Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[cascardo/linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36         struct request_queue    *pmem_queue;
37         struct gendisk          *pmem_disk;
38         struct nd_namespace_common *ndns;
39
40         /* One contiguous memory region per device */
41         phys_addr_t             phys_addr;
42         /* when non-zero this device is hosting a 'pfn' instance */
43         phys_addr_t             data_offset;
44         u64                     pfn_flags;
45         void __pmem             *virt_addr;
46         /* immutable base size of the namespace */
47         size_t                  size;
48         /* trim size when namespace capacity has been section aligned */
49         u32                     pfn_pad;
50         struct badblocks        bb;
51 };
52
53 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
54 {
55         if (bb->count) {
56                 sector_t first_bad;
57                 int num_bad;
58
59                 return !!badblocks_check(bb, sector, len / 512, &first_bad,
60                                 &num_bad);
61         }
62
63         return false;
64 }
65
66 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
67                 unsigned int len)
68 {
69         struct device *dev = disk_to_dev(pmem->pmem_disk);
70         sector_t sector;
71         long cleared;
72
73         sector = (offset - pmem->data_offset) / 512;
74         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
75
76         if (cleared > 0 && cleared / 512) {
77                 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
78                                 __func__, (unsigned long long) sector,
79                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
80                 badblocks_clear(&pmem->bb, sector, cleared / 512);
81         }
82         invalidate_pmem(pmem->virt_addr + offset, len);
83 }
84
85 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
86                         unsigned int len, unsigned int off, int rw,
87                         sector_t sector)
88 {
89         int rc = 0;
90         bool bad_pmem = false;
91         void *mem = kmap_atomic(page);
92         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
93         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
94
95         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
96                 bad_pmem = true;
97
98         if (rw == READ) {
99                 if (unlikely(bad_pmem))
100                         rc = -EIO;
101                 else {
102                         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
103                         flush_dcache_page(page);
104                 }
105         } else {
106                 flush_dcache_page(page);
107                 memcpy_to_pmem(pmem_addr, mem + off, len);
108                 if (unlikely(bad_pmem)) {
109                         pmem_clear_poison(pmem, pmem_off, len);
110                         memcpy_to_pmem(pmem_addr, mem + off, len);
111                 }
112         }
113
114         kunmap_atomic(mem);
115         return rc;
116 }
117
118 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
119 {
120         int rc = 0;
121         bool do_acct;
122         unsigned long start;
123         struct bio_vec bvec;
124         struct bvec_iter iter;
125         struct block_device *bdev = bio->bi_bdev;
126         struct pmem_device *pmem = bdev->bd_disk->private_data;
127
128         do_acct = nd_iostat_start(bio, &start);
129         bio_for_each_segment(bvec, bio, iter) {
130                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
131                                 bvec.bv_offset, bio_data_dir(bio),
132                                 iter.bi_sector);
133                 if (rc) {
134                         bio->bi_error = rc;
135                         break;
136                 }
137         }
138         if (do_acct)
139                 nd_iostat_end(bio, start);
140
141         if (bio_data_dir(bio))
142                 wmb_pmem();
143
144         bio_endio(bio);
145         return BLK_QC_T_NONE;
146 }
147
148 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
149                        struct page *page, int rw)
150 {
151         struct pmem_device *pmem = bdev->bd_disk->private_data;
152         int rc;
153
154         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
155         if (rw & WRITE)
156                 wmb_pmem();
157
158         /*
159          * The ->rw_page interface is subtle and tricky.  The core
160          * retries on any error, so we can only invoke page_endio() in
161          * the successful completion case.  Otherwise, we'll see crashes
162          * caused by double completion.
