Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327                              struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336         switch (mode) {
337         case REGULATOR_MODE_FAST:
338                 return sprintf(buf, "fast\n");
339         case REGULATOR_MODE_NORMAL:
340                 return sprintf(buf, "normal\n");
341         case REGULATOR_MODE_IDLE:
342                 return sprintf(buf, "idle\n");
343         case REGULATOR_MODE_STANDBY:
344                 return sprintf(buf, "standby\n");
345         }
346         return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350                                     struct device_attribute *attr, char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360         if (state > 0)
361                 return sprintf(buf, "enabled\n");
362         else if (state == 0)
363                 return sprintf(buf, "disabled\n");
364         else
365                 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         ssize_t ret;
373
374         mutex_lock(&rdev->mutex);
375         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376         mutex_unlock(&rdev->mutex);
377
378         return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383                                    struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         int status;
387         char *label;
388
389         status = rdev->desc->ops->get_status(rdev);
390         if (status < 0)
391                 return status;
392
393         switch (status) {
394         case REGULATOR_STATUS_OFF:
395                 label = "off";
396                 break;
397         case REGULATOR_STATUS_ON:
398                 label = "on";
399                 break;
400         case REGULATOR_STATUS_ERROR:
401                 label = "error";
402                 break;
403         case REGULATOR_STATUS_FAST:
404                 label = "fast";
405                 break;
406         case REGULATOR_STATUS_NORMAL:
407                 label = "normal";
408                 break;
409         case REGULATOR_STATUS_IDLE:
410                 label = "idle";
411                 break;
412         case REGULATOR_STATUS_STANDBY:
413                 label = "standby";
414                 break;
415         case REGULATOR_STATUS_BYPASS:
416                 label = "bypass";
417                 break;
418         case REGULATOR_STATUS_UNDEFINED:
419                 label = "undefined";
420                 break;
421         default:
422                 return -ERANGE;
423         }
424
425         return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430                                     struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434         if (!rdev->constraints)
435                 return sprintf(buf, "constraint not defined\n");
436
437         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442                                     struct device_attribute *attr, char *buf)
443 {
444         struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446         if (!rdev->constraints)
447                 return sprintf(buf, "constraint not defined\n");
448
449         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478                                       struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481         struct regulator *regulator;
482         int uA = 0;
483
484         mutex_lock(&rdev->mutex);
485         list_for_each_entry(regulator, &rdev->consumer_list, list)
486                 uA += regulator->uA_load;
487         mutex_unlock(&rdev->mutex);
488         return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493                                       struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496         return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500                                   struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         switch (rdev->desc->type) {
505         case REGULATOR_VOLTAGE:
506                 return sprintf(buf, "voltage\n");
507         case REGULATOR_CURRENT:
508                 return sprintf(buf, "current\n");
509         }
510         return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514                                 struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521                 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531                 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541                 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return regulator_print_opmode(buf,
549                 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552                 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555                                 struct device_attribute *attr, char *buf)
556 {
557         struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559         return regulator_print_opmode(buf,
560                 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563                 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566                                 struct device_attribute *attr, char *buf)
567 {
568         struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570         return regulator_print_opmode(buf,
571                 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574                 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577                                    struct device_attribute *attr, char *buf)
578 {
579         struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581         return regulator_print_state(buf,
582                         rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585                 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588                                    struct device_attribute *attr, char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592         return regulator_print_state(buf,
593                         rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596                 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599                                    struct device_attribute *attr, char *buf)
600 {
601         struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603         return regulator_print_state(buf,
604                         rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607                 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610                                      struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613         const char *report;
614         bool bypass;
615         int ret;
616
617         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619         if (ret != 0)
620                 report = "unknown";
621         else if (bypass)
622                 report = "enabled";
623         else
624                 report = "disabled";
625
626         return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629                    regulator_bypass_show, NULL);
630
631 /*
632  * These are the only attributes are present for all regulators.
633  * Other attributes are a function of regulator functionality.
634  */
635 static struct device_attribute regulator_dev_attrs[] = {
636         __ATTR(name, 0444, regulator_name_show, NULL),
637         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638         __ATTR(type, 0444, regulator_type_show, NULL),
639         __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644         struct regulator_dev *rdev = dev_get_drvdata(dev);
645         kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649         .name = "regulator",
650         .dev_release = regulator_dev_release,
651         .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655  * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658         struct regulator *sibling;
659         int current_uA = 0, output_uV, input_uV, err;
660         unsigned int mode;
661
662         err = regulator_check_drms(rdev);
663         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664             (!rdev->desc->ops->get_voltage &&
665              !rdev->desc->ops->get_voltage_sel) ||
666             !rdev->desc->ops->set_mode)
667                 return;
668
669         /* get output voltage */
670         output_uV = _regulator_get_voltage(rdev);
671         if (output_uV <= 0)
672                 return;
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0)
681                 return;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         /* now get the optimum mode for our new total regulator load */
688         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689                                                   output_uV, current_uA);
690
691         /* check the new mode is allowed */
692         err = regulator_mode_constrain(rdev, &mode);
693         if (err == 0)
694                 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698         struct regulator_state *rstate)
699 {
700         int ret = 0;
701
702         /* If we have no suspend mode configration don't set anything;
703          * only warn if the driver implements set_suspend_voltage or
704          * set_suspend_mode callback.
705          */
706         if (!rstate->enabled && !rstate->disabled) {
707                 if (rdev->desc->ops->set_suspend_voltage ||
708                     rdev->desc->ops->set_suspend_mode)
709                         rdev_warn(rdev, "No configuration\n");
710                 return 0;
711         }
712
713         if (rstate->enabled && rstate->disabled) {
714                 rdev_err(rdev, "invalid configuration\n");
715                 return -EINVAL;
716         }
717
718         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719                 ret = rdev->desc->ops->set_suspend_enable(rdev);
720         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721                 ret = rdev->desc->ops->set_suspend_disable(rdev);
722         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723                 ret = 0;
724
725         if (ret < 0) {
726                 rdev_err(rdev, "failed to enabled/disable\n");
727                 return ret;
728         }
729
730         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732                 if (ret < 0) {
733                         rdev_err(rdev, "failed to set voltage\n");
734                         return ret;
735                 }
736         }
737
738         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740                 if (ret < 0) {
741                         rdev_err(rdev, "failed to set mode\n");
742                         return ret;
743                 }
744         }
745         return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751         if (!rdev->constraints)
752                 return -EINVAL;
753
754         switch (state) {
755         case PM_SUSPEND_STANDBY:
756                 return suspend_set_state(rdev,
757                         &rdev->constraints->state_standby);
758         case PM_SUSPEND_MEM:
759                 return suspend_set_state(rdev,
760                         &rdev->constraints->state_mem);
761         case PM_SUSPEND_MAX:
762                 return suspend_set_state(rdev,
763                         &rdev->constraints->state_disk);
764         default:
765                 return -EINVAL;
766         }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771         struct regulation_constraints *constraints = rdev->constraints;
772         char buf[80] = "";
773         int count = 0;
774         int ret;
775
776         if (constraints->min_uV && constraints->max_uV) {
777                 if (constraints->min_uV == constraints->max_uV)
778                         count += sprintf(buf + count, "%d mV ",
779                                          constraints->min_uV / 1000);
780                 else
781                         count += sprintf(buf + count, "%d <--> %d mV ",
782                                          constraints->min_uV / 1000,
783                                          constraints->max_uV / 1000);
784         }
785
786         if (!constraints->min_uV ||
787             constraints->min_uV != constraints->max_uV) {
788                 ret = _regulator_get_voltage(rdev);
789                 if (ret > 0)
790                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
791         }
792
793         if (constraints->uV_offset)
794                 count += sprintf(buf, "%dmV offset ",
795                                  constraints->uV_offset / 1000);
796
797         if (constraints->min_uA && constraints->max_uA) {
798                 if (constraints->min_uA == constraints->max_uA)
799                         count += sprintf(buf + count, "%d mA ",
800                                          constraints->min_uA / 1000);
801                 else
802                         count += sprintf(buf + count, "%d <--> %d mA ",
803                                          constraints->min_uA / 1000,
804                                          constraints->max_uA / 1000);
805         }
806
807         if (!constraints->min_uA ||
808             constraints->min_uA != constraints->max_uA) {
809                 ret = _regulator_get_current_limit(rdev);
810                 if (ret > 0)
811                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
812         }
813
814         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815                 count += sprintf(buf + count, "fast ");
816         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817                 count += sprintf(buf + count, "normal ");
818         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819                 count += sprintf(buf + count, "idle ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821                 count += sprintf(buf + count, "standby");
822
823         if (!count)
824                 sprintf(buf, "no parameters");
825
826         rdev_info(rdev, "%s\n", buf);
827
828         if ((constraints->min_uV != constraints->max_uV) &&
829             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830                 rdev_warn(rdev,
831                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835         struct regulation_constraints *constraints)
836 {
837         struct regulator_ops *ops = rdev->desc->ops;
838         int ret;
839
840         /* do we need to apply the constraint voltage */
841         if (rdev->constraints->apply_uV &&
842             rdev->constraints->min_uV == rdev->constraints->max_uV) {
843                 ret = _regulator_do_set_voltage(rdev,
844                                                 rdev->constraints->min_uV,
845                                                 rdev->constraints->max_uV);
846                 if (ret < 0) {
847                         rdev_err(rdev, "failed to apply %duV constraint\n",
848                                  rdev->constraints->min_uV);
849                         return ret;
850                 }
851         }
852
853         /* constrain machine-level voltage specs to fit
854          * the actual range supported by this regulator.
855          */
856         if (ops->list_voltage && rdev->desc->n_voltages) {
857                 int     count = rdev->desc->n_voltages;
858                 int     i;
859                 int     min_uV = INT_MAX;
860                 int     max_uV = INT_MIN;
861                 int     cmin = constraints->min_uV;
862                 int     cmax = constraints->max_uV;
863
864                 /* it's safe to autoconfigure fixed-voltage supplies
865                    and the constraints are used by list_voltage. */
866                 if (count == 1 && !cmin) {
867                         cmin = 1;
868                         cmax = INT_MAX;
869                         constraints->min_uV = cmin;
870                         constraints->max_uV = cmax;
871                 }
872
873                 /* voltage constraints are optional */
874                 if ((cmin == 0) && (cmax == 0))
875                         return 0;
876
877                 /* else require explicit machine-level constraints */
878                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879                         rdev_err(rdev, "invalid voltage constraints\n");
880                         return -EINVAL;
881                 }
882
883                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884                 for (i = 0; i < count; i++) {
885                         int     value;
886
887                         value = ops->list_voltage(rdev, i);
888                         if (value <= 0)
889                                 continue;
890
891                         /* maybe adjust [min_uV..max_uV] */
892                         if (value >= cmin && value < min_uV)
893                                 min_uV = value;
894                         if (value <= cmax && value > max_uV)
895                                 max_uV = value;
896                 }
897
898                 /* final: [min_uV..max_uV] valid iff constraints valid */
899                 if (max_uV < min_uV) {
900                         rdev_err(rdev,
901                                  "unsupportable voltage constraints %u-%uuV\n",
902                                  min_uV, max_uV);
903                         return -EINVAL;
904                 }
905
906                 /* use regulator's subset of machine constraints */
907                 if (constraints->min_uV < min_uV) {
908                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909                                  constraints->min_uV, min_uV);
910                         constraints->min_uV = min_uV;
911                 }
912                 if (constraints->max_uV > max_uV) {
913                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914                                  constraints->max_uV, max_uV);
915                         constraints->max_uV = max_uV;
916                 }
917         }
918
919         return 0;
920 }
921
922 /**
923  * set_machine_constraints - sets regulator constraints
924  * @rdev: regulator source
925  * @constraints: constraints to apply
926  *
927  * Allows platform initialisation code to define and constrain
928  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
929  * Constraints *must* be set by platform code in order for some
930  * regulator operations to proceed i.e. set_voltage, set_current_limit,
931  * set_mode.
932  */
933 static int set_machine_constraints(struct regulator_dev *rdev,
934         const struct regulation_constraints *constraints)
935 {
936         int ret = 0;
937         struct regulator_ops *ops = rdev->desc->ops;
938
939         if (constraints)
940                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941                                             GFP_KERNEL);
942         else
943                 rdev->constraints = kzalloc(sizeof(*constraints),
944                                             GFP_KERNEL);
945         if (!rdev->constraints)
946                 return -ENOMEM;
947
948         ret = machine_constraints_voltage(rdev, rdev->constraints);
949         if (ret != 0)
950                 goto out;
951
952         /* do we need to setup our suspend state */
953         if (rdev->constraints->initial_state) {
954                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955                 if (ret < 0) {
956                         rdev_err(rdev, "failed to set suspend state\n");
957                         goto out;
958                 }
959         }
960
961         if (rdev->constraints->initial_mode) {
962                 if (!ops->set_mode) {
963                         rdev_err(rdev, "no set_mode operation\n");
964                         ret = -EINVAL;
965                         goto out;
966                 }
967
968                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969                 if (ret < 0) {
970                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971                         goto out;
972                 }
973         }
974
975         /* If the constraints say the regulator should be on at this point
976          * and we have control then make sure it is enabled.
