regulator: core: Add set_voltage_time op
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298         switch (*mode) {
299         case REGULATOR_MODE_FAST:
300         case REGULATOR_MODE_NORMAL:
301         case REGULATOR_MODE_IDLE:
302         case REGULATOR_MODE_STANDBY:
303                 break;
304         default:
305                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
306                 return -EINVAL;
307         }
308
309         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310                 rdev_err(rdev, "mode operation not allowed\n");
311                 return -EPERM;
312         }
313
314         /* The modes are bitmasks, the most power hungry modes having
315          * the lowest values. If the requested mode isn't supported
316          * try higher modes. */
317         while (*mode) {
318                 if (rdev->constraints->valid_modes_mask & *mode)
319                         return 0;
320                 *mode /= 2;
321         }
322
323         return -EINVAL;
324 }
325
326 static ssize_t regulator_uV_show(struct device *dev,
327                                 struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330         ssize_t ret;
331
332         mutex_lock(&rdev->mutex);
333         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334         mutex_unlock(&rdev->mutex);
335
336         return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339
340 static ssize_t regulator_uA_show(struct device *dev,
341                                 struct device_attribute *attr, char *buf)
342 {
343         struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350                          char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360         switch (mode) {
361         case REGULATOR_MODE_FAST:
362                 return sprintf(buf, "fast\n");
363         case REGULATOR_MODE_NORMAL:
364                 return sprintf(buf, "normal\n");
365         case REGULATOR_MODE_IDLE:
366                 return sprintf(buf, "idle\n");
367         case REGULATOR_MODE_STANDBY:
368                 return sprintf(buf, "standby\n");
369         }
370         return sprintf(buf, "unknown\n");
371 }
372
373 static ssize_t regulator_opmode_show(struct device *dev,
374                                     struct device_attribute *attr, char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384         if (state > 0)
385                 return sprintf(buf, "enabled\n");
386         else if (state == 0)
387                 return sprintf(buf, "disabled\n");
388         else
389                 return sprintf(buf, "unknown\n");
390 }
391
392 static ssize_t regulator_state_show(struct device *dev,
393                                    struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         ssize_t ret;
397
398         mutex_lock(&rdev->mutex);
399         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400         mutex_unlock(&rdev->mutex);
401
402         return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405
406 static ssize_t regulator_status_show(struct device *dev,
407                                    struct device_attribute *attr, char *buf)
408 {
409         struct regulator_dev *rdev = dev_get_drvdata(dev);
410         int status;
411         char *label;
412
413         status = rdev->desc->ops->get_status(rdev);
414         if (status < 0)
415                 return status;
416
417         switch (status) {
418         case REGULATOR_STATUS_OFF:
419                 label = "off";
420                 break;
421         case REGULATOR_STATUS_ON:
422                 label = "on";
423                 break;
424         case REGULATOR_STATUS_ERROR:
425                 label = "error";
426                 break;
427         case REGULATOR_STATUS_FAST:
428                 label = "fast";
429                 break;
430         case REGULATOR_STATUS_NORMAL:
431                 label = "normal";
432                 break;
433         case REGULATOR_STATUS_IDLE:
434                 label = "idle";
435                 break;
436         case REGULATOR_STATUS_STANDBY:
437                 label = "standby";
438                 break;
439         case REGULATOR_STATUS_BYPASS:
440                 label = "bypass";
441                 break;
442         case REGULATOR_STATUS_UNDEFINED:
443                 label = "undefined";
444                 break;
445         default:
446                 return -ERANGE;
447         }
448
449         return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452
453 static ssize_t regulator_min_uA_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464
465 static ssize_t regulator_max_uA_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476
477 static ssize_t regulator_min_uV_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488
489 static ssize_t regulator_max_uV_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500
501 static ssize_t regulator_total_uA_show(struct device *dev,
502                                       struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505         struct regulator *regulator;
506         int uA = 0;
507
508         mutex_lock(&rdev->mutex);
509         list_for_each_entry(regulator, &rdev->consumer_list, list)
510                 uA += regulator->uA_load;
511         mutex_unlock(&rdev->mutex);
512         return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517                               char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520         return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525                          char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         switch (rdev->desc->type) {
530         case REGULATOR_VOLTAGE:
531                 return sprintf(buf, "voltage\n");
532         case REGULATOR_CURRENT:
533                 return sprintf(buf, "current\n");
534         }
535         return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540                                 struct device_attribute *attr, char *buf)
541 {
542         struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547                 regulator_suspend_mem_uV_show, NULL);
548
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550                                 struct device_attribute *attr, char *buf)
551 {
552         struct regulator_dev *rdev = dev_get_drvdata(dev);
553
554         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557                 regulator_suspend_disk_uV_show, NULL);
558
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560                                 struct device_attribute *attr, char *buf)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567                 regulator_suspend_standby_uV_show, NULL);
568
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578                 regulator_suspend_mem_mode_show, NULL);
579
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581                                 struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_opmode(buf,
586                 rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589                 regulator_suspend_disk_mode_show, NULL);
590
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592                                 struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_opmode(buf,
597                 rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600                 regulator_suspend_standby_mode_show, NULL);
601
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611                 regulator_suspend_mem_state_show, NULL);
612
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614                                    struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617
618         return regulator_print_state(buf,
619                         rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622                 regulator_suspend_disk_state_show, NULL);
623
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625                                    struct device_attribute *attr, char *buf)
626 {
627         struct regulator_dev *rdev = dev_get_drvdata(dev);
628
629         return regulator_print_state(buf,
630                         rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633                 regulator_suspend_standby_state_show, NULL);
634
635 static ssize_t regulator_bypass_show(struct device *dev,
636                                      struct device_attribute *attr, char *buf)
637 {
638         struct regulator_dev *rdev = dev_get_drvdata(dev);
639         const char *report;
640         bool bypass;
641         int ret;
642
643         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644
645         if (ret != 0)
646                 report = "unknown";
647         else if (bypass)
648                 report = "enabled";
649         else
650                 report = "disabled";
651
652         return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655                    regulator_bypass_show, NULL);
656
657 /* Calculate the new optimum regulator operating mode based on the new total
658  * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661         struct regulator *sibling;
662         int current_uA = 0, output_uV, input_uV, err;
663         unsigned int mode;
664
665         lockdep_assert_held_once(&rdev->mutex);
666
667         /*
668          * first check to see if we can set modes at all, otherwise just
669          * tell the consumer everything is OK.
670          */
671         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672                 return 0;
673
674         if (!rdev->desc->ops->get_optimum_mode &&
675             !rdev->desc->ops->set_load)
676                 return 0;
677
678         if (!rdev->desc->ops->set_mode &&
679             !rdev->desc->ops->set_load)
680                 return -EINVAL;
681
682         /* get output voltage */
683         output_uV = _regulator_get_voltage(rdev);
684         if (output_uV <= 0) {
685                 rdev_err(rdev, "invalid output voltage found\n");
686                 return -EINVAL;
687         }
688
689         /* get input voltage */
690         input_uV = 0;
691         if (rdev->supply)
692                 input_uV = regulator_get_voltage(rdev->supply);
693         if (input_uV <= 0)
694                 input_uV = rdev->constraints->input_uV;
695         if (input_uV <= 0) {
696                 rdev_err(rdev, "invalid input voltage found\n");
697                 return -EINVAL;
698         }
699
700         /* calc total requested load */
701         list_for_each_entry(sibling, &rdev->consumer_list, list)
702                 current_uA += sibling->uA_load;
703
704         current_uA += rdev->constraints->system_load;
705
706         if (rdev->desc->ops->set_load) {
707                 /* set the optimum mode for our new total regulator load */
708                 err = rdev->desc->ops->set_load(rdev, current_uA);
709                 if (err < 0)
710                         rdev_err(rdev, "failed to set load %d\n", current_uA);
711         } else {
712                 /* now get the optimum mode for our new total regulator load */
713                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714                                                          output_uV, current_uA);
715
716                 /* check the new mode is allowed */
717                 err = regulator_mode_constrain(rdev, &mode);
718                 if (err < 0) {
719                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720                                  current_uA, input_uV, output_uV);
721                         return err;
722                 }
723
724                 err = rdev->desc->ops->set_mode(rdev, mode);
725                 if (err < 0)
726                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727         }
728
729         return err;
730 }
731
732 static int suspend_set_state(struct regulator_dev *rdev,
733         struct regulator_state *rstate)
734 {
735         int ret = 0;
736
737         /* If we have no suspend mode configration don't set anything;
738          * only warn if the driver implements set_suspend_voltage or
739          * set_suspend_mode callback.
740          */
741         if (!rstate->enabled && !rstate->disabled) {
742                 if (rdev->desc->ops->set_suspend_voltage ||
743                     rdev->desc->ops->set_suspend_mode)
744                         rdev_warn(rdev, "No configuration\n");
745                 return 0;
746         }
747
748         if (rstate->enabled && rstate->disabled) {
749                 rdev_err(rdev, "invalid configuration\n");
750                 return -EINVAL;
751         }
752
753         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754                 ret = rdev->desc->ops->set_suspend_enable(rdev);
755         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756                 ret = rdev->desc->ops->set_suspend_disable(rdev);
757         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758                 ret = 0;
759
760         if (ret < 0) {
761                 rdev_err(rdev, "failed to enabled/disable\n");
762                 return ret;
763         }
764
765         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767                 if (ret < 0) {
768                         rdev_err(rdev, "failed to set voltage\n");
769                         return ret;
770                 }
771         }
772
773         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775                 if (ret < 0) {
776                         rdev_err(rdev, "failed to set mode\n");
777                         return ret;
778                 }
779         }
780         return ret;
781 }
782
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786         if (!rdev->constraints)
787                 return -EINVAL;
788
789         switch (state) {
790         case PM_SUSPEND_STANDBY:
791                 return suspend_set_state(rdev,
792                         &rdev->constraints->state_standby);
793         case PM_SUSPEND_MEM:
794                 return suspend_set_state(rdev,
795                         &rdev->constraints->state_mem);
796         case PM_SUSPEND_MAX:
797                 return suspend_set_state(rdev,
798                         &rdev->constraints->state_disk);
799         default:
800                 return -EINVAL;
801         }
802 }
803
804 static void print_constraints(struct regulator_dev *rdev)
805 {
806         struct regulation_constraints *constraints = rdev->constraints;
807         char buf[160] = "";
808         size_t len = sizeof(buf) - 1;
809         int count = 0;
810         int ret;
811
812         if (constraints->min_uV && constraints->max_uV) {
813                 if (constraints->min_uV == constraints->max_uV)
814                         count += scnprintf(buf + count, len - count, "%d mV ",
815                                            constraints->min_uV / 1000);
816                 else
817                         count += scnprintf(buf + count, len - count,
818                                            "%d <--> %d mV ",
819                                            constraints->min_uV / 1000,
820                                            constraints->max_uV / 1000);
821         }
822
823         if (!constraints->min_uV ||
824             constraints->min_uV != constraints->max_uV) {
825                 ret = _regulator_get_voltage(rdev);
826                 if (ret > 0)
827                         count += scnprintf(buf + count, len - count,
828                                            "at %d mV ", ret / 1000);
829         }
830
831         if (constraints->uV_offset)
832                 count += scnprintf(buf + count, len - count, "%dmV offset ",
833                                    constraints->uV_offset / 1000);
834
835         if (constraints->min_uA && constraints->max_uA) {
836                 if (constraints->min_uA == constraints->max_uA)
837                         count += scnprintf(buf + count, len - count, "%d mA ",
838                                            constraints->min_uA / 1000);
839                 else
840                         count += scnprintf(buf + count, len - count,
841                                            "%d <--> %d mA ",
842                                            constraints->min_uA / 1000,
843                                            constraints->max_uA / 1000);
844         }
845
846         if (!constraints->min_uA ||
847             constraints->min_uA != constraints->max_uA) {
848                 ret = _regulator_get_current_limit(rdev);
849                 if (ret > 0)
850                         count += scnprintf(buf + count, len - count,
851                                            "at %d mA ", ret / 1000);
852         }
853
854         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855                 count += scnprintf(buf + count, len - count, "fast ");
856         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857                 count += scnprintf(buf + count, len - count, "normal ");
858         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859                 count += scnprintf(buf + count, len - count, "idle ");
860         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861                 count += scnprintf(buf + count, len - count, "standby");
862
863         if (!count)
864                 scnprintf(buf, len, "no parameters");
865
866         rdev_dbg(rdev, "%s\n", buf);
867
868         if ((constraints->min_uV != constraints->max_uV) &&
869             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870                 rdev_warn(rdev,
871                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 }
873
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875         struct regulation_constraints *constraints)
876 {
877         const struct regulator_ops *ops = rdev->desc->ops;
878         int ret;
879
880         /* do we need to apply the constraint voltage */
881         if (rdev->constraints->apply_uV &&
882             rdev->constraints->min_uV && rdev->constraints->max_uV) {
883                 int target_min, target_max;
884                 int current_uV = _regulator_get_voltage(rdev);
885                 if (current_uV < 0) {
886                         rdev_err(rdev,
887                                  "failed to get the current voltage(%d)\n",
888                                  current_uV);
889                         return current_uV;
890                 }
891
892                 /*
893                  * If we're below the minimum voltage move up to the
894                  * minimum voltage, if we're above the maximum voltage
895                  * then move down to the maximum.
896                  */
897                 target_min = current_uV;
898                 target_max = current_uV;
899
900                 if (current_uV < rdev->constraints->min_uV) {
901                         target_min = rdev->constraints->min_uV;
902                         target_max = rdev->constraints->min_uV;
903                 }
904
905                 if (current_uV > rdev->constraints->max_uV) {
906                         target_min = rdev->constraints->max_uV;
907                         target_max = rdev->constraints->max_uV;
908                 }
909
910                 if (target_min != current_uV || target_max != current_uV) {
911                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912                                   current_uV, target_min, target_max);
913                         ret = _regulator_do_set_voltage(
914                                 rdev, target_min, target_max);
915                         if (ret < 0) {
916                                 rdev_err(rdev,
917                                         "failed to apply %d-%duV constraint(%d)\n",
918                                         target_min, target_max, ret);
919                                 return ret;
920                         }
921                 }
922         }
923
924         /* constrain machine-level voltage specs to fit
925          * the actual range supported by this regulator.
