file(
103         const struct firmware **fw, const char *name, struct device *device)
104 {
105         int r;
106
107         dev_dbg_f(device, "fw name %s\n", name);
108
109         r = request_firmware(fw, name, device);
110         if (r)
111                 dev_err(device,
112                        "Could not load firmware file %s. Error number %d\n",
113                        name, r);
114         return r;
115 }
116
117 static inline u16 get_bcdDevice(const struct usb_device *udev)
118 {
119         return le16_to_cpu(udev->descriptor.bcdDevice);
120 }
121
122 enum upload_code_flags {
123         REBOOT = 1,
124 };
125
126 /* Ensures that MAX_TRANSFER_SIZE is even. */
127 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
128
129 static int upload_code(struct usb_device *udev,
130         const u8 *data, size_t size, u16 code_offset, int flags)
131 {
132         u8 *p;
133         int r;
134
135         /* USB request blocks need "kmalloced" buffers.
136          */
137         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
138         if (!p) {
139                 dev_err(&udev->dev, "out of memory\n");
140                 r = -ENOMEM;
141                 goto error;
142         }
143
144         size &= ~1;
145         while (size > 0) {
146                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
147                         size : MAX_TRANSFER_SIZE;
148
149                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
150
151                 memcpy(p, data, transfer_size);
152                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
153                         USB_REQ_FIRMWARE_DOWNLOAD,
154                         USB_DIR_OUT | USB_TYPE_VENDOR,
155                         code_offset, 0, p, transfer_size, 1000 /* ms */);
156                 if (r < 0) {
157                         dev_err(&udev->dev,
158                                "USB control request for firmware upload"
159                                " failed. Error number %d\n", r);
160                         goto error;
161                 }
162                 transfer_size = r & ~1;
163
164                 size -= transfer_size;
165                 data += transfer_size;
166                 code_offset += transfer_size/sizeof(u16);
167         }
168
169         if (flags & REBOOT) {
170                 u8 ret;
171
172                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
173                         USB_REQ_FIRMWARE_CONFIRM,
174                         USB_DIR_IN | USB_TYPE_VENDOR,
175                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
176                 if (r != sizeof(ret)) {
177                         dev_err(&udev->dev,
178                                 "control request firmeware confirmation failed."
179                                 " Return value %d\n", r);
180                         if (r >= 0)
181                                 r = -ENODEV;
182                         goto error;
183                 }
184                 if (ret & 0x80) {
185                         dev_err(&udev->dev,
186                                 "Internal error while downloading."
187                                 " Firmware confirm return value %#04x\n",
188                                 (unsigned int)ret);
189                         r = -ENODEV;
190                         goto error;
191                 }
192                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
193                         (unsigned int)ret);
194         }
195
196         r = 0;
197 error:
198         kfree(p);
199         return r;
200 }
201
202 static u16 get_word(const void *data, u16 offset)
203 {
204         const __le16 *p = data;
205         return le16_to_cpu(p[offset]);
206 }
207
208 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
209                        const char* postfix)
210 {
211         scnprintf(buffer, size, "%s%s",
212                 usb->is_zd1211b ?
213                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
214                 postfix);
215         return buffer;
216 }
217
218 static int handle_version_mismatch(struct zd_usb *usb,
219         const struct firmware *ub_fw)
220 {
221         struct usb_device *udev = zd_usb_to_usbdev(usb);
222         const struct firmware *ur_fw = NULL;
223         int offset;
224         int r = 0;
225         char fw_name[128];
226
227         r = request_fw_file(&ur_fw,
228                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
229                 &udev->dev);
230         if (r)
231                 goto error;
232
233         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
234         if (r)
235                 goto error;
236
237         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
238         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
239                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
240
241         /* At this point, the vendor driver downloads the whole firmware
242          * image, hacks around with version IDs, and uploads it again,
243          * completely overwriting the boot code. We do not do this here as
244          * it is not required on any tested devices, and it is suspected to
245          * cause problems. */
246 error:
247         release_firmware(ur_fw);
248         return r;
249 }
250
251 static int upload_firmware(struct zd_usb *usb)
252 {
253         int r;
254         u16 fw_bcdDevice;
255         u16 bcdDevice;
256         struct usb_device *udev = zd_usb_to_usbdev(usb);
257         const struct firmware *ub_fw = NULL;
258         const struct firmware *uph_fw = NULL;
259         char fw_name[128];
260
261         bcdDevice = get_bcdDevice(udev);
262
263         r = request_fw_file(&ub_fw,
264                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
265                 &udev->dev);
266         if (r)
267                 goto error;
268
269         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
270
271         if (fw_bcdDevice != bcdDevice) {
272                 dev_info(&udev->dev,
273                         "firmware version %#06x and device bootcode version "
274                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
275                 if (bcdDevice <= 0x4313)
276                         dev_warn(&udev->dev, "device has old bootcode, please "
277                                 "report success or failure\n");
278
279                 r = handle_version_mismatch(usb, ub_fw);
280                 if (r)
281                         goto error;
282         } else {
283                 dev_dbg_f(&udev->dev,
284                         "firmware device id %#06x is equal to the "
285                         "actual device id\n", fw_bcdDevice);
286         }
287
288
289         r = request_fw_file(&uph_fw,
290                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
291                 &udev->dev);
292         if (r)
293                 goto error;
294
295         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
296         if (r) {
297                 dev_err(&udev->dev,
298                         "Could not upload firmware code uph. Error number %d\n",
299                         r);
300         }
301
302         /* FALL-THROUGH */
303 error:
304         release_firmware(ub_fw);
305         release_firmware(uph_fw);
306         return r;
307 }
308
309 /* Read data from device address space using "firmware interface" which does
310  * not require firmware to be loaded. */