977          */
978         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979             ops->enable) {
980                 ret = ops->enable(rdev);
981                 if (ret < 0) {
982                         rdev_err(rdev, "failed to enable\n");
983                         goto out;
984                 }
985         }
986
987         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989                 if (ret < 0) {
990                         rdev_err(rdev, "failed to set ramp_delay\n");
991                         goto out;
992                 }
993         }
994
995         print_constraints(rdev);
996         return 0;
997 out:
998         kfree(rdev->constraints);
999         rdev->constraints = NULL;
1000         return ret;
1001 }
1002
1003 /**
1004  * set_supply - set regulator supply regulator
1005  * @rdev: regulator name
1006  * @supply_rdev: supply regulator name
1007  *
1008  * Called by platform initialisation code to set the supply regulator for this
1009  * regulator. This ensures that a regulators supply will also be enabled by the
1010  * core if it's child is enabled.
1011  */
1012 static int set_supply(struct regulator_dev *rdev,
1013                       struct regulator_dev *supply_rdev)
1014 {
1015         int err;
1016
1017         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020         if (rdev->supply == NULL) {
1021                 err = -ENOMEM;
1022                 return err;
1023         }
1024         supply_rdev->open_count++;
1025
1026         return 0;
1027 }
1028
1029 /**
1030  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031  * @rdev:         regulator source
1032  * @consumer_dev_name: dev_name() string for device supply applies to
1033  * @supply:       symbolic name for supply
1034  *
1035  * Allows platform initialisation code to map physical regulator
1036  * sources to symbolic names for supplies for use by devices.  Devices
1037  * should use these symbolic names to request regulators, avoiding the
1038  * need to provide board-specific regulator names as platform data.
1039  */
1040 static int set_consumer_device_supply(struct regulator_dev *rdev,
1041                                       const char *consumer_dev_name,
1042                                       const char *supply)
1043 {
1044         struct regulator_map *node;
1045         int has_dev;
1046
1047         if (supply == NULL)
1048                 return -EINVAL;
1049
1050         if (consumer_dev_name != NULL)
1051                 has_dev = 1;
1052         else
1053                 has_dev = 0;
1054
1055         list_for_each_entry(node, &regulator_map_list, list) {
1056                 if (node->dev_name && consumer_dev_name) {
1057                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058                                 continue;
1059                 } else if (node->dev_name || consumer_dev_name) {
1060                         continue;
1061                 }
1062
1063                 if (strcmp(node->supply, supply) != 0)
1064                         continue;
1065
1066                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067                          consumer_dev_name,
1068                          dev_name(&node->regulator->dev),
1069                          node->regulator->desc->name,
1070                          supply,
1071                          dev_name(&rdev->dev), rdev_get_name(rdev));
1072                 return -EBUSY;
1073         }
1074
1075         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076         if (node == NULL)
1077                 return -ENOMEM;
1078
1079         node->regulator = rdev;
1080         node->supply = supply;
1081
1082         if (has_dev) {
1083                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084                 if (node->dev_name == NULL) {
1085                         kfree(node);
1086                         return -ENOMEM;
1087                 }
1088         }
1089
1090         list_add(&node->list, &regulator_map_list);
1091         return 0;
1092 }
1093
1094 static void unset_regulator_supplies(struct regulator_dev *rdev)
1095 {
1096         struct regulator_map *node, *n;
1097
1098         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099                 if (rdev == node->regulator) {
1100                         list_del(&node->list);
1101                         kfree(node->dev_name);
1102                         kfree(node);
1103                 }
1104         }
1105 }
1106
1107 #define REG_STR_SIZE    64
1108
1109 static struct regulator *create_regulator(struct regulator_dev *rdev,
1110                                           struct device *dev,
1111                                           const char *supply_name)
1112 {
1113         struct regulator *regulator;
1114         char buf[REG_STR_SIZE];
1115         int err, size;
1116
1117         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118         if (regulator == NULL)
1119                 return NULL;
1120
1121         mutex_lock(&rdev->mutex);
1122         regulator->rdev = rdev;
1123         list_add(&regulator->list, &rdev->consumer_list);
1124
1125         if (dev) {
1126                 regulator->dev = dev;
1127
1128                 /* Add a link to the device sysfs entry */
1129                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130                                  dev->kobj.name, supply_name);
1131                 if (size >= REG_STR_SIZE)
1132                         goto overflow_err;
1133
1134                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135                 if (regulator->supply_name == NULL)
1136                         goto overflow_err;
1137
1138                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139                                         buf);
1140                 if (err) {
1141                         rdev_warn(rdev, "could not add device link %s err %d\n",
1142                                   dev->kobj.name, err);
1143                         /* non-fatal */
1144                 }
1145         } else {
1146                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147                 if (regulator->supply_name == NULL)
1148                         goto overflow_err;
1149         }
1150
1151         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152                                                 rdev->debugfs);
1153         if (!regulator->debugfs) {
1154                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1155         } else {
1156                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157                                    &regulator->uA_load);
1158                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159                                    &regulator->min_uV);
1160                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161                                    &regulator->max_uV);
1162         }
1163
1164         /*
1165          * Check now if the regulator is an always on regulator - if
1166          * it is then we don't need to do nearly so much work for
1167          * enable/disable calls.
1168          */
1169         if (!_regulator_can_change_status(rdev) &&
1170             _regulator_is_enabled(rdev))
1171                 regulator->always_on = true;
1172
1173         mutex_unlock(&rdev->mutex);
1174         return regulator;
1175 overflow_err:
1176         list_del(&regulator->list);
1177         kfree(regulator);
1178         mutex_unlock(&rdev->mutex);
1179         return NULL;
1180 }
1181
1182 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183 {
1184         if (!rdev->desc->ops->enable_time)
1185                 return rdev->desc->enable_time;
1186         return rdev->desc->ops->enable_time(rdev);
1187 }
1188
1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190                                                   const char *supply,
1191                                                   int *ret)
1192 {
1193         struct regulator_dev *r;
1194         struct device_node *node;
1195         struct regulator_map *map;
1196         const char *devname = NULL;
1197
1198         /* first do a dt based lookup */
1199         if (dev && dev->of_node) {
1200                 node = of_get_regulator(dev, supply);
1201                 if (node) {
1202                         list_for_each_entry(r, &regulator_list, list)
1203                                 if (r->dev.parent &&
1204                                         node == r->dev.of_node)
1205                                         return r;
1206                 } else {
1207                         /*
1208                          * If we couldn't even get the node then it's
1209                          * not just that the device didn't register
1210                          * yet, there's no node and we'll never
1211                          * succeed.
1212                          */
1213                         *ret = -ENODEV;
1214                 }
1215         }
1216
1217         /* if not found, try doing it non-dt way */
1218         if (dev)
1219                 devname = dev_name(dev);
1220
1221         list_for_each_entry(r, &regulator_list, list)
1222                 if (strcmp(rdev_get_name(r), supply) == 0)
1223                         return r;
1224
1225         list_for_each_entry(map, &regulator_map_list, list) {
1226                 /* If the mapping has a device set up it must match */
1227                 if (map->dev_name &&
1228                     (!devname || strcmp(map->dev_name, devname)))
1229                         continue;
1230
1231                 if (strcmp(map->supply, supply) == 0)
1232                         return map->regulator;
1233         }
1234
1235
1236         return NULL;
1237 }
1238
1239 /* Internal regulator request function */
1240 static struct regulator *_regulator_get(struct device *dev, const char *id,
1241                                         int exclusive)
1242 {
1243         struct regulator_dev *rdev;
1244         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245         const char *devname = NULL;
1246         int ret = 0;
1247
1248         if (id == NULL) {
1249                 pr_err("get() with no identifier\n");
1250                 return regulator;
1251         }
1252
1253         if (dev)
1254                 devname = dev_name(dev);
1255
1256         mutex_lock(&regulator_list_mutex);
1257
1258         rdev = regulator_dev_lookup(dev, id, &ret);
1259         if (rdev)
1260                 goto found;
1261
1262         /*
1263          * If we have return value from dev_lookup fail, we do not expect to
1264          * succeed, so, quit with appropriate error value
1265          */
1266         if (ret) {
1267                 regulator = ERR_PTR(ret);
1268                 goto out;
1269         }
1270
1271         if (board_wants_dummy_regulator) {
1272                 rdev = dummy_regulator_rdev;
1273                 goto found;
1274         }
1275
1276 #ifdef CONFIG_REGULATOR_DUMMY
1277         if (!devname)
1278                 devname = "deviceless";
1279
1280         /* If the board didn't flag that it was fully constrained then
1281          * substitute in a dummy regulator so consumers can continue.
1282          */
1283         if (!has_full_constraints) {
1284                 pr_warn("%s supply %s not found, using dummy regulator\n",
1285                         devname, id);
1286                 rdev = dummy_regulator_rdev;
1287                 goto found;
1288         }
1289 #endif
1290
1291         mutex_unlock(&regulator_list_mutex);
1292         return regulator;
1293
1294 found:
1295         if (rdev->exclusive) {
1296                 regulator = ERR_PTR(-EPERM);
1297                 goto out;
1298         }
1299
1300         if (exclusive && rdev->open_count) {
1301                 regulator = ERR_PTR(-EBUSY);
1302                 goto out;
1303         }
1304
1305         if (!try_module_get(rdev->owner))
1306                 goto out;
1307
1308         regulator = create_regulator(rdev, dev, id);
1309         if (regulator == NULL) {
1310                 regulator = ERR_PTR(-ENOMEM);
1311                 module_put(rdev->owner);
1312                 goto out;
1313         }
1314
1315         rdev->open_count++;
1316         if (exclusive) {
1317                 rdev->exclusive = 1;
1318
1319                 ret = _regulator_is_enabled(rdev);
1320                 if (ret > 0)
1321                         rdev->use_count = 1;
1322                 else
1323                         rdev->use_count = 0;
1324         }
1325
1326 out:
1327         mutex_unlock(&regulator_list_mutex);
1328
1329         return regulator;
1330 }
1331
1332 /**
1333  * regulator_get - lookup and obtain a reference to a regulator.
1334  * @dev: device for regulator "consumer"
1335  * @id: Supply name or regulator ID.
1336  *
1337  * Returns a struct regulator corresponding to the regulator producer,
1338  * or IS_ERR() condition containing errno.
1339  *
1340  * Use of supply names configured via regulator_set_device_supply() is
1341  * strongly encouraged.  It is recommended that the supply name used
1342  * should match the name used for the supply and/or the relevant
1343  * device pins in the datasheet.
1344  */
1345 struct regulator *regulator_get(struct device *dev, const char *id)
1346 {
1347         return _regulator_get(dev, id, 0);
1348 }
1349 EXPORT_SYMBOL_GPL(regulator_get);
1350
1351 static void devm_regulator_release(struct device *dev, void *res)
1352 {
1353         regulator_put(*(struct regulator **)res);
1354 }
1355
1356 /**
1357  * devm_regulator_get - Resource managed regulator_get()
1358  * @dev: device for regulator "consumer"
1359  * @id: Supply name or regulator ID.
1360  *
1361  * Managed regulator_get(). Regulators returned from this function are
1362  * automatically regulator_put() on driver detach. See regulator_get() for more
1363  * information.
1364  */
1365 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366 {
1367         struct regulator **ptr, *regulator;
1368
1369         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370         if (!ptr)
1371                 return ERR_PTR(-ENOMEM);
1372
1373         regulator = regulator_get(dev, id);
1374         if (!IS_ERR(regulator)) {
1375                 *ptr = regulator;
1376                 devres_add(dev, ptr);
1377         } else {
1378                 devres_free(ptr);
1379         }
1380
1381         return regulator;
1382 }
1383 EXPORT_SYMBOL_GPL(devm_regulator_get);
1384
1385 /**
1386  * regulator_get_exclusive - obtain exclusive access to a regulator.
1387  * @dev: device for regulator "consumer"
1388  * @id: Supply name or regulator ID.
1389  *
1390  * Returns a struct regulator corresponding to the regulator producer,
1391  * or IS_ERR() condition containing errno.  Other consumers will be
1392  * unable to obtain this reference is held and the use count for the
1393  * regulator will be initialised to reflect the current state of the
1394  * regulator.
1395  *
1396  * This is intended for use by consumers which cannot tolerate shared
1397  * use of the regulator such as those which need to force the
1398  * regulator off for correct operation of the hardware they are
1399  * controlling.
1400  *
1401  * Use of supply names configured via regulator_set_device_supply() is
1402  * strongly encouraged.  It is recommended that the supply name used
1403  * should match the name used for the supply and/or the relevant
1404  * device pins in the datasheet.
1405  */
1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407 {
1408         return _regulator_get(dev, id, 1);
1409 }
1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411
1412 /* Locks held by regulator_put() */
1413 static void _regulator_put(struct regulator *regulator)
1414 {
1415         struct regulator_dev *rdev;
1416
1417         if (regulator == NULL || IS_ERR(regulator))
1418                 return;
1419
1420         rdev = regulator->rdev;
1421
1422         debugfs_remove_recursive(regulator->debugfs);
1423
1424         /* remove any sysfs entries */
1425         if (regulator->dev)
1426                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427         kfree(regulator->supply_name);
1428         list_del(&regulator->list);
1429         kfree(regulator);
1430
1431         rdev->open_count--;
1432         rdev->exclusive = 0;
1433
1434         module_put(rdev->owner);
1435 }
1436
1437 /**
1438  * regulator_put - "free" the regulator source
1439  * @regulator: regulator source
1440  *
1441  * Note: drivers must ensure that all regulator_enable calls made on this
1442  * regulator source are balanced by regulator_disable calls prior to calling
1443  * this function.
