ACPI: fix acpi_debugfs_init prototype
[cascardo/linux.git] / drivers / ntb / ntb_transport.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION   4
66 #define NTB_TRANSPORT_VER       "4"
67 #define NTB_TRANSPORT_NAME      "ntb_transport"
68 #define NTB_TRANSPORT_DESC      "Software Queue-Pair Transport over NTB"
69
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94
95 static struct dentry *nt_debugfs_dir;
96
97 struct ntb_queue_entry {
98         /* ntb_queue list reference */
99         struct list_head entry;
100         /* pointers to data to be transferred */
101         void *cb_data;
102         void *buf;
103         unsigned int len;
104         unsigned int flags;
105
106         struct ntb_transport_qp *qp;
107         union {
108                 struct ntb_payload_header __iomem *tx_hdr;
109                 struct ntb_payload_header *rx_hdr;
110         };
111         unsigned int index;
112 };
113
114 struct ntb_rx_info {
115         unsigned int entry;
116 };
117
118 struct ntb_transport_qp {
119         struct ntb_transport_ctx *transport;
120         struct ntb_dev *ndev;
121         void *cb_data;
122         struct dma_chan *dma_chan;
123
124         bool client_ready;
125         bool link_is_up;
126
127         u8 qp_num;      /* Only 64 QP's are allowed.  0-63 */
128         u64 qp_bit;
129
130         struct ntb_rx_info __iomem *rx_info;
131         struct ntb_rx_info *remote_rx_info;
132
133         void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
134                            void *data, int len);
135         struct list_head tx_free_q;
136         spinlock_t ntb_tx_free_q_lock;
137         void __iomem *tx_mw;
138         dma_addr_t tx_mw_phys;
139         unsigned int tx_index;
140         unsigned int tx_max_entry;
141         unsigned int tx_max_frame;
142
143         void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
144                            void *data, int len);
145         struct list_head rx_pend_q;
146         struct list_head rx_free_q;
147         spinlock_t ntb_rx_pend_q_lock;
148         spinlock_t ntb_rx_free_q_lock;
149         void *rx_buff;
150         unsigned int rx_index;
151         unsigned int rx_max_entry;
152         unsigned int rx_max_frame;
153         dma_cookie_t last_cookie;
154         struct tasklet_struct rxc_db_work;
155
156         void (*event_handler)(void *data, int status);
157         struct delayed_work link_work;
158         struct work_struct link_cleanup;
159
160         struct dentry *debugfs_dir;
161         struct dentry *debugfs_stats;
162
163         /* Stats */
164         u64 rx_bytes;
165         u64 rx_pkts;
166         u64 rx_ring_empty;
167         u64 rx_err_no_buf;
168         u64 rx_err_oflow;
169         u64 rx_err_ver;
170         u64 rx_memcpy;
171         u64 rx_async;
172         u64 tx_bytes;
173         u64 tx_pkts;
174         u64 tx_ring_full;
175         u64 tx_err_no_buf;
176         u64 tx_memcpy;
177         u64 tx_async;
178 };
179
180 struct ntb_transport_mw {
181         phys_addr_t phys_addr;
182         resource_size_t phys_size;
183         resource_size_t xlat_align;
184         resource_size_t xlat_align_size;
185         void __iomem *vbase;
186         size_t xlat_size;
187         size_t buff_size;
188         void *virt_addr;
189         dma_addr_t dma_addr;
190 };
191
192 struct ntb_transport_client_dev {
193         struct list_head entry;
194         struct ntb_transport_ctx *nt;
195         struct device dev;
196 };
197
198 struct ntb_transport_ctx {
199         struct list_head entry;
200         struct list_head client_devs;
201
202         struct ntb_dev *ndev;
203
204         struct ntb_transport_mw *mw_vec;
205         struct ntb_transport_qp *qp_vec;
206         unsigned int mw_count;
207         unsigned int qp_count;
208         u64 qp_bitmap;
209         u64 qp_bitmap_free;
210
211         bool link_is_up;
212         struct delayed_work link_work;
213         struct work_struct link_cleanup;
214 };
215
216 enum {
217         DESC_DONE_FLAG = BIT(0),
218         LINK_DOWN_FLAG = BIT(1),
219 };
220
221 struct ntb_payload_header {
222         unsigned int ver;
223         unsigned int len;
224         unsigned int flags;
225 };
226
227 enum {
228         VERSION = 0,
229         QP_LINKS,
230         NUM_QPS,
231         NUM_MWS,
232         MW0_SZ_HIGH,
233         MW0_SZ_LOW,
234         MW1_SZ_HIGH,
235         MW1_SZ_LOW,
236         MAX_SPAD,
237 };
238
239 #define dev_client_dev(__dev) \
240         container_of((__dev), struct ntb_transport_client_dev, dev)
241
242 #define drv_client(__drv) \
243         container_of((__drv), struct ntb_transport_client, driver)
244
245 #define QP_TO_MW(nt, qp)        ((qp) % nt->mw_count)
246 #define NTB_QP_DEF_NUM_ENTRIES  100
247 #define NTB_LINK_DOWN_TIMEOUT   10
248
249 static void ntb_transport_rxc_db(unsigned long data);
250 static const struct ntb_ctx_ops ntb_transport_ops;
251 static struct ntb_client ntb_transport_client;
252
253 static int ntb_transport_bus_match(struct device *dev,
254                                    struct device_driver *drv)
255 {
256         return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
257 }
258
259 static int ntb_transport_bus_probe(struct device *dev)
260 {
261         const struct ntb_transport_client *client;
262         int rc = -EINVAL;
263
264         get_device(dev);
265
266         client = drv_client(dev->driver);
267         rc = client->probe(dev);
268         if (rc)
269                 put_device(dev);
270
271         return rc;
272 }
273
274 static int ntb_transport_bus_remove(struct device *dev)
275 {
276         const struct ntb_transport_client *client;
277
278         client = drv_client(dev->driver);
279         client->remove(dev);
280
281         put_device(dev);
282
283         return 0;
284 }
285
286 static struct bus_type ntb_transport_bus = {
287         .name = "ntb_transport",
288         .match = ntb_transport_bus_match,
289         .probe = ntb_transport_bus_probe,
290         .remove = ntb_transport_bus_remove,
291 };
292
293 static LIST_HEAD(ntb_transport_list);
294
295 static int ntb_bus_init(struct ntb_transport_ctx *nt)
296 {
297         list_add(&nt->entry, &ntb_transport_list);
298         return 0;
299 }
300
301 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
302 {
303         struct ntb_transport_client_dev *client_dev, *cd;
304
305         list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
306                 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
307                         dev_name(&client_dev->dev));
308                 list_del(&client_dev->entry);
309                 device_unregister(&client_dev->dev);
310         }
311
312         list_del(&nt->entry);
313 }
314
315 static void ntb_transport_client_release(struct device *dev)
316 {
317         struct ntb_transport_client_dev *client_dev;
318
319         client_dev = dev_client_dev(dev);
320         kfree(client_dev);
321 }
322
323 /**
324  * ntb_transport_unregister_client_dev - Unregister NTB client device
325  * @device_name: Name of NTB client device
326  *
327  * Unregister an NTB client device with the NTB transport layer
328  */
329 void ntb_transport_unregister_client_dev(char *device_name)
330 {
331         struct ntb_transport_client_dev *client, *cd;
332         struct ntb_transport_ctx *nt;
333
334         list_for_each_entry(nt, &ntb_transport_list, entry)
335                 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
336                         if (!strncmp(dev_name(&client->dev), device_name,
337                                      strlen(device_name))) {
338                                 list_del(&client->entry);
339                                 device_unregister(&client->dev);
340                         }
341 }
342 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
