Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36         /* One contiguous memory region per device */
37         phys_addr_t             phys_addr;
38         /* when non-zero this device is hosting a 'pfn' instance */
39         phys_addr_t             data_offset;
40         u64                     pfn_flags;
41         void __pmem             *virt_addr;
42         /* immutable base size of the namespace */
43         size_t                  size;
44         /* trim size when namespace capacity has been section aligned */
45         u32                     pfn_pad;
46         struct badblocks        bb;
47 };
48
49 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
50                 unsigned int len)
51 {
52         struct device *dev = pmem->bb.dev;
53         sector_t sector;
54         long cleared;
55
56         sector = (offset - pmem->data_offset) / 512;
57         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
58
59         if (cleared > 0 && cleared / 512) {
60                 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
61                                 __func__, (unsigned long long) sector,
62                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
63                 badblocks_clear(&pmem->bb, sector, cleared / 512);
64         }
65         invalidate_pmem(pmem->virt_addr + offset, len);
66 }
67
68 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
69                         unsigned int len, unsigned int off, int rw,
70                         sector_t sector)
71 {
72         int rc = 0;
73         bool bad_pmem = false;
74         void *mem = kmap_atomic(page);
75         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
76         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
77
78         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
79                 bad_pmem = true;
80
81         if (rw == READ) {
82                 if (unlikely(bad_pmem))
83                         rc = -EIO;
84                 else {
85                         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
86                         flush_dcache_page(page);
87                 }
88         } else {
89                 /*
90                  * Note that we write the data both before and after
91                  * clearing poison.  The write before clear poison
92                  * handles situations where the latest written data is
93                  * preserved and the clear poison operation simply marks
94                  * the address range as valid without changing the data.
95                  * In this case application software can assume that an
96                  * interrupted write will either return the new good
97                  * data or an error.
98                  *
99                  * However, if pmem_clear_poison() leaves the data in an
100                  * indeterminate state we need to perform the write
101                  * after clear poison.
102                  */
103                 flush_dcache_page(page);
104                 memcpy_to_pmem(pmem_addr, mem + off, len);
105                 if (unlikely(bad_pmem)) {
106                         pmem_clear_poison(pmem, pmem_off, len);
107                         memcpy_to_pmem(pmem_addr, mem + off, len);
108                 }
109         }
110
111         kunmap_atomic(mem);
112         return rc;
113 }
114
115 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
116 {
117         int rc = 0;
118         bool do_acct;
119         unsigned long start;
120         struct bio_vec bvec;
121         struct bvec_iter iter;
122         struct pmem_device *pmem = q->queuedata;
123
124         do_acct = nd_iostat_start(bio, &start);
125         bio_for_each_segment(bvec, bio, iter) {
126                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
127                                 bvec.bv_offset, bio_data_dir(bio),
128                                 iter.bi_sector);
129                 if (rc) {
130                         bio->bi_error = rc;
131                         break;
132                 }
133         }
134         if (do_acct)
135                 nd_iostat_end(bio, start);
136
137         if (bio_data_dir(bio))
138                 wmb_pmem();
139
140         bio_endio(bio);
141         return BLK_QC_T_NONE;
142 }
143
144 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
145                        struct page *page, int rw)
146 {
147         struct pmem_device *pmem = bdev->bd_queue->queuedata;
148         int rc;
149
150         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
151         if (rw & WRITE)
152                 wmb_pmem();
153
154         /*
155          * The ->rw_page interface is subtle and tricky.  The core
156          * retries on any error, so we can only invoke page_endio() in
157          * the successful completion case.  Otherwise, we'll see crashes
158          * caused by double completion.
159          */
160         if (rc == 0)
161                 page_endio(page, rw & WRITE, 0);
162
163         return rc;
164 }
165
166 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
167                       void __pmem **kaddr, pfn_t *pfn)
168 {
169         struct pmem_device *pmem = bdev->bd_queue->queuedata;
170         resource_size_t offset = sector * 512 + pmem->data_offset;
171
172         *kaddr = pmem->virt_addr + offset;
173         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
174
175         return pmem->size - pmem->pfn_pad - offset;
176 }
177
178 static const struct block_device_operations pmem_fops = {
179         .owner =                THIS_MODULE,
180         .rw_page =              pmem_rw_page,
181         .direct_access =        pmem_direct_access,
182         .revalidate_disk =      nvdimm_revalidate_disk,
183 };
184
185 static void pmem_release_queue(void *q)
186 {
187         blk_cleanup_queue(q);
188 }
189
190 void pmem_release_disk(void *disk)
191 {
192         del_gendisk(disk);
193         put_disk(disk);
194 }
195
196 static int pmem_attach_disk(struct device *dev,
197                 struct nd_namespace_common *ndns)
198 {
199         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
200         struct vmem_altmap __altmap, *altmap = NULL;
201         struct resource *res = &nsio->res;
202         struct nd_pfn *nd_pfn = NULL;
203         int nid = dev_to_node(dev);
204         struct nd_pfn_sb *pfn_sb;
205         struct pmem_device *pmem;
206         struct resource pfn_res;
207         struct request_queue *q;
208         struct gendisk *disk;
209         void *addr;
210
211         /* while nsio_rw_bytes is active, parse a pfn info block if present */
212         if (is_nd_pfn(dev)) {
213                 nd_pfn = to_nd_pfn(dev);
