3fc68962c1fc237af8819154d972f83635e9dd1a
[cascardo/linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36         struct request_queue    *pmem_queue;
37         struct gendisk          *pmem_disk;
38
39         /* One contiguous memory region per device */
40         phys_addr_t             phys_addr;
41         /* when non-zero this device is hosting a 'pfn' instance */
42         phys_addr_t             data_offset;
43         u64                     pfn_flags;
44         void __pmem             *virt_addr;
45         /* immutable base size of the namespace */
46         size_t                  size;
47         /* trim size when namespace capacity has been section aligned */
48         u32                     pfn_pad;
49         struct badblocks        bb;
50 };
51
52 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
53                 unsigned int len)
54 {
55         struct device *dev = disk_to_dev(pmem->pmem_disk);
56         sector_t sector;
57         long cleared;
58
59         sector = (offset - pmem->data_offset) / 512;
60         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
61
62         if (cleared > 0 && cleared / 512) {
63                 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
64                                 __func__, (unsigned long long) sector,
65                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
66                 badblocks_clear(&pmem->bb, sector, cleared / 512);
67         }
68         invalidate_pmem(pmem->virt_addr + offset, len);
69 }
70
71 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
72                         unsigned int len, unsigned int off, int rw,
73                         sector_t sector)
74 {
75         int rc = 0;
76         bool bad_pmem = false;
77         void *mem = kmap_atomic(page);
78         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
79         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
80
81         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
82                 bad_pmem = true;
83
84         if (rw == READ) {
85                 if (unlikely(bad_pmem))
86                         rc = -EIO;
87                 else {
88                         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
89                         flush_dcache_page(page);
90                 }
91         } else {
92                 /*
93                  * Note that we write the data both before and after
94                  * clearing poison.  The write before clear poison
95                  * handles situations where the latest written data is
96                  * preserved and the clear poison operation simply marks
97                  * the address range as valid without changing the data.
98                  * In this case application software can assume that an
99                  * interrupted write will either return the new good
100                  * data or an error.
101                  *
102                  * However, if pmem_clear_poison() leaves the data in an
103                  * indeterminate state we need to perform the write
104                  * after clear poison.
105                  */
106                 flush_dcache_page(page);
107                 memcpy_to_pmem(pmem_addr, mem + off, len);
108                 if (unlikely(bad_pmem)) {
109                         pmem_clear_poison(pmem, pmem_off, len);
110                         memcpy_to_pmem(pmem_addr, mem + off, len);
111                 }
112         }
113
114         kunmap_atomic(mem);
115         return rc;
116 }
117
118 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
119 {
120         int rc = 0;
121         bool do_acct;
122         unsigned long start;
123         struct bio_vec bvec;
124         struct bvec_iter iter;
125         struct pmem_device *pmem = q->queuedata;
126
127         do_acct = nd_iostat_start(bio, &start);
128         bio_for_each_segment(bvec, bio, iter) {
129                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
130                                 bvec.bv_offset, bio_data_dir(bio),
131                                 iter.bi_sector);
132                 if (rc) {
133                         bio->bi_error = rc;
134                         break;
135                 }
136         }
137         if (do_acct)
138                 nd_iostat_end(bio, start);
139
140         if (bio_data_dir(bio))
141                 wmb_pmem();
142
143         bio_endio(bio);
144         return BLK_QC_T_NONE;
145 }
146
147 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
148                        struct page *page, int rw)
149 {
150         struct pmem_device *pmem = bdev->bd_queue->queuedata;
151         int rc;
152
153         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
154         if (rw & WRITE)
155                 wmb_pmem();
156
157         /*
158          * The ->rw_page interface is subtle and tricky.  The core
159          * retries on any error, so we can only invoke page_endio() in
160          * the successful completion case.  Otherwise, we'll see crashes
161          * caused by double completion.
162          */
163         if (rc == 0)
164                 page_endio(page, rw & WRITE, 0);
165
166         return rc;
167 }
168
169 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
170                       void __pmem **kaddr, pfn_t *pfn)
171 {
172         struct pmem_device *pmem = bdev->bd_queue->queuedata;
173         resource_size_t offset = sector * 512 + pmem->data_offset;
174
175         *kaddr = pmem->virt_addr + offset;
176         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
177
178         return pmem->size - pmem->pfn_pad - offset;
179 }
180
181 static const struct block_device_operations pmem_fops = {
182         .owner =                THIS_MODULE,
183         .rw_page =              pmem_rw_page,
184         .direct_access =        pmem_direct_access,
185         .revalidate_disk =      nvdimm_revalidate_disk,
186 };
187
188 static void pmem_release_queue(void *q)
189 {
190         blk_cleanup_queue(q);
191 }
192
193 void pmem_release_disk(void *disk)
194 {
195         del_gendisk(disk);
196         put_disk(disk);
197 }
198
199 static int pmem_attach_disk(struct device *dev,
200                 struct nd_namespace_common *ndns)
201 {
202         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
203         struct vmem_altmap __altmap, *altmap = NULL;
204         struct resource *res = &nsio->res;
205         struct nd_pfn *nd_pfn = NULL;
206         int nid = dev_to_node(dev);
207         struct nd_pfn_sb *pfn_sb;
208         struct pmem_device *pmem;
209         struct resource pfn_res;
210         struct request_queue *q;
211         struct gendisk *disk;
212         void *addr;
213
214         /* while nsio_rw_bytes is active, parse a pfn info block if present */
215         if (is_nd_pfn(dev)) {
216                 nd_pfn = to_nd_pfn(dev);