163          */
164         if (rc == 0)
165                 page_endio(page, rw & WRITE, 0);
166
167         return rc;
168 }
169
170 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
171                       void __pmem **kaddr, pfn_t *pfn)
172 {
173         struct pmem_device *pmem = bdev->bd_disk->private_data;
174         resource_size_t offset = sector * 512 + pmem->data_offset;
175
176         *kaddr = pmem->virt_addr + offset;
177         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
178
179         return pmem->size - pmem->pfn_pad - offset;
180 }
181
182 static const struct block_device_operations pmem_fops = {
183         .owner =                THIS_MODULE,
184         .rw_page =              pmem_rw_page,
185         .direct_access =        pmem_direct_access,
186         .revalidate_disk =      nvdimm_revalidate_disk,
187 };
188
189 static struct pmem_device *pmem_alloc(struct device *dev,
190                 struct resource *res, int id)
191 {
192         struct pmem_device *pmem;
193         struct request_queue *q;
194
195         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
196         if (!pmem)
197                 return ERR_PTR(-ENOMEM);
198
199         pmem->phys_addr = res->start;
200         pmem->size = resource_size(res);
201         if (!arch_has_wmb_pmem())
202                 dev_warn(dev, "unable to guarantee persistence of writes\n");
203
204         if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
205                         dev_name(dev))) {
206                 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
207                                 &pmem->phys_addr, pmem->size);
208                 return ERR_PTR(-EBUSY);
209         }
210
211         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
212         if (!q)
213                 return ERR_PTR(-ENOMEM);
214
215         pmem->pfn_flags = PFN_DEV;
216         if (pmem_should_map_pages(dev)) {
217                 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
218                                 &q->q_usage_counter, NULL);
219                 pmem->pfn_flags |= PFN_MAP;
220         } else
221                 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
222                                 pmem->phys_addr, pmem->size,
223                                 ARCH_MEMREMAP_PMEM);
224
225         if (IS_ERR(pmem->virt_addr)) {
226                 blk_cleanup_queue(q);
227                 return (void __force *) pmem->virt_addr;
228         }
229
230         pmem->pmem_queue = q;
231         return pmem;
232 }
233
234 static void pmem_detach_disk(struct pmem_device *pmem)
235 {
236         if (!pmem->pmem_disk)
237                 return;
238
239         del_gendisk(pmem->pmem_disk);
240         put_disk(pmem->pmem_disk);
241         blk_cleanup_queue(pmem->pmem_queue);
242 }
243
244 static int pmem_attach_disk(struct device *dev,
245                 struct nd_namespace_common *ndns, struct pmem_device *pmem)
246 {
247         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
248         int nid = dev_to_node(dev);
249         struct resource bb_res;
250         struct gendisk *disk;
251
252         blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
253         blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
254         blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
255         blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
256         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
257
258         disk = alloc_disk_node(0, nid);
259         if (!disk) {
260                 blk_cleanup_queue(pmem->pmem_queue);
261                 return -ENOMEM;
262         }
263
264         disk->fops              = &pmem_fops;
265         disk->private_data      = pmem;
266         disk->queue             = pmem->pmem_queue;
267         disk->flags             = GENHD_FL_EXT_DEVT;
268         nvdimm_namespace_disk_name(ndns, disk->disk_name);
269         disk->driverfs_dev = dev;
270         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
271                         / 512);
272         pmem->pmem_disk = disk;
273         devm_exit_badblocks(dev, &pmem->bb);
274         if (devm_init_badblocks(dev, &pmem->bb))
275                 return -ENOMEM;
276         bb_res.start = nsio->res.start + pmem->data_offset;
277         bb_res.end = nsio->res.end;
278         if (is_nd_pfn(dev)) {
279                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
280                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
281
282                 bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
283                 bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
284         }
285         nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
286                         &bb_res);
287         disk->bb = &pmem->bb;
288         add_disk(disk);
289         revalidate_disk(disk);
290
291         return 0;
292 }
293
294 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
295                 resource_size_t offset, void *buf, size_t size, int rw)
296 {
297         struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
298
299         if (unlikely(offset + size > pmem->size)) {
300                 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
301                 return -EFAULT;
302         }
303
304         if (rw == READ) {
305                 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
306
307                 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
308                         return -EIO;
309                 return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
310         } else {
311                 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
312                 wmb_pmem();
313         }
314
315         return 0;
316 }
317
318 static int nd_pfn_init(struct nd_pfn *nd_pfn)
319 {
320         struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
321         struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
322         struct nd_namespace_common *ndns = nd_pfn->ndns;
323         u32 start_pad = 0, end_trunc = 0;
324         resource_size_t start, size;
325         struct nd_namespace_io *nsio;
326         struct nd_region *nd_region;
327         unsigned long npfns;
328         phys_addr_t offset;
329         u64 checksum;
330         int rc;
331
332         if (!pfn_sb)
333                 return -ENOMEM;
334
335         nd_pfn->pfn_sb = pfn_sb;
336         rc = nd_pfn_validate(nd_pfn);
337         if (rc == -ENODEV)
338                 /* no info block, do init */;
339         else
340                 return rc;
341
342         nd_region = to_nd_region(nd_pfn->dev.parent);
343         if (nd_region->ro) {
344                 dev_info(&nd_pfn->dev,
345                                 "%s is read-only, unable to init metadata\n",
346                                 dev_name(&nd_region->dev));
347                 goto err;
348         }
349
350         memset(pfn_sb, 0, sizeof(*pfn_sb));
351
352         /*
353          * Check if pmem collides with 'System RAM' when section aligned and
354          * trim it accordingly
355          */
356         nsio = to_nd_namespace_io(&ndns->dev);
357         start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
358         size = resource_size(&nsio->res);
359         if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
360                                 IORES_DESC_NONE) == REGION_MIXED) {
361
362                 start = nsio->res.start;
363                 start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
364         }
365
366         start = nsio->res.start;
367         size = PHYS_SECTION_ALIGN_UP(start + size) - start;
368         if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
369                                 IORES_DESC_NONE) == REGION_MIXED) {
370                 size = resource_size(&nsio->res);
371                 end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
372         }
373
374         if (start_pad + end_trunc)
375                 dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
376                                 dev_name(&ndns->dev), start_pad + end_trunc);
377
378         /*
379          * Note, we use 64 here for the standard size of struct page,
380          * debugging options may cause it to be larger in which case the
381          * implementation will limit the pfns advertised through
382          * ->direct_access() to those that are included in the memmap.