343
344 /**
345  * ntb_transport_register_client_dev - Register NTB client device
346  * @device_name: Name of NTB client device
347  *
348  * Register an NTB client device with the NTB transport layer
349  */
350 int ntb_transport_register_client_dev(char *device_name)
351 {
352         struct ntb_transport_client_dev *client_dev;
353         struct ntb_transport_ctx *nt;
354         int node;
355         int rc, i = 0;
356
357         if (list_empty(&ntb_transport_list))
358                 return -ENODEV;
359
360         list_for_each_entry(nt, &ntb_transport_list, entry) {
361                 struct device *dev;
362
363                 node = dev_to_node(&nt->ndev->dev);
364
365                 client_dev = kzalloc_node(sizeof(*client_dev),
366                                           GFP_KERNEL, node);
367                 if (!client_dev) {
368                         rc = -ENOMEM;
369                         goto err;
370                 }
371
372                 dev = &client_dev->dev;
373
374                 /* setup and register client devices */
375                 dev_set_name(dev, "%s%d", device_name, i);
376                 dev->bus = &ntb_transport_bus;
377                 dev->release = ntb_transport_client_release;
378                 dev->parent = &nt->ndev->dev;
379
380                 rc = device_register(dev);
381                 if (rc) {
382                         kfree(client_dev);
383                         goto err;
384                 }
385
386                 list_add_tail(&client_dev->entry, &nt->client_devs);
387                 i++;
388         }
389
390         return 0;
391
392 err:
393         ntb_transport_unregister_client_dev(device_name);
394
395         return rc;
396 }
397 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
398
399 /**
400  * ntb_transport_register_client - Register NTB client driver
401  * @drv: NTB client driver to be registered
402  *
403  * Register an NTB client driver with the NTB transport layer
404  *
405  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
406  */
407 int ntb_transport_register_client(struct ntb_transport_client *drv)
408 {
409         drv->driver.bus = &ntb_transport_bus;
410
411         if (list_empty(&ntb_transport_list))
412                 return -ENODEV;
413
414         return driver_register(&drv->driver);
415 }
416 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
417
418 /**
419  * ntb_transport_unregister_client - Unregister NTB client driver
420  * @drv: NTB client driver to be unregistered
421  *
422  * Unregister an NTB client driver with the NTB transport layer
423  *
424  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
425  */
426 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
427 {
428         driver_unregister(&drv->driver);
429 }
430 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
431
432 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
433                             loff_t *offp)
434 {
435         struct ntb_transport_qp *qp;
436         char *buf;
437         ssize_t ret, out_offset, out_count;
438
439         out_count = 1000;
440
441         buf = kmalloc(out_count, GFP_KERNEL);
442         if (!buf)
443                 return -ENOMEM;
444
445         qp = filp->private_data;
446         out_offset = 0;
447         out_offset += snprintf(buf + out_offset, out_count - out_offset,
448                                "NTB QP stats\n");
449         out_offset += snprintf(buf + out_offset, out_count - out_offset,
450                                "rx_bytes - \t%llu\n", qp->rx_bytes);
451         out_offset += snprintf(buf + out_offset, out_count - out_offset,
452                                "rx_pkts - \t%llu\n", qp->rx_pkts);
453         out_offset += snprintf(buf + out_offset, out_count - out_offset,
454                                "rx_memcpy - \t%llu\n", qp->rx_memcpy);
455         out_offset += snprintf(buf + out_offset, out_count - out_offset,
456                                "rx_async - \t%llu\n", qp->rx_async);
457         out_offset += snprintf(buf + out_offset, out_count - out_offset,
458                                "rx_ring_empty - %llu\n", qp->rx_ring_empty);
459         out_offset += snprintf(buf + out_offset, out_count - out_offset,
460                                "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
461         out_offset += snprintf(buf + out_offset, out_count - out_offset,
462                                "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
463         out_offset += snprintf(buf + out_offset, out_count - out_offset,
464                                "rx_err_ver - \t%llu\n", qp->rx_err_ver);
465         out_offset += snprintf(buf + out_offset, out_count - out_offset,
466                                "rx_buff - \t%p\n", qp->rx_buff);
467         out_offset += snprintf(buf + out_offset, out_count - out_offset,
468                                "rx_index - \t%u\n", qp->rx_index);
469         out_offset += snprintf(buf + out_offset, out_count - out_offset,
470                                "rx_max_entry - \t%u\n", qp->rx_max_entry);
471
472         out_offset += snprintf(buf + out_offset, out_count - out_offset,
473                                "tx_bytes - \t%llu\n", qp->tx_bytes);
474         out_offset += snprintf(buf + out_offset, out_count - out_offset,
475                                "tx_pkts - \t%llu\n", qp->tx_pkts);
476         out_offset += snprintf(buf + out_offset, out_count - out_offset,
477                                "tx_memcpy - \t%llu\n", qp->tx_memcpy);
478         out_offset += snprintf(buf + out_offset, out_count - out_offset,
479                                "tx_async - \t%llu\n", qp->tx_async);
480         out_offset += snprintf(buf + out_offset, out_count - out_offset,
481                                "tx_ring_full - \t%llu\n", qp->tx_ring_full);
482         out_offset += snprintf(buf + out_offset, out_count - out_offset,
483                                "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
484         out_offset += snprintf(buf + out_offset, out_count - out_offset,
485                                "tx_mw - \t%p\n", qp->tx_mw);
486         out_offset += snprintf(buf + out_offset, out_count - out_offset,
487                                "tx_index - \t%u\n", qp->tx_index);
488         out_offset += snprintf(buf + out_offset, out_count - out_offset,
489                                "tx_max_entry - \t%u\n", qp->tx_max_entry);
490
491         out_offset += snprintf(buf + out_offset, out_count - out_offset,
492                                "\nQP Link %s\n",
493                                qp->link_is_up ? "Up" : "Down");
494         if (out_offset > out_count)
495                 out_offset = out_count;
496
497         ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
498         kfree(buf);
499         return ret;
500 }
501
502 static const struct file_operations ntb_qp_debugfs_stats = {
503         .owner = THIS_MODULE,
504         .open = simple_open,
505         .read = debugfs_read,
506 };
507
508 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
509                          struct list_head *list)
510 {
511         unsigned long flags;
512
513         spin_lock_irqsave(lock, flags);
514         list_add_tail(entry, list);
515         spin_unlock_irqrestore(lock, flags);
516 }
517
518 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
519                                            struct list_head *list)
520 {
521         struct ntb_queue_entry *entry;
522         unsigned long flags;
523
524         spin_lock_irqsave(lock, flags);
525         if (list_empty(list)) {
526                 entry = NULL;
527                 goto out;
528         }
529         entry = list_first_entry(list, struct ntb_queue_entry, entry);
530         list_del(&entry->entry);
531 out:
532         spin_unlock_irqrestore(lock, flags);