926          */
927         if (ops->list_voltage && rdev->desc->n_voltages) {
928                 int     count = rdev->desc->n_voltages;
929                 int     i;
930                 int     min_uV = INT_MAX;
931                 int     max_uV = INT_MIN;
932                 int     cmin = constraints->min_uV;
933                 int     cmax = constraints->max_uV;
934
935                 /* it's safe to autoconfigure fixed-voltage supplies
936                    and the constraints are used by list_voltage. */
937                 if (count == 1 && !cmin) {
938                         cmin = 1;
939                         cmax = INT_MAX;
940                         constraints->min_uV = cmin;
941                         constraints->max_uV = cmax;
942                 }
943
944                 /* voltage constraints are optional */
945                 if ((cmin == 0) && (cmax == 0))
946                         return 0;
947
948                 /* else require explicit machine-level constraints */
949                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950                         rdev_err(rdev, "invalid voltage constraints\n");
951                         return -EINVAL;
952                 }
953
954                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955                 for (i = 0; i < count; i++) {
956                         int     value;
957
958                         value = ops->list_voltage(rdev, i);
959                         if (value <= 0)
960                                 continue;
961
962                         /* maybe adjust [min_uV..max_uV] */
963                         if (value >= cmin && value < min_uV)
964                                 min_uV = value;
965                         if (value <= cmax && value > max_uV)
966                                 max_uV = value;
967                 }
968
969                 /* final: [min_uV..max_uV] valid iff constraints valid */
970                 if (max_uV < min_uV) {
971                         rdev_err(rdev,
972                                  "unsupportable voltage constraints %u-%uuV\n",
973                                  min_uV, max_uV);
974                         return -EINVAL;
975                 }
976
977                 /* use regulator's subset of machine constraints */
978                 if (constraints->min_uV < min_uV) {
979                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980                                  constraints->min_uV, min_uV);
981                         constraints->min_uV = min_uV;
982                 }
983                 if (constraints->max_uV > max_uV) {
984                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985                                  constraints->max_uV, max_uV);
986                         constraints->max_uV = max_uV;
987                 }
988         }
989
990         return 0;
991 }
992
993 static int machine_constraints_current(struct regulator_dev *rdev,
994         struct regulation_constraints *constraints)
995 {
996         const struct regulator_ops *ops = rdev->desc->ops;
997         int ret;
998
999         if (!constraints->min_uA && !constraints->max_uA)
1000                 return 0;
1001
1002         if (constraints->min_uA > constraints->max_uA) {
1003                 rdev_err(rdev, "Invalid current constraints\n");
1004                 return -EINVAL;
1005         }
1006
1007         if (!ops->set_current_limit || !ops->get_current_limit) {
1008                 rdev_warn(rdev, "Operation of current configuration missing\n");
1009                 return 0;
1010         }
1011
1012         /* Set regulator current in constraints range */
1013         ret = ops->set_current_limit(rdev, constraints->min_uA,
1014                         constraints->max_uA);
1015         if (ret < 0) {
1016                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017                 return ret;
1018         }
1019
1020         return 0;
1021 }
1022
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1024
1025 /**
1026  * set_machine_constraints - sets regulator constraints
1027  * @rdev: regulator source
1028  * @constraints: constraints to apply
1029  *
1030  * Allows platform initialisation code to define and constrain
1031  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1032  * Constraints *must* be set by platform code in order for some
1033  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034  * set_mode.
1035  */
1036 static int set_machine_constraints(struct regulator_dev *rdev,
1037         const struct regulation_constraints *constraints)
1038 {
1039         int ret = 0;
1040         const struct regulator_ops *ops = rdev->desc->ops;
1041
1042         if (constraints)
1043                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1044                                             GFP_KERNEL);
1045         else
1046                 rdev->constraints = kzalloc(sizeof(*constraints),
1047                                             GFP_KERNEL);
1048         if (!rdev->constraints)
1049                 return -ENOMEM;
1050
1051         ret = machine_constraints_voltage(rdev, rdev->constraints);
1052         if (ret != 0)
1053                 return ret;
1054
1055         ret = machine_constraints_current(rdev, rdev->constraints);
1056         if (ret != 0)
1057                 return ret;
1058
1059         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1060                 ret = ops->set_input_current_limit(rdev,
1061                                                    rdev->constraints->ilim_uA);
1062                 if (ret < 0) {
1063                         rdev_err(rdev, "failed to set input limit\n");
1064                         return ret;
1065                 }
1066         }
1067
1068         /* do we need to setup our suspend state */
1069         if (rdev->constraints->initial_state) {
1070                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071                 if (ret < 0) {
1072                         rdev_err(rdev, "failed to set suspend state\n");
1073                         return ret;
1074                 }
1075         }
1076
1077         if (rdev->constraints->initial_mode) {
1078                 if (!ops->set_mode) {
1079                         rdev_err(rdev, "no set_mode operation\n");
1080                         return -EINVAL;
1081                 }
1082
1083                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084                 if (ret < 0) {
1085                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086                         return ret;
1087                 }
1088         }
1089
1090         /* If the constraints say the regulator should be on at this point
1091          * and we have control then make sure it is enabled.
1092          */
1093         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1094                 ret = _regulator_do_enable(rdev);
1095                 if (ret < 0 && ret != -EINVAL) {
1096                         rdev_err(rdev, "failed to enable\n");
1097                         return ret;
1098                 }
1099         }
1100
1101         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1102                 && ops->set_ramp_delay) {
1103                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1104                 if (ret < 0) {
1105                         rdev_err(rdev, "failed to set ramp_delay\n");
1106                         return ret;
1107                 }
1108         }
1109
1110         if (rdev->constraints->pull_down && ops->set_pull_down) {
1111                 ret = ops->set_pull_down(rdev);
1112                 if (ret < 0) {
1113                         rdev_err(rdev, "failed to set pull down\n");
1114                         return ret;
1115                 }
1116         }
1117
1118         if (rdev->constraints->soft_start && ops->set_soft_start) {
1119                 ret = ops->set_soft_start(rdev);
1120                 if (ret < 0) {
1121                         rdev_err(rdev, "failed to set soft start\n");
1122                         return ret;
1123                 }
1124         }
1125
1126         if (rdev->constraints->over_current_protection
1127                 && ops->set_over_current_protection) {
1128                 ret = ops->set_over_current_protection(rdev);
1129                 if (ret < 0) {
1130                         rdev_err(rdev, "failed to set over current protection\n");
1131                         return ret;
1132                 }
1133         }
1134
1135         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1136                 bool ad_state = (rdev->constraints->active_discharge ==
1137                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1138
1139                 ret = ops->set_active_discharge(rdev, ad_state);
1140                 if (ret < 0) {
1141                         rdev_err(rdev, "failed to set active discharge\n");
1142                         return ret;
1143                 }
1144         }
1145
1146         print_constraints(rdev);
1147         return 0;
1148 }
1149
1150 /**
1151  * set_supply - set regulator supply regulator
1152  * @rdev: regulator name
1153  * @supply_rdev: supply regulator name
1154  *
1155  * Called by platform initialisation code to set the supply regulator for this
1156  * regulator. This ensures that a regulators supply will also be enabled by the
1157  * core if it's child is enabled.
1158  */
1159 static int set_supply(struct regulator_dev *rdev,
1160                       struct regulator_dev *supply_rdev)
1161 {
1162         int err;
1163
1164         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1165
1166         if (!try_module_get(supply_rdev->owner))
1167                 return -ENODEV;
1168
1169         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170         if (rdev->supply == NULL) {
1171                 err = -ENOMEM;
1172                 return err;
1173         }
1174         supply_rdev->open_count++;
1175
1176         return 0;
1177 }
1178
1179 /**
1180  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181  * @rdev:         regulator source
1182  * @consumer_dev_name: dev_name() string for device supply applies to
1183  * @supply:       symbolic name for supply
1184  *
1185  * Allows platform initialisation code to map physical regulator
1186  * sources to symbolic names for supplies for use by devices.  Devices
1187  * should use these symbolic names to request regulators, avoiding the
1188  * need to provide board-specific regulator names as platform data.
1189  */
1190 static int set_consumer_device_supply(struct regulator_dev *rdev,
1191                                       const char *consumer_dev_name,
1192                                       const char *supply)
1193 {
1194         struct regulator_map *node;
1195         int has_dev;
1196
1197         if (supply == NULL)
1198                 return -EINVAL;
1199
1200         if (consumer_dev_name != NULL)
1201                 has_dev = 1;
1202         else
1203                 has_dev = 0;
1204
1205         list_for_each_entry(node, &regulator_map_list, list) {
1206                 if (node->dev_name && consumer_dev_name) {
1207                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1208                                 continue;
1209                 } else if (node->dev_name || consumer_dev_name) {
1210                         continue;
1211                 }
1212
1213                 if (strcmp(node->supply, supply) != 0)
1214                         continue;
1215
1216                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1217                          consumer_dev_name,
1218                          dev_name(&node->regulator->dev),
1219                          node->regulator->desc->name,
1220                          supply,
1221                          dev_name(&rdev->dev), rdev_get_name(rdev));
1222                 return -EBUSY;
1223         }
1224
1225         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226         if (node == NULL)
1227                 return -ENOMEM;
1228
1229         node->regulator = rdev;
1230         node->supply = supply;
1231
1232         if (has_dev) {
1233                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1234                 if (node->dev_name == NULL) {
1235                         kfree(node);
1236                         return -ENOMEM;
1237                 }
1238         }
1239
1240         list_add(&node->list, &regulator_map_list);
1241         return 0;
1242 }
1243
1244 static void unset_regulator_supplies(struct regulator_dev *rdev)
1245 {
1246         struct regulator_map *node, *n;
1247
1248         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1249                 if (rdev == node->regulator) {
1250                         list_del(&node->list);
1251                         kfree(node->dev_name);
1252                         kfree(node);
1253                 }
1254         }
1255 }
1256
1257 #ifdef CONFIG_DEBUG_FS
1258 static ssize_t constraint_flags_read_file(struct file *file,
1259                                           char __user *user_buf,
1260                                           size_t count, loff_t *ppos)
1261 {
1262         const struct regulator *regulator = file->private_data;
1263         const struct regulation_constraints *c = regulator->rdev->constraints;
1264         char *buf;
1265         ssize_t ret;
1266
1267         if (!c)
1268                 return 0;
1269
1270         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1271         if (!buf)
1272                 return -ENOMEM;
1273
1274         ret = snprintf(buf, PAGE_SIZE,
1275                         "always_on: %u\n"
1276                         "boot_on: %u\n"
1277                         "apply_uV: %u\n"
1278                         "ramp_disable: %u\n"
1279                         "soft_start: %u\n"
1280                         "pull_down: %u\n"
1281                         "over_current_protection: %u\n",
1282                         c->always_on,
1283                         c->boot_on,
1284                         c->apply_uV,
1285                         c->ramp_disable,
1286                         c->soft_start,
1287                         c->pull_down,
1288                         c->over_current_protection);
1289
1290         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1291         kfree(buf);
1292
1293         return ret;
1294 }
1295
1296 #endif
1297
1298 static const struct file_operations constraint_flags_fops = {
1299 #ifdef CONFIG_DEBUG_FS
1300         .open = simple_open,
1301         .read = constraint_flags_read_file,
1302         .llseek = default_llseek,
1303 #endif
1304 };
1305
1306 #define REG_STR_SIZE    64
1307
1308 static struct regulator *create_regulator(struct regulator_dev *rdev,
1309                                           struct device *dev,
1310                                           const char *supply_name)
1311 {
1312         struct regulator *regulator;
1313         char buf[REG_STR_SIZE];
1314         int err, size;
1315
1316         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1317         if (regulator == NULL)
1318                 return NULL;
1319
1320         mutex_lock(&rdev->mutex);
1321         regulator->rdev = rdev;
1322         list_add(&regulator->list, &rdev->consumer_list);
1323
1324         if (dev) {
1325                 regulator->dev = dev;
1326
1327                 /* Add a link to the device sysfs entry */
1328                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1329                                  dev->kobj.name, supply_name);
1330                 if (size >= REG_STR_SIZE)
1331                         goto overflow_err;
1332
1333                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1334                 if (regulator->supply_name == NULL)
1335                         goto overflow_err;
1336
1337                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1338                                         buf);
1339                 if (err) {
1340                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1341                                   dev->kobj.name, err);
1342                         /* non-fatal */
1343                 }
1344         } else {
1345                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1346                 if (regulator->supply_name == NULL)
1347                         goto overflow_err;
1348         }
1349
1350         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1351                                                 rdev->debugfs);
1352         if (!regulator->debugfs) {
1353                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1354         } else {
1355                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1356                                    &regulator->uA_load);
1357                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1358                                    &regulator->min_uV);
1359                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1360                                    &regulator->max_uV);
1361                 debugfs_create_file("constraint_flags", 0444,
1362                                     regulator->debugfs, regulator,
1363                                     &constraint_flags_fops);
1364         }
1365
1366         /*
1367          * Check now if the regulator is an always on regulator - if
1368          * it is then we don't need to do nearly so much work for
1369          * enable/disable calls.
1370          */
1371         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1372             _regulator_is_enabled(rdev))
1373                 regulator->always_on = true;
1374
1375         mutex_unlock(&rdev->mutex);
1376         return regulator;
1377 overflow_err:
1378         list_del(&regulator->list);
1379         kfree(regulator);
1380         mutex_unlock(&rdev->mutex);
1381         return NULL;
1382 }
1383
1384 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1385 {
1386         if (rdev->constraints && rdev->constraints->enable_time)
1387                 return rdev->constraints->enable_time;
1388         if (!rdev->desc->ops->enable_time)
1389                 return rdev->desc->enable_time;
1390         return rdev->desc->ops->enable_time(rdev);
1391 }
1392
1393 static struct regulator_supply_alias *regulator_find_supply_alias(
1394                 struct device *dev, const char *supply)
1395 {
1396         struct regulator_supply_alias *map;
1397
1398         list_for_each_entry(map, &regulator_supply_alias_list, list)
1399                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1400                         return map;
1401
1402         return NULL;
1403 }
1404
1405 static void regulator_supply_alias(struct device **dev, const char **supply)
1406 {
1407         struct regulator_supply_alias *map;
1408
1409         map = regulator_find_supply_alias(*dev, *supply);
1410         if (map) {
1411                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1412                                 *supply, map->alias_supply,
1413                                 dev_name(map->alias_dev));
1414                 *dev = map->alias_dev;
1415                 *supply = map->alias_supply;
1416         }
1417 }
1418
1419 static int of_node_match(struct device *dev, const void *data)
1420 {
1421         return dev->of_node == data;
1422 }
1423
1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1425 {
1426         struct device *dev;
1427
1428         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1429
1430         return dev ? dev_to_rdev(dev) : NULL;
1431 }
1432
1433 static int regulator_match(struct device *dev, const void *data)
1434 {
1435         struct regulator_dev *r = dev_to_rdev(dev);
1436
1437         return strcmp(rdev_get_name(r), data) == 0;
1438 }
1439
1440 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1441 {
1442         struct device *dev;
1443
1444         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1445
1446         return dev ? dev_to_rdev(dev) : NULL;
1447 }
1448
1449 /**
1450  * regulator_dev_lookup - lookup a regulator device.
1451  * @dev: device for regulator "consumer".
1452  * @supply: Supply name or regulator ID.
1453  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1454  * lookup could succeed in the future.
1455  *
1456  * If successful, returns a struct regulator_dev that corresponds to the name
1457  * @supply and with the embedded struct device refcount incremented by one,
1458  * or NULL on failure. The refcount must be dropped by calling put_device().
1459  */
1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1461                                                   const char *supply,
1462                                                   int *ret)
1463 {
1464         struct regulator_dev *r;
1465         struct device_node *node;
1466         struct regulator_map *map;
1467         const char *devname = NULL;
1468
1469         regulator_supply_alias(&dev, &supply);
1470
1471         /* first do a dt based lookup */
1472         if (dev && dev->of_node) {
1473                 node = of_get_regulator(dev, supply);
1474                 if (node) {
1475                         r = of_find_regulator_by_node(node);
1476                         if (r)
1477                                 return r;
1478                         *ret = -EPROBE_DEFER;
1479                         return NULL;
1480                 } else {
1481                         /*
1482                          * If we couldn't even get the node then it's
1483                          * not just that the device didn't register
1484                          * yet, there's no node and we'll never
1485                          * succeed.