214                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
215                 if (IS_ERR(altmap))
216                         return PTR_ERR(altmap);
217         }
218
219         /* we're attaching a block device, disable raw namespace access */
220         devm_nsio_disable(dev, nsio);
221
222         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
223         if (!pmem)
224                 return -ENOMEM;
225
226         dev_set_drvdata(dev, pmem);
227         pmem->phys_addr = res->start;
228         pmem->size = resource_size(res);
229         if (!arch_has_wmb_pmem())
230                 dev_warn(dev, "unable to guarantee persistence of writes\n");
231
232         if (!devm_request_mem_region(dev, res->start, resource_size(res),
233                                 dev_name(dev))) {
234                 dev_warn(dev, "could not reserve region %pR\n", res);
235                 return -EBUSY;
236         }
237
238         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
239         if (!q)
240                 return -ENOMEM;
241
242         pmem->pfn_flags = PFN_DEV;
243         if (is_nd_pfn(dev)) {
244                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
245                                 altmap);
246                 pfn_sb = nd_pfn->pfn_sb;
247                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
248                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
249                 pmem->pfn_flags |= PFN_MAP;
250                 res = &pfn_res; /* for badblocks populate */
251                 res->start += pmem->data_offset;
252         } else if (pmem_should_map_pages(dev)) {
253                 addr = devm_memremap_pages(dev, &nsio->res,
254                                 &q->q_usage_counter, NULL);
255                 pmem->pfn_flags |= PFN_MAP;
256         } else
257                 addr = devm_memremap(dev, pmem->phys_addr,
258                                 pmem->size, ARCH_MEMREMAP_PMEM);
259
260         /*
261          * At release time the queue must be dead before
262          * devm_memremap_pages is unwound
263          */
264         if (devm_add_action(dev, pmem_release_queue, q)) {
265                 blk_cleanup_queue(q);
266                 return -ENOMEM;
267         }
268
269         if (IS_ERR(addr))
270                 return PTR_ERR(addr);
271         pmem->virt_addr = (void __pmem *) addr;
272
273         blk_queue_make_request(q, pmem_make_request);
274         blk_queue_physical_block_size(q, PAGE_SIZE);
275         blk_queue_max_hw_sectors(q, UINT_MAX);
276         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
277         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
278         q->queuedata = pmem;
279
280         disk = alloc_disk_node(0, nid);
281         if (!disk)
282                 return -ENOMEM;
283         if (devm_add_action(dev, pmem_release_disk, disk)) {
284                 put_disk(disk);
285                 return -ENOMEM;
286         }
287
288         disk->fops              = &pmem_fops;
289         disk->queue             = q;
290         disk->flags             = GENHD_FL_EXT_DEVT;
291         nvdimm_namespace_disk_name(ndns, disk->disk_name);
292         disk->driverfs_dev = dev;
293         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
294                         / 512);
295         if (devm_init_badblocks(dev, &pmem->bb))
296                 return -ENOMEM;
297         nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb, res);
298         disk->bb = &pmem->bb;
299         add_disk(disk);
300         revalidate_disk(disk);
301
302         return 0;
303 }
304
305 static int nd_pmem_probe(struct device *dev)
306 {
307         struct nd_namespace_common *ndns;
308
309         ndns = nvdimm_namespace_common_probe(dev);
310         if (IS_ERR(ndns))
311                 return PTR_ERR(ndns);
312
313         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
314                 return -ENXIO;
315
316         if (is_nd_btt(dev))
317                 return nvdimm_namespace_attach_btt(ndns);
318
319         if (is_nd_pfn(dev))
320                 return pmem_attach_disk(dev, ndns);
321
322         /* if we find a valid info-block we'll come back as that personality */
323         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
324                         || nd_dax_probe(dev, ndns) == 0)
325                 return -ENXIO;
326
327         /* ...otherwise we're just a raw pmem device */
328         return pmem_attach_disk(dev, ndns);
329 }
330
331 static int nd_pmem_remove(struct device *dev)
332 {
333         if (is_nd_btt(dev))
334                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
335         return 0;
336 }
337
338 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
339 {
340         struct nd_region *nd_region = to_nd_region(dev->parent);
341         struct pmem_device *pmem = dev_get_drvdata(dev);
342         resource_size_t offset = 0, end_trunc = 0;
343         struct nd_namespace_common *ndns;
344         struct nd_namespace_io *nsio;
345         struct resource res;
346
347         if (event != NVDIMM_REVALIDATE_POISON)
348                 return;
349
350         if (is_nd_btt(dev)) {
351                 struct nd_btt *nd_btt = to_nd_btt(dev);
352
353                 ndns = nd_btt->ndns;
354         } else if (is_nd_pfn(dev)) {
355                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
356                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
357
358                 ndns = nd_pfn->ndns;
359                 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
360                 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
361         } else
362                 ndns = to_ndns(dev);
363
364         nsio = to_nd_namespace_io(&ndns->dev);
365         res.start = nsio->res.start + offset;
366         res.end = nsio->res.end - end_trunc;
367         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
368 }
369
370 MODULE_ALIAS("pmem");
371 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
372 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
373 static struct nd_device_driver nd_pmem_driver = {
374         .probe = nd_pmem_probe,
375         .remove = nd_pmem_remove,
376         .notify = nd_pmem_notify,
377         .drv = {
378                 .name = "nd_pmem",
379         },
380         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
381 };
382
383 static int __init pmem_init(void)
384 {
385         return nd_driver_register(&nd_pmem_driver);
386 }
387 module_init(pmem_init);
388
389 static void pmem_exit(void)
390 {
391         driver_unregister(&nd_pmem_driver.drv);
392 }
393 module_exit(pmem_exit);
394
395 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
396 MODULE_LICENSE("GPL v2");