1444  */
1445 void regulator_put(struct regulator *regulator)
1446 {
1447         mutex_lock(&regulator_list_mutex);
1448         _regulator_put(regulator);
1449         mutex_unlock(&regulator_list_mutex);
1450 }
1451 EXPORT_SYMBOL_GPL(regulator_put);
1452
1453 static int devm_regulator_match(struct device *dev, void *res, void *data)
1454 {
1455         struct regulator **r = res;
1456         if (!r || !*r) {
1457                 WARN_ON(!r || !*r);
1458                 return 0;
1459         }
1460         return *r == data;
1461 }
1462
1463 /**
1464  * devm_regulator_put - Resource managed regulator_put()
1465  * @regulator: regulator to free
1466  *
1467  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468  * this function will not need to be called and the resource management
1469  * code will ensure that the resource is freed.
1470  */
1471 void devm_regulator_put(struct regulator *regulator)
1472 {
1473         int rc;
1474
1475         rc = devres_release(regulator->dev, devm_regulator_release,
1476                             devm_regulator_match, regulator);
1477         if (rc != 0)
1478                 WARN_ON(rc);
1479 }
1480 EXPORT_SYMBOL_GPL(devm_regulator_put);
1481
1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484                                 const struct regulator_config *config)
1485 {
1486         struct regulator_enable_gpio *pin;
1487         int ret;
1488
1489         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490                 if (pin->gpio == config->ena_gpio) {
1491                         rdev_dbg(rdev, "GPIO %d is already used\n",
1492                                 config->ena_gpio);
1493                         goto update_ena_gpio_to_rdev;
1494                 }
1495         }
1496
1497         ret = gpio_request_one(config->ena_gpio,
1498                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1499                                 rdev_get_name(rdev));
1500         if (ret)
1501                 return ret;
1502
1503         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504         if (pin == NULL) {
1505                 gpio_free(config->ena_gpio);
1506                 return -ENOMEM;
1507         }
1508
1509         pin->gpio = config->ena_gpio;
1510         pin->ena_gpio_invert = config->ena_gpio_invert;
1511         list_add(&pin->list, &regulator_ena_gpio_list);
1512
1513 update_ena_gpio_to_rdev:
1514         pin->request_count++;
1515         rdev->ena_pin = pin;
1516         return 0;
1517 }
1518
1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520 {
1521         struct regulator_enable_gpio *pin, *n;
1522
1523         if (!rdev->ena_pin)
1524                 return;
1525
1526         /* Free the GPIO only in case of no use */
1527         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528                 if (pin->gpio == rdev->ena_pin->gpio) {
1529                         if (pin->request_count <= 1) {
1530                                 pin->request_count = 0;
1531                                 gpio_free(pin->gpio);
1532                                 list_del(&pin->list);
1533                                 kfree(pin);
1534                         } else {
1535                                 pin->request_count--;
1536                         }
1537                 }
1538         }
1539 }
1540
1541 /**
1542  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1543  * @rdev: regulator_dev structure
1544  * @enable: enable GPIO at initial use?
1545  *
1546  * GPIO is enabled in case of initial use. (enable_count is 0)
1547  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1548  */
1549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1550 {
1551         struct regulator_enable_gpio *pin = rdev->ena_pin;
1552
1553         if (!pin)
1554                 return -EINVAL;
1555
1556         if (enable) {
1557                 /* Enable GPIO at initial use */
1558                 if (pin->enable_count == 0)
1559                         gpio_set_value_cansleep(pin->gpio,
1560                                                 !pin->ena_gpio_invert);
1561
1562                 pin->enable_count++;
1563         } else {
1564                 if (pin->enable_count > 1) {
1565                         pin->enable_count--;
1566                         return 0;
1567                 }
1568
1569                 /* Disable GPIO if not used */
1570                 if (pin->enable_count <= 1) {
1571                         gpio_set_value_cansleep(pin->gpio,
1572                                                 pin->ena_gpio_invert);
1573                         pin->enable_count = 0;
1574                 }
1575         }
1576
1577         return 0;
1578 }
1579
1580 static int _regulator_do_enable(struct regulator_dev *rdev)
1581 {
1582         int ret, delay;
1583
1584         /* Query before enabling in case configuration dependent.  */
1585         ret = _regulator_get_enable_time(rdev);
1586         if (ret >= 0) {
1587                 delay = ret;
1588         } else {
1589                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1590                 delay = 0;
1591         }
1592
1593         trace_regulator_enable(rdev_get_name(rdev));
1594
1595         if (rdev->ena_pin) {
1596                 ret = regulator_ena_gpio_ctrl(rdev, true);
1597                 if (ret < 0)
1598                         return ret;
1599                 rdev->ena_gpio_state = 1;
1600         } else if (rdev->desc->ops->enable) {
1601                 ret = rdev->desc->ops->enable(rdev);
1602                 if (ret < 0)
1603                         return ret;
1604         } else {
1605                 return -EINVAL;
1606         }
1607
1608         /* Allow the regulator to ramp; it would be useful to extend
1609          * this for bulk operations so that the regulators can ramp
1610          * together.  */
1611         trace_regulator_enable_delay(rdev_get_name(rdev));
1612
1613         if (delay >= 1000) {
1614                 mdelay(delay / 1000);
1615                 udelay(delay % 1000);
1616         } else if (delay) {
1617                 udelay(delay);
1618         }
1619
1620         trace_regulator_enable_complete(rdev_get_name(rdev));
1621
1622         return 0;
1623 }
1624
1625 /* locks held by regulator_enable() */
1626 static int _regulator_enable(struct regulator_dev *rdev)
1627 {
1628         int ret;
1629
1630         /* check voltage and requested load before enabling */
1631         if (rdev->constraints &&
1632             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1633                 drms_uA_update(rdev);
1634
1635         if (rdev->use_count == 0) {
1636                 /* The regulator may on if it's not switchable or left on */
1637                 ret = _regulator_is_enabled(rdev);
1638                 if (ret == -EINVAL || ret == 0) {
1639                         if (!_regulator_can_change_status(rdev))
1640                                 return -EPERM;
1641
1642                         ret = _regulator_do_enable(rdev);
1643                         if (ret < 0)
1644                                 return ret;
1645
1646                 } else if (ret < 0) {
1647                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1648                         return ret;
1649                 }
1650                 /* Fallthrough on positive return values - already enabled */
1651         }
1652
1653         rdev->use_count++;
1654
1655         return 0;
1656 }
1657
1658 /**
1659  * regulator_enable - enable regulator output
1660  * @regulator: regulator source
1661  *
1662  * Request that the regulator be enabled with the regulator output at
1663  * the predefined voltage or current value.  Calls to regulator_enable()
1664  * must be balanced with calls to regulator_disable().
1665  *
1666  * NOTE: the output value can be set by other drivers, boot loader or may be
1667  * hardwired in the regulator.
1668  */
1669 int regulator_enable(struct regulator *regulator)
1670 {
1671         struct regulator_dev *rdev = regulator->rdev;
1672         int ret = 0;
1673
1674         if (regulator->always_on)
1675                 return 0;
1676
1677         if (rdev->supply) {
1678                 ret = regulator_enable(rdev->supply);
1679                 if (ret != 0)
1680                         return ret;
1681         }
1682
1683         mutex_lock(&rdev->mutex);
1684         ret = _regulator_enable(rdev);
1685         mutex_unlock(&rdev->mutex);
1686
1687         if (ret != 0 && rdev->supply)
1688                 regulator_disable(rdev->supply);
1689
1690         return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(regulator_enable);
1693
1694 static int _regulator_do_disable(struct regulator_dev *rdev)
1695 {
1696         int ret;
1697
1698         trace_regulator_disable(rdev_get_name(rdev));
1699
1700         if (rdev->ena_pin) {
1701                 ret = regulator_ena_gpio_ctrl(rdev, false);
1702                 if (ret < 0)
1703                         return ret;
1704                 rdev->ena_gpio_state = 0;
1705
1706         } else if (rdev->desc->ops->disable) {
1707                 ret = rdev->desc->ops->disable(rdev);
1708                 if (ret != 0)
1709                         return ret;
1710         }
1711
1712         trace_regulator_disable_complete(rdev_get_name(rdev));
1713
1714         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1715                              NULL);
1716         return 0;
1717 }
1718
1719 /* locks held by regulator_disable() */
1720 static int _regulator_disable(struct regulator_dev *rdev)
1721 {
1722         int ret = 0;
1723
1724         if (WARN(rdev->use_count <= 0,
1725                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1726                 return -EIO;
1727
1728         /* are we the last user and permitted to disable ? */
1729         if (rdev->use_count == 1 &&
1730             (rdev->constraints && !rdev->constraints->always_on)) {
1731
1732                 /* we are last user */
1733                 if (_regulator_can_change_status(rdev)) {
1734                         ret = _regulator_do_disable(rdev);
1735                         if (ret < 0) {
1736                                 rdev_err(rdev, "failed to disable\n");
1737                                 return ret;
1738                         }
1739                 }
1740
1741                 rdev->use_count = 0;
1742         } else if (rdev->use_count > 1) {
1743
1744                 if (rdev->constraints &&
1745                         (rdev->constraints->valid_ops_mask &
1746                         REGULATOR_CHANGE_DRMS))
1747                         drms_uA_update(rdev);
1748
1749                 rdev->use_count--;
1750         }
1751
1752         return ret;
1753 }
1754
1755 /**
1756  * regulator_disable - disable regulator output
1757  * @regulator: regulator source
1758  *
1759  * Disable the regulator output voltage or current.  Calls to
1760  * regulator_enable() must be balanced with calls to
1761  * regulator_disable().
1762  *
1763  * NOTE: this will only disable the regulator output if no other consumer
1764  * devices have it enabled, the regulator device supports disabling and
1765  * machine constraints permit this operation.
1766  */
1767 int regulator_disable(struct regulator *regulator)
1768 {
1769         struct regulator_dev *rdev = regulator->rdev;
1770         int ret = 0;
1771
1772         if (regulator->always_on)
1773                 return 0;
1774
1775         mutex_lock(&rdev->mutex);
1776         ret = _regulator_disable(rdev);
1777         mutex_unlock(&rdev->mutex);
1778
1779         if (ret == 0 && rdev->supply)
1780                 regulator_disable(rdev->supply);
1781
1782         return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(regulator_disable);
1785
1786 /* locks held by regulator_force_disable() */
1787 static int _regulator_force_disable(struct regulator_dev *rdev)
1788 {
1789         int ret = 0;
1790
1791         /* force disable */
1792         if (rdev->desc->ops->disable) {
1793                 /* ah well, who wants to live forever... */
1794                 ret = rdev->desc->ops->disable(rdev);
1795                 if (ret < 0) {
1796                         rdev_err(rdev, "failed to force disable\n");
1797                         return ret;
1798                 }
1799                 /* notify other consumers that power has been forced off */
1800                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1801                         REGULATOR_EVENT_DISABLE, NULL);
1802         }
1803
1804         return ret;
1805 }
1806
1807 /**
1808  * regulator_force_disable - force disable regulator output
1809  * @regulator: regulator source
1810  *
1811  * Forcibly disable the regulator output voltage or current.
1812  * NOTE: this *will* disable the regulator output even if other consumer
1813  * devices have it enabled. This should be used for situations when device
1814  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1815  */
1816 int regulator_force_disable(struct regulator *regulator)
1817 {
1818         struct regulator_dev *rdev = regulator->rdev;
1819         int ret;
1820
1821         mutex_lock(&rdev->mutex);
1822         regulator->uA_load = 0;
1823         ret = _regulator_force_disable(regulator->rdev);
1824         mutex_unlock(&rdev->mutex);
1825
1826         if (rdev->supply)
1827                 while (rdev->open_count--)
1828                         regulator_disable(rdev->supply);
1829
1830         return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_force_disable);
1833
1834 static void regulator_disable_work(struct work_struct *work)
1835 {
1836         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1837                                                   disable_work.work);
1838         int count, i, ret;
1839
1840         mutex_lock(&rdev->mutex);
1841
1842         BUG_ON(!rdev->deferred_disables);
1843
1844         count = rdev->deferred_disables;
1845         rdev->deferred_disables = 0;
1846
1847         for (i = 0; i < count; i++) {
1848                 ret = _regulator_disable(rdev);
1849                 if (ret != 0)
1850                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1851         }
1852
1853         mutex_unlock(&rdev->mutex);
1854
1855         if (rdev->supply) {
1856                 for (i = 0; i < count; i++) {
1857                         ret = regulator_disable(rdev->supply);
1858                         if (ret != 0) {
1859                                 rdev_err(rdev,
1860                                          "Supply disable failed: %d\n", ret);
1861                         }
1862                 }
1863         }
1864 }
1865
1866 /**
1867  * regulator_disable_deferred - disable regulator output with delay
1868  * @regulator: regulator source
1869  * @ms: miliseconds until the regulator is disabled
1870  *
1871  * Execute regulator_disable() on the regulator after a delay.  This
1872  * is intended for use with devices that require some time to quiesce.