1486                          */
1487                         *ret = -ENODEV;
1488                 }
1489         }
1490
1491         /* if not found, try doing it non-dt way */
1492         if (dev)
1493                 devname = dev_name(dev);
1494
1495         r = regulator_lookup_by_name(supply);
1496         if (r)
1497                 return r;
1498
1499         mutex_lock(&regulator_list_mutex);
1500         list_for_each_entry(map, &regulator_map_list, list) {
1501                 /* If the mapping has a device set up it must match */
1502                 if (map->dev_name &&
1503                     (!devname || strcmp(map->dev_name, devname)))
1504                         continue;
1505
1506                 if (strcmp(map->supply, supply) == 0 &&
1507                     get_device(&map->regulator->dev)) {
1508                         mutex_unlock(&regulator_list_mutex);
1509                         return map->regulator;
1510                 }
1511         }
1512         mutex_unlock(&regulator_list_mutex);
1513
1514         return NULL;
1515 }
1516
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519         struct regulator_dev *r;
1520         struct device *dev = rdev->dev.parent;
1521         int ret;
1522
1523         /* No supply to resovle? */
1524         if (!rdev->supply_name)
1525                 return 0;
1526
1527         /* Supply already resolved? */
1528         if (rdev->supply)
1529                 return 0;
1530
1531         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1532         if (!r) {
1533                 if (ret == -ENODEV) {
1534                         /*
1535                          * No supply was specified for this regulator and
1536                          * there will never be one.
1537                          */
1538                         return 0;
1539                 }
1540
1541                 /* Did the lookup explicitly defer for us? */
1542                 if (ret == -EPROBE_DEFER)
1543                         return ret;
1544
1545                 if (have_full_constraints()) {
1546                         r = dummy_regulator_rdev;
1547                         get_device(&r->dev);
1548                 } else {
1549                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550                                 rdev->supply_name, rdev->desc->name);
1551                         return -EPROBE_DEFER;
1552                 }
1553         }
1554
1555         /* Recursively resolve the supply of the supply */
1556         ret = regulator_resolve_supply(r);
1557         if (ret < 0) {
1558                 put_device(&r->dev);
1559                 return ret;
1560         }
1561
1562         ret = set_supply(rdev, r);
1563         if (ret < 0) {
1564                 put_device(&r->dev);
1565                 return ret;
1566         }
1567
1568         /* Cascade always-on state to supply */
1569         if (_regulator_is_enabled(rdev)) {
1570                 ret = regulator_enable(rdev->supply);
1571                 if (ret < 0) {
1572                         _regulator_put(rdev->supply);
1573                         rdev->supply = NULL;
1574                         return ret;
1575                 }
1576         }
1577
1578         return 0;
1579 }
1580
1581 /* Internal regulator request function */
1582 static struct regulator *_regulator_get(struct device *dev, const char *id,
1583                                         bool exclusive, bool allow_dummy)
1584 {
1585         struct regulator_dev *rdev;
1586         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1587         const char *devname = NULL;
1588         int ret;
1589
1590         if (id == NULL) {
1591                 pr_err("get() with no identifier\n");
1592                 return ERR_PTR(-EINVAL);
1593         }
1594
1595         if (dev)
1596                 devname = dev_name(dev);
1597
1598         if (have_full_constraints())
1599                 ret = -ENODEV;
1600         else
1601                 ret = -EPROBE_DEFER;
1602
1603         rdev = regulator_dev_lookup(dev, id, &ret);
1604         if (rdev)
1605                 goto found;
1606
1607         regulator = ERR_PTR(ret);
1608
1609         /*
1610          * If we have return value from dev_lookup fail, we do not expect to
1611          * succeed, so, quit with appropriate error value
1612          */
1613         if (ret && ret != -ENODEV)
1614                 return regulator;
1615
1616         if (!devname)
1617                 devname = "deviceless";
1618
1619         /*
1620          * Assume that a regulator is physically present and enabled
1621          * even if it isn't hooked up and just provide a dummy.
1622          */
1623         if (have_full_constraints() && allow_dummy) {
1624                 pr_warn("%s supply %s not found, using dummy regulator\n",
1625                         devname, id);
1626
1627                 rdev = dummy_regulator_rdev;
1628                 get_device(&rdev->dev);
1629                 goto found;
1630         /* Don't log an error when called from regulator_get_optional() */
1631         } else if (!have_full_constraints() || exclusive) {
1632                 dev_warn(dev, "dummy supplies not allowed\n");
1633         }
1634
1635         return regulator;
1636
1637 found:
1638         if (rdev->exclusive) {
1639                 regulator = ERR_PTR(-EPERM);
1640                 put_device(&rdev->dev);
1641                 return regulator;
1642         }
1643
1644         if (exclusive && rdev->open_count) {
1645                 regulator = ERR_PTR(-EBUSY);
1646                 put_device(&rdev->dev);
1647                 return regulator;
1648         }
1649
1650         ret = regulator_resolve_supply(rdev);
1651         if (ret < 0) {
1652                 regulator = ERR_PTR(ret);
1653                 put_device(&rdev->dev);
1654                 return regulator;
1655         }
1656
1657         if (!try_module_get(rdev->owner)) {
1658                 put_device(&rdev->dev);
1659                 return regulator;
1660         }
1661
1662         regulator = create_regulator(rdev, dev, id);
1663         if (regulator == NULL) {
1664                 regulator = ERR_PTR(-ENOMEM);
1665                 put_device(&rdev->dev);
1666                 module_put(rdev->owner);
1667                 return regulator;
1668         }
1669
1670         rdev->open_count++;
1671         if (exclusive) {
1672                 rdev->exclusive = 1;
1673
1674                 ret = _regulator_is_enabled(rdev);
1675                 if (ret > 0)
1676                         rdev->use_count = 1;
1677                 else
1678                         rdev->use_count = 0;
1679         }
1680
1681         return regulator;
1682 }
1683
1684 /**
1685  * regulator_get - lookup and obtain a reference to a regulator.
1686  * @dev: device for regulator "consumer"
1687  * @id: Supply name or regulator ID.
1688  *
1689  * Returns a struct regulator corresponding to the regulator producer,
1690  * or IS_ERR() condition containing errno.
1691  *
1692  * Use of supply names configured via regulator_set_device_supply() is
1693  * strongly encouraged.  It is recommended that the supply name used
1694  * should match the name used for the supply and/or the relevant
1695  * device pins in the datasheet.
1696  */
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1698 {
1699         return _regulator_get(dev, id, false, true);
1700 }
1701 EXPORT_SYMBOL_GPL(regulator_get);
1702
1703 /**
1704  * regulator_get_exclusive - obtain exclusive access to a regulator.
1705  * @dev: device for regulator "consumer"
1706  * @id: Supply name or regulator ID.
1707  *
1708  * Returns a struct regulator corresponding to the regulator producer,
1709  * or IS_ERR() condition containing errno.  Other consumers will be
1710  * unable to obtain this regulator while this reference is held and the
1711  * use count for the regulator will be initialised to reflect the current
1712  * state of the regulator.
1713  *
1714  * This is intended for use by consumers which cannot tolerate shared
1715  * use of the regulator such as those which need to force the
1716  * regulator off for correct operation of the hardware they are
1717  * controlling.
1718  *
1719  * Use of supply names configured via regulator_set_device_supply() is
1720  * strongly encouraged.  It is recommended that the supply name used
1721  * should match the name used for the supply and/or the relevant
1722  * device pins in the datasheet.
1723  */
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725 {
1726         return _regulator_get(dev, id, true, false);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729
1730 /**
1731  * regulator_get_optional - obtain optional access to a regulator.
1732  * @dev: device for regulator "consumer"
1733  * @id: Supply name or regulator ID.
1734  *
1735  * Returns a struct regulator corresponding to the regulator producer,
1736  * or IS_ERR() condition containing errno.
1737  *
1738  * This is intended for use by consumers for devices which can have
1739  * some supplies unconnected in normal use, such as some MMC devices.
1740  * It can allow the regulator core to provide stub supplies for other
1741  * supplies requested using normal regulator_get() calls without
1742  * disrupting the operation of drivers that can handle absent
1743  * supplies.
1744  *
1745  * Use of supply names configured via regulator_set_device_supply() is
1746  * strongly encouraged.  It is recommended that the supply name used
1747  * should match the name used for the supply and/or the relevant
1748  * device pins in the datasheet.
1749  */
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751 {
1752         return _regulator_get(dev, id, false, false);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1755
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1758 {
1759         struct regulator_dev *rdev;
1760
1761         if (IS_ERR_OR_NULL(regulator))
1762                 return;
1763
1764         lockdep_assert_held_once(&regulator_list_mutex);
1765
1766         rdev = regulator->rdev;
1767
1768         debugfs_remove_recursive(regulator->debugfs);
1769
1770         /* remove any sysfs entries */
1771         if (regulator->dev)
1772                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773         mutex_lock(&rdev->mutex);
1774         list_del(&regulator->list);
1775
1776         rdev->open_count--;
1777         rdev->exclusive = 0;
1778         put_device(&rdev->dev);
1779         mutex_unlock(&rdev->mutex);
1780
1781         kfree(regulator->supply_name);
1782         kfree(regulator);
1783
1784         module_put(rdev->owner);
1785 }
1786
1787 /**
1788  * regulator_put - "free" the regulator source
1789  * @regulator: regulator source
1790  *
1791  * Note: drivers must ensure that all regulator_enable calls made on this
1792  * regulator source are balanced by regulator_disable calls prior to calling
1793  * this function.
1794  */
1795 void regulator_put(struct regulator *regulator)
1796 {
1797         mutex_lock(&regulator_list_mutex);
1798         _regulator_put(regulator);
1799         mutex_unlock(&regulator_list_mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_put);
1802
1803 /**
1804  * regulator_register_supply_alias - Provide device alias for supply lookup
1805  *
1806  * @dev: device that will be given as the regulator "consumer"
1807  * @id: Supply name or regulator ID
1808  * @alias_dev: device that should be used to lookup the supply
1809  * @alias_id: Supply name or regulator ID that should be used to lookup the
1810  * supply
1811  *
1812  * All lookups for id on dev will instead be conducted for alias_id on
1813  * alias_dev.
1814  */
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816                                     struct device *alias_dev,
1817                                     const char *alias_id)
1818 {
1819         struct regulator_supply_alias *map;
1820
1821         map = regulator_find_supply_alias(dev, id);
1822         if (map)
1823                 return -EEXIST;
1824
1825         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826         if (!map)
1827                 return -ENOMEM;
1828
1829         map->src_dev = dev;
1830         map->src_supply = id;
1831         map->alias_dev = alias_dev;
1832         map->alias_supply = alias_id;
1833
1834         list_add(&map->list, &regulator_supply_alias_list);
1835
1836         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1838
1839         return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842
1843 /**
1844  * regulator_unregister_supply_alias - Remove device alias
1845  *
1846  * @dev: device that will be given as the regulator "consumer"
1847  * @id: Supply name or regulator ID
1848  *
1849  * Remove a lookup alias if one exists for id on dev.
1850  */
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852 {
1853         struct regulator_supply_alias *map;
1854
1855         map = regulator_find_supply_alias(dev, id);
1856         if (map) {
1857                 list_del(&map->list);
1858                 kfree(map);
1859         }
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862
1863 /**
1864  * regulator_bulk_register_supply_alias - register multiple aliases
1865  *
1866  * @dev: device that will be given as the regulator "consumer"
1867  * @id: List of supply names or regulator IDs
1868  * @alias_dev: device that should be used to lookup the supply
1869  * @alias_id: List of supply names or regulator IDs that should be used to
1870  * lookup the supply
1871  * @num_id: Number of aliases to register
1872  *
1873  * @return 0 on success, an errno on failure.
1874  *
1875  * This helper function allows drivers to register several supply
1876  * aliases in one operation.  If any of the aliases cannot be
1877  * registered any aliases that were registered will be removed
1878  * before returning to the caller.
1879  */
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881                                          const char *const *id,
1882                                          struct device *alias_dev,
1883                                          const char *const *alias_id,
1884                                          int num_id)
1885 {
1886         int i;
1887         int ret;
1888
1889         for (i = 0; i < num_id; ++i) {
1890                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891                                                       alias_id[i]);
1892                 if (ret < 0)
1893                         goto err;
1894         }
1895
1896         return 0;
1897
1898 err:
1899         dev_err(dev,
1900                 "Failed to create supply alias %s,%s -> %s,%s\n",
1901                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902
1903         while (--i >= 0)
1904                 regulator_unregister_supply_alias(dev, id[i]);
1905
1906         return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909
1910 /**
1911  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912  *
1913  * @dev: device that will be given as the regulator "consumer"
1914  * @id: List of supply names or regulator IDs
1915  * @num_id: Number of aliases to unregister
1916  *
1917  * This helper function allows drivers to unregister several supply
1918  * aliases in one operation.
1919  */
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921                                             const char *const *id,
1922                                             int num_id)
1923 {
1924         int i;
1925
1926         for (i = 0; i < num_id; ++i)
1927                 regulator_unregister_supply_alias(dev, id[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930
1931
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934                                 const struct regulator_config *config)
1935 {
1936         struct regulator_enable_gpio *pin;
1937         struct gpio_desc *gpiod;
1938         int ret;
1939
1940         gpiod = gpio_to_desc(config->ena_gpio);
1941
1942         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943                 if (pin->gpiod == gpiod) {
1944                         rdev_dbg(rdev, "GPIO %d is already used\n",
1945                                 config->ena_gpio);
1946                         goto update_ena_gpio_to_rdev;
1947                 }
1948         }
1949
1950         ret = gpio_request_one(config->ena_gpio,
1951                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1952                                 rdev_get_name(rdev));
1953         if (ret)
1954                 return ret;
1955
1956         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957         if (pin == NULL) {
1958                 gpio_free(config->ena_gpio);
1959                 return -ENOMEM;
1960         }
1961
1962         pin->gpiod = gpiod;
1963         pin->ena_gpio_invert = config->ena_gpio_invert;
1964         list_add(&pin->list, &regulator_ena_gpio_list);
1965
1966 update_ena_gpio_to_rdev:
1967         pin->request_count++;
1968         rdev->ena_pin = pin;
1969         return 0;
1970 }
1971
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1973 {
1974         struct regulator_enable_gpio *pin, *n;
1975
1976         if (!rdev->ena_pin)
1977                 return;
1978
1979         /* Free the GPIO only in case of no use */
1980         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1982                         if (pin->request_count <= 1) {
1983                                 pin->request_count = 0;
1984                                 gpiod_put(pin->gpiod);
1985                                 list_del(&pin->list);
1986                                 kfree(pin);
1987                                 rdev->ena_pin = NULL;
1988                                 return;
1989                         } else {
1990                                 pin->request_count--;
1991                         }
1992                 }
1993         }
1994 }
1995
1996 /**
1997  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998  * @rdev: regulator_dev structure
1999  * @enable: enable GPIO at initial use?