533
534         return entry;
535 }
536
537 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
538                                      unsigned int qp_num)
539 {
540         struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
541         struct ntb_transport_mw *mw;
542         unsigned int rx_size, num_qps_mw;
543         unsigned int mw_num, mw_count, qp_count;
544         unsigned int i;
545
546         mw_count = nt->mw_count;
547         qp_count = nt->qp_count;
548
549         mw_num = QP_TO_MW(nt, qp_num);
550         mw = &nt->mw_vec[mw_num];
551
552         if (!mw->virt_addr)
553                 return -ENOMEM;
554
555         if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
556                 num_qps_mw = qp_count / mw_count + 1;
557         else
558                 num_qps_mw = qp_count / mw_count;
559
560         rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
561         qp->rx_buff = mw->virt_addr + rx_size * qp_num / mw_count;
562         rx_size -= sizeof(struct ntb_rx_info);
563
564         qp->remote_rx_info = qp->rx_buff + rx_size;
565
566         /* Due to housekeeping, there must be atleast 2 buffs */
567         qp->rx_max_frame = min(transport_mtu, rx_size / 2);
568         qp->rx_max_entry = rx_size / qp->rx_max_frame;
569         qp->rx_index = 0;
570
571         qp->remote_rx_info->entry = qp->rx_max_entry - 1;
572
573         /* setup the hdr offsets with 0's */
574         for (i = 0; i < qp->rx_max_entry; i++) {
575                 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
576                                 sizeof(struct ntb_payload_header));
577                 memset(offset, 0, sizeof(struct ntb_payload_header));
578         }
579
580         qp->rx_pkts = 0;
581         qp->tx_pkts = 0;
582         qp->tx_index = 0;
583
584         return 0;
585 }
586
587 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
588 {
589         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
590         struct pci_dev *pdev = nt->ndev->pdev;
591
592         if (!mw->virt_addr)
593                 return;
594
595         ntb_mw_clear_trans(nt->ndev, num_mw);
596         dma_free_coherent(&pdev->dev, mw->buff_size,
597                           mw->virt_addr, mw->dma_addr);
598         mw->xlat_size = 0;
599         mw->buff_size = 0;
600         mw->virt_addr = NULL;
601 }
602
603 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
604                       unsigned int size)
605 {
606         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
607         struct pci_dev *pdev = nt->ndev->pdev;
608         unsigned int xlat_size, buff_size;
609         int rc;
610
611         xlat_size = round_up(size, mw->xlat_align_size);
612         buff_size = round_up(size, mw->xlat_align);
613
614         /* No need to re-setup */
615         if (mw->xlat_size == xlat_size)
616                 return 0;
617
618         if (mw->buff_size)
619                 ntb_free_mw(nt, num_mw);
620
621         /* Alloc memory for receiving data.  Must be aligned */
622         mw->xlat_size = xlat_size;
623         mw->buff_size = buff_size;
624
625         mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
626                                            &mw->dma_addr, GFP_KERNEL);
627         if (!mw->virt_addr) {
628                 mw->xlat_size = 0;
629                 mw->buff_size = 0;
630                 dev_err(&pdev->dev, "Unable to alloc MW buff of size %d\n",
631                         buff_size);
632                 return -ENOMEM;
633         }
634
635         /*
636          * we must ensure that the memory address allocated is BAR size
637          * aligned in order for the XLAT register to take the value. This
638          * is a requirement of the hardware. It is recommended to setup CMA
639          * for BAR sizes equal or greater than 4MB.
640          */
641         if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
642                 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
643                         &mw->dma_addr);
644                 ntb_free_mw(nt, num_mw);
645                 return -ENOMEM;
646         }
647
648         /* Notify HW the memory location of the receive buffer */
649         rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
650         if (rc) {
651                 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
652                 ntb_free_mw(nt, num_mw);
653                 return -EIO;
654         }
655
656         return 0;
657 }
658
659 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
660 {
661         qp->link_is_up = false;
662
663         qp->tx_index = 0;
664         qp->rx_index = 0;
665         qp->rx_bytes = 0;
666         qp->rx_pkts = 0;
667         qp->rx_ring_empty = 0;
668         qp->rx_err_no_buf = 0;
669         qp->rx_err_oflow = 0;
670         qp->rx_err_ver = 0;
671         qp->rx_memcpy = 0;
672         qp->rx_async = 0;
673         qp->tx_bytes = 0;
674         qp->tx_pkts = 0;
675         qp->tx_ring_full = 0;
676         qp->tx_err_no_buf = 0;
677         qp->tx_memcpy = 0;
678         qp->tx_async = 0;
679 }
680
681 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
682 {
683         struct ntb_transport_ctx *nt = qp->transport;
684         struct pci_dev *pdev = nt->ndev->pdev;
685
686         dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
687
688         cancel_delayed_work_sync(&qp->link_work);
689         ntb_qp_link_down_reset(qp);
690
691         if (qp->event_handler)
692                 qp->event_handler(qp->cb_data, qp->link_is_up);
693 }
694
695 static void ntb_qp_link_cleanup_work(struct work_struct *work)
696 {
697         struct ntb_transport_qp *qp = container_of(work,
698                                                    struct ntb_transport_qp,
699                                                    link_cleanup);
700         struct ntb_transport_ctx *nt = qp->transport;
701
702         ntb_qp_link_cleanup(qp);
703
704         if (nt->link_is_up)
705                 schedule_delayed_work(&qp->link_work,
706                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
707 }
708
709 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
710 {
711         schedule_work(&qp->link_cleanup);
712 }
713
714 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
715 {
716         struct ntb_transport_qp *qp;
717         u64 qp_bitmap_alloc;
718         int i;
719
720         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
721
722         /* Pass along the info to any clients */
723         for (i = 0; i < nt->qp_count; i++)
724                 if (qp_bitmap_alloc & BIT_ULL(i)) {
725                         qp = &nt->qp_vec[i];
726                         ntb_qp_link_cleanup(qp);
727                         cancel_work_sync(&qp->link_cleanup);
728                         cancel_delayed_work_sync(&qp->link_work);
729                 }
730
731         if (!nt->link_is_up)
732                 cancel_delayed_work_sync(&nt->link_work);
733
734         /* The scratchpad registers keep the values if the remote side
735          * goes down, blast them now to give them a sane value the next
736          * time they are accessed
737          */
738         for (i = 0; i < MAX_SPAD; i++)
739                 ntb_spad_write(nt->ndev, i, 0);
740 }
741
742 static void ntb_transport_link_cleanup_work(struct work_struct *work)
743 {
744         struct ntb_transport_ctx *nt =
745                 container_of(work, struct ntb_transport_ctx, link_cleanup);
746
747         ntb_transport_link_cleanup(nt);
748 }
749
750 static void ntb_transport_event_callback(void *data)
751 {
752         struct ntb_transport_ctx *nt = data;
753
754         if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
755                 schedule_delayed_work(&nt->link_work, 0);
756         else