383          */
384         start += start_pad;
385         npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
386         if (nd_pfn->mode == PFN_MODE_PMEM)
387                 offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
388                         - start;
389         else if (nd_pfn->mode == PFN_MODE_RAM)
390                 offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
391         else
392                 goto err;
393
394         if (offset + start_pad + end_trunc >= pmem->size) {
395                 dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
396                                 dev_name(&ndns->dev));
397                 goto err;
398         }
399
400         npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
401         pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
402         pfn_sb->dataoff = cpu_to_le64(offset);
403         pfn_sb->npfns = cpu_to_le64(npfns);
404         memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
405         memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
406         memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
407         pfn_sb->version_major = cpu_to_le16(1);
408         pfn_sb->version_minor = cpu_to_le16(1);
409         pfn_sb->start_pad = cpu_to_le32(start_pad);
410         pfn_sb->end_trunc = cpu_to_le32(end_trunc);
411         checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
412         pfn_sb->checksum = cpu_to_le64(checksum);
413
414         rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
415         if (rc)
416                 goto err;
417
418         return 0;
419  err:
420         nd_pfn->pfn_sb = NULL;
421         kfree(pfn_sb);
422         return -ENXIO;
423 }
424
425 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
426 {
427         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
428         struct pmem_device *pmem;
429
430         /* free pmem disk */
431         pmem = dev_get_drvdata(&nd_pfn->dev);
432         pmem_detach_disk(pmem);
433
434         /* release nd_pfn resources */
435         kfree(nd_pfn->pfn_sb);
436         nd_pfn->pfn_sb = NULL;
437
438         return 0;
439 }
440
441 /*
442  * We hotplug memory at section granularity, pad the reserved area from
443  * the previous section base to the namespace base address.
444  */
445 static unsigned long init_altmap_base(resource_size_t base)
446 {
447         unsigned long base_pfn = PHYS_PFN(base);
448
449         return PFN_SECTION_ALIGN_DOWN(base_pfn);
450 }
451
452 static unsigned long init_altmap_reserve(resource_size_t base)
453 {
454         unsigned long reserve = PHYS_PFN(SZ_8K);
455         unsigned long base_pfn = PHYS_PFN(base);
456
457         reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
458         return reserve;
459 }
460
461 static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
462 {
463         int rc;
464         struct resource res;
465         struct request_queue *q;
466         struct pmem_device *pmem;
467         struct vmem_altmap *altmap;
468         struct device *dev = &nd_pfn->dev;
469         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
470         struct nd_namespace_common *ndns = nd_pfn->ndns;
471         u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
472         u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
473         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
474         resource_size_t base = nsio->res.start + start_pad;
475         struct vmem_altmap __altmap = {
476                 .base_pfn = init_altmap_base(base),
477                 .reserve = init_altmap_reserve(base),
478         };
479
480         pmem = dev_get_drvdata(dev);
481         pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
482         pmem->pfn_pad = start_pad + end_trunc;
483         nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
484         if (nd_pfn->mode == PFN_MODE_RAM) {
485                 if (pmem->data_offset < SZ_8K)
486                         return -EINVAL;
487                 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
488                 altmap = NULL;
489         } else if (nd_pfn->mode == PFN_MODE_PMEM) {
490                 nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
491                         / PAGE_SIZE;
492                 if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
493                         dev_info(&nd_pfn->dev,
494                                         "number of pfns truncated from %lld to %ld\n",
495                                         le64_to_cpu(nd_pfn->pfn_sb->npfns),
496                                         nd_pfn->npfns);
497                 altmap = & __altmap;
498                 altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
499                 altmap->alloc = 0;
500         } else {
501                 rc = -ENXIO;
502                 goto err;
503         }
504
505         /* establish pfn range for lookup, and switch to direct map */
506         q = pmem->pmem_queue;