2000  *
2001  * GPIO is enabled in case of initial use. (enable_count is 0)
2002  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2003  */
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2005 {
2006         struct regulator_enable_gpio *pin = rdev->ena_pin;
2007
2008         if (!pin)
2009                 return -EINVAL;
2010
2011         if (enable) {
2012                 /* Enable GPIO at initial use */
2013                 if (pin->enable_count == 0)
2014                         gpiod_set_value_cansleep(pin->gpiod,
2015                                                  !pin->ena_gpio_invert);
2016
2017                 pin->enable_count++;
2018         } else {
2019                 if (pin->enable_count > 1) {
2020                         pin->enable_count--;
2021                         return 0;
2022                 }
2023
2024                 /* Disable GPIO if not used */
2025                 if (pin->enable_count <= 1) {
2026                         gpiod_set_value_cansleep(pin->gpiod,
2027                                                  pin->ena_gpio_invert);
2028                         pin->enable_count = 0;
2029                 }
2030         }
2031
2032         return 0;
2033 }
2034
2035 /**
2036  * _regulator_enable_delay - a delay helper function
2037  * @delay: time to delay in microseconds
2038  *
2039  * Delay for the requested amount of time as per the guidelines in:
2040  *
2041  *     Documentation/timers/timers-howto.txt
2042  *
2043  * The assumption here is that regulators will never be enabled in
2044  * atomic context and therefore sleeping functions can be used.
2045  */
2046 static void _regulator_enable_delay(unsigned int delay)
2047 {
2048         unsigned int ms = delay / 1000;
2049         unsigned int us = delay % 1000;
2050
2051         if (ms > 0) {
2052                 /*
2053                  * For small enough values, handle super-millisecond
2054                  * delays in the usleep_range() call below.
2055                  */
2056                 if (ms < 20)
2057                         us += ms * 1000;
2058                 else
2059                         msleep(ms);
2060         }
2061
2062         /*
2063          * Give the scheduler some room to coalesce with any other
2064          * wakeup sources. For delays shorter than 10 us, don't even
2065          * bother setting up high-resolution timers and just busy-
2066          * loop.
2067          */
2068         if (us >= 10)
2069                 usleep_range(us, us + 100);
2070         else
2071                 udelay(us);
2072 }
2073
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2075 {
2076         int ret, delay;
2077
2078         /* Query before enabling in case configuration dependent.  */
2079         ret = _regulator_get_enable_time(rdev);
2080         if (ret >= 0) {
2081                 delay = ret;
2082         } else {
2083                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084                 delay = 0;
2085         }
2086
2087         trace_regulator_enable(rdev_get_name(rdev));
2088
2089         if (rdev->desc->off_on_delay) {
2090                 /* if needed, keep a distance of off_on_delay from last time
2091                  * this regulator was disabled.
2092                  */
2093                 unsigned long start_jiffy = jiffies;
2094                 unsigned long intended, max_delay, remaining;
2095
2096                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097                 intended = rdev->last_off_jiffy + max_delay;
2098
2099                 if (time_before(start_jiffy, intended)) {
2100                         /* calc remaining jiffies to deal with one-time
2101                          * timer wrapping.
2102                          * in case of multiple timer wrapping, either it can be
2103                          * detected by out-of-range remaining, or it cannot be
2104                          * detected and we gets a panelty of
2105                          * _regulator_enable_delay().
2106                          */
2107                         remaining = intended - start_jiffy;
2108                         if (remaining <= max_delay)
2109                                 _regulator_enable_delay(
2110                                                 jiffies_to_usecs(remaining));
2111                 }
2112         }
2113
2114         if (rdev->ena_pin) {
2115                 if (!rdev->ena_gpio_state) {
2116                         ret = regulator_ena_gpio_ctrl(rdev, true);
2117                         if (ret < 0)
2118                                 return ret;
2119                         rdev->ena_gpio_state = 1;
2120                 }
2121         } else if (rdev->desc->ops->enable) {
2122                 ret = rdev->desc->ops->enable(rdev);
2123                 if (ret < 0)
2124                         return ret;
2125         } else {
2126                 return -EINVAL;
2127         }
2128
2129         /* Allow the regulator to ramp; it would be useful to extend
2130          * this for bulk operations so that the regulators can ramp
2131          * together.  */
2132         trace_regulator_enable_delay(rdev_get_name(rdev));
2133
2134         _regulator_enable_delay(delay);
2135
2136         trace_regulator_enable_complete(rdev_get_name(rdev));
2137
2138         return 0;
2139 }
2140
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2143 {
2144         int ret;
2145
2146         lockdep_assert_held_once(&rdev->mutex);
2147
2148         /* check voltage and requested load before enabling */
2149         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150                 drms_uA_update(rdev);
2151
2152         if (rdev->use_count == 0) {
2153                 /* The regulator may on if it's not switchable or left on */
2154                 ret = _regulator_is_enabled(rdev);
2155                 if (ret == -EINVAL || ret == 0) {
2156                         if (!regulator_ops_is_valid(rdev,
2157                                         REGULATOR_CHANGE_STATUS))
2158                                 return -EPERM;
2159
2160                         ret = _regulator_do_enable(rdev);
2161                         if (ret < 0)
2162                                 return ret;
2163
2164                 } else if (ret < 0) {
2165                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2166                         return ret;
2167                 }
2168                 /* Fallthrough on positive return values - already enabled */
2169         }
2170
2171         rdev->use_count++;
2172
2173         return 0;
2174 }
2175
2176 /**
2177  * regulator_enable - enable regulator output
2178  * @regulator: regulator source
2179  *
2180  * Request that the regulator be enabled with the regulator output at
2181  * the predefined voltage or current value.  Calls to regulator_enable()
2182  * must be balanced with calls to regulator_disable().
2183  *
2184  * NOTE: the output value can be set by other drivers, boot loader or may be
2185  * hardwired in the regulator.
2186  */
2187 int regulator_enable(struct regulator *regulator)
2188 {
2189         struct regulator_dev *rdev = regulator->rdev;
2190         int ret = 0;
2191
2192         if (regulator->always_on)
2193                 return 0;
2194
2195         if (rdev->supply) {
2196                 ret = regulator_enable(rdev->supply);
2197                 if (ret != 0)
2198                         return ret;
2199         }
2200
2201         mutex_lock(&rdev->mutex);
2202         ret = _regulator_enable(rdev);
2203         mutex_unlock(&rdev->mutex);
2204
2205         if (ret != 0 && rdev->supply)
2206                 regulator_disable(rdev->supply);
2207
2208         return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_enable);
2211
2212 static int _regulator_do_disable(struct regulator_dev *rdev)
2213 {
2214         int ret;
2215
2216         trace_regulator_disable(rdev_get_name(rdev));
2217
2218         if (rdev->ena_pin) {
2219                 if (rdev->ena_gpio_state) {
2220                         ret = regulator_ena_gpio_ctrl(rdev, false);
2221                         if (ret < 0)
2222                                 return ret;
2223                         rdev->ena_gpio_state = 0;
2224                 }
2225
2226         } else if (rdev->desc->ops->disable) {
2227                 ret = rdev->desc->ops->disable(rdev);
2228                 if (ret != 0)
2229                         return ret;
2230         }
2231
2232         /* cares about last_off_jiffy only if off_on_delay is required by
2233          * device.
2234          */
2235         if (rdev->desc->off_on_delay)
2236                 rdev->last_off_jiffy = jiffies;
2237
2238         trace_regulator_disable_complete(rdev_get_name(rdev));
2239
2240         return 0;
2241 }
2242
2243 /* locks held by regulator_disable() */
2244 static int _regulator_disable(struct regulator_dev *rdev)
2245 {
2246         int ret = 0;
2247
2248         lockdep_assert_held_once(&rdev->mutex);
2249
2250         if (WARN(rdev->use_count <= 0,
2251                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2252                 return -EIO;
2253
2254         /* are we the last user and permitted to disable ? */
2255         if (rdev->use_count == 1 &&
2256             (rdev->constraints && !rdev->constraints->always_on)) {
2257
2258                 /* we are last user */
2259                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2260                         ret = _notifier_call_chain(rdev,
2261                                                    REGULATOR_EVENT_PRE_DISABLE,
2262                                                    NULL);
2263                         if (ret & NOTIFY_STOP_MASK)
2264                                 return -EINVAL;
2265
2266                         ret = _regulator_do_disable(rdev);
2267                         if (ret < 0) {
2268                                 rdev_err(rdev, "failed to disable\n");
2269                                 _notifier_call_chain(rdev,
2270                                                 REGULATOR_EVENT_ABORT_DISABLE,
2271                                                 NULL);
2272                                 return ret;
2273                         }
2274                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2275                                         NULL);
2276                 }
2277
2278                 rdev->use_count = 0;
2279         } else if (rdev->use_count > 1) {
2280                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281                         drms_uA_update(rdev);
2282
2283                 rdev->use_count--;
2284         }
2285
2286         return ret;
2287 }
2288
2289 /**
2290  * regulator_disable - disable regulator output
2291  * @regulator: regulator source
2292  *
2293  * Disable the regulator output voltage or current.  Calls to
2294  * regulator_enable() must be balanced with calls to
2295  * regulator_disable().
2296  *
2297  * NOTE: this will only disable the regulator output if no other consumer
2298  * devices have it enabled, the regulator device supports disabling and
2299  * machine constraints permit this operation.
2300  */
2301 int regulator_disable(struct regulator *regulator)
2302 {
2303         struct regulator_dev *rdev = regulator->rdev;
2304         int ret = 0;
2305
2306         if (regulator->always_on)
2307                 return 0;
2308
2309         mutex_lock(&rdev->mutex);
2310         ret = _regulator_disable(rdev);
2311         mutex_unlock(&rdev->mutex);
2312
2313         if (ret == 0 && rdev->supply)
2314                 regulator_disable(rdev->supply);
2315
2316         return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_disable);
2319
2320 /* locks held by regulator_force_disable() */
2321 static int _regulator_force_disable(struct regulator_dev *rdev)
2322 {
2323         int ret = 0;
2324
2325         lockdep_assert_held_once(&rdev->mutex);
2326
2327         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2328                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2329         if (ret & NOTIFY_STOP_MASK)
2330                 return -EINVAL;
2331
2332         ret = _regulator_do_disable(rdev);
2333         if (ret < 0) {
2334                 rdev_err(rdev, "failed to force disable\n");
2335                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2337                 return ret;
2338         }
2339
2340         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341                         REGULATOR_EVENT_DISABLE, NULL);
2342
2343         return 0;
2344 }
2345
2346 /**
2347  * regulator_force_disable - force disable regulator output
2348  * @regulator: regulator source
2349  *
2350  * Forcibly disable the regulator output voltage or current.
2351  * NOTE: this *will* disable the regulator output even if other consumer
2352  * devices have it enabled. This should be used for situations when device
2353  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2354  */
2355 int regulator_force_disable(struct regulator *regulator)
2356 {
2357         struct regulator_dev *rdev = regulator->rdev;
2358         int ret;
2359
2360         mutex_lock(&rdev->mutex);
2361         regulator->uA_load = 0;
2362         ret = _regulator_force_disable(regulator->rdev);
2363         mutex_unlock(&rdev->mutex);
2364
2365         if (rdev->supply)
2366                 while (rdev->open_count--)
2367                         regulator_disable(rdev->supply);
2368
2369         return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_force_disable);
2372
2373 static void regulator_disable_work(struct work_struct *work)
2374 {
2375         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2376                                                   disable_work.work);
2377         int count, i, ret;
2378
2379         mutex_lock(&rdev->mutex);
2380
2381         BUG_ON(!rdev->deferred_disables);
2382
2383         count = rdev->deferred_disables;
2384         rdev->deferred_disables = 0;
2385
2386         for (i = 0; i < count; i++) {
2387                 ret = _regulator_disable(rdev);
2388                 if (ret != 0)
2389                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2390         }
2391
2392         mutex_unlock(&rdev->mutex);
2393
2394         if (rdev->supply) {
2395                 for (i = 0; i < count; i++) {
2396                         ret = regulator_disable(rdev->supply);
2397                         if (ret != 0) {
2398                                 rdev_err(rdev,
2399                                          "Supply disable failed: %d\n", ret);
2400                         }
2401                 }
2402         }
2403 }
2404
2405 /**
2406  * regulator_disable_deferred - disable regulator output with delay
2407  * @regulator: regulator source
2408  * @ms: miliseconds until the regulator is disabled
2409  *
2410  * Execute regulator_disable() on the regulator after a delay.  This
2411  * is intended for use with devices that require some time to quiesce.
2412  *
2413  * NOTE: this will only disable the regulator output if no other consumer
2414  * devices have it enabled, the regulator device supports disabling and
2415  * machine constraints permit this operation.
2416  */
2417 int regulator_disable_deferred(struct regulator *regulator, int ms)
2418 {
2419         struct regulator_dev *rdev = regulator->rdev;
2420
2421         if (regulator->always_on)
2422                 return 0;
2423
2424         if (!ms)
2425                 return regulator_disable(regulator);
2426
2427         mutex_lock(&rdev->mutex);
2428         rdev->deferred_disables++;
2429         mutex_unlock(&rdev->mutex);
2430
2431         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2432                            msecs_to_jiffies(ms));
2433         return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2436
2437 static int _regulator_is_enabled(struct regulator_dev *rdev)
2438 {
2439         /* A GPIO control always takes precedence */
2440         if (rdev->ena_pin)
2441                 return rdev->ena_gpio_state;
2442
2443         /* If we don't know then assume that the regulator is always on */
2444         if (!rdev->desc->ops->is_enabled)
2445                 return 1;
2446
2447         return rdev->desc->ops->is_enabled(rdev);
2448 }
2449
2450 static int _regulator_list_voltage(struct regulator *regulator,
2451                                     unsigned selector, int lock)
2452 {
2453         struct regulator_dev *rdev = regulator->rdev;
2454         const struct regulator_ops *ops = rdev->desc->ops;
2455         int ret;
2456
2457         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2458                 return rdev->desc->fixed_uV;
2459
2460         if (ops->list_voltage) {
2461                 if (selector >= rdev->desc->n_voltages)
2462                         return -EINVAL;
2463                 if (lock)
2464                         mutex_lock(&rdev->mutex);
2465                 ret = ops->list_voltage(rdev, selector);
2466                 if (lock)
2467                         mutex_unlock(&rdev->mutex);
2468         } else if (rdev->supply) {
2469                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2470         } else {
2471                 return -EINVAL;
2472         }
2473
2474         if (ret > 0) {
2475                 if (ret < rdev->constraints->min_uV)
2476                         ret = 0;
2477                 else if (ret > rdev->constraints->max_uV)
2478                         ret = 0;
2479         }
2480
2481         return ret;
2482 }
2483
2484 /**
2485  * regulator_is_enabled - is the regulator output enabled
2486  * @regulator: regulator source
2487  *
2488  * Returns positive if the regulator driver backing the source/client
2489  * has requested that the device be enabled, zero if it hasn't, else a
2490  * negative errno code.
2491  *
2492  * Note that the device backing this regulator handle can have multiple
2493  * users, so it might be enabled even if regulator_enable() was never
2494  * called for this particular source.
2495  */
2496 int regulator_is_enabled(struct regulator *regulator)
2497 {
2498         int ret;
2499
2500         if (regulator->always_on)
2501                 return 1;
2502
2503         mutex_lock(&regulator->rdev->mutex);
2504         ret = _regulator_is_enabled(regulator->rdev);
2505         mutex_unlock(&regulator->rdev->mutex);
2506
2507         return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2510
2511 /**
2512  * regulator_count_voltages - count regulator_list_voltage() selectors
2513  * @regulator: regulator source
2514  *
2515  * Returns number of selectors, or negative errno.  Selectors are
2516  * numbered starting at zero, and typically correspond to bitfields
2517  * in hardware registers.