757                 schedule_work(&nt->link_cleanup);
758 }
759
760 static void ntb_transport_link_work(struct work_struct *work)
761 {
762         struct ntb_transport_ctx *nt =
763                 container_of(work, struct ntb_transport_ctx, link_work.work);
764         struct ntb_dev *ndev = nt->ndev;
765         struct pci_dev *pdev = ndev->pdev;
766         resource_size_t size;
767         u32 val;
768         int rc, i, spad;
769
770         /* send the local info, in the opposite order of the way we read it */
771         for (i = 0; i < nt->mw_count; i++) {
772                 size = nt->mw_vec[i].phys_size;
773
774                 if (max_mw_size && size > max_mw_size)
775                         size = max_mw_size;
776
777                 spad = MW0_SZ_HIGH + (i * 2);
778                 ntb_peer_spad_write(ndev, spad, (u32)(size >> 32));
779
780                 spad = MW0_SZ_LOW + (i * 2);
781                 ntb_peer_spad_write(ndev, spad, (u32)size);
782         }
783
784         ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
785
786         ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
787
788         ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
789
790         /* Query the remote side for its info */
791         val = ntb_spad_read(ndev, VERSION);
792         dev_dbg(&pdev->dev, "Remote version = %d\n", val);
793         if (val != NTB_TRANSPORT_VERSION)
794                 goto out;
795
796         val = ntb_spad_read(ndev, NUM_QPS);
797         dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
798         if (val != nt->qp_count)
799                 goto out;
800
801         val = ntb_spad_read(ndev, NUM_MWS);
802         dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
803         if (val != nt->mw_count)
804                 goto out;
805
806         for (i = 0; i < nt->mw_count; i++) {
807                 u64 val64;
808
809                 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
810                 val64 = (u64)val << 32;
811
812                 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
813                 val64 |= val;
814
815                 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
816
817                 rc = ntb_set_mw(nt, i, val64);
818                 if (rc)
819                         goto out1;
820         }
821
822         nt->link_is_up = true;
823
824         for (i = 0; i < nt->qp_count; i++) {
825                 struct ntb_transport_qp *qp = &nt->qp_vec[i];
826
827                 ntb_transport_setup_qp_mw(nt, i);
828
829                 if (qp->client_ready)
830                         schedule_delayed_work(&qp->link_work, 0);
831         }
832
833         return;
834
835 out1:
836         for (i = 0; i < nt->mw_count; i++)
837                 ntb_free_mw(nt, i);
838 out:
839         if (ntb_link_is_up(ndev, NULL, NULL) == 1)
840                 schedule_delayed_work(&nt->link_work,
841                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
842 }
843
844 static void ntb_qp_link_work(struct work_struct *work)
845 {
846         struct ntb_transport_qp *qp = container_of(work,
847                                                    struct ntb_transport_qp,
848                                                    link_work.work);
849         struct pci_dev *pdev = qp->ndev->pdev;
850         struct ntb_transport_ctx *nt = qp->transport;
851         int val;
852
853         WARN_ON(!nt->link_is_up);
854
855         val = ntb_spad_read(nt->ndev, QP_LINKS);
856
857         ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
858
859         /* query remote spad for qp ready bits */
860         ntb_peer_spad_read(nt->ndev, QP_LINKS);
861         dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
862
863         /* See if the remote side is up */
864         if (val & BIT(qp->qp_num)) {
865                 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
866                 qp->link_is_up = true;
867
868                 if (qp->event_handler)
869                         qp->event_handler(qp->cb_data, qp->link_is_up);
870         } else if (nt->link_is_up)
871                 schedule_delayed_work(&qp->link_work,
872                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
873 }
874
875 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
876                                     unsigned int qp_num)
877 {
878         struct ntb_transport_qp *qp;
879         struct ntb_transport_mw *mw;
880         phys_addr_t mw_base;
881         resource_size_t mw_size;
882         unsigned int num_qps_mw, tx_size;
883         unsigned int mw_num, mw_count, qp_count;
884         u64 qp_offset;
885
886         mw_count = nt->mw_count;
887         qp_count = nt->qp_count;
888
889         mw_num = QP_TO_MW(nt, qp_num);
890         mw = &nt->mw_vec[mw_num];
891
892         qp = &nt->qp_vec[qp_num];
893         qp->qp_num = qp_num;
894         qp->transport = nt;
895         qp->ndev = nt->ndev;
896         qp->client_ready = false;
897         qp->event_handler = NULL;
898         ntb_qp_link_down_reset(qp);
899
900         if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
901                 num_qps_mw = qp_count / mw_count + 1;
902         else
903                 num_qps_mw = qp_count / mw_count;
904
905         mw_base = nt->mw_vec[mw_num].phys_addr;
906         mw_size = nt->mw_vec[mw_num].phys_size;
907
908         tx_size = (unsigned int)mw_size / num_qps_mw;
909         qp_offset = tx_size * qp_num / mw_count;
910
911         qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
912         if (!qp->tx_mw)
913                 return -EINVAL;
914
915         qp->tx_mw_phys = mw_base + qp_offset;
916         if (!qp->tx_mw_phys)
917                 return -EINVAL;
918
919         tx_size -= sizeof(struct ntb_rx_info);
920         qp->rx_info = qp->tx_mw + tx_size;
921
922         /* Due to housekeeping, there must be atleast 2 buffs */
923         qp->tx_max_frame = min(transport_mtu, tx_size / 2);
924         qp->tx_max_entry = tx_size / qp->tx_max_frame;
925
926         if (nt_debugfs_dir) {
927                 char debugfs_name[4];
928
929                 snprintf(debugfs_name, 4, "qp%d", qp_num);
930                 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
931                                                      nt_debugfs_dir);
932
933                 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
934                                                         qp->debugfs_dir, qp,
935                                                         &ntb_qp_debugfs_stats);
936         } else {
937                 qp->debugfs_dir = NULL;
938                 qp->debugfs_stats = NULL;
939         }
940
941         INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
942         INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
943
944         spin_lock_init(&qp->ntb_rx_pend_q_lock);
945         spin_lock_init(&qp->ntb_rx_free_q_lock);
946         spin_lock_init(&qp->ntb_tx_free_q_lock);
947
948         INIT_LIST_HEAD(&qp->rx_pend_q);
949         INIT_LIST_HEAD(&qp->rx_free_q);
950         INIT_LIST_HEAD(&qp->tx_free_q);
951
952         tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
953                      (unsigned long)qp);
954
955         return 0;
956 }
957
958 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
959 {
960         struct ntb_transport_ctx *nt;
961         struct ntb_transport_mw *mw;
962         unsigned int mw_count, qp_count;
963         u64 qp_bitmap;
964         int node;
965         int rc, i;
966
967         if (ntb_db_is_unsafe(ndev))
968                 dev_dbg(&ndev->dev,
969                         "doorbell is unsafe, proceed anyway...\n");
970         if (ntb_spad_is_unsafe(ndev))
971                 dev_dbg(&ndev->dev,
972                         "scratchpad is unsafe, proceed anyway...\n");
973