507         memcpy(&res, &nsio->res, sizeof(res));
508         res.start += start_pad;
509         res.end -= end_trunc;
510         devm_memunmap(dev, (void __force *) pmem->virt_addr);
511         pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
512                         &q->q_usage_counter, altmap);
513         pmem->pfn_flags |= PFN_MAP;
514         if (IS_ERR(pmem->virt_addr)) {
515                 rc = PTR_ERR(pmem->virt_addr);
516                 goto err;
517         }
518
519         /* attach pmem disk in "pfn-mode" */
520         rc = pmem_attach_disk(dev, ndns, pmem);
521         if (rc)
522                 goto err;
523
524         return rc;
525  err:
526         nvdimm_namespace_detach_pfn(ndns);
527         return rc;
528
529 }
530
531 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
532 {
533         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
534         int rc;
535
536         if (!nd_pfn->uuid || !nd_pfn->ndns)
537                 return -ENODEV;
538
539         rc = nd_pfn_init(nd_pfn);
540         if (rc)
541                 return rc;
542         /* we need a valid pfn_sb before we can init a vmem_altmap */
543         return __nvdimm_namespace_attach_pfn(nd_pfn);
544 }
545
546 static int nd_pmem_probe(struct device *dev)
547 {
548         struct nd_region *nd_region = to_nd_region(dev->parent);
549         struct nd_namespace_common *ndns;
550         struct nd_namespace_io *nsio;
551         struct pmem_device *pmem;
552
553         ndns = nvdimm_namespace_common_probe(dev);
554         if (IS_ERR(ndns))
555                 return PTR_ERR(ndns);
556
557         nsio = to_nd_namespace_io(&ndns->dev);
558         pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
559         if (IS_ERR(pmem))
560                 return PTR_ERR(pmem);
561
562         pmem->ndns = ndns;
563         dev_set_drvdata(dev, pmem);
564         ndns->rw_bytes = pmem_rw_bytes;
565         if (devm_init_badblocks(dev, &pmem->bb))
566                 return -ENOMEM;
567         nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
568
569         if (is_nd_btt(dev)) {
570                 /* btt allocates its own request_queue */
571                 blk_cleanup_queue(pmem->pmem_queue);
572                 pmem->pmem_queue = NULL;
573                 return nvdimm_namespace_attach_btt(ndns);
574         }
575
576         if (is_nd_pfn(dev))
577                 return nvdimm_namespace_attach_pfn(ndns);
578
579         if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
580                 /*
581                  * We'll come back as either btt-pmem, or pfn-pmem, so
582                  * drop the queue allocation for now.
583                  */
584                 blk_cleanup_queue(pmem->pmem_queue);
585                 return -ENXIO;
586         }
587
588         return pmem_attach_disk(dev, ndns, pmem);
589 }
590
591 static int nd_pmem_remove(struct device *dev)
592 {
593         struct pmem_device *pmem = dev_get_drvdata(dev);
594
595         if (is_nd_btt(dev))
596                 nvdimm_namespace_detach_btt(pmem->ndns);
597         else if (is_nd_pfn(dev))
598                 nvdimm_namespace_detach_pfn(pmem->ndns);
599         else
600                 pmem_detach_disk(pmem);
601
602         return 0;
603 }
604
605 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
606 {
607         struct pmem_device *pmem = dev_get_drvdata(dev);
608         struct nd_namespace_common *ndns = pmem->ndns;
609         struct nd_region *nd_region = to_nd_region(dev->parent);
610         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
611         struct resource res = {
612                 .start = nsio->res.start + pmem->data_offset,
613                 .end = nsio->res.end,
614         };
615
616         if (event != NVDIMM_REVALIDATE_POISON)
617                 return;
618
619         if (is_nd_pfn(dev)) {
620                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
621                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
622
623                 res.start += __le32_to_cpu(pfn_sb->start_pad);
624                 res.end -= __le32_to_cpu(pfn_sb->end_trunc);
625         }
626
627         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
628 }
629
630 MODULE_ALIAS("pmem");
631 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
632 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
633 static struct nd_device_driver nd_pmem_driver = {
634         .probe = nd_pmem_probe,
635         .remove = nd_pmem_remove,
636         .notify = nd_pmem_notify,
637         .drv = {
638                 .name = "nd_pmem",
639         },
640         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
641 };
642
643 static int __init pmem_init(void)
644 {
645         return nd_driver_register(&nd_pmem_driver);
646 }
647 module_init(pmem_init);
648
649 static void pmem_exit(void)
650 {
651         driver_unregister(&nd_pmem_driver.drv);
652 }
653 module_exit(pmem_exit);
654
655 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
656 MODULE_LICENSE("GPL v2");