2518  */
2519 int regulator_count_voltages(struct regulator *regulator)
2520 {
2521         struct regulator_dev    *rdev = regulator->rdev;
2522
2523         if (rdev->desc->n_voltages)
2524                 return rdev->desc->n_voltages;
2525
2526         if (!rdev->supply)
2527                 return -EINVAL;
2528
2529         return regulator_count_voltages(rdev->supply);
2530 }
2531 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2532
2533 /**
2534  * regulator_list_voltage - enumerate supported voltages
2535  * @regulator: regulator source
2536  * @selector: identify voltage to list
2537  * Context: can sleep
2538  *
2539  * Returns a voltage that can be passed to @regulator_set_voltage(),
2540  * zero if this selector code can't be used on this system, or a
2541  * negative errno.
2542  */
2543 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2544 {
2545         return _regulator_list_voltage(regulator, selector, 1);
2546 }
2547 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2548
2549 /**
2550  * regulator_get_regmap - get the regulator's register map
2551  * @regulator: regulator source
2552  *
2553  * Returns the register map for the given regulator, or an ERR_PTR value
2554  * if the regulator doesn't use regmap.
2555  */
2556 struct regmap *regulator_get_regmap(struct regulator *regulator)
2557 {
2558         struct regmap *map = regulator->rdev->regmap;
2559
2560         return map ? map : ERR_PTR(-EOPNOTSUPP);
2561 }
2562
2563 /**
2564  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2565  * @regulator: regulator source
2566  * @vsel_reg: voltage selector register, output parameter
2567  * @vsel_mask: mask for voltage selector bitfield, output parameter
2568  *
2569  * Returns the hardware register offset and bitmask used for setting the
2570  * regulator voltage. This might be useful when configuring voltage-scaling
2571  * hardware or firmware that can make I2C requests behind the kernel's back,
2572  * for example.
2573  *
2574  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2575  * and 0 is returned, otherwise a negative errno is returned.
2576  */
2577 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2578                                          unsigned *vsel_reg,
2579                                          unsigned *vsel_mask)
2580 {
2581         struct regulator_dev *rdev = regulator->rdev;
2582         const struct regulator_ops *ops = rdev->desc->ops;
2583
2584         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2585                 return -EOPNOTSUPP;
2586
2587          *vsel_reg = rdev->desc->vsel_reg;
2588          *vsel_mask = rdev->desc->vsel_mask;
2589
2590          return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2593
2594 /**
2595  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2596  * @regulator: regulator source
2597  * @selector: identify voltage to list
2598  *
2599  * Converts the selector to a hardware-specific voltage selector that can be
2600  * directly written to the regulator registers. The address of the voltage
2601  * register can be determined by calling @regulator_get_hardware_vsel_register.
2602  *
2603  * On error a negative errno is returned.
2604  */
2605 int regulator_list_hardware_vsel(struct regulator *regulator,
2606                                  unsigned selector)
2607 {
2608         struct regulator_dev *rdev = regulator->rdev;
2609         const struct regulator_ops *ops = rdev->desc->ops;
2610
2611         if (selector >= rdev->desc->n_voltages)
2612                 return -EINVAL;
2613         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2614                 return -EOPNOTSUPP;
2615
2616         return selector;
2617 }
2618 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2619
2620 /**
2621  * regulator_get_linear_step - return the voltage step size between VSEL values
2622  * @regulator: regulator source
2623  *
2624  * Returns the voltage step size between VSEL values for linear
2625  * regulators, or return 0 if the regulator isn't a linear regulator.
2626  */
2627 unsigned int regulator_get_linear_step(struct regulator *regulator)
2628 {
2629         struct regulator_dev *rdev = regulator->rdev;
2630
2631         return rdev->desc->uV_step;
2632 }
2633 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2634
2635 /**
2636  * regulator_is_supported_voltage - check if a voltage range can be supported
2637  *
2638  * @regulator: Regulator to check.
2639  * @min_uV: Minimum required voltage in uV.
2640  * @max_uV: Maximum required voltage in uV.
2641  *
2642  * Returns a boolean or a negative error code.
2643  */
2644 int regulator_is_supported_voltage(struct regulator *regulator,
2645                                    int min_uV, int max_uV)
2646 {
2647         struct regulator_dev *rdev = regulator->rdev;
2648         int i, voltages, ret;
2649
2650         /* If we can't change voltage check the current voltage */
2651         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2652                 ret = regulator_get_voltage(regulator);
2653                 if (ret >= 0)
2654                         return min_uV <= ret && ret <= max_uV;
2655                 else
2656                         return ret;
2657         }
2658
2659         /* Any voltage within constrains range is fine? */
2660         if (rdev->desc->continuous_voltage_range)
2661                 return min_uV >= rdev->constraints->min_uV &&
2662                                 max_uV <= rdev->constraints->max_uV;
2663
2664         ret = regulator_count_voltages(regulator);
2665         if (ret < 0)
2666                 return ret;
2667         voltages = ret;
2668
2669         for (i = 0; i < voltages; i++) {
2670                 ret = regulator_list_voltage(regulator, i);
2671
2672                 if (ret >= min_uV && ret <= max_uV)
2673                         return 1;
2674         }
2675
2676         return 0;
2677 }
2678 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2679
2680 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2681                                  int max_uV)
2682 {
2683         const struct regulator_desc *desc = rdev->desc;
2684
2685         if (desc->ops->map_voltage)
2686                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2687
2688         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2689                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2690
2691         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2692                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2693
2694         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2695 }
2696
2697 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2698                                        int min_uV, int max_uV,
2699                                        unsigned *selector)
2700 {
2701         struct pre_voltage_change_data data;
2702         int ret;
2703
2704         data.old_uV = _regulator_get_voltage(rdev);
2705         data.min_uV = min_uV;
2706         data.max_uV = max_uV;
2707         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2708                                    &data);
2709         if (ret & NOTIFY_STOP_MASK)
2710                 return -EINVAL;
2711
2712         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2713         if (ret >= 0)
2714                 return ret;
2715
2716         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2717                              (void *)data.old_uV);
2718
2719         return ret;
2720 }
2721
2722 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2723                                            int uV, unsigned selector)
2724 {
2725         struct pre_voltage_change_data data;
2726         int ret;
2727
2728         data.old_uV = _regulator_get_voltage(rdev);
2729         data.min_uV = uV;
2730         data.max_uV = uV;
2731         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2732                                    &data);
2733         if (ret & NOTIFY_STOP_MASK)
2734                 return -EINVAL;
2735
2736         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2737         if (ret >= 0)
2738                 return ret;
2739
2740         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2741                              (void *)data.old_uV);
2742
2743         return ret;
2744 }
2745
2746 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2747                                        int old_uV, int new_uV)
2748 {
2749         unsigned int ramp_delay = 0;
2750
2751         if (rdev->constraints->ramp_delay)
2752                 ramp_delay = rdev->constraints->ramp_delay;
2753         else if (rdev->desc->ramp_delay)
2754                 ramp_delay = rdev->desc->ramp_delay;
2755
2756         if (ramp_delay == 0) {
2757                 rdev_warn(rdev, "ramp_delay not set\n");
2758                 return 0;
2759         }
2760
2761         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2762 }
2763
2764 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2765                                      int min_uV, int max_uV)
2766 {
2767         int ret;
2768         int delay = 0;
2769         int best_val = 0;
2770         unsigned int selector;
2771         int old_selector = -1;
2772         const struct regulator_ops *ops = rdev->desc->ops;
2773         int old_uV = _regulator_get_voltage(rdev);
2774
2775         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2776
2777         min_uV += rdev->constraints->uV_offset;
2778         max_uV += rdev->constraints->uV_offset;
2779
2780         /*
2781          * If we can't obtain the old selector there is not enough
2782          * info to call set_voltage_time_sel().
2783          */
2784         if (_regulator_is_enabled(rdev) &&
2785             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2786                 old_selector = ops->get_voltage_sel(rdev);
2787                 if (old_selector < 0)
2788                         return old_selector;
2789         }
2790
2791         if (ops->set_voltage) {
2792                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2793                                                   &selector);
2794
2795                 if (ret >= 0) {
2796                         if (ops->list_voltage)
2797                                 best_val = ops->list_voltage(rdev,
2798                                                              selector);
2799                         else
2800                                 best_val = _regulator_get_voltage(rdev);
2801                 }
2802
2803         } else if (ops->set_voltage_sel) {
2804                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2805                 if (ret >= 0) {
2806                         best_val = ops->list_voltage(rdev, ret);
2807                         if (min_uV <= best_val && max_uV >= best_val) {
2808                                 selector = ret;
2809                                 if (old_selector == selector)
2810                                         ret = 0;
2811                                 else
2812                                         ret = _regulator_call_set_voltage_sel(
2813                                                 rdev, best_val, selector);
2814                         } else {
2815                                 ret = -EINVAL;
2816                         }
2817                 }
2818         } else {
2819                 ret = -EINVAL;
2820         }
2821
2822         if (ret)
2823                 goto out;
2824
2825         if (ops->set_voltage_time_sel) {
2826                 /*
2827                  * Call set_voltage_time_sel if successfully obtained
2828                  * old_selector
2829                  */
2830                 if (old_selector >= 0 && old_selector != selector)
2831                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2832                                                           selector);
2833         } else {
2834                 if (old_uV != best_val) {
2835                         if (ops->set_voltage_time)
2836                                 delay = ops->set_voltage_time(rdev, old_uV,
2837                                                               best_val);
2838                         else
2839                                 delay = _regulator_set_voltage_time(rdev,
2840                                                                     old_uV,
2841                                                                     best_val);
2842                 }
2843         }
2844
2845         if (delay < 0) {
2846                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2847                 delay = 0;
2848         }
2849
2850         /* Insert any necessary delays */
2851         if (delay >= 1000) {
2852                 mdelay(delay / 1000);
2853                 udelay(delay % 1000);
2854         } else if (delay) {
2855                 udelay(delay);
2856         }
2857
2858         if (best_val >= 0) {
2859                 unsigned long data = best_val;
2860
2861                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2862                                      (void *)data);
2863         }
2864
2865 out:
2866         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2867
2868         return ret;
2869 }
2870
2871 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2872                                           int min_uV, int max_uV)
2873 {
2874         struct regulator_dev *rdev = regulator->rdev;
2875         int ret = 0;
2876         int old_min_uV, old_max_uV;
2877         int current_uV;
2878         int best_supply_uV = 0;
2879         int supply_change_uV = 0;
2880
2881         /* If we're setting the same range as last time the change
2882          * should be a noop (some cpufreq implementations use the same
2883          * voltage for multiple frequencies, for example).
2884          */
2885         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2886                 goto out;
2887
2888         /* If we're trying to set a range that overlaps the current voltage,
2889          * return successfully even though the regulator does not support
2890          * changing the voltage.
2891          */
2892         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2893                 current_uV = _regulator_get_voltage(rdev);
2894                 if (min_uV <= current_uV && current_uV <= max_uV) {
2895                         regulator->min_uV = min_uV;
2896                         regulator->max_uV = max_uV;
2897                         goto out;
2898                 }
2899         }
2900
2901         /* sanity check */
2902         if (!rdev->desc->ops->set_voltage &&
2903             !rdev->desc->ops->set_voltage_sel) {
2904                 ret = -EINVAL;
2905                 goto out;
2906         }
2907
2908         /* constraints check */
2909         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2910         if (ret < 0)
2911                 goto out;
2912
2913         /* restore original values in case of error */
2914         old_min_uV = regulator->min_uV;
2915         old_max_uV = regulator->max_uV;
2916         regulator->min_uV = min_uV;
2917         regulator->max_uV = max_uV;
2918
2919         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2920         if (ret < 0)
2921                 goto out2;
2922
2923         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2924                                 !rdev->desc->ops->get_voltage)) {
2925                 int current_supply_uV;
2926                 int selector;
2927
2928                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2929                 if (selector < 0) {
2930                         ret = selector;
2931                         goto out2;
2932                 }
2933
2934                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2935                 if (best_supply_uV < 0) {
2936                         ret = best_supply_uV;
2937                         goto out2;
2938                 }
2939
2940                 best_supply_uV += rdev->desc->min_dropout_uV;
2941
2942                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2943                 if (current_supply_uV < 0) {
2944                         ret = current_supply_uV;
2945                         goto out2;
2946                 }
2947
2948                 supply_change_uV = best_supply_uV - current_supply_uV;
2949         }
2950
2951         if (supply_change_uV > 0) {
2952                 ret = regulator_set_voltage_unlocked(rdev->supply,
2953                                 best_supply_uV, INT_MAX);
2954                 if (ret) {
2955                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2956                                         ret);
2957                         goto out2;
2958                 }
2959         }
2960
2961         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2962         if (ret < 0)
2963                 goto out2;
2964
2965         if (supply_change_uV < 0) {
2966                 ret = regulator_set_voltage_unlocked(rdev->supply,
2967                                 best_supply_uV, INT_MAX);
2968                 if (ret)
2969                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2970                                         ret);
2971                 /* No need to fail here */
2972                 ret = 0;
2973         }
2974
2975 out:
2976         return ret;
2977 out2:
2978         regulator->min_uV = old_min_uV;
2979         regulator->max_uV = old_max_uV;
2980
2981         return ret;
2982 }
2983
2984 /**
2985  * regulator_set_voltage - set regulator output voltage
2986  * @regulator: regulator source
2987  * @min_uV: Minimum required voltage in uV
2988  * @max_uV: Maximum acceptable voltage in uV
2989  *
2990  * Sets a voltage regulator to the desired output voltage. This can be set
2991  * during any regulator state. IOW, regulator can be disabled or enabled.
2992  *
2993  * If the regulator is enabled then the voltage will change to the new value
2994  * immediately otherwise if the regulator is disabled the regulator will
2995  * output at the new voltage when enabled.
2996  *
2997  * NOTE: If the regulator is shared between several devices then the lowest
2998  * request voltage that meets the system constraints will be used.
2999  * Regulator system constraints must be set for this regulator before
3000  * calling this function otherwise this call will fail.
3001  */
3002 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3003 {
3004         int ret = 0;
3005
3006         regulator_lock_supply(regulator->rdev);
3007
3008         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3009
3010         regulator_unlock_supply(regulator->rdev);
3011
3012         return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3015
3016 /**
3017  * regulator_set_voltage_time - get raise/fall time
3018  * @regulator: regulator source
3019  * @old_uV: starting voltage in microvolts
3020  * @new_uV: target voltage in microvolts
3021  *
3022  * Provided with the starting and ending voltage, this function attempts to
3023  * calculate the time in microseconds required to rise or fall to this new
3024  * voltage.
3025  */
3026 int regulator_set_voltage_time(struct regulator *regulator,
3027                                int old_uV, int new_uV)
3028 {
3029         struct regulator_dev *rdev = regulator->rdev;
3030         const struct regulator_ops *ops = rdev->desc->ops;
3031         int old_sel = -1;
3032         int new_sel = -1;
3033         int voltage;
3034         int i;
3035
3036         if (ops->set_voltage_time)
3037                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3038         else if (!ops->set_voltage_time_sel)
3039                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3040
3041         /* Currently requires operations to do this */
3042         if (!ops->list_voltage || !rdev->desc->n_voltages)
3043                 return -EINVAL;
3044
3045         for (i = 0; i < rdev->desc->n_voltages; i++) {
3046                 /* We only look for exact voltage matches here */
3047                 voltage = regulator_list_voltage(regulator, i);
3048                 if (voltage < 0)
3049                         return -EINVAL;
3050                 if (voltage == 0)
3051                         continue;
3052                 if (voltage == old_uV)
3053                         old_sel = i;
3054                 if (voltage == new_uV)
3055                         new_sel = i;
3056         }
3057
3058         if (old_sel < 0 || new_sel < 0)
3059                 return -EINVAL;
3060
3061         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3064
3065 /**
3066  * regulator_set_voltage_time_sel - get raise/fall time
3067  * @rdev: regulator source device
3068  * @old_selector: selector for starting voltage
3069  * @new_selector: selector for target voltage
3070  *
3071  * Provided with the starting and target voltage selectors, this function
3072  * returns time in microseconds required to rise or fall to this new voltage
3073  *
3074  * Drivers providing ramp_delay in regulation_constraints can use this as their
3075  * set_voltage_time_sel() operation.