1873  *
1874  * NOTE: this will only disable the regulator output if no other consumer
1875  * devices have it enabled, the regulator device supports disabling and
1876  * machine constraints permit this operation.
1877  */
1878 int regulator_disable_deferred(struct regulator *regulator, int ms)
1879 {
1880         struct regulator_dev *rdev = regulator->rdev;
1881         int ret;
1882
1883         if (regulator->always_on)
1884                 return 0;
1885
1886         if (!ms)
1887                 return regulator_disable(regulator);
1888
1889         mutex_lock(&rdev->mutex);
1890         rdev->deferred_disables++;
1891         mutex_unlock(&rdev->mutex);
1892
1893         ret = schedule_delayed_work(&rdev->disable_work,
1894                                     msecs_to_jiffies(ms));
1895         if (ret < 0)
1896                 return ret;
1897         else
1898                 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1901
1902 /**
1903  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1904  *
1905  * @rdev: regulator to operate on
1906  *
1907  * Regulators that use regmap for their register I/O can set the
1908  * enable_reg and enable_mask fields in their descriptor and then use
1909  * this as their is_enabled operation, saving some code.
1910  */
1911 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1912 {
1913         unsigned int val;
1914         int ret;
1915
1916         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1917         if (ret != 0)
1918                 return ret;
1919
1920         if (rdev->desc->enable_is_inverted)
1921                 return (val & rdev->desc->enable_mask) == 0;
1922         else
1923                 return (val & rdev->desc->enable_mask) != 0;
1924 }
1925 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1926
1927 /**
1928  * regulator_enable_regmap - standard enable() for regmap users
1929  *
1930  * @rdev: regulator to operate on
1931  *
1932  * Regulators that use regmap for their register I/O can set the
1933  * enable_reg and enable_mask fields in their descriptor and then use
1934  * this as their enable() operation, saving some code.
1935  */
1936 int regulator_enable_regmap(struct regulator_dev *rdev)
1937 {
1938         unsigned int val;
1939
1940         if (rdev->desc->enable_is_inverted)
1941                 val = 0;
1942         else
1943                 val = rdev->desc->enable_mask;
1944
1945         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1946                                   rdev->desc->enable_mask, val);
1947 }
1948 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1949
1950 /**
1951  * regulator_disable_regmap - standard disable() for regmap users
1952  *
1953  * @rdev: regulator to operate on
1954  *
1955  * Regulators that use regmap for their register I/O can set the
1956  * enable_reg and enable_mask fields in their descriptor and then use
1957  * this as their disable() operation, saving some code.
1958  */
1959 int regulator_disable_regmap(struct regulator_dev *rdev)
1960 {
1961         unsigned int val;
1962
1963         if (rdev->desc->enable_is_inverted)
1964                 val = rdev->desc->enable_mask;
1965         else
1966                 val = 0;
1967
1968         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1969                                   rdev->desc->enable_mask, val);
1970 }
1971 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1972
1973 static int _regulator_is_enabled(struct regulator_dev *rdev)
1974 {
1975         /* A GPIO control always takes precedence */
1976         if (rdev->ena_pin)
1977                 return rdev->ena_gpio_state;
1978
1979         /* If we don't know then assume that the regulator is always on */
1980         if (!rdev->desc->ops->is_enabled)
1981                 return 1;
1982
1983         return rdev->desc->ops->is_enabled(rdev);
1984 }
1985
1986 /**
1987  * regulator_is_enabled - is the regulator output enabled
1988  * @regulator: regulator source
1989  *
1990  * Returns positive if the regulator driver backing the source/client
1991  * has requested that the device be enabled, zero if it hasn't, else a
1992  * negative errno code.
1993  *
1994  * Note that the device backing this regulator handle can have multiple
1995  * users, so it might be enabled even if regulator_enable() was never
1996  * called for this particular source.
1997  */
1998 int regulator_is_enabled(struct regulator *regulator)
1999 {
2000         int ret;
2001
2002         if (regulator->always_on)
2003                 return 1;
2004
2005         mutex_lock(&regulator->rdev->mutex);
2006         ret = _regulator_is_enabled(regulator->rdev);
2007         mutex_unlock(&regulator->rdev->mutex);
2008
2009         return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2012
2013 /**
2014  * regulator_can_change_voltage - check if regulator can change voltage
2015  * @regulator: regulator source
2016  *
2017  * Returns positive if the regulator driver backing the source/client
2018  * can change its voltage, false otherwise. Usefull for detecting fixed
2019  * or dummy regulators and disabling voltage change logic in the client
2020  * driver.
2021  */
2022 int regulator_can_change_voltage(struct regulator *regulator)
2023 {
2024         struct regulator_dev    *rdev = regulator->rdev;
2025
2026         if (rdev->constraints &&
2027             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2028                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2029                         return 1;
2030
2031                 if (rdev->desc->continuous_voltage_range &&
2032                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2033                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2034                         return 1;
2035         }
2036
2037         return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2040
2041 /**
2042  * regulator_count_voltages - count regulator_list_voltage() selectors
2043  * @regulator: regulator source
2044  *
2045  * Returns number of selectors, or negative errno.  Selectors are
2046  * numbered starting at zero, and typically correspond to bitfields
2047  * in hardware registers.
2048  */
2049 int regulator_count_voltages(struct regulator *regulator)
2050 {
2051         struct regulator_dev    *rdev = regulator->rdev;
2052
2053         return rdev->desc->n_voltages ? : -EINVAL;
2054 }
2055 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2056
2057 /**
2058  * regulator_list_voltage_linear - List voltages with simple calculation
2059  *
2060  * @rdev: Regulator device
2061  * @selector: Selector to convert into a voltage
2062  *
2063  * Regulators with a simple linear mapping between voltages and
2064  * selectors can set min_uV and uV_step in the regulator descriptor
2065  * and then use this function as their list_voltage() operation,
2066  */
2067 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2068                                   unsigned int selector)
2069 {
2070         if (selector >= rdev->desc->n_voltages)
2071                 return -EINVAL;
2072         if (selector < rdev->desc->linear_min_sel)
2073                 return 0;
2074
2075         selector -= rdev->desc->linear_min_sel;
2076
2077         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2080
2081 /**
2082  * regulator_list_voltage_table - List voltages with table based mapping
2083  *
2084  * @rdev: Regulator device
2085  * @selector: Selector to convert into a voltage
2086  *
2087  * Regulators with table based mapping between voltages and
2088  * selectors can set volt_table in the regulator descriptor
2089  * and then use this function as their list_voltage() operation.
2090  */
2091 int regulator_list_voltage_table(struct regulator_dev *rdev,
2092                                  unsigned int selector)
2093 {
2094         if (!rdev->desc->volt_table) {
2095                 BUG_ON(!rdev->desc->volt_table);
2096                 return -EINVAL;
2097         }
2098
2099         if (selector >= rdev->desc->n_voltages)
2100                 return -EINVAL;
2101
2102         return rdev->desc->volt_table[selector];
2103 }
2104 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2105
2106 /**
2107  * regulator_list_voltage - enumerate supported voltages
2108  * @regulator: regulator source
2109  * @selector: identify voltage to list
2110  * Context: can sleep
2111  *
2112  * Returns a voltage that can be passed to @regulator_set_voltage(),
2113  * zero if this selector code can't be used on this system, or a
2114  * negative errno.
2115  */
2116 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2117 {
2118         struct regulator_dev    *rdev = regulator->rdev;
2119         struct regulator_ops    *ops = rdev->desc->ops;
2120         int                     ret;
2121
2122         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2123                 return -EINVAL;
2124
2125         mutex_lock(&rdev->mutex);
2126         ret = ops->list_voltage(rdev, selector);
2127         mutex_unlock(&rdev->mutex);
2128
2129         if (ret > 0) {
2130                 if (ret < rdev->constraints->min_uV)
2131                         ret = 0;
2132                 else if (ret > rdev->constraints->max_uV)
2133                         ret = 0;
2134         }
2135
2136         return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2139
2140 /**
2141  * regulator_get_linear_step - return the voltage step size between VSEL values
2142  * @regulator: regulator source
2143  *
2144  * Returns the voltage step size between VSEL values for linear
2145  * regulators, or return 0 if the regulator isn't a linear regulator.
2146  */
2147 unsigned int regulator_get_linear_step(struct regulator *regulator)
2148 {
2149         struct regulator_dev *rdev = regulator->rdev;
2150
2151         return rdev->desc->uV_step;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2154
2155 /**
2156  * regulator_is_supported_voltage - check if a voltage range can be supported
2157  *
2158  * @regulator: Regulator to check.
2159  * @min_uV: Minimum required voltage in uV.
2160  * @max_uV: Maximum required voltage in uV.
2161  *
2162  * Returns a boolean or a negative error code.
2163  */
2164 int regulator_is_supported_voltage(struct regulator *regulator,
2165                                    int min_uV, int max_uV)
2166 {
2167         struct regulator_dev *rdev = regulator->rdev;
2168         int i, voltages, ret;
2169
2170         /* If we can't change voltage check the current voltage */
2171         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2172                 ret = regulator_get_voltage(regulator);
2173                 if (ret >= 0)
2174                         return (min_uV <= ret && ret <= max_uV);
2175                 else
2176                         return ret;
2177         }
2178
2179         /* Any voltage within constrains range is fine? */
2180         if (rdev->desc->continuous_voltage_range)
2181                 return min_uV >= rdev->constraints->min_uV &&
2182                                 max_uV <= rdev->constraints->max_uV;
2183
2184         ret = regulator_count_voltages(regulator);
2185         if (ret < 0)
2186                 return ret;
2187         voltages = ret;
2188
2189         for (i = 0; i < voltages; i++) {
2190                 ret = regulator_list_voltage(regulator, i);
2191
2192                 if (ret >= min_uV && ret <= max_uV)
2193                         return 1;
2194         }
2195
2196         return 0;
2197 }
2198 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2199
2200 /**
2201  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2202  *
2203  * @rdev: regulator to operate on
2204  *
2205  * Regulators that use regmap for their register I/O can set the
2206  * vsel_reg and vsel_mask fields in their descriptor and then use this
2207  * as their get_voltage_vsel operation, saving some code.
2208  */
2209 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2210 {
2211         unsigned int val;
2212         int ret;
2213
2214         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2215         if (ret != 0)
2216                 return ret;
2217
2218         val &= rdev->desc->vsel_mask;
2219         val >>= ffs(rdev->desc->vsel_mask) - 1;
2220
2221         return val;
2222 }
2223 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2224
2225 /**
2226  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2227  *
2228  * @rdev: regulator to operate on
2229  * @sel: Selector to set
2230  *
2231  * Regulators that use regmap for their register I/O can set the
2232  * vsel_reg and vsel_mask fields in their descriptor and then use this
2233  * as their set_voltage_vsel operation, saving some code.
2234  */
2235 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2236 {
2237         int ret;
2238
2239         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2240
2241         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2242                                   rdev->desc->vsel_mask, sel);
2243         if (ret)
2244                 return ret;
2245
2246         if (rdev->desc->apply_bit)
2247                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2248                                          rdev->desc->apply_bit,
2249                                          rdev->desc->apply_bit);
2250         return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2253
2254 /**
2255  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2256  *
2257  * @rdev: Regulator to operate on
2258  * @min_uV: Lower bound for voltage
2259  * @max_uV: Upper bound for voltage
2260  *
2261  * Drivers implementing set_voltage_sel() and list_voltage() can use
2262  * this as their map_voltage() operation.  It will find a suitable
2263  * voltage by calling list_voltage() until it gets something in bounds
2264  * for the requested voltages.
2265  */
2266 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2267                                   int min_uV, int max_uV)
2268 {
2269         int best_val = INT_MAX;
2270         int selector = 0;
2271         int i, ret;
2272
2273         /* Find the smallest voltage that falls within the specified
2274          * range.
2275          */
2276         for (i = 0; i < rdev->desc->n_voltages; i++) {
2277                 ret = rdev->desc->ops->list_voltage(rdev, i);
2278                 if (ret < 0)
2279                         continue;
2280
2281                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2282                         best_val = ret;
2283                         selector = i;
2284                 }
2285         }
2286
2287         if (best_val != INT_MAX)
2288                 return selector;
2289         else
2290                 return -EINVAL;
2291 }
2292 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2293
2294 /**
2295  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2296  *
2297  * @rdev: Regulator to operate on
2298  * @min_uV: Lower bound for voltage
2299  * @max_uV: Upper bound for voltage
2300  *
2301  * Drivers that have ascendant voltage list can use this as their
2302  * map_voltage() operation.