311 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
312 {
313         int r;
314         struct usb_device *udev = zd_usb_to_usbdev(usb);
315
316         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
317                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
318                 data, len, 5000);
319         if (r < 0) {
320                 dev_err(&udev->dev,
321                         "read over firmware interface failed: %d\n", r);
322                 return r;
323         } else if (r != len) {
324                 dev_err(&udev->dev,
325                         "incomplete read over firmware interface: %d/%d\n",
326                         r, len);
327                 return -EIO;
328         }
329
330         return 0;
331 }
332
333 #define urb_dev(urb) (&(urb)->dev->dev)
334
335 static inline void handle_regs_int(struct urb *urb)
336 {
337         struct zd_usb *usb = urb->context;
338         struct zd_usb_interrupt *intr = &usb->intr;
339         int len;
340         u16 int_num;
341
342         ZD_ASSERT(in_interrupt());
343         spin_lock(&intr->lock);
344
345         int_num = le16_to_cpu(*(u16 *)(urb->transfer_buffer+2));
346         if (int_num == CR_INTERRUPT) {
347                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
348                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
349                                 USB_MAX_EP_INT_BUFFER);
350                 schedule_work(&mac->process_intr);
351         } else if (intr->read_regs_enabled) {
352                 intr->read_regs.length = len = urb->actual_length;
353
354                 if (len > sizeof(intr->read_regs.buffer))
355                         len = sizeof(intr->read_regs.buffer);
356                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
357                 intr->read_regs_enabled = 0;
358                 complete(&intr->read_regs.completion);
359                 goto out;
360         }
361
362 out:
363         spin_unlock(&intr->lock);
364 }
365
366 static void int_urb_complete(struct urb *urb)
367 {
368         int r;
369         struct usb_int_header *hdr;
370
371         switch (urb->status) {
372         case 0:
373                 break;
374         case -ESHUTDOWN:
375         case -EINVAL:
376         case -ENODEV:
377         case -ENOENT:
378         case -ECONNRESET:
379         case -EPIPE:
380                 goto kfree;
381         default:
382                 goto resubmit;
383         }
384
385         if (urb->actual_length < sizeof(hdr)) {
386                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
387                 goto resubmit;
388         }
389
390         hdr = urb->transfer_buffer;
391         if (hdr->type != USB_INT_TYPE) {
392                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
393                 goto resubmit;
394         }
395
396         switch (hdr->id) {
397         case USB_INT_ID_REGS:
398                 handle_regs_int(urb);
399                 break;
400         case USB_INT_ID_RETRY_FAILED:
401                 zd_mac_tx_failed(zd_usb_to_hw(urb->context));
402                 break;
403         default:
404                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
405                         (unsigned int)hdr->id);
406                 goto resubmit;
407         }
408
409 resubmit:
410         r = usb_submit_urb(urb, GFP_ATOMIC);
411         if (r) {
412                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
413                 goto kfree;
414         }
415         return;
416 kfree:
417         kfree(urb->transfer_buffer);
418 }
419
420 static inline int int_urb_interval(struct usb_device *udev)
421 {
422         switch (udev->speed) {
423         case USB_SPEED_HIGH:
424                 return 4;
425         case USB_SPEED_LOW:
426                 return 10;
427         case USB_SPEED_FULL:
428         default:
429                 return 1;
430         }
431 }
432
433 static inline int usb_int_enabled(struct zd_usb *usb)
434 {
435         unsigned long flags;
436         struct zd_usb_interrupt *intr = &usb->intr;
437         struct urb *urb;
438
439         spin_lock_irqsave(&intr->lock, flags);
440         urb = intr->urb;
441         spin_unlock_irqrestore(&intr->lock, flags);
442         return urb != NULL;
443 }
444
445 int zd_usb_enable_int(struct zd_usb *usb)
446 {
447         int r;
448         struct usb_device *udev;
449         struct zd_usb_interrupt *intr = &usb->intr;
450         void *transfer_buffer = NULL;
451         struct urb *urb;
452
453         dev_dbg_f(zd_usb_dev(usb), "\n");
454
455         urb = usb_alloc_urb(0, GFP_KERNEL);
456         if (!urb) {
457                 r = -ENOMEM;
458                 goto out;
459         }
460
461         ZD_ASSERT(!irqs_disabled());
462         spin_lock_irq(&intr->lock);
463         if (intr->urb) {
464                 spin_unlock_irq(&intr->lock);
465                 r = 0;
466                 goto error_free_urb;
467         }
468         intr->urb = urb;
469         spin_unlock_irq(&intr->lock);
470
471         /* TODO: make it a DMA buffer */
472         r = -ENOMEM;
473         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
474         if (!transfer_buffer) {
475                 dev_dbg_f(zd_usb_dev(usb),
476                         "couldn't allocate transfer_buffer\n");
477                 goto error_set_urb_null;
478         }
479
480         udev = zd_usb_to_usbdev(usb);
481         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
482                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
483                          int_urb_complete, usb,
484                          intr->interval);
485
486         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
487         r = usb_submit_urb(urb, GFP_KERNEL);
488         if (r) {
489                 dev_dbg_f(zd_usb_dev(usb),
490                          "Couldn't submit urb. Error number %d\n", r);
491                 goto error;
492         }
493
494         return 0;
495 error:
496         kfree(transfer_buffer);
497 error_set_urb_null:
498         spin_lock_irq(&intr->lock);
499         intr->urb = NULL;
500         spin_unlock_irq(&intr->lock);
501 error_free_urb:
502         usb_free_urb(urb);
503 out:
504         return r;
505 }
506
507 void zd_usb_disable_int(struct zd_usb *usb)
508 {
509         unsigned long flags;
510         struct zd_usb_interrupt *intr = &usb->intr;
511         struct urb *urb;
512
513         spin_lock_irqsave(&intr->lock, flags);
514         urb = intr->urb;
515         if (!urb) {
516                 spin_unlock_irqrestore(&intr->lock, flags);
517                 return;
518         }
519         intr->urb = NULL;
520         spin_unlock_irqrestore(&intr->lock, flags);
521
522         usb_kill_urb(urb);
523         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
524         usb_free_urb(urb);
525 }
526
527 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
528                              unsigned int length)
529 {
530         int i;
531         const struct rx_length_info *length_info;
532
533         if (length < sizeof(struct rx_length_info)) {
534                 /* It's not a complete packet anyhow. */
535                 return;
536         }
537         length_info = (struct rx_length_info *)
538                 (buffer + length - sizeof(struct rx_length_info));
539
540         /* It might be that three frames are merged into a single URB
541          * transaction. We have to check for the length info tag.