3076  */
3077 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3078                                    unsigned int old_selector,
3079                                    unsigned int new_selector)
3080 {
3081         int old_volt, new_volt;
3082
3083         /* sanity check */
3084         if (!rdev->desc->ops->list_voltage)
3085                 return -EINVAL;
3086
3087         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3088         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3089
3090         if (rdev->desc->ops->set_voltage_time)
3091                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3092                                                          new_volt);
3093         else
3094                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3095 }
3096 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3097
3098 /**
3099  * regulator_sync_voltage - re-apply last regulator output voltage
3100  * @regulator: regulator source
3101  *
3102  * Re-apply the last configured voltage.  This is intended to be used
3103  * where some external control source the consumer is cooperating with
3104  * has caused the configured voltage to change.
3105  */
3106 int regulator_sync_voltage(struct regulator *regulator)
3107 {
3108         struct regulator_dev *rdev = regulator->rdev;
3109         int ret, min_uV, max_uV;
3110
3111         mutex_lock(&rdev->mutex);
3112
3113         if (!rdev->desc->ops->set_voltage &&
3114             !rdev->desc->ops->set_voltage_sel) {
3115                 ret = -EINVAL;
3116                 goto out;
3117         }
3118
3119         /* This is only going to work if we've had a voltage configured. */
3120         if (!regulator->min_uV && !regulator->max_uV) {
3121                 ret = -EINVAL;
3122                 goto out;
3123         }
3124
3125         min_uV = regulator->min_uV;
3126         max_uV = regulator->max_uV;
3127
3128         /* This should be a paranoia check... */
3129         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3130         if (ret < 0)
3131                 goto out;
3132
3133         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3134         if (ret < 0)
3135                 goto out;
3136
3137         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3138
3139 out:
3140         mutex_unlock(&rdev->mutex);
3141         return ret;
3142 }
3143 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3144
3145 static int _regulator_get_voltage(struct regulator_dev *rdev)
3146 {
3147         int sel, ret;
3148         bool bypassed;
3149
3150         if (rdev->desc->ops->get_bypass) {
3151                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3152                 if (ret < 0)
3153                         return ret;
3154                 if (bypassed) {
3155                         /* if bypassed the regulator must have a supply */
3156                         if (!rdev->supply) {
3157                                 rdev_err(rdev,
3158                                          "bypassed regulator has no supply!\n");
3159                                 return -EPROBE_DEFER;
3160                         }
3161
3162                         return _regulator_get_voltage(rdev->supply->rdev);
3163                 }
3164         }
3165
3166         if (rdev->desc->ops->get_voltage_sel) {
3167                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3168                 if (sel < 0)
3169                         return sel;
3170                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3171         } else if (rdev->desc->ops->get_voltage) {
3172                 ret = rdev->desc->ops->get_voltage(rdev);
3173         } else if (rdev->desc->ops->list_voltage) {
3174                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3175         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3176                 ret = rdev->desc->fixed_uV;
3177         } else if (rdev->supply) {
3178                 ret = _regulator_get_voltage(rdev->supply->rdev);
3179         } else {
3180                 return -EINVAL;
3181         }
3182
3183         if (ret < 0)
3184                 return ret;
3185         return ret - rdev->constraints->uV_offset;
3186 }
3187
3188 /**
3189  * regulator_get_voltage - get regulator output voltage
3190  * @regulator: regulator source
3191  *
3192  * This returns the current regulator voltage in uV.
3193  *
3194  * NOTE: If the regulator is disabled it will return the voltage value. This
3195  * function should not be used to determine regulator state.
3196  */
3197 int regulator_get_voltage(struct regulator *regulator)
3198 {
3199         int ret;
3200
3201         regulator_lock_supply(regulator->rdev);
3202
3203         ret = _regulator_get_voltage(regulator->rdev);
3204
3205         regulator_unlock_supply(regulator->rdev);
3206
3207         return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3210
3211 /**
3212  * regulator_set_current_limit - set regulator output current limit
3213  * @regulator: regulator source
3214  * @min_uA: Minimum supported current in uA
3215  * @max_uA: Maximum supported current in uA
3216  *
3217  * Sets current sink to the desired output current. This can be set during
3218  * any regulator state. IOW, regulator can be disabled or enabled.
3219  *
3220  * If the regulator is enabled then the current will change to the new value
3221  * immediately otherwise if the regulator is disabled the regulator will
3222  * output at the new current when enabled.
3223  *
3224  * NOTE: Regulator system constraints must be set for this regulator before
3225  * calling this function otherwise this call will fail.
3226  */
3227 int regulator_set_current_limit(struct regulator *regulator,
3228                                int min_uA, int max_uA)
3229 {
3230         struct regulator_dev *rdev = regulator->rdev;
3231         int ret;
3232
3233         mutex_lock(&rdev->mutex);
3234
3235         /* sanity check */
3236         if (!rdev->desc->ops->set_current_limit) {
3237                 ret = -EINVAL;
3238                 goto out;
3239         }
3240
3241         /* constraints check */
3242         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3243         if (ret < 0)
3244                 goto out;
3245
3246         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3247 out:
3248         mutex_unlock(&rdev->mutex);
3249         return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3252
3253 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3254 {
3255         int ret;
3256
3257         mutex_lock(&rdev->mutex);
3258
3259         /* sanity check */
3260         if (!rdev->desc->ops->get_current_limit) {
3261                 ret = -EINVAL;
3262                 goto out;
3263         }
3264
3265         ret = rdev->desc->ops->get_current_limit(rdev);
3266 out:
3267         mutex_unlock(&rdev->mutex);
3268         return ret;
3269 }
3270
3271 /**
3272  * regulator_get_current_limit - get regulator output current
3273  * @regulator: regulator source
3274  *
3275  * This returns the current supplied by the specified current sink in uA.
3276  *
3277  * NOTE: If the regulator is disabled it will return the current value. This
3278  * function should not be used to determine regulator state.
3279  */
3280 int regulator_get_current_limit(struct regulator *regulator)
3281 {
3282         return _regulator_get_current_limit(regulator->rdev);
3283 }
3284 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3285
3286 /**
3287  * regulator_set_mode - set regulator operating mode
3288  * @regulator: regulator source
3289  * @mode: operating mode - one of the REGULATOR_MODE constants
3290  *
3291  * Set regulator operating mode to increase regulator efficiency or improve
3292  * regulation performance.
3293  *
3294  * NOTE: Regulator system constraints must be set for this regulator before
3295  * calling this function otherwise this call will fail.
3296  */
3297 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3298 {
3299         struct regulator_dev *rdev = regulator->rdev;
3300         int ret;
3301         int regulator_curr_mode;
3302
3303         mutex_lock(&rdev->mutex);
3304
3305         /* sanity check */
3306         if (!rdev->desc->ops->set_mode) {
3307                 ret = -EINVAL;
3308                 goto out;
3309         }
3310
3311         /* return if the same mode is requested */
3312         if (rdev->desc->ops->get_mode) {
3313                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3314                 if (regulator_curr_mode == mode) {
3315                         ret = 0;
3316                         goto out;
3317                 }
3318         }
3319
3320         /* constraints check */
3321         ret = regulator_mode_constrain(rdev, &mode);
3322         if (ret < 0)
3323                 goto out;
3324
3325         ret = rdev->desc->ops->set_mode(rdev, mode);
3326 out:
3327         mutex_unlock(&rdev->mutex);
3328         return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_set_mode);
3331
3332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3333 {
3334         int ret;
3335
3336         mutex_lock(&rdev->mutex);
3337
3338         /* sanity check */
3339         if (!rdev->desc->ops->get_mode) {
3340                 ret = -EINVAL;
3341                 goto out;
3342         }
3343
3344         ret = rdev->desc->ops->get_mode(rdev);
3345 out:
3346         mutex_unlock(&rdev->mutex);
3347         return ret;
3348 }
3349
3350 /**
3351  * regulator_get_mode - get regulator operating mode
3352  * @regulator: regulator source
3353  *
3354  * Get the current regulator operating mode.
3355  */
3356 unsigned int regulator_get_mode(struct regulator *regulator)
3357 {
3358         return _regulator_get_mode(regulator->rdev);
3359 }
3360 EXPORT_SYMBOL_GPL(regulator_get_mode);
3361
3362 /**
3363  * regulator_set_load - set regulator load
3364  * @regulator: regulator source
3365  * @uA_load: load current
3366  *
3367  * Notifies the regulator core of a new device load. This is then used by
3368  * DRMS (if enabled by constraints) to set the most efficient regulator
3369  * operating mode for the new regulator loading.
3370  *
3371  * Consumer devices notify their supply regulator of the maximum power
3372  * they will require (can be taken from device datasheet in the power
3373  * consumption tables) when they change operational status and hence power
3374  * state. Examples of operational state changes that can affect power
3375  * consumption are :-
3376  *
3377  *    o Device is opened / closed.
3378  *    o Device I/O is about to begin or has just finished.
3379  *    o Device is idling in between work.
3380  *
3381  * This information is also exported via sysfs to userspace.
3382  *
3383  * DRMS will sum the total requested load on the regulator and change
3384  * to the most efficient operating mode if platform constraints allow.
3385  *
3386  * On error a negative errno is returned.
3387  */
3388 int regulator_set_load(struct regulator *regulator, int uA_load)
3389 {
3390         struct regulator_dev *rdev = regulator->rdev;
3391         int ret;
3392
3393         mutex_lock(&rdev->mutex);
3394         regulator->uA_load = uA_load;
3395         ret = drms_uA_update(rdev);
3396         mutex_unlock(&rdev->mutex);
3397
3398         return ret;
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_set_load);
3401
3402 /**
3403  * regulator_allow_bypass - allow the regulator to go into bypass mode
3404  *
3405  * @regulator: Regulator to configure
3406  * @enable: enable or disable bypass mode
3407  *
3408  * Allow the regulator to go into bypass mode if all other consumers
3409  * for the regulator also enable bypass mode and the machine
3410  * constraints allow this.  Bypass mode means that the regulator is
3411  * simply passing the input directly to the output with no regulation.
3412  */
3413 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3414 {
3415         struct regulator_dev *rdev = regulator->rdev;
3416         int ret = 0;
3417
3418         if (!rdev->desc->ops->set_bypass)
3419                 return 0;
3420
3421         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3422                 return 0;
3423
3424         mutex_lock(&rdev->mutex);
3425
3426         if (enable && !regulator->bypass) {
3427                 rdev->bypass_count++;
3428
3429                 if (rdev->bypass_count == rdev->open_count) {
3430                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3431                         if (ret != 0)
3432                                 rdev->bypass_count--;
3433                 }
3434
3435         } else if (!enable && regulator->bypass) {
3436                 rdev->bypass_count--;
3437
3438                 if (rdev->bypass_count != rdev->open_count) {
3439                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3440                         if (ret != 0)
3441                                 rdev->bypass_count++;
3442                 }
3443         }
3444
3445         if (ret == 0)
3446                 regulator->bypass = enable;
3447
3448         mutex_unlock(&rdev->mutex);
3449
3450         return ret;
3451 }
3452 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3453
3454 /**
3455  * regulator_register_notifier - register regulator event notifier
3456  * @regulator: regulator source
3457  * @nb: notifier block
3458  *
3459  * Register notifier block to receive regulator events.
3460  */
3461 int regulator_register_notifier(struct regulator *regulator,
3462                               struct notifier_block *nb)
3463 {
3464         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3465                                                 nb);
3466 }
3467 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3468
3469 /**
3470  * regulator_unregister_notifier - unregister regulator event notifier
3471  * @regulator: regulator source
3472  * @nb: notifier block
3473  *
3474  * Unregister regulator event notifier block.
3475  */
3476 int regulator_unregister_notifier(struct regulator *regulator,
3477                                 struct notifier_block *nb)
3478 {
3479         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3480                                                   nb);
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3483
3484 /* notify regulator consumers and downstream regulator consumers.
3485  * Note mutex must be held by caller.
3486  */
3487 static int _notifier_call_chain(struct regulator_dev *rdev,
3488                                   unsigned long event, void *data)
3489 {
3490         /* call rdev chain first */
3491         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3492 }
3493
3494 /**
3495  * regulator_bulk_get - get multiple regulator consumers
3496  *
3497  * @dev:           Device to supply
3498  * @num_consumers: Number of consumers to register
3499  * @consumers:     Configuration of consumers; clients are stored here.
3500  *
3501  * @return 0 on success, an errno on failure.
3502  *
3503  * This helper function allows drivers to get several regulator
3504  * consumers in one operation.  If any of the regulators cannot be
3505  * acquired then any regulators that were allocated will be freed
3506  * before returning to the caller.
3507  */
3508 int regulator_bulk_get(struct device *dev, int num_consumers,
3509                        struct regulator_bulk_data *consumers)
3510 {
3511         int i;
3512         int ret;
3513
3514         for (i = 0; i < num_consumers; i++)
3515                 consumers[i].consumer = NULL;
3516
3517         for (i = 0; i < num_consumers; i++) {
3518                 consumers[i].consumer = _regulator_get(dev,
3519                                                        consumers[i].supply,
3520                                                        false,
3521                                                        !consumers[i].optional);
3522                 if (IS_ERR(consumers[i].consumer)) {
3523                         ret = PTR_ERR(consumers[i].consumer);
3524                         dev_err(dev, "Failed to get supply '%s': %d\n",
3525                                 consumers[i].supply, ret);
3526                         consumers[i].consumer = NULL;
3527                         goto err;
3528                 }
3529         }
3530
3531         return 0;
3532
3533 err:
3534         while (--i >= 0)
3535                 regulator_put(consumers[i].consumer);
3536
3537         return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3540
3541 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3542 {
3543         struct regulator_bulk_data *bulk = data;
3544
3545         bulk->ret = regulator_enable(bulk->consumer);
3546 }
3547
3548 /**
3549  * regulator_bulk_enable - enable multiple regulator consumers
3550  *
3551  * @num_consumers: Number of consumers
3552  * @consumers:     Consumer data; clients are stored here.
3553  * @return         0 on success, an errno on failure
3554  *
3555  * This convenience API allows consumers to enable multiple regulator
3556  * clients in a single API call.  If any consumers cannot be enabled
3557  * then any others that were enabled will be disabled again prior to
3558  * return.