2303  */
2304 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2305                                  int min_uV, int max_uV)
2306 {
2307         int i, ret;
2308
2309         for (i = 0; i < rdev->desc->n_voltages; i++) {
2310                 ret = rdev->desc->ops->list_voltage(rdev, i);
2311                 if (ret < 0)
2312                         continue;
2313
2314                 if (ret > max_uV)
2315                         break;
2316
2317                 if (ret >= min_uV && ret <= max_uV)
2318                         return i;
2319         }
2320
2321         return -EINVAL;
2322 }
2323 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2324
2325 /**
2326  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2327  *
2328  * @rdev: Regulator to operate on
2329  * @min_uV: Lower bound for voltage
2330  * @max_uV: Upper bound for voltage
2331  *
2332  * Drivers providing min_uV and uV_step in their regulator_desc can
2333  * use this as their map_voltage() operation.
2334  */
2335 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2336                                  int min_uV, int max_uV)
2337 {
2338         int ret, voltage;
2339
2340         /* Allow uV_step to be 0 for fixed voltage */
2341         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2342                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2343                         return 0;
2344                 else
2345                         return -EINVAL;
2346         }
2347
2348         if (!rdev->desc->uV_step) {
2349                 BUG_ON(!rdev->desc->uV_step);
2350                 return -EINVAL;
2351         }
2352
2353         if (min_uV < rdev->desc->min_uV)
2354                 min_uV = rdev->desc->min_uV;
2355
2356         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2357         if (ret < 0)
2358                 return ret;
2359
2360         ret += rdev->desc->linear_min_sel;
2361
2362         /* Map back into a voltage to verify we're still in bounds */
2363         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2364         if (voltage < min_uV || voltage > max_uV)
2365                 return -EINVAL;
2366
2367         return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2370
2371 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2372                                      int min_uV, int max_uV)
2373 {
2374         int ret;
2375         int delay = 0;
2376         int best_val = 0;
2377         unsigned int selector;
2378         int old_selector = -1;
2379
2380         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2381
2382         min_uV += rdev->constraints->uV_offset;
2383         max_uV += rdev->constraints->uV_offset;
2384
2385         /*
2386          * If we can't obtain the old selector there is not enough
2387          * info to call set_voltage_time_sel().
2388          */
2389         if (_regulator_is_enabled(rdev) &&
2390             rdev->desc->ops->set_voltage_time_sel &&
2391             rdev->desc->ops->get_voltage_sel) {
2392                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2393                 if (old_selector < 0)
2394                         return old_selector;
2395         }
2396
2397         if (rdev->desc->ops->set_voltage) {
2398                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2399                                                    &selector);
2400
2401                 if (ret >= 0) {
2402                         if (rdev->desc->ops->list_voltage)
2403                                 best_val = rdev->desc->ops->list_voltage(rdev,
2404                                                                          selector);
2405                         else
2406                                 best_val = _regulator_get_voltage(rdev);
2407                 }
2408
2409         } else if (rdev->desc->ops->set_voltage_sel) {
2410                 if (rdev->desc->ops->map_voltage) {
2411                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2412                                                            max_uV);
2413                 } else {
2414                         if (rdev->desc->ops->list_voltage ==
2415                             regulator_list_voltage_linear)
2416                                 ret = regulator_map_voltage_linear(rdev,
2417                                                                 min_uV, max_uV);
2418                         else
2419                                 ret = regulator_map_voltage_iterate(rdev,
2420                                                                 min_uV, max_uV);
2421                 }
2422
2423                 if (ret >= 0) {
2424                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2425                         if (min_uV <= best_val && max_uV >= best_val) {
2426                                 selector = ret;
2427                                 if (old_selector == selector)
2428                                         ret = 0;
2429                                 else
2430                                         ret = rdev->desc->ops->set_voltage_sel(
2431                                                                 rdev, ret);
2432                         } else {
2433                                 ret = -EINVAL;
2434                         }
2435                 }
2436         } else {
2437                 ret = -EINVAL;
2438         }
2439
2440         /* Call set_voltage_time_sel if successfully obtained old_selector */
2441         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2442             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2443
2444                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2445                                                 old_selector, selector);
2446                 if (delay < 0) {
2447                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2448                                   delay);
2449                         delay = 0;
2450                 }
2451
2452                 /* Insert any necessary delays */
2453                 if (delay >= 1000) {
2454                         mdelay(delay / 1000);
2455                         udelay(delay % 1000);
2456                 } else if (delay) {
2457                         udelay(delay);
2458                 }
2459         }
2460
2461         if (ret == 0 && best_val >= 0) {
2462                 unsigned long data = best_val;
2463
2464                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2465                                      (void *)data);
2466         }
2467
2468         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2469
2470         return ret;
2471 }
2472
2473 /**
2474  * regulator_set_voltage - set regulator output voltage
2475  * @regulator: regulator source
2476  * @min_uV: Minimum required voltage in uV
2477  * @max_uV: Maximum acceptable voltage in uV
2478  *
2479  * Sets a voltage regulator to the desired output voltage. This can be set
2480  * during any regulator state. IOW, regulator can be disabled or enabled.
2481  *
2482  * If the regulator is enabled then the voltage will change to the new value
2483  * immediately otherwise if the regulator is disabled the regulator will
2484  * output at the new voltage when enabled.
2485  *
2486  * NOTE: If the regulator is shared between several devices then the lowest
2487  * request voltage that meets the system constraints will be used.
2488  * Regulator system constraints must be set for this regulator before
2489  * calling this function otherwise this call will fail.
2490  */
2491 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2492 {
2493         struct regulator_dev *rdev = regulator->rdev;
2494         int ret = 0;
2495         int old_min_uV, old_max_uV;
2496
2497         mutex_lock(&rdev->mutex);
2498
2499         /* If we're setting the same range as last time the change
2500          * should be a noop (some cpufreq implementations use the same
2501          * voltage for multiple frequencies, for example).
2502          */
2503         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2504                 goto out;
2505
2506         /* sanity check */
2507         if (!rdev->desc->ops->set_voltage &&
2508             !rdev->desc->ops->set_voltage_sel) {
2509                 ret = -EINVAL;
2510                 goto out;
2511         }
2512
2513         /* constraints check */
2514         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2515         if (ret < 0)
2516                 goto out;
2517         
2518         /* restore original values in case of error */
2519         old_min_uV = regulator->min_uV;
2520         old_max_uV = regulator->max_uV;
2521         regulator->min_uV = min_uV;
2522         regulator->max_uV = max_uV;
2523
2524         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2525         if (ret < 0)
2526                 goto out2;
2527
2528         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2529         if (ret < 0)
2530                 goto out2;
2531         
2532 out:
2533         mutex_unlock(&rdev->mutex);
2534         return ret;
2535 out2:
2536         regulator->min_uV = old_min_uV;
2537         regulator->max_uV = old_max_uV;
2538         mutex_unlock(&rdev->mutex);
2539         return ret;
2540 }
2541 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2542
2543 /**
2544  * regulator_set_voltage_time - get raise/fall time
2545  * @regulator: regulator source
2546  * @old_uV: starting voltage in microvolts
2547  * @new_uV: target voltage in microvolts
2548  *
2549  * Provided with the starting and ending voltage, this function attempts to
2550  * calculate the time in microseconds required to rise or fall to this new
2551  * voltage.
2552  */
2553 int regulator_set_voltage_time(struct regulator *regulator,
2554                                int old_uV, int new_uV)
2555 {
2556         struct regulator_dev    *rdev = regulator->rdev;
2557         struct regulator_ops    *ops = rdev->desc->ops;
2558         int old_sel = -1;
2559         int new_sel = -1;
2560         int voltage;
2561         int i;
2562
2563         /* Currently requires operations to do this */
2564         if (!ops->list_voltage || !ops->set_voltage_time_sel
2565             || !rdev->desc->n_voltages)
2566                 return -EINVAL;
2567
2568         for (i = 0; i < rdev->desc->n_voltages; i++) {
2569                 /* We only look for exact voltage matches here */
2570                 voltage = regulator_list_voltage(regulator, i);
2571                 if (voltage < 0)
2572                         return -EINVAL;
2573                 if (voltage == 0)
2574                         continue;
2575                 if (voltage == old_uV)
2576                         old_sel = i;
2577                 if (voltage == new_uV)
2578                         new_sel = i;
2579         }
2580
2581         if (old_sel < 0 || new_sel < 0)
2582                 return -EINVAL;
2583
2584         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2585 }
2586 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2587
2588 /**
2589  * regulator_set_voltage_time_sel - get raise/fall time
2590  * @rdev: regulator source device
2591  * @old_selector: selector for starting voltage
2592  * @new_selector: selector for target voltage
2593  *
2594  * Provided with the starting and target voltage selectors, this function
2595  * returns time in microseconds required to rise or fall to this new voltage
2596  *
2597  * Drivers providing ramp_delay in regulation_constraints can use this as their
2598  * set_voltage_time_sel() operation.
2599  */
2600 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2601                                    unsigned int old_selector,
2602                                    unsigned int new_selector)
2603 {
2604         unsigned int ramp_delay = 0;
2605         int old_volt, new_volt;
2606
2607         if (rdev->constraints->ramp_delay)
2608                 ramp_delay = rdev->constraints->ramp_delay;
2609         else if (rdev->desc->ramp_delay)
2610                 ramp_delay = rdev->desc->ramp_delay;
2611
2612         if (ramp_delay == 0) {
2613                 rdev_warn(rdev, "ramp_delay not set\n");
2614                 return 0;
2615         }
2616
2617         /* sanity check */
2618         if (!rdev->desc->ops->list_voltage)
2619                 return -EINVAL;
2620
2621         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2622         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2623
2624         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2627
2628 /**
2629  * regulator_sync_voltage - re-apply last regulator output voltage
2630  * @regulator: regulator source
2631  *
2632  * Re-apply the last configured voltage.  This is intended to be used
2633  * where some external control source the consumer is cooperating with
2634  * has caused the configured voltage to change.
2635  */
2636 int regulator_sync_voltage(struct regulator *regulator)
2637 {
2638         struct regulator_dev *rdev = regulator->rdev;
2639         int ret, min_uV, max_uV;
2640
2641         mutex_lock(&rdev->mutex);
2642
2643         if (!rdev->desc->ops->set_voltage &&
2644             !rdev->desc->ops->set_voltage_sel) {
2645                 ret = -EINVAL;
2646                 goto out;
2647         }
2648
2649         /* This is only going to work if we've had a voltage configured. */
2650         if (!regulator->min_uV && !regulator->max_uV) {
2651                 ret = -EINVAL;
2652                 goto out;
2653         }
2654
2655         min_uV = regulator->min_uV;
2656         max_uV = regulator->max_uV;
2657
2658         /* This should be a paranoia check... */
2659         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2660         if (ret < 0)
2661                 goto out;
2662
2663         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2664         if (ret < 0)
2665                 goto out;
2666
2667         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2668
2669 out:
2670         mutex_unlock(&rdev->mutex);
2671         return ret;
2672 }
2673 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2674
2675 static int _regulator_get_voltage(struct regulator_dev *rdev)
2676 {
2677         int sel, ret;
2678
2679         if (rdev->desc->ops->get_voltage_sel) {
2680                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2681                 if (sel < 0)
2682                         return sel;
2683                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2684         } else if (rdev->desc->ops->get_voltage) {
2685                 ret = rdev->desc->ops->get_voltage(rdev);
2686         } else if (rdev->desc->ops->list_voltage) {
2687                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2688         } else {
2689                 return -EINVAL;
2690         }
2691
2692         if (ret < 0)
2693                 return ret;
2694         return ret - rdev->constraints->uV_offset;
2695 }
2696
2697 /**
2698  * regulator_get_voltage - get regulator output voltage
2699  * @regulator: regulator source
2700  *
2701  * This returns the current regulator voltage in uV.
2702  *
2703  * NOTE: If the regulator is disabled it will return the voltage value. This
2704  * function should not be used to determine regulator state.
2705  */
2706 int regulator_get_voltage(struct regulator *regulator)
2707 {
2708         int ret;
2709
2710         mutex_lock(&regulator->rdev->mutex);
2711
2712         ret = _regulator_get_voltage(regulator->rdev);
2713
2714         mutex_unlock(&regulator->rdev->mutex);
2715
2716         return ret;
2717 }
2718 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2719
2720 /**
2721  * regulator_set_current_limit - set regulator output current limit
2722  * @regulator: regulator source
2723  * @min_uA: Minimum supported current in uA
2724  * @max_uA: Maximum supported current in uA
2725  *
2726  * Sets current sink to the desired output current. This can be set during
2727  * any regulator state. IOW, regulator can be disabled or enabled.
2728  *
2729  * If the regulator is enabled then the current will change to the new value
2730  * immediately otherwise if the regulator is disabled the regulator will
2731  * output at the new current when enabled.
2732  *
2733  * NOTE: Regulator system constraints must be set for this regulator before
2734  * calling this function otherwise this call will fail.