542          *
543          * While testing we discovered that length_info might be unaligned,
544          * because if USB transactions are merged, the last packet will not
545          * be padded. Unaligned access might also happen if the length_info
546          * structure is not present.
547          */
548         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
549         {
550                 unsigned int l, k, n;
551                 for (i = 0, l = 0;; i++) {
552                         k = get_unaligned_le16(&length_info->length[i]);
553                         if (k == 0)
554                                 return;
555                         n = l+k;
556                         if (n > length)
557                                 return;
558                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
559                         if (i >= 2)
560                                 return;
561                         l = (n+3) & ~3;
562                 }
563         } else {
564                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
565         }
566 }
567
568 static void rx_urb_complete(struct urb *urb)
569 {
570         struct zd_usb *usb;
571         struct zd_usb_rx *rx;
572         const u8 *buffer;
573         unsigned int length;
574
575         switch (urb->status) {
576         case 0:
577                 break;
578         case -ESHUTDOWN:
579         case -EINVAL:
580         case -ENODEV:
581         case -ENOENT:
582         case -ECONNRESET:
583         case -EPIPE:
584                 return;
585         default:
586                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
587                 goto resubmit;
588         }
589
590         buffer = urb->transfer_buffer;
591         length = urb->actual_length;
592         usb = urb->context;
593         rx = &usb->rx;
594
595         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
596                 /* If there is an old first fragment, we don't care. */
597                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
598                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
599                 spin_lock(&rx->lock);
600                 memcpy(rx->fragment, buffer, length);
601                 rx->fragment_length = length;
602                 spin_unlock(&rx->lock);
603                 goto resubmit;
604         }
605
606         spin_lock(&rx->lock);
607         if (rx->fragment_length > 0) {
608                 /* We are on a second fragment, we believe */
609                 ZD_ASSERT(length + rx->fragment_length <=
610                           ARRAY_SIZE(rx->fragment));
611                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
612                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
613                 handle_rx_packet(usb, rx->fragment,
614                                  rx->fragment_length + length);
615                 rx->fragment_length = 0;
616                 spin_unlock(&rx->lock);
617         } else {
618                 spin_unlock(&rx->lock);
619                 handle_rx_packet(usb, buffer, length);
620         }
621
622 resubmit:
623         usb_submit_urb(urb, GFP_ATOMIC);
624 }
625
626 static struct urb *alloc_rx_urb(struct zd_usb *usb)
627 {
628         struct usb_device *udev = zd_usb_to_usbdev(usb);
629         struct urb *urb;
630         void *buffer;
631
632         urb = usb_alloc_urb(0, GFP_KERNEL);
633         if (!urb)
634                 return NULL;
635         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
636                                   &urb->transfer_dma);
637         if (!buffer) {
638                 usb_free_urb(urb);
639                 return NULL;
640         }
641
642         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
643                           buffer, USB_MAX_RX_SIZE,
644                           rx_urb_complete, usb);
645         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
646
647         return urb;
648 }
649
650 static void free_rx_urb(struct urb *urb)
651 {
652         if (!urb)
653                 return;
654         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
655                         urb->transfer_buffer, urb->transfer_dma);
656         usb_free_urb(urb);
657 }
658
659 int zd_usb_enable_rx(struct zd_usb *usb)
660 {
661         int i, r;
662         struct zd_usb_rx *rx = &usb->rx;
663         struct urb **urbs;
664
665         dev_dbg_f(zd_usb_dev(usb), "\n");
666
667         r = -ENOMEM;
668         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
669         if (!urbs)
670                 goto error;
671         for (i = 0; i < RX_URBS_COUNT; i++) {
672                 urbs[i] = alloc_rx_urb(usb);
673                 if (!urbs[i])
674                         goto error;
675         }
676
677         ZD_ASSERT(!irqs_disabled());
678         spin_lock_irq(&rx->lock);
679         if (rx->urbs) {
680                 spin_unlock_irq(&rx->lock);
681                 r = 0;
682                 goto error;
683         }
684         rx->urbs = urbs;
685         rx->urbs_count = RX_URBS_COUNT;
686         spin_unlock_irq(&rx->lock);
687
688         for (i = 0; i < RX_URBS_COUNT; i++) {
689                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
690                 if (r)
691                         goto error_submit;