974         node = dev_to_node(&ndev->dev);
975
976         nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
977         if (!nt)
978                 return -ENOMEM;
979
980         nt->ndev = ndev;
981
982         mw_count = ntb_mw_count(ndev);
983
984         nt->mw_count = mw_count;
985
986         nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
987                                   GFP_KERNEL, node);
988         if (!nt->mw_vec) {
989                 rc = -ENOMEM;
990                 goto err;
991         }
992
993         for (i = 0; i < mw_count; i++) {
994                 mw = &nt->mw_vec[i];
995
996                 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
997                                       &mw->xlat_align, &mw->xlat_align_size);
998                 if (rc)
999                         goto err1;
1000
1001                 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1002                 if (!mw->vbase) {
1003                         rc = -ENOMEM;
1004                         goto err1;
1005                 }
1006
1007                 mw->buff_size = 0;
1008                 mw->xlat_size = 0;
1009                 mw->virt_addr = NULL;
1010                 mw->dma_addr = 0;
1011         }
1012
1013         qp_bitmap = ntb_db_valid_mask(ndev);
1014
1015         qp_count = ilog2(qp_bitmap);
1016         if (max_num_clients && max_num_clients < qp_count)
1017                 qp_count = max_num_clients;
1018         else if (mw_count < qp_count)
1019                 qp_count = mw_count;
1020
1021         qp_bitmap &= BIT_ULL(qp_count) - 1;
1022
1023         nt->qp_count = qp_count;
1024         nt->qp_bitmap = qp_bitmap;
1025         nt->qp_bitmap_free = qp_bitmap;
1026
1027         nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1028                                   GFP_KERNEL, node);
1029         if (!nt->qp_vec) {
1030                 rc = -ENOMEM;
1031                 goto err2;
1032         }
1033
1034         for (i = 0; i < qp_count; i++) {
1035                 rc = ntb_transport_init_queue(nt, i);
1036                 if (rc)
1037                         goto err3;
1038         }
1039
1040         INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1041         INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1042
1043         rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1044         if (rc)
1045                 goto err3;
1046
1047         INIT_LIST_HEAD(&nt->client_devs);
1048         rc = ntb_bus_init(nt);
1049         if (rc)
1050                 goto err4;
1051
1052         nt->link_is_up = false;
1053         ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1054         ntb_link_event(ndev);
1055
1056         return 0;
1057
1058 err4:
1059         ntb_clear_ctx(ndev);
1060 err3:
1061         kfree(nt->qp_vec);
1062 err2:
1063         kfree(nt->mw_vec);
1064 err1:
1065         while (i--) {
1066                 mw = &nt->mw_vec[i];
1067                 iounmap(mw->vbase);
1068         }
1069 err:
1070         kfree(nt);
1071         return rc;
1072 }
1073
1074 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1075 {
1076         struct ntb_transport_ctx *nt = ndev->ctx;
1077         struct ntb_transport_qp *qp;
1078         u64 qp_bitmap_alloc;
1079         int i;
1080
1081         ntb_transport_link_cleanup(nt);
1082         cancel_work_sync(&nt->link_cleanup);
1083         cancel_delayed_work_sync(&nt->link_work);
1084
1085         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1086
1087         /* verify that all the qp's are freed */
1088         for (i = 0; i < nt->qp_count; i++) {
1089                 qp = &nt->qp_vec[i];
1090                 if (qp_bitmap_alloc & BIT_ULL(i))
1091                         ntb_transport_free_queue(qp);
1092                 debugfs_remove_recursive(qp->debugfs_dir);
1093         }
1094
1095         ntb_link_disable(ndev);
1096         ntb_clear_ctx(ndev);
1097
1098         ntb_bus_remove(nt);
1099
1100         for (i = nt->mw_count; i--; ) {
1101                 ntb_free_mw(nt, i);
1102                 iounmap(nt->mw_vec[i].vbase);
1103         }
1104
1105         kfree(nt->qp_vec);
1106         kfree(nt->mw_vec);
1107         kfree(nt);
1108 }
1109
1110 static void ntb_rx_copy_callback(void *data)
1111 {
1112         struct ntb_queue_entry *entry = data;
1113         struct ntb_transport_qp *qp = entry->qp;
1114         void *cb_data = entry->cb_data;
1115         unsigned int len = entry->len;
1116         struct ntb_payload_header *hdr = entry->rx_hdr;
1117
1118         hdr->flags = 0;
1119
1120         iowrite32(entry->index, &qp->rx_info->entry);
1121
1122         ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1123
1124         if (qp->rx_handler && qp->client_ready)
1125                 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1126 }
1127
1128 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1129 {
1130         void *buf = entry->buf;
1131         size_t len = entry->len;
1132
1133         memcpy(buf, offset, len);
1134
1135         /* Ensure that the data is fully copied out before clearing the flag */
1136         wmb();
1137
1138         ntb_rx_copy_callback(entry);
1139 }
1140
1141 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset,
1142                          size_t len)
1143 {
1144         struct dma_async_tx_descriptor *txd;
1145         struct ntb_transport_qp *qp = entry->qp;
1146         struct dma_chan *chan = qp->dma_chan;
1147         struct dma_device *device;
1148         size_t pay_off, buff_off;
1149         struct dmaengine_unmap_data *unmap;
1150         dma_cookie_t cookie;
1151         void *buf = entry->buf;
1152
1153         entry->len = len;
1154
1155         if (!chan)
1156                 goto err;
1157
1158         if (len < copy_bytes)
1159                 goto err_wait;
1160
1161         device = chan->device;
1162         pay_off = (size_t)offset & ~PAGE_MASK;
1163         buff_off = (size_t)buf & ~PAGE_MASK;
1164
1165         if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1166                 goto err_wait;
1167
1168         unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1169         if (!unmap)
1170                 goto err_wait;
1171
1172         unmap->len = len;
1173         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1174                                       pay_off, len, DMA_TO_DEVICE);
1175         if (dma_mapping_error(device->dev, unmap->addr[0]))
1176                 goto err_get_unmap;
1177
1178         unmap->to_cnt = 1;
1179
1180         unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1181                                       buff_off, len, DMA_FROM_DEVICE);
1182         if (dma_mapping_error(device->dev, unmap->addr[1]))
1183                 goto err_get_unmap;
1184
1185         unmap->from_cnt = 1;
1186
1187         txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1188                                              unmap->addr[0], len,
1189                                              DMA_PREP_INTERRUPT);
1190         if (!txd)
1191                 goto err_get_unmap;
1192
1193         txd->callback = ntb_rx_copy_callback;
1194         txd->callback_param = entry;
1195         dma_set_unmap(txd, unmap);
1196
1197         cookie = dmaengine_submit(txd);
1198         if (dma_submit_error(cookie))
1199                 goto err_set_unmap;
1200
1201         dmaengine_unmap_put(unmap);
1202
1203         qp->last_cookie = cookie;
1204
1205         qp->rx_async++;
1206
1207         return;
1208
1209 err_set_unmap:
1210         dmaengine_unmap_put(unmap);
1211 err_get_unmap:
1212         dmaengine_unmap_put(unmap);
1213 err_wait:
1214         /* If the callbacks come out of order, the writing of the index to the
1215          * last completed will be out of order.  This may result in the
1216          * receive stalling forever.