2735  */
2736 int regulator_set_current_limit(struct regulator *regulator,
2737                                int min_uA, int max_uA)
2738 {
2739         struct regulator_dev *rdev = regulator->rdev;
2740         int ret;
2741
2742         mutex_lock(&rdev->mutex);
2743
2744         /* sanity check */
2745         if (!rdev->desc->ops->set_current_limit) {
2746                 ret = -EINVAL;
2747                 goto out;
2748         }
2749
2750         /* constraints check */
2751         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2752         if (ret < 0)
2753                 goto out;
2754
2755         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2756 out:
2757         mutex_unlock(&rdev->mutex);
2758         return ret;
2759 }
2760 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2761
2762 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2763 {
2764         int ret;
2765
2766         mutex_lock(&rdev->mutex);
2767
2768         /* sanity check */
2769         if (!rdev->desc->ops->get_current_limit) {
2770                 ret = -EINVAL;
2771                 goto out;
2772         }
2773
2774         ret = rdev->desc->ops->get_current_limit(rdev);
2775 out:
2776         mutex_unlock(&rdev->mutex);
2777         return ret;
2778 }
2779
2780 /**
2781  * regulator_get_current_limit - get regulator output current
2782  * @regulator: regulator source
2783  *
2784  * This returns the current supplied by the specified current sink in uA.
2785  *
2786  * NOTE: If the regulator is disabled it will return the current value. This
2787  * function should not be used to determine regulator state.
2788  */
2789 int regulator_get_current_limit(struct regulator *regulator)
2790 {
2791         return _regulator_get_current_limit(regulator->rdev);
2792 }
2793 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2794
2795 /**
2796  * regulator_set_mode - set regulator operating mode
2797  * @regulator: regulator source
2798  * @mode: operating mode - one of the REGULATOR_MODE constants
2799  *
2800  * Set regulator operating mode to increase regulator efficiency or improve
2801  * regulation performance.
2802  *
2803  * NOTE: Regulator system constraints must be set for this regulator before
2804  * calling this function otherwise this call will fail.
2805  */
2806 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2807 {
2808         struct regulator_dev *rdev = regulator->rdev;
2809         int ret;
2810         int regulator_curr_mode;
2811
2812         mutex_lock(&rdev->mutex);
2813
2814         /* sanity check */
2815         if (!rdev->desc->ops->set_mode) {
2816                 ret = -EINVAL;
2817                 goto out;
2818         }
2819
2820         /* return if the same mode is requested */
2821         if (rdev->desc->ops->get_mode) {
2822                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2823                 if (regulator_curr_mode == mode) {
2824                         ret = 0;
2825                         goto out;
2826                 }
2827         }
2828
2829         /* constraints check */
2830         ret = regulator_mode_constrain(rdev, &mode);
2831         if (ret < 0)
2832                 goto out;
2833
2834         ret = rdev->desc->ops->set_mode(rdev, mode);
2835 out:
2836         mutex_unlock(&rdev->mutex);
2837         return ret;
2838 }
2839 EXPORT_SYMBOL_GPL(regulator_set_mode);
2840
2841 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2842 {
2843         int ret;
2844
2845         mutex_lock(&rdev->mutex);
2846
2847         /* sanity check */
2848         if (!rdev->desc->ops->get_mode) {
2849                 ret = -EINVAL;
2850                 goto out;
2851         }
2852
2853         ret = rdev->desc->ops->get_mode(rdev);
2854 out:
2855         mutex_unlock(&rdev->mutex);
2856         return ret;
2857 }
2858
2859 /**
2860  * regulator_get_mode - get regulator operating mode
2861  * @regulator: regulator source
2862  *
2863  * Get the current regulator operating mode.
2864  */
2865 unsigned int regulator_get_mode(struct regulator *regulator)
2866 {
2867         return _regulator_get_mode(regulator->rdev);
2868 }
2869 EXPORT_SYMBOL_GPL(regulator_get_mode);
2870
2871 /**
2872  * regulator_set_optimum_mode - set regulator optimum operating mode
2873  * @regulator: regulator source
2874  * @uA_load: load current
2875  *
2876  * Notifies the regulator core of a new device load. This is then used by
2877  * DRMS (if enabled by constraints) to set the most efficient regulator
2878  * operating mode for the new regulator loading.
2879  *
2880  * Consumer devices notify their supply regulator of the maximum power
2881  * they will require (can be taken from device datasheet in the power
2882  * consumption tables) when they change operational status and hence power
2883  * state. Examples of operational state changes that can affect power
2884  * consumption are :-
2885  *
2886  *    o Device is opened / closed.
2887  *    o Device I/O is about to begin or has just finished.
2888  *    o Device is idling in between work.
2889  *
2890  * This information is also exported via sysfs to userspace.
2891  *
2892  * DRMS will sum the total requested load on the regulator and change
2893  * to the most efficient operating mode if platform constraints allow.
2894  *
2895  * Returns the new regulator mode or error.
2896  */
2897 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2898 {
2899         struct regulator_dev *rdev = regulator->rdev;
2900         struct regulator *consumer;
2901         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2902         unsigned int mode;
2903
2904         if (rdev->supply)
2905                 input_uV = regulator_get_voltage(rdev->supply);
2906
2907         mutex_lock(&rdev->mutex);
2908
2909         /*
2910          * first check to see if we can set modes at all, otherwise just
2911          * tell the consumer everything is OK.
2912          */
2913         regulator->uA_load = uA_load;
2914         ret = regulator_check_drms(rdev);
2915         if (ret < 0) {
2916                 ret = 0;
2917                 goto out;
2918         }
2919
2920         if (!rdev->desc->ops->get_optimum_mode)
2921                 goto out;
2922
2923         /*
2924          * we can actually do this so any errors are indicators of
2925          * potential real failure.
2926          */
2927         ret = -EINVAL;
2928
2929         if (!rdev->desc->ops->set_mode)
2930                 goto out;
2931
2932         /* get output voltage */
2933         output_uV = _regulator_get_voltage(rdev);
2934         if (output_uV <= 0) {
2935                 rdev_err(rdev, "invalid output voltage found\n");
2936                 goto out;
2937         }
2938
2939         /* No supply? Use constraint voltage */
2940         if (input_uV <= 0)
2941                 input_uV = rdev->constraints->input_uV;
2942         if (input_uV <= 0) {
2943                 rdev_err(rdev, "invalid input voltage found\n");
2944                 goto out;
2945         }
2946
2947         /* calc total requested load for this regulator */
2948         list_for_each_entry(consumer, &rdev->consumer_list, list)
2949                 total_uA_load += consumer->uA_load;
2950
2951         mode = rdev->desc->ops->get_optimum_mode(rdev,
2952                                                  input_uV, output_uV,
2953                                                  total_uA_load);
2954         ret = regulator_mode_constrain(rdev, &mode);
2955         if (ret < 0) {
2956                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2957                          total_uA_load, input_uV, output_uV);
2958                 goto out;
2959         }
2960
2961         ret = rdev->desc->ops->set_mode(rdev, mode);
2962         if (ret < 0) {
2963                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2964                 goto out;
2965         }
2966         ret = mode;
2967 out:
2968         mutex_unlock(&rdev->mutex);
2969         return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2972
2973 /**
2974  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2975  *
2976  * @rdev: device to operate on.
2977  * @enable: state to set.
2978  */
2979 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2980 {
2981         unsigned int val;
2982
2983         if (enable)
2984                 val = rdev->desc->bypass_mask;
2985         else
2986                 val = 0;
2987
2988         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2989                                   rdev->desc->bypass_mask, val);
2990 }
2991 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2992
2993 /**
2994  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2995  *
2996  * @rdev: device to operate on.
2997  * @enable: current state.
2998  */
2999 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
3000 {
3001         unsigned int val;
3002         int ret;
3003
3004         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
3005         if (ret != 0)
3006                 return ret;
3007
3008         *enable = val & rdev->desc->bypass_mask;
3009
3010         return 0;
3011 }
3012 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3013
3014 /**
3015  * regulator_allow_bypass - allow the regulator to go into bypass mode
3016  *
3017  * @regulator: Regulator to configure
3018  * @enable: enable or disable bypass mode
3019  *
3020  * Allow the regulator to go into bypass mode if all other consumers
3021  * for the regulator also enable bypass mode and the machine
3022  * constraints allow this.  Bypass mode means that the regulator is
3023  * simply passing the input directly to the output with no regulation.
3024  */
3025 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3026 {
3027         struct regulator_dev *rdev = regulator->rdev;
3028         int ret = 0;
3029
3030         if (!rdev->desc->ops->set_bypass)
3031                 return 0;
3032
3033         if (rdev->constraints &&
3034             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3035                 return 0;
3036
3037         mutex_lock(&rdev->mutex);
3038
3039         if (enable && !regulator->bypass) {
3040                 rdev->bypass_count++;
3041
3042                 if (rdev->bypass_count == rdev->open_count) {
3043                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3044                         if (ret != 0)
3045                                 rdev->bypass_count--;
3046                 }
3047
3048         } else if (!enable && regulator->bypass) {
3049                 rdev->bypass_count--;
3050
3051                 if (rdev->bypass_count != rdev->open_count) {
3052                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3053                         if (ret != 0)
3054                                 rdev->bypass_count++;
3055                 }
3056         }
3057
3058         if (ret == 0)
3059                 regulator->bypass = enable;
3060
3061         mutex_unlock(&rdev->mutex);
3062
3063         return ret;
3064 }
3065 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3066
3067 /**
3068  * regulator_register_notifier - register regulator event notifier
3069  * @regulator: regulator source
3070  * @nb: notifier block
3071  *
3072  * Register notifier block to receive regulator events.
3073  */
3074 int regulator_register_notifier(struct regulator *regulator,
3075                               struct notifier_block *nb)
3076 {
3077         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3078                                                 nb);
3079 }
3080 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3081
3082 /**
3083  * regulator_unregister_notifier - unregister regulator event notifier
3084  * @regulator: regulator source
3085  * @nb: notifier block
3086  *
3087  * Unregister regulator event notifier block.
3088  */
3089 int regulator_unregister_notifier(struct regulator *regulator,
3090                                 struct notifier_block *nb)
3091 {
3092         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3093                                                   nb);
3094 }
3095 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3096
3097 /* notify regulator consumers and downstream regulator consumers.
3098  * Note mutex must be held by caller.
3099  */
3100 static void _notifier_call_chain(struct regulator_dev *rdev,
3101                                   unsigned long event, void *data)
3102 {
3103         /* call rdev chain first */
3104         blocking_notifier_call_chain(&rdev->notifier, event, data);
3105 }
3106
3107 /**
3108  * regulator_bulk_get - get multiple regulator consumers
3109  *
3110  * @dev:           Device to supply
3111  * @num_consumers: Number of consumers to register
3112  * @consumers:     Configuration of consumers; clients are stored here.
3113  *
3114  * @return 0 on success, an errno on failure.
3115  *
3116  * This helper function allows drivers to get several regulator
3117  * consumers in one operation.  If any of the regulators cannot be
3118  * acquired then any regulators that were allocated will be freed
3119  * before returning to the caller.
3120  */
3121 int regulator_bulk_get(struct device *dev, int num_consumers,
3122                        struct regulator_bulk_data *consumers)
3123 {
3124         int i;
3125         int ret;
3126
3127         for (i = 0; i < num_consumers; i++)
3128                 consumers[i].consumer = NULL;
3129
3130         for (i = 0; i < num_consumers; i++) {
3131                 consumers[i].consumer = regulator_get(dev,
3132                                                       consumers[i].supply);
3133                 if (IS_ERR(consumers[i].consumer)) {
3134                         ret = PTR_ERR(consumers[i].consumer);
3135                         dev_err(dev, "Failed to get supply '%s': %d\n",
3136                                 consumers[i].supply, ret);
3137                         consumers[i].consumer = NULL;
3138                         goto err;
3139                 }
3140         }
3141
3142         return 0;
3143
3144 err:
3145         while (--i >= 0)
3146                 regulator_put(consumers[i].consumer);
3147
3148         return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3151
3152 /**
3153  * devm_regulator_bulk_get - managed get multiple regulator consumers
3154  *
3155  * @dev:           Device to supply
3156  * @num_consumers: Number of consumers to register
3157  * @consumers:     Configuration of consumers; clients are stored here.
3158  *
3159  * @return 0 on success, an errno on failure.
3160  *
3161  * This helper function allows drivers to get several regulator
3162  * consumers in one operation with management, the regulators will
3163  * automatically be freed when the device is unbound.  If any of the
3164  * regulators cannot be acquired then any regulators that were
3165  * allocated will be freed before returning to the caller.
3166  */
3167 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3168                             struct regulator_bulk_data *consumers)
3169 {
3170         int i;
3171         int ret;
3172
3173         for (i = 0; i < num_consumers; i++)
3174                 consumers[i].consumer = NULL;
3175
3176         for (i = 0; i < num_consumers; i++) {
3177                 consumers[i].consumer = devm_regulator_get(dev,
3178                                                            consumers[i].supply);
3179                 if (IS_ERR(consumers[i].consumer)) {
3180                         ret = PTR_ERR(consumers[i].consumer);
3181                         dev_err(dev, "Failed to get supply '%s': %d\n",
3182                                 consumers[i].supply, ret);
3183                         consumers[i].consumer = NULL;
3184                         goto err;
3185                 }
3186         }
3187
3188         return 0;
3189
3190 err:
3191         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3192                 devm_regulator_put(consumers[i].consumer);
3193
3194         return ret;
3195 }
3196 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3197
3198 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3199 {
3200         struct regulator_bulk_data *bulk = data;
3201
3202         bulk->ret = regulator_enable(bulk->consumer);
3203 }
3204
3205 /**
3206  * regulator_bulk_enable - enable multiple regulator consumers
3207  *
3208  * @num_consumers: Number of consumers
3209  * @consumers:     Consumer data; clients are stored here.