692         }
693
694         return 0;
695 error_submit:
696         for (i = 0; i < RX_URBS_COUNT; i++) {
697                 usb_kill_urb(urbs[i]);
698         }
699         spin_lock_irq(&rx->lock);
700         rx->urbs = NULL;
701         rx->urbs_count = 0;
702         spin_unlock_irq(&rx->lock);
703 error:
704         if (urbs) {
705                 for (i = 0; i < RX_URBS_COUNT; i++)
706                         free_rx_urb(urbs[i]);
707         }
708         return r;
709 }
710
711 void zd_usb_disable_rx(struct zd_usb *usb)
712 {
713         int i;
714         unsigned long flags;
715         struct urb **urbs;
716         unsigned int count;
717         struct zd_usb_rx *rx = &usb->rx;
718
719         spin_lock_irqsave(&rx->lock, flags);
720         urbs = rx->urbs;
721         count = rx->urbs_count;
722         spin_unlock_irqrestore(&rx->lock, flags);
723         if (!urbs)
724                 return;
725
726         for (i = 0; i < count; i++) {
727                 usb_kill_urb(urbs[i]);
728                 free_rx_urb(urbs[i]);
729         }
730         kfree(urbs);
731
732         spin_lock_irqsave(&rx->lock, flags);
733         rx->urbs = NULL;
734         rx->urbs_count = 0;
735         spin_unlock_irqrestore(&rx->lock, flags);
736 }
737
738 /**
739  * zd_usb_disable_tx - disable transmission
740  * @usb: the zd1211rw-private USB structure
741  *
742  * Frees all URBs in the free list and marks the transmission as disabled.
743  */
744 void zd_usb_disable_tx(struct zd_usb *usb)
745 {
746         struct zd_usb_tx *tx = &usb->tx;
747         unsigned long flags;
748         struct list_head *pos, *n;
749
750         spin_lock_irqsave(&tx->lock, flags);
751         list_for_each_safe(pos, n, &tx->free_urb_list) {
752                 list_del(pos);
753                 usb_free_urb(list_entry(pos, struct urb, urb_list));
754         }
755         tx->enabled = 0;
756         tx->submitted_urbs = 0;
757         /* The stopped state is ignored, relying on ieee80211_wake_queues()
758          * in a potentionally following zd_usb_enable_tx().
759          */
760         spin_unlock_irqrestore(&tx->lock, flags);
761 }
762
763 /**
764  * zd_usb_enable_tx - enables transmission
765  * @usb: a &struct zd_usb pointer
766  *
767  * This function enables transmission and prepares the &zd_usb_tx data
768  * structure.
769  */
770 void zd_usb_enable_tx(struct zd_usb *usb)
771 {
772         unsigned long flags;
773         struct zd_usb_tx *tx = &usb->tx;
774
775         spin_lock_irqsave(&tx->lock, flags);
776         tx->enabled = 1;
777         tx->submitted_urbs = 0;
778         ieee80211_wake_queues(zd_usb_to_hw(usb));
779         tx->stopped = 0;
780         spin_unlock_irqrestore(&tx->lock, flags);
781 }
782
783 /**
784  * alloc_tx_urb - provides an tx URB
785  * @usb: a &struct zd_usb pointer
786  *
787  * Allocates a new URB. If possible takes the urb from the free list in
788  * usb->tx.
789  */
790 static struct urb *alloc_tx_urb(struct zd_usb *usb)
791 {
792         struct zd_usb_tx *tx = &usb->tx;
793         unsigned long flags;
794         struct list_head *entry;
795         struct urb *urb;
796
797         spin_lock_irqsave(&tx->lock, flags);
798         if (list_empty(&tx->free_urb_list)) {
799                 urb = usb_alloc_urb(0, GFP_ATOMIC);
800                 goto out;
801         }
802         entry = tx->free_urb_list.next;
803         list_del(entry);
804         urb = list_entry(entry, struct urb, urb_list);
805 out:
806         spin_unlock_irqrestore(&tx->lock, flags);
807         return urb;
808 }
809
810 /**
811  * free_tx_urb - frees a used tx URB
812  * @usb: a &struct zd_usb pointer
813  * @urb: URB to be freed
814  *
815  * Frees the the transmission URB, which means to put it on the free URB
816  * list.
817  */
818 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
819 {
820         struct zd_usb_tx *tx = &usb->tx;
821         unsigned long flags;
822
823         spin_lock_irqsave(&tx->lock, flags);
824         if (!tx->enabled) {
825                 usb_free_urb(urb);
826                 goto out;
827         }
828         list_add(&urb->urb_list, &tx->free_urb_list);
829 out:
830         spin_unlock_irqrestore(&tx->lock, flags);
831 }
832
833 static void tx_dec_submitted_urbs(struct zd_usb *usb)
834 {
835         struct zd_usb_tx *tx = &usb->tx;
836         unsigned long flags;
837
838         spin_lock_irqsave(&tx->lock, flags);
839         --tx->submitted_urbs;
840         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
841                 ieee80211_wake_queues(zd_usb_to_hw(usb));
842                 tx->stopped = 0;
843         }
844         spin_unlock_irqrestore(&tx->lock, flags);
845 }
846
847 static void tx_inc_submitted_urbs(struct zd_usb *usb)
848 {
849         struct zd_usb_tx *tx = &usb->tx;
850         unsigned long flags;
851
852         spin_lock_irqsave(&tx->lock, flags);
853         ++tx->submitted_urbs;
854         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
855                 ieee80211_stop_queues(zd_usb_to_hw(usb));
856                 tx->stopped = 1;
857         }
858         spin_unlock_irqrestore(&tx->lock, flags);
859 }
860
861 /**
862  * tx_urb_complete - completes the execution of an URB
863  * @urb: a URB
864  *
865  * This function is called if the URB has been transferred to a device or an
866  * error has happened.