3559  */
3560 int regulator_bulk_enable(int num_consumers,
3561                           struct regulator_bulk_data *consumers)
3562 {
3563         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3564         int i;
3565         int ret = 0;
3566
3567         for (i = 0; i < num_consumers; i++) {
3568                 if (consumers[i].consumer->always_on)
3569                         consumers[i].ret = 0;
3570                 else
3571                         async_schedule_domain(regulator_bulk_enable_async,
3572                                               &consumers[i], &async_domain);
3573         }
3574
3575         async_synchronize_full_domain(&async_domain);
3576
3577         /* If any consumer failed we need to unwind any that succeeded */
3578         for (i = 0; i < num_consumers; i++) {
3579                 if (consumers[i].ret != 0) {
3580                         ret = consumers[i].ret;
3581                         goto err;
3582                 }
3583         }
3584
3585         return 0;
3586
3587 err:
3588         for (i = 0; i < num_consumers; i++) {
3589                 if (consumers[i].ret < 0)
3590                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3591                                consumers[i].ret);
3592                 else
3593                         regulator_disable(consumers[i].consumer);
3594         }
3595
3596         return ret;
3597 }
3598 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3599
3600 /**
3601  * regulator_bulk_disable - disable multiple regulator consumers
3602  *
3603  * @num_consumers: Number of consumers
3604  * @consumers:     Consumer data; clients are stored here.
3605  * @return         0 on success, an errno on failure
3606  *
3607  * This convenience API allows consumers to disable multiple regulator
3608  * clients in a single API call.  If any consumers cannot be disabled
3609  * then any others that were disabled will be enabled again prior to
3610  * return.
3611  */
3612 int regulator_bulk_disable(int num_consumers,
3613                            struct regulator_bulk_data *consumers)
3614 {
3615         int i;
3616         int ret, r;
3617
3618         for (i = num_consumers - 1; i >= 0; --i) {
3619                 ret = regulator_disable(consumers[i].consumer);
3620                 if (ret != 0)
3621                         goto err;
3622         }
3623
3624         return 0;
3625
3626 err:
3627         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3628         for (++i; i < num_consumers; ++i) {
3629                 r = regulator_enable(consumers[i].consumer);
3630                 if (r != 0)
3631                         pr_err("Failed to reename %s: %d\n",
3632                                consumers[i].supply, r);
3633         }
3634
3635         return ret;
3636 }
3637 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3638
3639 /**
3640  * regulator_bulk_force_disable - force disable multiple regulator consumers
3641  *
3642  * @num_consumers: Number of consumers
3643  * @consumers:     Consumer data; clients are stored here.
3644  * @return         0 on success, an errno on failure
3645  *
3646  * This convenience API allows consumers to forcibly disable multiple regulator
3647  * clients in a single API call.
3648  * NOTE: This should be used for situations when device damage will
3649  * likely occur if the regulators are not disabled (e.g. over temp).
3650  * Although regulator_force_disable function call for some consumers can
3651  * return error numbers, the function is called for all consumers.
3652  */
3653 int regulator_bulk_force_disable(int num_consumers,
3654                            struct regulator_bulk_data *consumers)
3655 {
3656         int i;
3657         int ret;
3658
3659         for (i = 0; i < num_consumers; i++)
3660                 consumers[i].ret =
3661                             regulator_force_disable(consumers[i].consumer);
3662
3663         for (i = 0; i < num_consumers; i++) {
3664                 if (consumers[i].ret != 0) {
3665                         ret = consumers[i].ret;
3666                         goto out;
3667                 }
3668         }
3669
3670         return 0;
3671 out:
3672         return ret;
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3675
3676 /**
3677  * regulator_bulk_free - free multiple regulator consumers
3678  *
3679  * @num_consumers: Number of consumers
3680  * @consumers:     Consumer data; clients are stored here.
3681  *
3682  * This convenience API allows consumers to free multiple regulator
3683  * clients in a single API call.
3684  */
3685 void regulator_bulk_free(int num_consumers,
3686                          struct regulator_bulk_data *consumers)
3687 {
3688         int i;
3689
3690         for (i = 0; i < num_consumers; i++) {
3691                 regulator_put(consumers[i].consumer);
3692                 consumers[i].consumer = NULL;
3693         }
3694 }
3695 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3696
3697 /**
3698  * regulator_notifier_call_chain - call regulator event notifier
3699  * @rdev: regulator source
3700  * @event: notifier block
3701  * @data: callback-specific data.
3702  *
3703  * Called by regulator drivers to notify clients a regulator event has
3704  * occurred. We also notify regulator clients downstream.
3705  * Note lock must be held by caller.
3706  */
3707 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3708                                   unsigned long event, void *data)
3709 {
3710         lockdep_assert_held_once(&rdev->mutex);
3711
3712         _notifier_call_chain(rdev, event, data);
3713         return NOTIFY_DONE;
3714
3715 }
3716 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3717
3718 /**
3719  * regulator_mode_to_status - convert a regulator mode into a status
3720  *
3721  * @mode: Mode to convert
3722  *
3723  * Convert a regulator mode into a status.
3724  */
3725 int regulator_mode_to_status(unsigned int mode)
3726 {
3727         switch (mode) {
3728         case REGULATOR_MODE_FAST:
3729                 return REGULATOR_STATUS_FAST;
3730         case REGULATOR_MODE_NORMAL:
3731                 return REGULATOR_STATUS_NORMAL;
3732         case REGULATOR_MODE_IDLE:
3733                 return REGULATOR_STATUS_IDLE;
3734         case REGULATOR_MODE_STANDBY:
3735                 return REGULATOR_STATUS_STANDBY;
3736         default:
3737                 return REGULATOR_STATUS_UNDEFINED;
3738         }
3739 }
3740 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3741
3742 static struct attribute *regulator_dev_attrs[] = {
3743         &dev_attr_name.attr,
3744         &dev_attr_num_users.attr,
3745         &dev_attr_type.attr,
3746         &dev_attr_microvolts.attr,
3747         &dev_attr_microamps.attr,
3748         &dev_attr_opmode.attr,
3749         &dev_attr_state.attr,
3750         &dev_attr_status.attr,
3751         &dev_attr_bypass.attr,
3752         &dev_attr_requested_microamps.attr,
3753         &dev_attr_min_microvolts.attr,
3754         &dev_attr_max_microvolts.attr,
3755         &dev_attr_min_microamps.attr,
3756         &dev_attr_max_microamps.attr,
3757         &dev_attr_suspend_standby_state.attr,
3758         &dev_attr_suspend_mem_state.attr,
3759         &dev_attr_suspend_disk_state.attr,
3760         &dev_attr_suspend_standby_microvolts.attr,
3761         &dev_attr_suspend_mem_microvolts.attr,
3762         &dev_attr_suspend_disk_microvolts.attr,
3763         &dev_attr_suspend_standby_mode.attr,
3764         &dev_attr_suspend_mem_mode.attr,
3765         &dev_attr_suspend_disk_mode.attr,
3766         NULL
3767 };
3768
3769 /*
3770  * To avoid cluttering sysfs (and memory) with useless state, only
3771  * create attributes that can be meaningfully displayed.
3772  */
3773 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3774                                          struct attribute *attr, int idx)
3775 {
3776         struct device *dev = kobj_to_dev(kobj);
3777         struct regulator_dev *rdev = dev_to_rdev(dev);
3778         const struct regulator_ops *ops = rdev->desc->ops;
3779         umode_t mode = attr->mode;
3780
3781         /* these three are always present */
3782         if (attr == &dev_attr_name.attr ||
3783             attr == &dev_attr_num_users.attr ||
3784             attr == &dev_attr_type.attr)
3785                 return mode;
3786
3787         /* some attributes need specific methods to be displayed */
3788         if (attr == &dev_attr_microvolts.attr) {
3789                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3790                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3791                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3792                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3793                         return mode;
3794                 return 0;
3795         }
3796
3797         if (attr == &dev_attr_microamps.attr)
3798                 return ops->get_current_limit ? mode : 0;
3799
3800         if (attr == &dev_attr_opmode.attr)
3801                 return ops->get_mode ? mode : 0;
3802
3803         if (attr == &dev_attr_state.attr)
3804                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3805
3806         if (attr == &dev_attr_status.attr)
3807                 return ops->get_status ? mode : 0;
3808
3809         if (attr == &dev_attr_bypass.attr)
3810                 return ops->get_bypass ? mode : 0;
3811
3812         /* some attributes are type-specific */
3813         if (attr == &dev_attr_requested_microamps.attr)
3814                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3815
3816         /* constraints need specific supporting methods */
3817         if (attr == &dev_attr_min_microvolts.attr ||
3818             attr == &dev_attr_max_microvolts.attr)
3819                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3820
3821         if (attr == &dev_attr_min_microamps.attr ||
3822             attr == &dev_attr_max_microamps.attr)
3823                 return ops->set_current_limit ? mode : 0;
3824
3825         if (attr == &dev_attr_suspend_standby_state.attr ||
3826             attr == &dev_attr_suspend_mem_state.attr ||
3827             attr == &dev_attr_suspend_disk_state.attr)
3828                 return mode;
3829
3830         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3831             attr == &dev_attr_suspend_mem_microvolts.attr ||
3832             attr == &dev_attr_suspend_disk_microvolts.attr)
3833                 return ops->set_suspend_voltage ? mode : 0;
3834
3835         if (attr == &dev_attr_suspend_standby_mode.attr ||
3836             attr == &dev_attr_suspend_mem_mode.attr ||
3837             attr == &dev_attr_suspend_disk_mode.attr)
3838                 return ops->set_suspend_mode ? mode : 0;
3839
3840         return mode;
3841 }
3842
3843 static const struct attribute_group regulator_dev_group = {
3844         .attrs = regulator_dev_attrs,
3845         .is_visible = regulator_attr_is_visible,
3846 };
3847
3848 static const struct attribute_group *regulator_dev_groups[] = {
3849         &regulator_dev_group,
3850         NULL
3851 };
3852
3853 static void regulator_dev_release(struct device *dev)
3854 {
3855         struct regulator_dev *rdev = dev_get_drvdata(dev);
3856
3857         kfree(rdev->constraints);
3858         of_node_put(rdev->dev.of_node);
3859         kfree(rdev);
3860 }
3861
3862 static struct class regulator_class = {
3863         .name = "regulator",
3864         .dev_release = regulator_dev_release,
3865         .dev_groups = regulator_dev_groups,
3866 };
3867
3868 static void rdev_init_debugfs(struct regulator_dev *rdev)
3869 {
3870         struct device *parent = rdev->dev.parent;
3871         const char *rname = rdev_get_name(rdev);
3872         char name[NAME_MAX];
3873
3874         /* Avoid duplicate debugfs directory names */
3875         if (parent && rname == rdev->desc->name) {
3876                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3877                          rname);
3878                 rname = name;
3879         }
3880
3881         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3882         if (!rdev->debugfs) {
3883                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3884                 return;
3885         }
3886
3887         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3888                            &rdev->use_count);
3889         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3890                            &rdev->open_count);
3891         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3892                            &rdev->bypass_count);
3893 }
3894
3895 static int regulator_register_resolve_supply(struct device *dev, void *data)
3896 {
3897         struct regulator_dev *rdev = dev_to_rdev(dev);
3898
3899         if (regulator_resolve_supply(rdev))
3900                 rdev_dbg(rdev, "unable to resolve supply\n");
3901
3902         return 0;
3903 }
3904
3905 /**
3906  * regulator_register - register regulator
3907  * @regulator_desc: regulator to register
3908  * @cfg: runtime configuration for regulator
3909  *
3910  * Called by regulator drivers to register a regulator.
3911  * Returns a valid pointer to struct regulator_dev on success
3912  * or an ERR_PTR() on error.
3913  */
3914 struct regulator_dev *
3915 regulator_register(const struct regulator_desc *regulator_desc,
3916                    const struct regulator_config *cfg)
3917 {
3918         const struct regulation_constraints *constraints = NULL;
3919         const struct regulator_init_data *init_data;
3920         struct regulator_config *config = NULL;
3921         static atomic_t regulator_no = ATOMIC_INIT(-1);
3922         struct regulator_dev *rdev;
3923         struct device *dev;
3924         int ret, i;
3925
3926         if (regulator_desc == NULL || cfg == NULL)
3927                 return ERR_PTR(-EINVAL);
3928
3929         dev = cfg->dev;
3930         WARN_ON(!dev);
3931
3932         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3933                 return ERR_PTR(-EINVAL);
3934
3935         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3936             regulator_desc->type != REGULATOR_CURRENT)
3937                 return ERR_PTR(-EINVAL);
3938
3939         /* Only one of each should be implemented */
3940         WARN_ON(regulator_desc->ops->get_voltage &&
3941                 regulator_desc->ops->get_voltage_sel);
3942         WARN_ON(regulator_desc->ops->set_voltage &&
3943                 regulator_desc->ops->set_voltage_sel);
3944
3945         /* If we're using selectors we must implement list_voltage. */
3946         if (regulator_desc->ops->get_voltage_sel &&
3947             !regulator_desc->ops->list_voltage) {
3948                 return ERR_PTR(-EINVAL);
3949         }
3950         if (regulator_desc->ops->set_voltage_sel &&
3951             !regulator_desc->ops->list_voltage) {
3952                 return ERR_PTR(-EINVAL);
3953         }
3954
3955         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3956         if (rdev == NULL)
3957                 return ERR_PTR(-ENOMEM);
3958
3959         /*
3960          * Duplicate the config so the driver could override it after
3961          * parsing init data.
3962          */
3963         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3964         if (config == NULL) {
3965                 kfree(rdev);
3966                 return ERR_PTR(-ENOMEM);
3967         }
3968
3969         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3970                                                &rdev->dev.of_node);
3971         if (!init_data) {
3972                 init_data = config->init_data;
3973                 rdev->dev.of_node = of_node_get(config->of_node);
3974         }
3975
3976         mutex_init(&rdev->mutex);
3977         rdev->reg_data = config->driver_data;
3978         rdev->owner = regulator_desc->owner;
3979         rdev->desc = regulator_desc;
3980         if (config->regmap)
3981                 rdev->regmap = config->regmap;
3982         else if (dev_get_regmap(dev, NULL))
3983                 rdev->regmap = dev_get_regmap(dev, NULL);
3984         else if (dev->parent)
3985                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3986         INIT_LIST_HEAD(&rdev->consumer_list);
3987         INIT_LIST_HEAD(&rdev->list);
3988         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3989         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3990
3991         /* preform any regulator specific init */
3992         if (init_data && init_data->regulator_init) {
3993                 ret = init_data->regulator_init(rdev->reg_data);
3994                 if (ret < 0)
3995                         goto clean;
3996         }
3997
3998         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3999             gpio_is_valid(config->ena_gpio)) {
4000                 mutex_lock(&regulator_list_mutex);
4001                 ret = regulator_ena_gpio_request(rdev, config);
4002                 mutex_unlock(&regulator_list_mutex);
4003                 if (ret != 0) {
4004                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4005                                  config->ena_gpio, ret);
4006                         goto clean;
4007                 }
4008         }
4009
4010         /* register with sysfs */
4011         rdev->dev.class = &regulator_class;
4012         rdev->dev.parent = dev;
4013         dev_set_name(&rdev->dev, "regulator.%lu",
4014                     (unsigned long) atomic_inc_return(&regulator_no));
4015
4016         /* set regulator constraints */
4017         if (init_data)
4018                 constraints = &init_data->constraints;
4019
4020         if (init_data && init_data->supply_regulator)
4021                 rdev->supply_name = init_data->supply_regulator;
4022         else if (regulator_desc->supply_name)
4023                 rdev->supply_name = regulator_desc->supply_name;
4024
4025         /*
4026          * Attempt to resolve the regulator supply, if specified,
4027          * but don't return an error if we fail because we will try
4028          * to resolve it again later as more regulators are added.