3210  * @return         0 on success, an errno on failure
3211  *
3212  * This convenience API allows consumers to enable multiple regulator
3213  * clients in a single API call.  If any consumers cannot be enabled
3214  * then any others that were enabled will be disabled again prior to
3215  * return.
3216  */
3217 int regulator_bulk_enable(int num_consumers,
3218                           struct regulator_bulk_data *consumers)
3219 {
3220         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3221         int i;
3222         int ret = 0;
3223
3224         for (i = 0; i < num_consumers; i++) {
3225                 if (consumers[i].consumer->always_on)
3226                         consumers[i].ret = 0;
3227                 else
3228                         async_schedule_domain(regulator_bulk_enable_async,
3229                                               &consumers[i], &async_domain);
3230         }
3231
3232         async_synchronize_full_domain(&async_domain);
3233
3234         /* If any consumer failed we need to unwind any that succeeded */
3235         for (i = 0; i < num_consumers; i++) {
3236                 if (consumers[i].ret != 0) {
3237                         ret = consumers[i].ret;
3238                         goto err;
3239                 }
3240         }
3241
3242         return 0;
3243
3244 err:
3245         for (i = 0; i < num_consumers; i++) {
3246                 if (consumers[i].ret < 0)
3247                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3248                                consumers[i].ret);
3249                 else
3250                         regulator_disable(consumers[i].consumer);
3251         }
3252
3253         return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3256
3257 /**
3258  * regulator_bulk_disable - disable multiple regulator consumers
3259  *
3260  * @num_consumers: Number of consumers
3261  * @consumers:     Consumer data; clients are stored here.
3262  * @return         0 on success, an errno on failure
3263  *
3264  * This convenience API allows consumers to disable multiple regulator
3265  * clients in a single API call.  If any consumers cannot be disabled
3266  * then any others that were disabled will be enabled again prior to
3267  * return.
3268  */
3269 int regulator_bulk_disable(int num_consumers,
3270                            struct regulator_bulk_data *consumers)
3271 {
3272         int i;
3273         int ret, r;
3274
3275         for (i = num_consumers - 1; i >= 0; --i) {
3276                 ret = regulator_disable(consumers[i].consumer);
3277                 if (ret != 0)
3278                         goto err;
3279         }
3280
3281         return 0;
3282
3283 err:
3284         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3285         for (++i; i < num_consumers; ++i) {
3286                 r = regulator_enable(consumers[i].consumer);
3287                 if (r != 0)
3288                         pr_err("Failed to reename %s: %d\n",
3289                                consumers[i].supply, r);
3290         }
3291
3292         return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3295
3296 /**
3297  * regulator_bulk_force_disable - force disable multiple regulator consumers
3298  *
3299  * @num_consumers: Number of consumers
3300  * @consumers:     Consumer data; clients are stored here.
3301  * @return         0 on success, an errno on failure
3302  *
3303  * This convenience API allows consumers to forcibly disable multiple regulator
3304  * clients in a single API call.
3305  * NOTE: This should be used for situations when device damage will
3306  * likely occur if the regulators are not disabled (e.g. over temp).
3307  * Although regulator_force_disable function call for some consumers can
3308  * return error numbers, the function is called for all consumers.
3309  */
3310 int regulator_bulk_force_disable(int num_consumers,
3311                            struct regulator_bulk_data *consumers)
3312 {
3313         int i;
3314         int ret;
3315
3316         for (i = 0; i < num_consumers; i++)
3317                 consumers[i].ret =
3318                             regulator_force_disable(consumers[i].consumer);
3319
3320         for (i = 0; i < num_consumers; i++) {
3321                 if (consumers[i].ret != 0) {
3322                         ret = consumers[i].ret;
3323                         goto out;
3324                 }
3325         }
3326
3327         return 0;
3328 out:
3329         return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3332
3333 /**
3334  * regulator_bulk_free - free multiple regulator consumers
3335  *
3336  * @num_consumers: Number of consumers
3337  * @consumers:     Consumer data; clients are stored here.
3338  *
3339  * This convenience API allows consumers to free multiple regulator
3340  * clients in a single API call.
3341  */
3342 void regulator_bulk_free(int num_consumers,
3343                          struct regulator_bulk_data *consumers)
3344 {
3345         int i;
3346
3347         for (i = 0; i < num_consumers; i++) {
3348                 regulator_put(consumers[i].consumer);
3349                 consumers[i].consumer = NULL;
3350         }
3351 }
3352 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3353
3354 /**
3355  * regulator_notifier_call_chain - call regulator event notifier
3356  * @rdev: regulator source
3357  * @event: notifier block
3358  * @data: callback-specific data.
3359  *
3360  * Called by regulator drivers to notify clients a regulator event has
3361  * occurred. We also notify regulator clients downstream.
3362  * Note lock must be held by caller.
3363  */
3364 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3365                                   unsigned long event, void *data)
3366 {
3367         _notifier_call_chain(rdev, event, data);
3368         return NOTIFY_DONE;
3369
3370 }
3371 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3372
3373 /**
3374  * regulator_mode_to_status - convert a regulator mode into a status
3375  *
3376  * @mode: Mode to convert
3377  *
3378  * Convert a regulator mode into a status.
3379  */
3380 int regulator_mode_to_status(unsigned int mode)
3381 {
3382         switch (mode) {
3383         case REGULATOR_MODE_FAST:
3384                 return REGULATOR_STATUS_FAST;
3385         case REGULATOR_MODE_NORMAL:
3386                 return REGULATOR_STATUS_NORMAL;
3387         case REGULATOR_MODE_IDLE:
3388                 return REGULATOR_STATUS_IDLE;
3389         case REGULATOR_MODE_STANDBY:
3390                 return REGULATOR_STATUS_STANDBY;
3391         default:
3392                 return REGULATOR_STATUS_UNDEFINED;
3393         }
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3396
3397 /*
3398  * To avoid cluttering sysfs (and memory) with useless state, only
3399  * create attributes that can be meaningfully displayed.
3400  */
3401 static int add_regulator_attributes(struct regulator_dev *rdev)
3402 {
3403         struct device           *dev = &rdev->dev;
3404         struct regulator_ops    *ops = rdev->desc->ops;
3405         int                     status = 0;
3406
3407         /* some attributes need specific methods to be displayed */
3408         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3409             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3410             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3411                 status = device_create_file(dev, &dev_attr_microvolts);
3412                 if (status < 0)
3413                         return status;
3414         }
3415         if (ops->get_current_limit) {
3416                 status = device_create_file(dev, &dev_attr_microamps);
3417                 if (status < 0)
3418                         return status;
3419         }
3420         if (ops->get_mode) {
3421                 status = device_create_file(dev, &dev_attr_opmode);
3422                 if (status < 0)
3423                         return status;
3424         }
3425         if (rdev->ena_pin || ops->is_enabled) {
3426                 status = device_create_file(dev, &dev_attr_state);
3427                 if (status < 0)
3428                         return status;
3429         }
3430         if (ops->get_status) {
3431                 status = device_create_file(dev, &dev_attr_status);
3432                 if (status < 0)
3433                         return status;
3434         }
3435         if (ops->get_bypass) {
3436                 status = device_create_file(dev, &dev_attr_bypass);
3437                 if (status < 0)
3438                         return status;
3439         }
3440
3441         /* some attributes are type-specific */
3442         if (rdev->desc->type == REGULATOR_CURRENT) {
3443                 status = device_create_file(dev, &dev_attr_requested_microamps);
3444                 if (status < 0)
3445                         return status;
3446         }
3447
3448         /* all the other attributes exist to support constraints;
3449          * don't show them if there are no constraints, or if the
3450          * relevant supporting methods are missing.
3451          */
3452         if (!rdev->constraints)
3453                 return status;
3454
3455         /* constraints need specific supporting methods */
3456         if (ops->set_voltage || ops->set_voltage_sel) {
3457                 status = device_create_file(dev, &dev_attr_min_microvolts);
3458                 if (status < 0)
3459                         return status;
3460                 status = device_create_file(dev, &dev_attr_max_microvolts);
3461                 if (status < 0)
3462                         return status;
3463         }
3464         if (ops->set_current_limit) {
3465                 status = device_create_file(dev, &dev_attr_min_microamps);
3466                 if (status < 0)
3467                         return status;
3468                 status = device_create_file(dev, &dev_attr_max_microamps);
3469                 if (status < 0)
3470                         return status;
3471         }
3472
3473         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3474         if (status < 0)
3475                 return status;
3476         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3477         if (status < 0)
3478                 return status;
3479         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3480         if (status < 0)
3481                 return status;
3482
3483         if (ops->set_suspend_voltage) {
3484                 status = device_create_file(dev,
3485                                 &dev_attr_suspend_standby_microvolts);
3486                 if (status < 0)
3487                         return status;
3488                 status = device_create_file(dev,
3489                                 &dev_attr_suspend_mem_microvolts);
3490                 if (status < 0)
3491                         return status;
3492                 status = device_create_file(dev,
3493                                 &dev_attr_suspend_disk_microvolts);
3494                 if (status < 0)
3495                         return status;
3496         }
3497
3498         if (ops->set_suspend_mode) {
3499                 status = device_create_file(dev,
3500                                 &dev_attr_suspend_standby_mode);
3501                 if (status < 0)
3502                         return status;
3503                 status = device_create_file(dev,
3504                                 &dev_attr_suspend_mem_mode);
3505                 if (status < 0)
3506                         return status;
3507                 status = device_create_file(dev,
3508                                 &dev_attr_suspend_disk_mode);
3509                 if (status < 0)
3510                         return status;
3511         }
3512
3513         return status;
3514 }
3515
3516 static void rdev_init_debugfs(struct regulator_dev *rdev)
3517 {
3518         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3519         if (!rdev->debugfs) {
3520                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3521                 return;
3522         }
3523
3524         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3525                            &rdev->use_count);
3526         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3527                            &rdev->open_count);
3528         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3529                            &rdev->bypass_count);
3530 }
3531
3532 /**
3533  * regulator_register - register regulator
3534  * @regulator_desc: regulator to register
3535  * @config: runtime configuration for regulator
3536  *
3537  * Called by regulator drivers to register a regulator.
3538  * Returns a valid pointer to struct regulator_dev on success
3539  * or an ERR_PTR() on error.
3540  */
3541 struct regulator_dev *
3542 regulator_register(const struct regulator_desc *regulator_desc,
3543                    const struct regulator_config *config)
3544 {
3545         const struct regulation_constraints *constraints = NULL;
3546         const struct regulator_init_data *init_data;
3547         static atomic_t regulator_no = ATOMIC_INIT(0);
3548         struct regulator_dev *rdev;
3549         struct device *dev;
3550         int ret, i;
3551         const char *supply = NULL;
3552
3553         if (regulator_desc == NULL || config == NULL)
3554                 return ERR_PTR(-EINVAL);
3555
3556         dev = config->dev;
3557         WARN_ON(!dev);
3558
3559         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3560                 return ERR_PTR(-EINVAL);
3561
3562         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3563             regulator_desc->type != REGULATOR_CURRENT)
3564                 return ERR_PTR(-EINVAL);
3565
3566         /* Only one of each should be implemented */
3567         WARN_ON(regulator_desc->ops->get_voltage &&
3568                 regulator_desc->ops->get_voltage_sel);
3569         WARN_ON(regulator_desc->ops->set_voltage &&
3570                 regulator_desc->ops->set_voltage_sel);
3571
3572         /* If we're using selectors we must implement list_voltage. */
3573         if (regulator_desc->ops->get_voltage_sel &&
3574             !regulator_desc->ops->list_voltage) {
3575                 return ERR_PTR(-EINVAL);
3576         }
3577         if (regulator_desc->ops->set_voltage_sel &&
3578             !regulator_desc->ops->list_voltage) {
3579                 return ERR_PTR(-EINVAL);
3580         }
3581
3582         init_data = config->init_data;
3583
3584         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3585         if (rdev == NULL)
3586                 return ERR_PTR(-ENOMEM);
3587
3588         mutex_lock(&regulator_list_mutex);
3589
3590         mutex_init(&rdev->mutex);
3591         rdev->reg_data = config->driver_data;
3592         rdev->owner = regulator_desc->owner;
3593         rdev->desc = regulator_desc;
3594         if (config->regmap)
3595                 rdev->regmap = config->regmap;
3596         else if (dev_get_regmap(dev, NULL))
3597                 rdev->regmap = dev_get_regmap(dev, NULL);
3598         else if (dev->parent)
3599                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3600         INIT_LIST_HEAD(&rdev->consumer_list);
3601         INIT_LIST_HEAD(&rdev->list);
3602         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3603         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3604
3605         /* preform any regulator specific init */
3606         if (init_data && init_data->regulator_init) {
3607                 ret = init_data->regulator_init(rdev->reg_data);
3608                 if (ret < 0)
3609                         goto clean;
3610         }
3611
3612         /* register with sysfs */
3613         rdev->dev.class = &regulator_class;
3614         rdev->dev.of_node = config->of_node;
3615         rdev->dev.parent = dev;
3616         dev_set_name(&rdev->dev, "regulator.%d",
3617                      atomic_inc_return(&regulator_no) - 1);
3618         ret = device_register(&rdev->dev);
3619         if (ret != 0) {
3620                 put_device(&rdev->dev);
3621                 goto clean;
3622         }
3623
3624         dev_set_drvdata(&rdev->dev, rdev);
3625
3626         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3627                 ret = regulator_ena_gpio_request(rdev, config);
3628                 if (ret != 0) {
3629                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3630                                  config->ena_gpio, ret);
3631                         goto wash;
3632                 }
3633
3634                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3635                         rdev->ena_gpio_state = 1;
3636
3637                 if (config->ena_gpio_invert)
3638                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3639         }
3640
3641         /* set regulator constraints */
3642         if (init_data)
3643                 constraints = &init_data->constraints;
3644
3645         ret = set_machine_constraints(rdev, constraints);
3646         if (ret < 0)
3647                 goto scrub;
3648
3649         /* add attributes supported by this regulator */
3650         ret = add_regulator_attributes(rdev);
3651         if (ret < 0)
3652                 goto scrub;
3653
3654         if (init_data && init_data->supply_regulator)
3655                 supply = init_data->supply_regulator;
3656         else if (regulator_desc->supply_name)
3657                 supply = regulator_desc->supply_name;
3658
3659         if (supply) {
3660                 struct regulator_dev *r;
3661
3662                 r = regulator_dev_lookup(dev, supply, &ret);
3663
3664                 if (ret == -ENODEV) {
3665                         /*
3666                          * No supply was specified for this regulator and
3667                          * there will never be one.