867  */
868 static void tx_urb_complete(struct urb *urb)
869 {
870         int r;
871         struct sk_buff *skb;
872         struct zd_tx_skb_control_block *cb;
873         struct zd_usb *usb;
874
875         switch (urb->status) {
876         case 0:
877                 break;
878         case -ESHUTDOWN:
879         case -EINVAL:
880         case -ENODEV:
881         case -ENOENT:
882         case -ECONNRESET:
883         case -EPIPE:
884                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
885                 break;
886         default:
887                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
888                 goto resubmit;
889         }
890 free_urb:
891         skb = (struct sk_buff *)urb->context;
892         zd_mac_tx_to_dev(skb, urb->status);
893         cb = (struct zd_tx_skb_control_block *)skb->cb;
894         usb = &zd_hw_mac(cb->hw)->chip.usb;
895         free_tx_urb(usb, urb);
896         tx_dec_submitted_urbs(usb);
897         return;
898 resubmit:
899         r = usb_submit_urb(urb, GFP_ATOMIC);
900         if (r) {
901                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
902                 goto free_urb;
903         }
904 }
905
906 /**
907  * zd_usb_tx: initiates transfer of a frame of the device
908  *
909  * @usb: the zd1211rw-private USB structure
910  * @skb: a &struct sk_buff pointer
911  *
912  * This function tranmits a frame to the device. It doesn't wait for
913  * completion. The frame must contain the control set and have all the
914  * control set information available.
915  *
916  * The function returns 0 if the transfer has been successfully initiated.
917  */
918 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
919 {
920         int r;
921         struct usb_device *udev = zd_usb_to_usbdev(usb);
922         struct urb *urb;
923
924         urb = alloc_tx_urb(usb);
925         if (!urb) {
926                 r = -ENOMEM;
927                 goto out;
928         }
929
930         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
931                           skb->data, skb->len, tx_urb_complete, skb);
932
933         r = usb_submit_urb(urb, GFP_ATOMIC);
934         if (r)
935                 goto error;
936         tx_inc_submitted_urbs(usb);
937         return 0;
938 error:
939         free_tx_urb(usb, urb);
940 out:
941         return r;
942 }
943
944 static inline void init_usb_interrupt(struct zd_usb *usb)
945 {
946         struct zd_usb_interrupt *intr = &usb->intr;
947
948         spin_lock_init(&intr->lock);
949         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
950         init_completion(&intr->read_regs.completion);
951         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
952 }
953
954 static inline void init_usb_rx(struct zd_usb *usb)
955 {
956         struct zd_usb_rx *rx = &usb->rx;
957         spin_lock_init(&rx->lock);
958         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
959                 rx->usb_packet_size = 512;
960         } else {
961                 rx->usb_packet_size = 64;
962         }
963         ZD_ASSERT(rx->fragment_length == 0);
964 }
965
966 static inline void init_usb_tx(struct zd_usb *usb)
967 {
968         struct zd_usb_tx *tx = &usb->tx;
969         spin_lock_init(&tx->lock);
970         tx->enabled = 0;
971         tx->stopped = 0;
972         INIT_LIST_HEAD(&tx->free_urb_list);
973         tx->submitted_urbs = 0;
974 }
975
976 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
977                  struct usb_interface *intf)
978 {
979         memset(usb, 0, sizeof(*usb));
980         usb->intf = usb_get_intf(intf);
981         usb_set_intfdata(usb->intf, hw);
982         init_usb_interrupt(usb);
983         init_usb_tx(usb);
984         init_usb_rx(usb);
985 }
986
987 void zd_usb_clear(struct zd_usb *usb)
988 {
989         usb_set_intfdata(usb->intf, NULL);
990         usb_put_intf(usb->intf);
991         ZD_MEMCLEAR(usb, sizeof(*usb));
992         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
993 }
994
995 static const char *speed(enum usb_device_speed speed)
996 {
997         switch (speed) {
998         case USB_SPEED_LOW:
999                 return "low";
1000         case USB_SPEED_FULL:
1001                 return "full";
1002         case USB_SPEED_HIGH:
1003                 return "high";
1004         default:
1005                 return "unknown speed";
1006         }
1007 }
1008
1009 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1010 {
1011         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1012                 le16_to_cpu(udev->descriptor.idVendor),
1013                 le16_to_cpu(udev->descriptor.idProduct),
1014                 get_bcdDevice(udev),
1015                 speed(udev->speed));
1016 }
1017
1018 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1019 {
1020         struct usb_device *udev = interface_to_usbdev(usb->intf);
1021         return scnprint_id(udev, buffer, size);
1022 }
1023
1024 #ifdef DEBUG
1025 static void print_id(struct usb_device *udev)
1026 {
1027         char buffer[40];
1028
1029         scnprint_id(udev, buffer, sizeof(buffer));
1030         buffer[sizeof(buffer)-1] = 0;
1031         dev_dbg_f(&udev->dev, "%s\n", buffer);
1032 }
1033 #else
1034 #define print_id(udev) do { } while (0)
1035 #endif
1036
1037 static int eject_installer(struct usb_interface *intf)
1038 {
1039         struct usb_device *udev = interface_to_usbdev(intf);
1040         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1041         struct usb_endpoint_descriptor *endpoint;
1042         unsigned char *cmd;
1043         u8 bulk_out_ep;
1044         int r;