1217          */
1218         dma_sync_wait(chan, qp->last_cookie);
1219 err:
1220         ntb_memcpy_rx(entry, offset);
1221         qp->rx_memcpy++;
1222 }
1223
1224 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1225 {
1226         struct ntb_payload_header *hdr;
1227         struct ntb_queue_entry *entry;
1228         void *offset;
1229         int rc;
1230
1231         offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1232         hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1233
1234         dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1235                 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1236
1237         if (!(hdr->flags & DESC_DONE_FLAG)) {
1238                 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1239                 qp->rx_ring_empty++;
1240                 return -EAGAIN;
1241         }
1242
1243         if (hdr->flags & LINK_DOWN_FLAG) {
1244                 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1245                 ntb_qp_link_down(qp);
1246                 hdr->flags = 0;
1247                 return -EAGAIN;
1248         }
1249
1250         if (hdr->ver != (u32)qp->rx_pkts) {
1251                 dev_dbg(&qp->ndev->pdev->dev,
1252                         "version mismatch, expected %llu - got %u\n",
1253                         qp->rx_pkts, hdr->ver);
1254                 qp->rx_err_ver++;
1255                 return -EIO;
1256         }
1257
1258         entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1259         if (!entry) {
1260                 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1261                 qp->rx_err_no_buf++;
1262
1263                 rc = -ENOMEM;
1264                 goto err;
1265         }
1266
1267         if (hdr->len > entry->len) {
1268                 dev_dbg(&qp->ndev->pdev->dev,
1269                         "receive buffer overflow! Wanted %d got %d\n",
1270                         hdr->len, entry->len);
1271                 qp->rx_err_oflow++;
1272
1273                 rc = -EIO;
1274                 goto err;
1275         }
1276
1277         dev_dbg(&qp->ndev->pdev->dev,
1278                 "RX OK index %u ver %u size %d into buf size %d\n",
1279                 qp->rx_index, hdr->ver, hdr->len, entry->len);
1280
1281         qp->rx_bytes += hdr->len;
1282         qp->rx_pkts++;
1283
1284         entry->index = qp->rx_index;
1285         entry->rx_hdr = hdr;
1286
1287         ntb_async_rx(entry, offset, hdr->len);
1288
1289         qp->rx_index++;
1290         qp->rx_index %= qp->rx_max_entry;
1291
1292         return 0;
1293
1294 err:
1295         /* FIXME: if this syncrhonous update of the rx_index gets ahead of
1296          * asyncrhonous ntb_rx_copy_callback of previous entry, there are three
1297          * scenarios:
1298          *
1299          * 1) The peer might miss this update, but observe the update
1300          * from the memcpy completion callback.  In this case, the buffer will
1301          * not be freed on the peer to be reused for a different packet.  The
1302          * successful rx of a later packet would clear the condition, but the
1303          * condition could persist if several rx fail in a row.
1304          *
1305          * 2) The peer may observe this update before the asyncrhonous copy of
1306          * prior packets is completed.  The peer may overwrite the buffers of
1307          * the prior packets before they are copied.
1308          *
1309          * 3) Both: the peer may observe the update, and then observe the index
1310          * decrement by the asynchronous completion callback.  Who knows what
1311          * badness that will cause.
1312          */
1313         hdr->flags = 0;
1314         iowrite32(qp->rx_index, &qp->rx_info->entry);
1315
1316         return rc;
1317 }
1318
1319 static void ntb_transport_rxc_db(unsigned long data)
1320 {
1321         struct ntb_transport_qp *qp = (void *)data;
1322         int rc, i;
1323
1324         dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1325                 __func__, qp->qp_num);
1326
1327         /* Limit the number of packets processed in a single interrupt to
1328          * provide fairness to others
1329          */
1330         for (i = 0; i < qp->rx_max_entry; i++) {
1331                 rc = ntb_process_rxc(qp);
1332                 if (rc)
1333                         break;
1334         }
1335
1336         if (qp->dma_chan)
1337                 dma_async_issue_pending(qp->dma_chan);
1338
1339         if (i == qp->rx_max_entry) {
1340                 /* there is more work to do */
1341                 tasklet_schedule(&qp->rxc_db_work);
1342         } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1343                 /* the doorbell bit is set: clear it */
1344                 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1345                 /* ntb_db_read ensures ntb_db_clear write is committed */
1346                 ntb_db_read(qp->ndev);
1347
1348                 /* an interrupt may have arrived between finishing
1349                  * ntb_process_rxc and clearing the doorbell bit:
1350                  * there might be some more work to do.
1351                  */
1352                 tasklet_schedule(&qp->rxc_db_work);
1353         }
1354 }
1355
1356 static void ntb_tx_copy_callback(void *data)
1357 {
1358         struct ntb_queue_entry *entry = data;
1359         struct ntb_transport_qp *qp = entry->qp;
1360         struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1361
1362         iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1363
1364         ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1365
1366         /* The entry length can only be zero if the packet is intended to be a
1367          * "link down" or similar.  Since no payload is being sent in these
1368          * cases, there is nothing to add to the completion queue.
1369          */
1370         if (entry->len > 0) {
1371                 qp->tx_bytes += entry->len;
1372
1373                 if (qp->tx_handler)
1374                         qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1375                                        entry->len);
1376         }
1377
1378         ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1379 }
1380
1381 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1382 {
1383 #ifdef ARCH_HAS_NOCACHE_UACCESS
1384         /*
1385          * Using non-temporal mov to improve performance on non-cached
1386          * writes, even though we aren't actually copying from user space.
1387          */
1388         __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1389 #else
1390         memcpy_toio(offset, entry->buf, entry->len);
1391 #endif
1392
1393         /* Ensure that the data is fully copied out before setting the flags */
1394         wmb();
1395
1396         ntb_tx_copy_callback(entry);
1397 }
1398
1399 static void ntb_async_tx(struct ntb_transport_qp *qp,
1400                          struct ntb_queue_entry *entry)
1401 {
1402         struct ntb_payload_header __iomem *hdr;
1403         struct dma_async_tx_descriptor *txd;
1404         struct dma_chan *chan = qp->dma_chan;
1405         struct dma_device *device;
1406         size_t dest_off, buff_off;
1407         struct dmaengine_unmap_data *unmap;
1408         dma_addr_t dest;
1409         dma_cookie_t cookie;
1410         void __iomem *offset;
1411         size_t len = entry->len;
1412         void *buf = entry->buf;
1413
1414         offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
1415         hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1416         entry->tx_hdr = hdr;
1417
1418         iowrite32(entry->len, &hdr->len);
1419         iowrite32((u32)qp->tx_pkts, &hdr->ver);
1420
1421         if (!chan)
1422                 goto err;
1423
1424         if (len < copy_bytes)
1425                 goto err;
1426
1427         device = chan->device;
1428         dest = qp->tx_mw_phys + qp->tx_max_frame * qp->tx_index;
1429         buff_off = (size_t)buf & ~PAGE_MASK;
1430         dest_off = (size_t)dest & ~PAGE_MASK;
1431
1432         if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1433                 goto err;
1434
1435         unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1436         if (!unmap)
1437                 goto err;
1438
1439         unmap->len = len;
1440         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1441                                       buff_off, len, DMA_TO_DEVICE);
1442         if (dma_mapping_error(device->dev, unmap->addr[0]))
1443                 goto err_get_unmap;
1444
1445         unmap->to_cnt = 1;
1446
1447         txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1448                                              DMA_PREP_INTERRUPT);
1449         if (!txd)
1450                 goto err_get_unmap;
1451
1452         txd->callback = ntb_tx_copy_callback;
1453         txd->callback_param = entry;
1454         dma_set_unmap(txd, unmap);
1455
1456         cookie = dmaengine_submit(txd);
1457         if (dma_submit_error(cookie))
1458                 goto err_set_unmap;
1459
1460         dmaengine_unmap_put(unmap);
1461
1462         dma_async_issue_pending(chan);
1463         qp->tx_async++;
1464
1465         return;
1466 err_set_unmap:
1467         dmaengine_unmap_put(unmap);
1468 err_get_unmap:
1469         dmaengine_unmap_put(unmap);
1470 err:
1471         ntb_memcpy_tx(entry, offset);
1472         qp->tx_memcpy++;
1473 }
1474
1475 static int ntb_process_tx(struct ntb_transport_qp *qp,
1476                           struct ntb_queue_entry *entry)
1477 {
1478         if (qp->tx_index == qp->remote_rx_info->entry) {
1479                 qp->tx_ring_full++;
1480                 return -EAGAIN;
1481         }
1482
1483         if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1484                 if (qp->tx_handler)
1485                         qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
1486
1487                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1488                              &qp->tx_free_q);
1489                 return 0;
1490         }
1491
1492         ntb_async_tx(qp, entry);
1493
1494         qp->tx_index++;
1495         qp->tx_index %= qp->tx_max_entry;
1496
1497         qp->tx_pkts++;
1498
1499         return 0;
1500 }
1501
1502 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1503 {
1504         struct pci_dev *pdev = qp->ndev->pdev;
1505         struct ntb_queue_entry *entry;
1506         int i, rc;
1507
1508         if (!qp->link_is_up)
1509                 return;
1510
1511         dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1512
1513         for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1514                 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1515                 if (entry)
1516                         break;
1517                 msleep(100);
1518         }
1519
1520         if (!entry)
1521                 return;
1522
1523         entry->cb_data = NULL;
1524         entry->buf = NULL;
1525         entry->len = 0;
1526         entry->flags = LINK_DOWN_FLAG;
1527
1528         rc = ntb_process_tx(qp, entry);
1529         if (rc)
1530                 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1531                         qp->qp_num);
1532
1533         ntb_qp_link_down_reset(qp);
1534 }
1535
1536 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1537 {
1538         return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1539 }
1540
1541 /**
1542  * ntb_transport_create_queue - Create a new NTB transport layer queue
1543  * @rx_handler: receive callback function
1544  * @tx_handler: transmit callback function
1545  * @event_handler: event callback function
1546  *
1547  * Create a new NTB transport layer queue and provide the queue with a callback
1548  * routine for both transmit and receive.  The receive callback routine will be
1549  * used to pass up data when the transport has received it on the queue.   The
1550  * transmit callback routine will be called when the transport has completed the
1551  * transmission of the data on the queue and the data is ready to be freed.