4029          */
4030         if (regulator_resolve_supply(rdev))
4031                 rdev_dbg(rdev, "unable to resolve supply\n");
4032
4033         ret = set_machine_constraints(rdev, constraints);
4034         if (ret < 0)
4035                 goto wash;
4036
4037         /* add consumers devices */
4038         if (init_data) {
4039                 mutex_lock(&regulator_list_mutex);
4040                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4041                         ret = set_consumer_device_supply(rdev,
4042                                 init_data->consumer_supplies[i].dev_name,
4043                                 init_data->consumer_supplies[i].supply);
4044                         if (ret < 0) {
4045                                 mutex_unlock(&regulator_list_mutex);
4046                                 dev_err(dev, "Failed to set supply %s\n",
4047                                         init_data->consumer_supplies[i].supply);
4048                                 goto unset_supplies;
4049                         }
4050                 }
4051                 mutex_unlock(&regulator_list_mutex);
4052         }
4053
4054         ret = device_register(&rdev->dev);
4055         if (ret != 0) {
4056                 put_device(&rdev->dev);
4057                 goto unset_supplies;
4058         }
4059
4060         dev_set_drvdata(&rdev->dev, rdev);
4061         rdev_init_debugfs(rdev);
4062
4063         /* try to resolve regulators supply since a new one was registered */
4064         class_for_each_device(&regulator_class, NULL, NULL,
4065                               regulator_register_resolve_supply);
4066         kfree(config);
4067         return rdev;
4068
4069 unset_supplies:
4070         mutex_lock(&regulator_list_mutex);
4071         unset_regulator_supplies(rdev);
4072         mutex_unlock(&regulator_list_mutex);
4073 wash:
4074         kfree(rdev->constraints);
4075         mutex_lock(&regulator_list_mutex);
4076         regulator_ena_gpio_free(rdev);
4077         mutex_unlock(&regulator_list_mutex);
4078 clean:
4079         kfree(rdev);
4080         kfree(config);
4081         return ERR_PTR(ret);
4082 }
4083 EXPORT_SYMBOL_GPL(regulator_register);
4084
4085 /**
4086  * regulator_unregister - unregister regulator
4087  * @rdev: regulator to unregister
4088  *
4089  * Called by regulator drivers to unregister a regulator.
4090  */
4091 void regulator_unregister(struct regulator_dev *rdev)
4092 {
4093         if (rdev == NULL)
4094                 return;
4095
4096         if (rdev->supply) {
4097                 while (rdev->use_count--)
4098                         regulator_disable(rdev->supply);
4099                 regulator_put(rdev->supply);
4100         }
4101         mutex_lock(&regulator_list_mutex);
4102         debugfs_remove_recursive(rdev->debugfs);
4103         flush_work(&rdev->disable_work.work);
4104         WARN_ON(rdev->open_count);
4105         unset_regulator_supplies(rdev);
4106         list_del(&rdev->list);
4107         regulator_ena_gpio_free(rdev);
4108         mutex_unlock(&regulator_list_mutex);
4109         device_unregister(&rdev->dev);
4110 }
4111 EXPORT_SYMBOL_GPL(regulator_unregister);
4112
4113 static int _regulator_suspend_prepare(struct device *dev, void *data)
4114 {
4115         struct regulator_dev *rdev = dev_to_rdev(dev);
4116         const suspend_state_t *state = data;
4117         int ret;
4118
4119         mutex_lock(&rdev->mutex);
4120         ret = suspend_prepare(rdev, *state);
4121         mutex_unlock(&rdev->mutex);
4122
4123         return ret;
4124 }
4125
4126 /**
4127  * regulator_suspend_prepare - prepare regulators for system wide suspend
4128  * @state: system suspend state
4129  *
4130  * Configure each regulator with it's suspend operating parameters for state.
4131  * This will usually be called by machine suspend code prior to supending.
4132  */
4133 int regulator_suspend_prepare(suspend_state_t state)
4134 {
4135         /* ON is handled by regulator active state */
4136         if (state == PM_SUSPEND_ON)
4137                 return -EINVAL;
4138
4139         return class_for_each_device(&regulator_class, NULL, &state,
4140                                      _regulator_suspend_prepare);
4141 }
4142 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4143
4144 static int _regulator_suspend_finish(struct device *dev, void *data)
4145 {
4146         struct regulator_dev *rdev = dev_to_rdev(dev);
4147         int ret;
4148
4149         mutex_lock(&rdev->mutex);
4150         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4151                 if (!_regulator_is_enabled(rdev)) {
4152                         ret = _regulator_do_enable(rdev);
4153                         if (ret)
4154                                 dev_err(dev,
4155                                         "Failed to resume regulator %d\n",
4156                                         ret);
4157                 }
4158         } else {
4159                 if (!have_full_constraints())
4160                         goto unlock;
4161                 if (!_regulator_is_enabled(rdev))
4162                         goto unlock;
4163
4164                 ret = _regulator_do_disable(rdev);
4165                 if (ret)
4166                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4167         }
4168 unlock:
4169         mutex_unlock(&rdev->mutex);
4170
4171         /* Keep processing regulators in spite of any errors */
4172         return 0;
4173 }
4174
4175 /**
4176  * regulator_suspend_finish - resume regulators from system wide suspend
4177  *
4178  * Turn on regulators that might be turned off by regulator_suspend_prepare
4179  * and that should be turned on according to the regulators properties.
4180  */
4181 int regulator_suspend_finish(void)
4182 {
4183         return class_for_each_device(&regulator_class, NULL, NULL,
4184                                      _regulator_suspend_finish);
4185 }
4186 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4187
4188 /**
4189  * regulator_has_full_constraints - the system has fully specified constraints
4190  *
4191  * Calling this function will cause the regulator API to disable all
4192  * regulators which have a zero use count and don't have an always_on
4193  * constraint in a late_initcall.
4194  *
4195  * The intention is that this will become the default behaviour in a
4196  * future kernel release so users are encouraged to use this facility
4197  * now.
4198  */
4199 void regulator_has_full_constraints(void)
4200 {
4201         has_full_constraints = 1;
4202 }
4203 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4204
4205 /**
4206  * rdev_get_drvdata - get rdev regulator driver data
4207  * @rdev: regulator
4208  *
4209  * Get rdev regulator driver private data. This call can be used in the
4210  * regulator driver context.
4211  */
4212 void *rdev_get_drvdata(struct regulator_dev *rdev)
4213 {
4214         return rdev->reg_data;
4215 }
4216 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4217
4218 /**
4219  * regulator_get_drvdata - get regulator driver data
4220  * @regulator: regulator
4221  *
4222  * Get regulator driver private data. This call can be used in the consumer
4223  * driver context when non API regulator specific functions need to be called.
4224  */
4225 void *regulator_get_drvdata(struct regulator *regulator)
4226 {
4227         return regulator->rdev->reg_data;
4228 }
4229 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4230
4231 /**
4232  * regulator_set_drvdata - set regulator driver data
4233  * @regulator: regulator
4234  * @data: data
4235  */
4236 void regulator_set_drvdata(struct regulator *regulator, void *data)
4237 {
4238         regulator->rdev->reg_data = data;
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4241
4242 /**
4243  * regulator_get_id - get regulator ID
4244  * @rdev: regulator
4245  */
4246 int rdev_get_id(struct regulator_dev *rdev)
4247 {
4248         return rdev->desc->id;
4249 }
4250 EXPORT_SYMBOL_GPL(rdev_get_id);
4251
4252 struct device *rdev_get_dev(struct regulator_dev *rdev)
4253 {
4254         return &rdev->dev;
4255 }
4256 EXPORT_SYMBOL_GPL(rdev_get_dev);
4257
4258 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4259 {
4260         return reg_init_data->driver_data;
4261 }
4262 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4263
4264 #ifdef CONFIG_DEBUG_FS
4265 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4266                                     size_t count, loff_t *ppos)
4267 {
4268         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4269         ssize_t len, ret = 0;
4270         struct regulator_map *map;
4271
4272         if (!buf)
4273                 return -ENOMEM;
4274
4275         list_for_each_entry(map, &regulator_map_list, list) {
4276                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4277                                "%s -> %s.%s\n",
4278                                rdev_get_name(map->regulator), map->dev_name,
4279                                map->supply);
4280                 if (len >= 0)
4281                         ret += len;
4282                 if (ret > PAGE_SIZE) {
4283                         ret = PAGE_SIZE;
4284                         break;
4285                 }
4286         }
4287
4288         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4289
4290         kfree(buf);
4291
4292         return ret;
4293 }
4294 #endif
4295
4296 static const struct file_operations supply_map_fops = {
4297 #ifdef CONFIG_DEBUG_FS
4298         .read = supply_map_read_file,
4299         .llseek = default_llseek,
4300 #endif
4301 };
4302
4303 #ifdef CONFIG_DEBUG_FS
4304 struct summary_data {
4305         struct seq_file *s;
4306         struct regulator_dev *parent;
4307         int level;
4308 };
4309
4310 static void regulator_summary_show_subtree(struct seq_file *s,
4311                                            struct regulator_dev *rdev,
4312                                            int level);
4313
4314 static int regulator_summary_show_children(struct device *dev, void *data)
4315 {
4316         struct regulator_dev *rdev = dev_to_rdev(dev);
4317         struct summary_data *summary_data = data;
4318
4319         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4320                 regulator_summary_show_subtree(summary_data->s, rdev,
4321                                                summary_data->level + 1);
4322
4323         return 0;
4324 }
4325
4326 static void regulator_summary_show_subtree(struct seq_file *s,
4327                                            struct regulator_dev *rdev,
4328                                            int level)
4329 {
4330         struct regulation_constraints *c;
4331         struct regulator *consumer;
4332         struct summary_data summary_data;
4333
4334         if (!rdev)
4335                 return;
4336
4337         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4338                    level * 3 + 1, "",
4339                    30 - level * 3, rdev_get_name(rdev),
4340                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4341
4342         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4343         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4344
4345         c = rdev->constraints;
4346         if (c) {
4347                 switch (rdev->desc->type) {
4348                 case REGULATOR_VOLTAGE:
4349                         seq_printf(s, "%5dmV %5dmV ",
4350                                    c->min_uV / 1000, c->max_uV / 1000);
4351                         break;
4352                 case REGULATOR_CURRENT:
4353                         seq_printf(s, "%5dmA %5dmA ",
4354                                    c->min_uA / 1000, c->max_uA / 1000);
4355                         break;
4356                 }
4357         }
4358
4359         seq_puts(s, "\n");
4360
4361         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4362                 if (consumer->dev->class == &regulator_class)
4363                         continue;
4364
4365                 seq_printf(s, "%*s%-*s ",
4366                            (level + 1) * 3 + 1, "",
4367                            30 - (level + 1) * 3, dev_name(consumer->dev));
4368
4369                 switch (rdev->desc->type) {
4370                 case REGULATOR_VOLTAGE:
4371                         seq_printf(s, "%37dmV %5dmV",
4372                                    consumer->min_uV / 1000,
4373                                    consumer->max_uV / 1000);
4374                         break;
4375                 case REGULATOR_CURRENT:
4376                         break;
4377                 }
4378
4379                 seq_puts(s, "\n");
4380         }
4381
4382         summary_data.s = s;
4383         summary_data.level = level;
4384         summary_data.parent = rdev;
4385
4386         class_for_each_device(&regulator_class, NULL, &summary_data,
4387                               regulator_summary_show_children);
4388 }
4389
4390 static int regulator_summary_show_roots(struct device *dev, void *data)
4391 {
4392         struct regulator_dev *rdev = dev_to_rdev(dev);
4393         struct seq_file *s = data;
4394
4395         if (!rdev->supply)
4396                 regulator_summary_show_subtree(s, rdev, 0);
4397
4398         return 0;
4399 }
4400
4401 static int regulator_summary_show(struct seq_file *s, void *data)
4402 {
4403         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4404         seq_puts(s, "-------------------------------------------------------------------------------\n");
4405
4406         class_for_each_device(&regulator_class, NULL, s,
4407                               regulator_summary_show_roots);
4408
4409         return 0;
4410 }
4411
4412 static int regulator_summary_open(struct inode *inode, struct file *file)
4413 {
4414         return single_open(file, regulator_summary_show, inode->i_private);
4415 }
4416 #endif
4417
4418 static const struct file_operations regulator_summary_fops = {
4419 #ifdef CONFIG_DEBUG_FS
4420         .open           = regulator_summary_open,
4421         .read           = seq_read,
4422         .llseek         = seq_lseek,
4423         .release        = single_release,
4424 #endif
4425 };
4426
4427 static int __init regulator_init(void)
4428 {
4429         int ret;
4430
4431         ret = class_register(&regulator_class);
4432
4433         debugfs_root = debugfs_create_dir("regulator", NULL);
4434         if (!debugfs_root)
4435                 pr_warn("regulator: Failed to create debugfs directory\n");
4436
4437         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4438                             &supply_map_fops);
4439
4440         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4441                             NULL, &regulator_summary_fops);
4442
4443         regulator_dummy_init();
4444
4445         return ret;
4446 }
4447
4448 /* init early to allow our consumers to complete system booting */
4449 core_initcall(regulator_init);
4450
4451 static int __init regulator_late_cleanup(struct device *dev, void *data)
4452 {
4453         struct regulator_dev *rdev = dev_to_rdev(dev);
4454         const struct regulator_ops *ops = rdev->desc->ops;
4455         struct regulation_constraints *c = rdev->constraints;
4456         int enabled, ret;
4457
4458         if (c && c->always_on)
4459                 return 0;
4460
4461         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4462                 return 0;
4463
4464         mutex_lock(&rdev->mutex);
4465
4466         if (rdev->use_count)
4467                 goto unlock;
4468
4469         /* If we can't read the status assume it's on. */
4470         if (ops->is_enabled)
4471                 enabled = ops->is_enabled(rdev);
4472         else
4473                 enabled = 1;
4474
4475         if (!enabled)
4476                 goto unlock;
4477
4478         if (have_full_constraints()) {
4479                 /* We log since this may kill the system if it goes
4480                  * wrong. */
4481                 rdev_info(rdev, "disabling\n");
4482                 ret = _regulator_do_disable(rdev);
4483                 if (ret != 0)
4484                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4485         } else {
4486                 /* The intention is that in future we will
4487                  * assume that full constraints are provided
4488                  * so warn even if we aren't going to do
4489                  * anything here.
4490                  */
4491                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4492         }
4493
4494 unlock:
4495         mutex_unlock(&rdev->mutex);
4496
4497         return 0;
4498 }
4499
4500 static int __init regulator_init_complete(void)
4501 {
4502         /*
4503          * Since DT doesn't provide an idiomatic mechanism for
4504          * enabling full constraints and since it's much more natural
4505          * with DT to provide them just assume that a DT enabled
4506          * system has full constraints.
4507          */
4508         if (of_have_populated_dt())
4509                 has_full_constraints = true;
4510
4511         /* If we have a full configuration then disable any regulators
4512          * we have permission to change the status for and which are
4513          * not in use or always_on.  This is effectively the default
4514          * for DT and ACPI as they have full constraints.
4515          */
4516         class_for_each_device(&regulator_class, NULL, NULL,
4517                               regulator_late_cleanup);
4518
4519         return 0;
4520 }
4521 late_initcall_sync(regulator_init_complete);