1045
1046         /* Find bulk out endpoint */
1047         endpoint = &iface_desc->endpoint[1].desc;
1048         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
1049             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1050             USB_ENDPOINT_XFER_BULK) {
1051                 bulk_out_ep = endpoint->bEndpointAddress;
1052         } else {
1053                 dev_err(&udev->dev,
1054                         "zd1211rw: Could not find bulk out endpoint\n");
1055                 return -ENODEV;
1056         }
1057
1058         cmd = kzalloc(31, GFP_KERNEL);
1059         if (cmd == NULL)
1060                 return -ENODEV;
1061
1062         /* USB bulk command block */
1063         cmd[0] = 0x55;  /* bulk command signature */
1064         cmd[1] = 0x53;  /* bulk command signature */
1065         cmd[2] = 0x42;  /* bulk command signature */
1066         cmd[3] = 0x43;  /* bulk command signature */
1067         cmd[14] = 6;    /* command length */
1068
1069         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1070         cmd[19] = 0x2;  /* eject disc */
1071
1072         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1073         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1074                 cmd, 31, NULL, 2000);
1075         kfree(cmd);
1076         if (r)
1077                 return r;
1078
1079         /* At this point, the device disconnects and reconnects with the real
1080          * ID numbers. */
1081
1082         usb_set_intfdata(intf, NULL);
1083         return 0;
1084 }
1085
1086 int zd_usb_init_hw(struct zd_usb *usb)
1087 {
1088         int r;
1089         struct zd_mac *mac = zd_usb_to_mac(usb);
1090
1091         dev_dbg_f(zd_usb_dev(usb), "\n");
1092
1093         r = upload_firmware(usb);
1094         if (r) {
1095                 dev_err(zd_usb_dev(usb),
1096                        "couldn't load firmware. Error number %d\n", r);
1097                 return r;
1098         }
1099
1100         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1101         if (r) {
1102                 dev_dbg_f(zd_usb_dev(usb),
1103                         "couldn't reset configuration. Error number %d\n", r);
1104                 return r;
1105         }
1106
1107         r = zd_mac_init_hw(mac->hw);
1108         if (r) {
1109                 dev_dbg_f(zd_usb_dev(usb),
1110                          "couldn't initialize mac. Error number %d\n", r);
1111                 return r;
1112         }
1113
1114         usb->initialized = 1;
1115         return 0;
1116 }
1117
1118 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1119 {
1120         int r;
1121         struct usb_device *udev = interface_to_usbdev(intf);
1122         struct zd_usb *usb;
1123         struct ieee80211_hw *hw = NULL;
1124
1125         print_id(udev);
1126
1127         if (id->driver_info & DEVICE_INSTALLER)
1128                 return eject_installer(intf);
1129
1130         switch (udev->speed) {
1131         case USB_SPEED_LOW:
1132         case USB_SPEED_FULL:
1133         case USB_SPEED_HIGH:
1134                 break;
1135         default:
1136                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1137                 r = -ENODEV;
1138                 goto error;
1139         }
1140
1141         r = usb_reset_device(udev);
1142         if (r) {
1143                 dev_err(&intf->dev,
1144                         "couldn't reset usb device. Error number %d\n", r);
1145                 goto error;
1146         }
1147
1148         hw = zd_mac_alloc_hw(intf);
1149         if (hw == NULL) {
1150                 r = -ENOMEM;
1151                 goto error;
1152         }
1153
1154         usb = &zd_hw_mac(hw)->chip.usb;
1155         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1156
1157         r = zd_mac_preinit_hw(hw);
1158         if (r) {
1159                 dev_dbg_f(&intf->dev,
1160                          "couldn't initialize mac. Error number %d\n", r);
1161                 goto error;
1162         }
1163
1164         r = ieee80211_register_hw(hw);
1165         if (r) {
1166                 dev_dbg_f(&intf->dev,
1167                          "couldn't register device. Error number %d\n", r);
1168                 goto error;
1169         }
1170
1171         dev_dbg_f(&intf->dev, "successful\n");
1172         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1173         return 0;
1174 error:
1175         usb_reset_device(interface_to_usbdev(intf));
1176         if (hw) {
1177                 zd_mac_clear(zd_hw_mac(hw));
1178                 ieee80211_free_hw(hw);
1179         }
1180         return r;
1181 }
1182
1183 static void disconnect(struct usb_interface *intf)
1184 {
1185         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1186         struct zd_mac *mac;
1187         struct zd_usb *usb;
1188
1189         /* Either something really bad happened, or we're just dealing with
1190          * a DEVICE_INSTALLER. */
1191         if (hw == NULL)
1192                 return;
1193
1194         mac = zd_hw_mac(hw);
1195         usb = &mac->chip.usb;
1196
1197         dev_dbg_f(zd_usb_dev(usb), "\n");
1198
1199         ieee80211_unregister_hw(hw);
1200
1201         /* Just in case something has gone wrong! */
1202         zd_usb_disable_rx(usb);
1203         zd_usb_disable_int(usb);
1204
1205         /* If the disconnect has been caused by a removal of the
1206          * driver module, the reset allows reloading of the driver. If the
1207          * reset will not be executed here, the upload of the firmware in the
1208          * probe function caused by the reloading of the driver will fail.