1552  *
1553  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1554  */
1555 struct ntb_transport_qp *
1556 ntb_transport_create_queue(void *data, struct device *client_dev,
1557                            const struct ntb_queue_handlers *handlers)
1558 {
1559         struct ntb_dev *ndev;
1560         struct pci_dev *pdev;
1561         struct ntb_transport_ctx *nt;
1562         struct ntb_queue_entry *entry;
1563         struct ntb_transport_qp *qp;
1564         u64 qp_bit;
1565         unsigned int free_queue;
1566         dma_cap_mask_t dma_mask;
1567         int node;
1568         int i;
1569
1570         ndev = dev_ntb(client_dev->parent);
1571         pdev = ndev->pdev;
1572         nt = ndev->ctx;
1573
1574         node = dev_to_node(&ndev->dev);
1575
1576         free_queue = ffs(nt->qp_bitmap);
1577         if (!free_queue)
1578                 goto err;
1579
1580         /* decrement free_queue to make it zero based */
1581         free_queue--;
1582
1583         qp = &nt->qp_vec[free_queue];
1584         qp_bit = BIT_ULL(qp->qp_num);
1585
1586         nt->qp_bitmap_free &= ~qp_bit;
1587
1588         qp->cb_data = data;
1589         qp->rx_handler = handlers->rx_handler;
1590         qp->tx_handler = handlers->tx_handler;
1591         qp->event_handler = handlers->event_handler;
1592
1593         dma_cap_zero(dma_mask);
1594         dma_cap_set(DMA_MEMCPY, dma_mask);
1595
1596         if (use_dma) {
1597                 qp->dma_chan = dma_request_channel(dma_mask, ntb_dma_filter_fn,
1598                                                    (void *)(unsigned long)node);
1599                 if (!qp->dma_chan)
1600                         dev_info(&pdev->dev, "Unable to allocate DMA channel\n");
1601         } else {
1602                 qp->dma_chan = NULL;
1603         }
1604         dev_dbg(&pdev->dev, "Using %s memcpy\n", qp->dma_chan ? "DMA" : "CPU");
1605
1606         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1607                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1608                 if (!entry)
1609                         goto err1;
1610
1611                 entry->qp = qp;
1612                 ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry,
1613                              &qp->rx_free_q);
1614         }
1615
1616         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1617                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1618                 if (!entry)
1619                         goto err2;
1620
1621                 entry->qp = qp;
1622                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1623                              &qp->tx_free_q);
1624         }
1625
1626         ntb_db_clear(qp->ndev, qp_bit);
1627         ntb_db_clear_mask(qp->ndev, qp_bit);
1628
1629         dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1630
1631         return qp;
1632
1633 err2:
1634         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1635                 kfree(entry);
1636 err1:
1637         while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1638                 kfree(entry);
1639         if (qp->dma_chan)
1640                 dma_release_channel(qp->dma_chan);
1641         nt->qp_bitmap_free |= qp_bit;
1642 err:
1643         return NULL;
1644 }
1645 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1646
1647 /**
1648  * ntb_transport_free_queue - Frees NTB transport queue
1649  * @qp: NTB queue to be freed
1650  *
1651  * Frees NTB transport queue
1652  */
1653 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1654 {
1655         struct ntb_transport_ctx *nt = qp->transport;
1656         struct pci_dev *pdev;
1657         struct ntb_queue_entry *entry;
1658         u64 qp_bit;
1659
1660         if (!qp)
1661                 return;
1662
1663         pdev = qp->ndev->pdev;
1664
1665         if (qp->dma_chan) {
1666                 struct dma_chan *chan = qp->dma_chan;
1667                 /* Putting the dma_chan to NULL will force any new traffic to be
1668                  * processed by the CPU instead of the DAM engine
1669                  */
1670                 qp->dma_chan = NULL;
1671
1672                 /* Try to be nice and wait for any queued DMA engine
1673                  * transactions to process before smashing it with a rock
1674                  */
1675                 dma_sync_wait(chan, qp->last_cookie);
1676                 dmaengine_terminate_all(chan);
1677                 dma_release_channel(chan);
1678         }
1679
1680         qp_bit = BIT_ULL(qp->qp_num);
1681
1682         ntb_db_set_mask(qp->ndev, qp_bit);
1683         tasklet_disable(&qp->rxc_db_work);
1684
1685         cancel_delayed_work_sync(&qp->link_work);
1686
1687         qp->cb_data = NULL;
1688         qp->rx_handler = NULL;
1689         qp->tx_handler = NULL;
1690         qp->event_handler = NULL;
1691
1692         while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1693                 kfree(entry);
1694
1695         while ((entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q))) {
1696                 dev_warn(&pdev->dev, "Freeing item from a non-empty queue\n");
1697                 kfree(entry);
1698         }
1699
1700         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1701                 kfree(entry);
1702
1703         nt->qp_bitmap_free |= qp_bit;
1704
1705         dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1706 }
1707 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1708
1709 /**
1710  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1711  * @qp: NTB queue to be freed
1712  * @len: pointer to variable to write enqueued buffers length
1713  *
1714  * Dequeues unused buffers from receive queue.  Should only be used during
1715  * shutdown of qp.
1716  *
1717  * RETURNS: NULL error value on error, or void* for success.