217                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
218                 if (IS_ERR(altmap))
219                         return PTR_ERR(altmap);
220         }
221
222         /* we're attaching a block device, disable raw namespace access */
223         devm_nsio_disable(dev, nsio);
224
225         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
226         if (!pmem)
227                 return -ENOMEM;
228
229         dev_set_drvdata(dev, pmem);
230         pmem->phys_addr = res->start;
231         pmem->size = resource_size(res);
232         if (!arch_has_wmb_pmem())
233                 dev_warn(dev, "unable to guarantee persistence of writes\n");
234
235         if (!devm_request_mem_region(dev, res->start, resource_size(res),
236                                 dev_name(dev))) {
237                 dev_warn(dev, "could not reserve region %pR\n", res);
238                 return -EBUSY;
239         }
240
241         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
242         if (!q)
243                 return -ENOMEM;
244         pmem->pmem_queue = q;
245
246         pmem->pfn_flags = PFN_DEV;
247         if (is_nd_pfn(dev)) {
248                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
249                                 altmap);
250                 pfn_sb = nd_pfn->pfn_sb;
251                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
252                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
253                 pmem->pfn_flags |= PFN_MAP;
254                 res = &pfn_res; /* for badblocks populate */
255                 res->start += pmem->data_offset;
256         } else if (pmem_should_map_pages(dev)) {
257                 addr = devm_memremap_pages(dev, &nsio->res,
258                                 &q->q_usage_counter, NULL);
259                 pmem->pfn_flags |= PFN_MAP;
260         } else
261                 addr = devm_memremap(dev, pmem->phys_addr,
262                                 pmem->size, ARCH_MEMREMAP_PMEM);
263
264         /*
265          * At release time the queue must be dead before
266          * devm_memremap_pages is unwound
267          */
268         if (devm_add_action(dev, pmem_release_queue, q)) {
269                 blk_cleanup_queue(q);
270                 return -ENOMEM;
271         }
272
273         if (IS_ERR(addr))
274                 return PTR_ERR(addr);
275         pmem->virt_addr = (void __pmem *) addr;
276
277         blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
278         blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
279         blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
280         blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
281         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
282         pmem->pmem_queue->queuedata = pmem;
283
284         disk = alloc_disk_node(0, nid);
285         if (!disk)
286                 return -ENOMEM;
287         if (devm_add_action(dev, pmem_release_disk, disk)) {
288                 put_disk(disk);
289                 return -ENOMEM;
290         }
291
292         disk->fops              = &pmem_fops;
293         disk->queue             = pmem->pmem_queue;
294         disk->flags             = GENHD_FL_EXT_DEVT;
295         nvdimm_namespace_disk_name(ndns, disk->disk_name);
296         disk->driverfs_dev = dev;
297         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
298                         / 512);
299         pmem->pmem_disk = disk;
300         if (devm_init_badblocks(dev, &pmem->bb))
301                 return -ENOMEM;
302         nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb, res);
303         disk->bb = &pmem->bb;
304         add_disk(disk);
305         revalidate_disk(disk);
306
307         return 0;
308 }
309
310 static int nd_pmem_probe(struct device *dev)
311 {
312         struct nd_namespace_common *ndns;
313
314         ndns = nvdimm_namespace_common_probe(dev);
315         if (IS_ERR(ndns))
316                 return PTR_ERR(ndns);
317
318         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
319                 return -ENXIO;
320
321         if (is_nd_btt(dev))
322                 return nvdimm_namespace_attach_btt(ndns);
323
324         if (is_nd_pfn(dev))
325                 return pmem_attach_disk(dev, ndns);
326
327         /* if we find a valid info-block we'll come back as that personality */
328         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0)
329                 return -ENXIO;
330
331         /* ...otherwise we're just a raw pmem device */
332         return pmem_attach_disk(dev, ndns);
333 }
334
335 static int nd_pmem_remove(struct device *dev)
336 {
337         if (is_nd_btt(dev))
338                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
339         return 0;
340 }
341
342 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
343 {
344         struct nd_region *nd_region = to_nd_region(dev->parent);
345         struct pmem_device *pmem = dev_get_drvdata(dev);
346         resource_size_t offset = 0, end_trunc = 0;
347         struct nd_namespace_common *ndns;
348         struct nd_namespace_io *nsio;
349         struct resource res;
350
351         if (event != NVDIMM_REVALIDATE_POISON)
352                 return;
353
354         if (is_nd_btt(dev)) {
355                 struct nd_btt *nd_btt = to_nd_btt(dev);
356
357                 ndns = nd_btt->ndns;
358         } else if (is_nd_pfn(dev)) {
359                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
360                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
361
362                 ndns = nd_pfn->ndns;
363                 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
364                 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
365         } else
366                 ndns = to_ndns(dev);
367
368         nsio = to_nd_namespace_io(&ndns->dev);
369         res.start = nsio->res.start + offset;
370         res.end = nsio->res.end - end_trunc;
371         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
372 }
373
374 MODULE_ALIAS("pmem");
375 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
376 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
377 static struct nd_device_driver nd_pmem_driver = {
378         .probe = nd_pmem_probe,
379         .remove = nd_pmem_remove,
380         .notify = nd_pmem_notify,
381         .drv = {
382                 .name = "nd_pmem",
383         },
384         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
385 };
386
387 static int __init pmem_init(void)
388 {
389         return nd_driver_register(&nd_pmem_driver);
390 }
391 module_init(pmem_init);
392
393 static void pmem_exit(void)
394 {
395         driver_unregister(&nd_pmem_driver.drv);
396 }
397 module_exit(pmem_exit);
398
399 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
400 MODULE_LICENSE("GPL v2");