1209          */
1210         usb_reset_device(interface_to_usbdev(intf));
1211
1212         zd_mac_clear(mac);
1213         ieee80211_free_hw(hw);
1214         dev_dbg(&intf->dev, "disconnected\n");
1215 }
1216
1217 static struct usb_driver driver = {
1218         .name           = KBUILD_MODNAME,
1219         .id_table       = usb_ids,
1220         .probe          = probe,
1221         .disconnect     = disconnect,
1222 };
1223
1224 struct workqueue_struct *zd_workqueue;
1225
1226 static int __init usb_init(void)
1227 {
1228         int r;
1229
1230         pr_debug("%s usb_init()\n", driver.name);
1231
1232         zd_workqueue = create_singlethread_workqueue(driver.name);
1233         if (zd_workqueue == NULL) {
1234                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1235                 return -ENOMEM;
1236         }
1237
1238         r = usb_register(&driver);
1239         if (r) {
1240                 destroy_workqueue(zd_workqueue);
1241                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1242                        driver.name, r);
1243                 return r;
1244         }
1245
1246         pr_debug("%s initialized\n", driver.name);
1247         return 0;
1248 }
1249
1250 static void __exit usb_exit(void)
1251 {
1252         pr_debug("%s usb_exit()\n", driver.name);
1253         usb_deregister(&driver);
1254         destroy_workqueue(zd_workqueue);
1255 }
1256
1257 module_init(usb_init);
1258 module_exit(usb_exit);
1259
1260 static int usb_int_regs_length(unsigned int count)
1261 {
1262         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1263 }
1264
1265 static void prepare_read_regs_int(struct zd_usb *usb)
1266 {
1267         struct zd_usb_interrupt *intr = &usb->intr;
1268
1269         spin_lock_irq(&intr->lock);
1270         intr->read_regs_enabled = 1;
1271         INIT_COMPLETION(intr->read_regs.completion);
1272         spin_unlock_irq(&intr->lock);
1273 }
1274
1275 static void disable_read_regs_int(struct zd_usb *usb)
1276 {
1277         struct zd_usb_interrupt *intr = &usb->intr;
1278
1279         spin_lock_irq(&intr->lock);
1280         intr->read_regs_enabled = 0;
1281         spin_unlock_irq(&intr->lock);
1282 }
1283
1284 static int get_results(struct zd_usb *usb, u16 *values,
1285                        struct usb_req_read_regs *req, unsigned int count)
1286 {
1287         int r;
1288         int i;
1289         struct zd_usb_interrupt *intr = &usb->intr;
1290         struct read_regs_int *rr = &intr->read_regs;
1291         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1292
1293         spin_lock_irq(&intr->lock);
1294
1295         r = -EIO;
1296         /* The created block size seems to be larger than expected.
1297          * However results appear to be correct.
1298          */
1299         if (rr->length < usb_int_regs_length(count)) {
1300                 dev_dbg_f(zd_usb_dev(usb),
1301                          "error: actual length %d less than expected %d\n",
1302                          rr->length, usb_int_regs_length(count));
1303                 goto error_unlock;
1304         }
1305         if (rr->length > sizeof(rr->buffer)) {
1306                 dev_dbg_f(zd_usb_dev(usb),
1307                          "error: actual length %d exceeds buffer size %zu\n",
1308                          rr->length, sizeof(rr->buffer));
1309                 goto error_unlock;
1310         }
1311
1312         for (i = 0; i < count; i++) {
1313                 struct reg_data *rd = &regs->regs[i];
1314                 if (rd->addr != req->addr[i]) {
1315                         dev_dbg_f(zd_usb_dev(usb),
1316                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1317                                  le16_to_cpu(rd->addr),
1318                                  le16_to_cpu(req->addr[i]));
1319                         goto error_unlock;
1320                 }
1321                 values[i] = le16_to_cpu(rd->value);
1322         }
1323
1324         r = 0;
1325 error_unlock:
1326         spin_unlock_irq(&intr->lock);
1327         return r;
1328 }
1329
1330 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1331                      const zd_addr_t *addresses, unsigned int count)
1332 {
1333         int r;
1334         int i, req_len, actual_req_len;
1335         struct usb_device *udev;
1336         struct usb_req_read_regs *req = NULL;
1337         unsigned long timeout;
1338
1339         if (count < 1) {
1340                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1341                 return -EINVAL;
1342         }
1343         if (count > USB_MAX_IOREAD16_COUNT) {
1344                 dev_dbg_f(zd_usb_dev(usb),
1345                          "error: count %u exceeds possible max %u\n",
1346                          count, USB_MAX_IOREAD16_COUNT);
1347                 return -EINVAL;
1348         }
1349         if (in_atomic()) {
1350                 dev_dbg_f(zd_usb_dev(usb),
1351                          "error: io in atomic context not supported\n");
1352                 return -EWOULDBLOCK;
1353         }
1354         if (!usb_int_enabled(usb)) {
1355                  dev_dbg_f(zd_usb_dev(usb),
1356                           "error: usb interrupt not enabled\n");
1357                 return -EWOULDBLOCK;
1358         }
1359
1360         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1361         req = kmalloc(req_len, GFP_KERNEL);
1362         if (!req)
1363                 return -ENOMEM;
1364         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1365         for (i = 0; i < count; i++)
1366                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1367
1368         udev = zd_usb_to_usbdev(usb);
1369         prepare_read_regs_int(usb);
1370         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1371                          req, req_len, &actual_req_len, 1000 /* ms */);
1372         if (r) {
1373                 dev_dbg_f(zd_usb_dev(usb),
1374                         "error in usb_bulk_msg(). Error number %d\n", r);
1375                 goto error;
1376         }
1377         if (req_len != actual_req_len) {
1378                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1379                         " req_len %d != actual_req_len %d\n",