1718  */
1719 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1720 {
1721         struct ntb_queue_entry *entry;
1722         void *buf;
1723
1724         if (!qp || qp->client_ready)
1725                 return NULL;
1726
1727         entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1728         if (!entry)
1729                 return NULL;
1730
1731         buf = entry->cb_data;
1732         *len = entry->len;
1733
1734         ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1735
1736         return buf;
1737 }
1738 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1739
1740 /**
1741  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1742  * @qp: NTB transport layer queue the entry is to be enqueued on
1743  * @cb: per buffer pointer for callback function to use
1744  * @data: pointer to data buffer that incoming packets will be copied into
1745  * @len: length of the data buffer
1746  *
1747  * Enqueue a new receive buffer onto the transport queue into which a NTB
1748  * payload can be received into.
1749  *
1750  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1751  */
1752 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1753                              unsigned int len)
1754 {
1755         struct ntb_queue_entry *entry;
1756
1757         if (!qp)
1758                 return -EINVAL;
1759
1760         entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q);
1761         if (!entry)
1762                 return -ENOMEM;
1763
1764         entry->cb_data = cb;
1765         entry->buf = data;
1766         entry->len = len;
1767
1768         ntb_list_add(&qp->ntb_rx_pend_q_lock, &entry->entry, &qp->rx_pend_q);
1769
1770         return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1773
1774 /**
1775  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1776  * @qp: NTB transport layer queue the entry is to be enqueued on
1777  * @cb: per buffer pointer for callback function to use
1778  * @data: pointer to data buffer that will be sent
1779  * @len: length of the data buffer
1780  *
1781  * Enqueue a new transmit buffer onto the transport queue from which a NTB
1782  * payload will be transmitted.  This assumes that a lock is being held to
1783  * serialize access to the qp.
1784  *
1785  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1786  */
1787 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1788                              unsigned int len)
1789 {
1790         struct ntb_queue_entry *entry;
1791         int rc;
1792
1793         if (!qp || !qp->link_is_up || !len)
1794                 return -EINVAL;
1795
1796         entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1797         if (!entry) {
1798                 qp->tx_err_no_buf++;
1799                 return -ENOMEM;
1800         }
1801
1802         entry->cb_data = cb;
1803         entry->buf = data;
1804         entry->len = len;
1805         entry->flags = 0;
1806
1807         rc = ntb_process_tx(qp, entry);
1808         if (rc)
1809                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1810                              &qp->tx_free_q);
1811
1812         return rc;
1813 }
1814 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
1815
1816 /**
1817  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
1818  * @qp: NTB transport layer queue to be enabled
1819  *
1820  * Notify NTB transport layer of client readiness to use queue
1821  */
1822 void ntb_transport_link_up(struct ntb_transport_qp *qp)
1823 {
1824         if (!qp)
1825                 return;
1826
1827         qp->client_ready = true;
1828
1829         if (qp->transport->link_is_up)
1830                 schedule_delayed_work(&qp->link_work, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
1833
1834 /**
1835  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
1836  * @qp: NTB transport layer queue to be disabled
1837  *
1838  * Notify NTB transport layer of client's desire to no longer receive data on
1839  * transport queue specified.  It is the client's responsibility to ensure all
1840  * entries on queue are purged or otherwise handled appropriately.
1841  */
1842 void ntb_transport_link_down(struct ntb_transport_qp *qp)
1843 {
1844         struct pci_dev *pdev;
1845         int val;
1846
1847         if (!qp)
1848                 return;
1849
1850         pdev = qp->ndev->pdev;
1851         qp->client_ready = false;
1852
1853         val = ntb_spad_read(qp->ndev, QP_LINKS);
1854
1855         ntb_peer_spad_write(qp->ndev, QP_LINKS,
1856                             val & ~BIT(qp->qp_num));
1857
1858         if (qp->link_is_up)
1859                 ntb_send_link_down(qp);
1860         else
1861                 cancel_delayed_work_sync(&qp->link_work);
1862 }
1863 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
1864
1865 /**
1866  * ntb_transport_link_query - Query transport link state
1867  * @qp: NTB transport layer queue to be queried
1868  *
1869  * Query connectivity to the remote system of the NTB transport queue
1870  *
1871  * RETURNS: true for link up or false for link down
1872  */
1873 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
1874 {
1875         if (!qp)
1876                 return false;
1877
1878         return qp->link_is_up;
1879 }
1880 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
1881
1882 /**
1883  * ntb_transport_qp_num - Query the qp number
1884  * @qp: NTB transport layer queue to be queried
1885  *
1886  * Query qp number of the NTB transport queue
1887  *
1888  * RETURNS: a zero based number specifying the qp number
1889  */
1890 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
1891 {
1892         if (!qp)
1893                 return 0;
1894
1895         return qp->qp_num;
1896 }
1897 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
1898
1899 /**
1900  * ntb_transport_max_size - Query the max payload size of a qp
1901  * @qp: NTB transport layer queue to be queried
1902  *
1903  * Query the maximum payload size permissible on the given qp
1904  *
1905  * RETURNS: the max payload size of a qp
1906  */
1907 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
1908 {
1909         unsigned int max;
1910
1911         if (!qp)
1912                 return 0;
1913
1914         if (!qp->dma_chan)
1915                 return qp->tx_max_frame - sizeof(struct ntb_payload_header);
1916
1917         /* If DMA engine usage is possible, try to find the max size for that */
1918         max = qp->tx_max_frame - sizeof(struct ntb_payload_header);
1919         max -= max % (1 << qp->dma_chan->device->copy_align);
1920
1921         return max;
1922 }
1923 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
1924
1925 static void ntb_transport_doorbell_callback(void *data, int vector)
1926 {
1927         struct ntb_transport_ctx *nt = data;
1928         struct ntb_transport_qp *qp;
1929         u64 db_bits;
1930         unsigned int qp_num;
1931
1932         db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
1933                    ntb_db_vector_mask(nt->ndev, vector));
1934
1935         while (db_bits) {
1936                 qp_num = __ffs(db_bits);
1937                 qp = &nt->qp_vec[qp_num];
1938
1939                 tasklet_schedule(&qp->rxc_db_work);
1940
1941                 db_bits &= ~BIT_ULL(qp_num);
1942         }
1943 }
1944
1945 static const struct ntb_ctx_ops ntb_transport_ops = {
1946         .link_event = ntb_transport_event_callback,
1947         .db_event = ntb_transport_doorbell_callback,
1948 };
1949
1950 static struct ntb_client ntb_transport_client = {
1951         .ops = {
1952                 .probe = ntb_transport_probe,
1953                 .remove = ntb_transport_free,
1954         },
1955 };
1956
1957 static int __init ntb_transport_init(void)
1958 {
1959         int rc;
1960
1961         pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
1962
1963         if (debugfs_initialized())
1964                 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1965
1966         rc = bus_register(&ntb_transport_bus);
1967         if (rc)
1968                 goto err_bus;
1969
1970         rc = ntb_register_client(&ntb_transport_client);
1971         if (rc)
1972                 goto err_client;
1973
1974         return 0;
1975
1976 err_client:
1977         bus_unregister(&ntb_transport_bus);
1978 err_bus:
1979         debugfs_remove_recursive(nt_debugfs_dir);
1980         return rc;
1981 }
1982 module_init(ntb_transport_init);
1983
1984 static void __exit ntb_transport_exit(void)
1985 {
1986         debugfs_remove_recursive(nt_debugfs_dir);
1987
1988         ntb_unregister_client(&ntb_transport_client);
1989         bus_unregister(&ntb_transport_bus);
1990 }
1991 module_exit(ntb_transport_exit);