3668                          */
3669                         ret = 0;
3670                         goto add_dev;
3671                 } else if (!r) {
3672                         dev_err(dev, "Failed to find supply %s\n", supply);
3673                         ret = -EPROBE_DEFER;
3674                         goto scrub;
3675                 }
3676
3677                 ret = set_supply(rdev, r);
3678                 if (ret < 0)
3679                         goto scrub;
3680
3681                 /* Enable supply if rail is enabled */
3682                 if (_regulator_is_enabled(rdev)) {
3683                         ret = regulator_enable(rdev->supply);
3684                         if (ret < 0)
3685                                 goto scrub;
3686                 }
3687         }
3688
3689 add_dev:
3690         /* add consumers devices */
3691         if (init_data) {
3692                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3693                         ret = set_consumer_device_supply(rdev,
3694                                 init_data->consumer_supplies[i].dev_name,
3695                                 init_data->consumer_supplies[i].supply);
3696                         if (ret < 0) {
3697                                 dev_err(dev, "Failed to set supply %s\n",
3698                                         init_data->consumer_supplies[i].supply);
3699                                 goto unset_supplies;
3700                         }
3701                 }
3702         }
3703
3704         list_add(&rdev->list, &regulator_list);
3705
3706         rdev_init_debugfs(rdev);
3707 out:
3708         mutex_unlock(&regulator_list_mutex);
3709         return rdev;
3710
3711 unset_supplies:
3712         unset_regulator_supplies(rdev);
3713
3714 scrub:
3715         if (rdev->supply)
3716                 _regulator_put(rdev->supply);
3717         regulator_ena_gpio_free(rdev);
3718         kfree(rdev->constraints);
3719 wash:
3720         device_unregister(&rdev->dev);
3721         /* device core frees rdev */
3722         rdev = ERR_PTR(ret);
3723         goto out;
3724
3725 clean:
3726         kfree(rdev);
3727         rdev = ERR_PTR(ret);
3728         goto out;
3729 }
3730 EXPORT_SYMBOL_GPL(regulator_register);
3731
3732 /**
3733  * regulator_unregister - unregister regulator
3734  * @rdev: regulator to unregister
3735  *
3736  * Called by regulator drivers to unregister a regulator.
3737  */
3738 void regulator_unregister(struct regulator_dev *rdev)
3739 {
3740         if (rdev == NULL)
3741                 return;
3742
3743         if (rdev->supply)
3744                 regulator_put(rdev->supply);
3745         mutex_lock(&regulator_list_mutex);
3746         debugfs_remove_recursive(rdev->debugfs);
3747         flush_work(&rdev->disable_work.work);
3748         WARN_ON(rdev->open_count);
3749         unset_regulator_supplies(rdev);
3750         list_del(&rdev->list);
3751         kfree(rdev->constraints);
3752         regulator_ena_gpio_free(rdev);
3753         device_unregister(&rdev->dev);
3754         mutex_unlock(&regulator_list_mutex);
3755 }
3756 EXPORT_SYMBOL_GPL(regulator_unregister);
3757
3758 /**
3759  * regulator_suspend_prepare - prepare regulators for system wide suspend
3760  * @state: system suspend state
3761  *
3762  * Configure each regulator with it's suspend operating parameters for state.
3763  * This will usually be called by machine suspend code prior to supending.
3764  */
3765 int regulator_suspend_prepare(suspend_state_t state)
3766 {
3767         struct regulator_dev *rdev;
3768         int ret = 0;
3769
3770         /* ON is handled by regulator active state */
3771         if (state == PM_SUSPEND_ON)
3772                 return -EINVAL;
3773
3774         mutex_lock(&regulator_list_mutex);
3775         list_for_each_entry(rdev, &regulator_list, list) {
3776
3777                 mutex_lock(&rdev->mutex);
3778                 ret = suspend_prepare(rdev, state);
3779                 mutex_unlock(&rdev->mutex);
3780
3781                 if (ret < 0) {
3782                         rdev_err(rdev, "failed to prepare\n");
3783                         goto out;
3784                 }
3785         }
3786 out:
3787         mutex_unlock(&regulator_list_mutex);
3788         return ret;
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3791
3792 /**
3793  * regulator_suspend_finish - resume regulators from system wide suspend
3794  *
3795  * Turn on regulators that might be turned off by regulator_suspend_prepare
3796  * and that should be turned on according to the regulators properties.
3797  */
3798 int regulator_suspend_finish(void)
3799 {
3800         struct regulator_dev *rdev;
3801         int ret = 0, error;
3802
3803         mutex_lock(&regulator_list_mutex);
3804         list_for_each_entry(rdev, &regulator_list, list) {
3805                 struct regulator_ops *ops = rdev->desc->ops;
3806
3807                 mutex_lock(&rdev->mutex);
3808                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3809                                 ops->enable) {
3810                         error = ops->enable(rdev);
3811                         if (error)
3812                                 ret = error;
3813                 } else {
3814                         if (!has_full_constraints)
3815                                 goto unlock;
3816                         if (!ops->disable)
3817                                 goto unlock;
3818                         if (!_regulator_is_enabled(rdev))
3819                                 goto unlock;
3820
3821                         error = ops->disable(rdev);
3822                         if (error)
3823                                 ret = error;
3824                 }
3825 unlock:
3826                 mutex_unlock(&rdev->mutex);
3827         }
3828         mutex_unlock(&regulator_list_mutex);
3829         return ret;
3830 }
3831 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3832
3833 /**
3834  * regulator_has_full_constraints - the system has fully specified constraints
3835  *
3836  * Calling this function will cause the regulator API to disable all
3837  * regulators which have a zero use count and don't have an always_on
3838  * constraint in a late_initcall.
3839  *
3840  * The intention is that this will become the default behaviour in a
3841  * future kernel release so users are encouraged to use this facility
3842  * now.
3843  */
3844 void regulator_has_full_constraints(void)
3845 {
3846         has_full_constraints = 1;
3847 }
3848 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3849
3850 /**
3851  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3852  *
3853  * Calling this function will cause the regulator API to provide a
3854  * dummy regulator to consumers if no physical regulator is found,
3855  * allowing most consumers to proceed as though a regulator were
3856  * configured.  This allows systems such as those with software
3857  * controllable regulators for the CPU core only to be brought up more
3858  * readily.
3859  */
3860 void regulator_use_dummy_regulator(void)
3861 {
3862         board_wants_dummy_regulator = true;
3863 }
3864 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3865
3866 /**
3867  * rdev_get_drvdata - get rdev regulator driver data
3868  * @rdev: regulator
3869  *
3870  * Get rdev regulator driver private data. This call can be used in the
3871  * regulator driver context.
3872  */
3873 void *rdev_get_drvdata(struct regulator_dev *rdev)
3874 {
3875         return rdev->reg_data;
3876 }
3877 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3878
3879 /**
3880  * regulator_get_drvdata - get regulator driver data
3881  * @regulator: regulator
3882  *
3883  * Get regulator driver private data. This call can be used in the consumer
3884  * driver context when non API regulator specific functions need to be called.
3885  */
3886 void *regulator_get_drvdata(struct regulator *regulator)
3887 {
3888         return regulator->rdev->reg_data;
3889 }
3890 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3891
3892 /**
3893  * regulator_set_drvdata - set regulator driver data
3894  * @regulator: regulator
3895  * @data: data
3896  */
3897 void regulator_set_drvdata(struct regulator *regulator, void *data)
3898 {
3899         regulator->rdev->reg_data = data;
3900 }
3901 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3902
3903 /**
3904  * regulator_get_id - get regulator ID
3905  * @rdev: regulator
3906  */
3907 int rdev_get_id(struct regulator_dev *rdev)
3908 {
3909         return rdev->desc->id;
3910 }
3911 EXPORT_SYMBOL_GPL(rdev_get_id);
3912
3913 struct device *rdev_get_dev(struct regulator_dev *rdev)
3914 {
3915         return &rdev->dev;
3916 }
3917 EXPORT_SYMBOL_GPL(rdev_get_dev);
3918
3919 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3920 {
3921         return reg_init_data->driver_data;
3922 }
3923 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3924
3925 #ifdef CONFIG_DEBUG_FS
3926 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3927                                     size_t count, loff_t *ppos)
3928 {
3929         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3930         ssize_t len, ret = 0;
3931         struct regulator_map *map;
3932
3933         if (!buf)
3934                 return -ENOMEM;
3935
3936         list_for_each_entry(map, &regulator_map_list, list) {
3937                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3938                                "%s -> %s.%s\n",
3939                                rdev_get_name(map->regulator), map->dev_name,
3940                                map->supply);
3941                 if (len >= 0)
3942                         ret += len;
3943                 if (ret > PAGE_SIZE) {
3944                         ret = PAGE_SIZE;
3945                         break;
3946                 }
3947         }
3948
3949         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3950
3951         kfree(buf);
3952
3953         return ret;
3954 }
3955 #endif
3956
3957 static const struct file_operations supply_map_fops = {
3958 #ifdef CONFIG_DEBUG_FS
3959         .read = supply_map_read_file,
3960         .llseek = default_llseek,
3961 #endif
3962 };
3963
3964 static int __init regulator_init(void)
3965 {
3966         int ret;
3967
3968         ret = class_register(&regulator_class);
3969
3970         debugfs_root = debugfs_create_dir("regulator", NULL);
3971         if (!debugfs_root)
3972                 pr_warn("regulator: Failed to create debugfs directory\n");
3973
3974         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3975                             &supply_map_fops);
3976
3977         regulator_dummy_init();
3978
3979         return ret;
3980 }
3981
3982 /* init early to allow our consumers to complete system booting */
3983 core_initcall(regulator_init);
3984
3985 static int __init regulator_init_complete(void)
3986 {
3987         struct regulator_dev *rdev;
3988         struct regulator_ops *ops;
3989         struct regulation_constraints *c;
3990         int enabled, ret;
3991
3992         /*
3993          * Since DT doesn't provide an idiomatic mechanism for
3994          * enabling full constraints and since it's much more natural
3995          * with DT to provide them just assume that a DT enabled
3996          * system has full constraints.
3997          */
3998         if (of_have_populated_dt())
3999                 has_full_constraints = true;
4000
4001         mutex_lock(&regulator_list_mutex);
4002
4003         /* If we have a full configuration then disable any regulators
4004          * which are not in use or always_on.  This will become the
4005          * default behaviour in the future.
4006          */
4007         list_for_each_entry(rdev, &regulator_list, list) {
4008                 ops = rdev->desc->ops;
4009                 c = rdev->constraints;
4010
4011                 if (!ops->disable || (c && c->always_on))
4012                         continue;
4013
4014                 mutex_lock(&rdev->mutex);
4015
4016                 if (rdev->use_count)
4017                         goto unlock;
4018
4019                 /* If we can't read the status assume it's on. */
4020                 if (ops->is_enabled)
4021                         enabled = ops->is_enabled(rdev);
4022                 else
4023                         enabled = 1;
4024
4025                 if (!enabled)
4026                         goto unlock;
4027
4028                 if (has_full_constraints) {
4029                         /* We log since this may kill the system if it
4030                          * goes wrong. */
4031                         rdev_info(rdev, "disabling\n");
4032                         ret = ops->disable(rdev);
4033                         if (ret != 0) {
4034                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4035                         }
4036                 } else {
4037                         /* The intention is that in future we will
4038                          * assume that full constraints are provided
4039                          * so warn even if we aren't going to do
4040                          * anything here.
4041                          */
4042                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4043                 }
4044
4045 unlock:
4046                 mutex_unlock(&rdev->mutex);
4047         }
4048
4049         mutex_unlock(&regulator_list_mutex);
4050
4051         return 0;
4052 }
4053 late_initcall(regulator_init_complete);