1380                         req_len, actual_req_len);
1381                 r = -EIO;
1382                 goto error;
1383         }
1384
1385         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1386                                               msecs_to_jiffies(1000));
1387         if (!timeout) {
1388                 disable_read_regs_int(usb);
1389                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1390                 r = -ETIMEDOUT;
1391                 goto error;
1392         }
1393
1394         r = get_results(usb, values, req, count);
1395 error:
1396         kfree(req);
1397         return r;
1398 }
1399
1400 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1401                       unsigned int count)
1402 {
1403         int r;
1404         struct usb_device *udev;
1405         struct usb_req_write_regs *req = NULL;
1406         int i, req_len, actual_req_len;
1407
1408         if (count == 0)
1409                 return 0;
1410         if (count > USB_MAX_IOWRITE16_COUNT) {
1411                 dev_dbg_f(zd_usb_dev(usb),
1412                         "error: count %u exceeds possible max %u\n",
1413                         count, USB_MAX_IOWRITE16_COUNT);
1414                 return -EINVAL;
1415         }
1416         if (in_atomic()) {
1417                 dev_dbg_f(zd_usb_dev(usb),
1418                         "error: io in atomic context not supported\n");
1419                 return -EWOULDBLOCK;
1420         }
1421
1422         req_len = sizeof(struct usb_req_write_regs) +
1423                   count * sizeof(struct reg_data);
1424         req = kmalloc(req_len, GFP_KERNEL);
1425         if (!req)
1426                 return -ENOMEM;
1427
1428         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1429         for (i = 0; i < count; i++) {
1430                 struct reg_data *rw  = &req->reg_writes[i];
1431                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1432                 rw->value = cpu_to_le16(ioreqs[i].value);
1433         }
1434
1435         udev = zd_usb_to_usbdev(usb);
1436         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1437                          req, req_len, &actual_req_len, 1000 /* ms */);
1438         if (r) {
1439                 dev_dbg_f(zd_usb_dev(usb),
1440                         "error in usb_bulk_msg(). Error number %d\n", r);
1441                 goto error;
1442         }
1443         if (req_len != actual_req_len) {
1444                 dev_dbg_f(zd_usb_dev(usb),
1445                         "error in usb_bulk_msg()"
1446                         " req_len %d != actual_req_len %d\n",
1447                         req_len, actual_req_len);
1448                 r = -EIO;
1449                 goto error;
1450         }
1451
1452         /* FALL-THROUGH with r == 0 */
1453 error:
1454         kfree(req);
1455         return r;
1456 }
1457
1458 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1459 {
1460         int r;
1461         struct usb_device *udev;
1462         struct usb_req_rfwrite *req = NULL;
1463         int i, req_len, actual_req_len;
1464         u16 bit_value_template;
1465
1466         if (in_atomic()) {
1467                 dev_dbg_f(zd_usb_dev(usb),
1468                         "error: io in atomic context not supported\n");
1469                 return -EWOULDBLOCK;
1470         }
1471         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1472                 dev_dbg_f(zd_usb_dev(usb),
1473                         "error: bits %d are smaller than"
1474                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1475                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1476                 return -EINVAL;
1477         }
1478         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1479                 dev_dbg_f(zd_usb_dev(usb),
1480                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1481                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1482                 return -EINVAL;
1483         }
1484 #ifdef DEBUG
1485         if (value & (~0UL << bits)) {
1486                 dev_dbg_f(zd_usb_dev(usb),
1487                         "error: value %#09x has bits >= %d set\n",
1488                         value, bits);
1489                 return -EINVAL;
1490         }
1491 #endif /* DEBUG */
1492
1493         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1494
1495         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1496         if (r) {
1497                 dev_dbg_f(zd_usb_dev(usb),
1498                         "error %d: Couldn't read CR203\n", r);
1499                 goto out;
1500         }
1501         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1502
1503         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1504         req = kmalloc(req_len, GFP_KERNEL);
1505         if (!req)
1506                 return -ENOMEM;
1507
1508         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1509         /* 1: 3683a, but not used in ZYDAS driver */
1510         req->value = cpu_to_le16(2);
1511         req->bits = cpu_to_le16(bits);
1512
1513         for (i = 0; i < bits; i++) {
1514                 u16 bv = bit_value_template;
1515                 if (value & (1 << (bits-1-i)))
1516                         bv |= RF_DATA;
1517                 req->bit_values[i] = cpu_to_le16(bv);
1518         }
1519
1520         udev = zd_usb_to_usbdev(usb);
1521         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1522                          req, req_len, &actual_req_len, 1000 /* ms */);
1523         if (r) {
1524                 dev_dbg_f(zd_usb_dev(usb),
1525                         "error in usb_bulk_msg(). Error number %d\n", r);
1526                 goto out;
1527         }
1528         if (req_len != actual_req_len) {
1529                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1530                         " req_len %d != actual_req_len %d\n",
1531                         req_len, actual_req_len);
1532                 r = -EIO;
1533                 goto out;
1534         }
1535
1536         /* FALL-THROUGH with r == 0 */
1537 out:
1538         kfree(req);
1539         return r;
1540 }