Merge tag 'sound-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         const char *dev_name;   /* The dev_name() for the consumer */
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         unsigned int always_on:1;
80         int uA_load;
81         int min_uV;
82         int max_uV;
83         char *supply_name;
84         struct device_attribute dev_attr;
85         struct regulator_dev *rdev;
86         struct dentry *debugfs;
87 };
88
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95                                   unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97                                      int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99                                           struct device *dev,
100                                           const char *supply_name);
101
102 static const char *rdev_get_name(struct regulator_dev *rdev)
103 {
104         if (rdev->constraints && rdev->constraints->name)
105                 return rdev->constraints->name;
106         else if (rdev->desc->name)
107                 return rdev->desc->name;
108         else
109                 return "";
110 }
111
112 /**
113  * of_get_regulator - get a regulator device node based on supply name
114  * @dev: Device pointer for the consumer (of regulator) device
115  * @supply: regulator supply name
116  *
117  * Extract the regulator device node corresponding to the supply name.
118  * retruns the device node corresponding to the regulator if found, else
119  * returns NULL.
120  */
121 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
122 {
123         struct device_node *regnode = NULL;
124         char prop_name[32]; /* 32 is max size of property name */
125
126         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
127
128         snprintf(prop_name, 32, "%s-supply", supply);
129         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
130
131         if (!regnode) {
132                 dev_dbg(dev, "Looking up %s property in node %s failed",
133                                 prop_name, dev->of_node->full_name);
134                 return NULL;
135         }
136         return regnode;
137 }
138
139 static int _regulator_can_change_status(struct regulator_dev *rdev)
140 {
141         if (!rdev->constraints)
142                 return 0;
143
144         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
145                 return 1;
146         else
147                 return 0;
148 }
149
150 /* Platform voltage constraint check */
151 static int regulator_check_voltage(struct regulator_dev *rdev,
152                                    int *min_uV, int *max_uV)
153 {
154         BUG_ON(*min_uV > *max_uV);
155
156         if (!rdev->constraints) {
157                 rdev_err(rdev, "no constraints\n");
158                 return -ENODEV;
159         }
160         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
161                 rdev_err(rdev, "operation not allowed\n");
162                 return -EPERM;
163         }
164
165         if (*max_uV > rdev->constraints->max_uV)
166                 *max_uV = rdev->constraints->max_uV;
167         if (*min_uV < rdev->constraints->min_uV)
168                 *min_uV = rdev->constraints->min_uV;
169
170         if (*min_uV > *max_uV) {
171                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
172                          *min_uV, *max_uV);
173                 return -EINVAL;
174         }
175
176         return 0;
177 }
178
179 /* Make sure we select a voltage that suits the needs of all
180  * regulator consumers
181  */
182 static int regulator_check_consumers(struct regulator_dev *rdev,
183                                      int *min_uV, int *max_uV)
184 {
185         struct regulator *regulator;
186
187         list_for_each_entry(regulator, &rdev->consumer_list, list) {
188                 /*
189                  * Assume consumers that didn't say anything are OK
190                  * with anything in the constraint range.
191                  */
192                 if (!regulator->min_uV && !regulator->max_uV)
193                         continue;
194
195                 if (*max_uV > regulator->max_uV)
196                         *max_uV = regulator->max_uV;
197                 if (*min_uV < regulator->min_uV)
198                         *min_uV = regulator->min_uV;
199         }
200
201         if (*min_uV > *max_uV)
202                 return -EINVAL;
203
204         return 0;
205 }
206
207 /* current constraint check */
208 static int regulator_check_current_limit(struct regulator_dev *rdev,
209                                         int *min_uA, int *max_uA)
210 {
211         BUG_ON(*min_uA > *max_uA);
212
213         if (!rdev->constraints) {
214                 rdev_err(rdev, "no constraints\n");
215                 return -ENODEV;
216         }
217         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218                 rdev_err(rdev, "operation not allowed\n");
219                 return -EPERM;
220         }
221
222         if (*max_uA > rdev->constraints->max_uA)
223                 *max_uA = rdev->constraints->max_uA;
224         if (*min_uA < rdev->constraints->min_uA)
225                 *min_uA = rdev->constraints->min_uA;
226
227         if (*min_uA > *max_uA) {
228                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229                          *min_uA, *max_uA);
230                 return -EINVAL;
231         }
232
233         return 0;
234 }
235
236 /* operating mode constraint check */
237 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238 {
239         switch (*mode) {
240         case REGULATOR_MODE_FAST:
241         case REGULATOR_MODE_NORMAL:
242         case REGULATOR_MODE_IDLE:
243         case REGULATOR_MODE_STANDBY:
244                 break;
245         default:
246                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
247                 return -EINVAL;
248         }
249
250         if (!rdev->constraints) {
251                 rdev_err(rdev, "no constraints\n");
252                 return -ENODEV;
253         }
254         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255                 rdev_err(rdev, "operation not allowed\n");
256                 return -EPERM;
257         }
258
259         /* The modes are bitmasks, the most power hungry modes having
260          * the lowest values. If the requested mode isn't supported
261          * try higher modes. */
262         while (*mode) {
263                 if (rdev->constraints->valid_modes_mask & *mode)
264                         return 0;
265                 *mode /= 2;
266         }
267
268         return -EINVAL;
269 }
270
271 /* dynamic regulator mode switching constraint check */
272 static int regulator_check_drms(struct regulator_dev *rdev)
273 {
274         if (!rdev->constraints) {
275                 rdev_err(rdev, "no constraints\n");
276                 return -ENODEV;
277         }
278         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279                 rdev_err(rdev, "operation not allowed\n");
280                 return -EPERM;
281         }
282         return 0;
283 }
284
285 static ssize_t regulator_uV_show(struct device *dev,
286                                 struct device_attribute *attr, char *buf)
287 {
288         struct regulator_dev *rdev = dev_get_drvdata(dev);
289         ssize_t ret;
290
291         mutex_lock(&rdev->mutex);
292         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
293         mutex_unlock(&rdev->mutex);
294
295         return ret;
296 }
297 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298
299 static ssize_t regulator_uA_show(struct device *dev,
300                                 struct device_attribute *attr, char *buf)
301 {
302         struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
305 }
306 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307
308 static ssize_t regulator_name_show(struct device *dev,
309                              struct device_attribute *attr, char *buf)
310 {
311         struct regulator_dev *rdev = dev_get_drvdata(dev);
312
313         return sprintf(buf, "%s\n", rdev_get_name(rdev));
314 }
315
316 static ssize_t regulator_print_opmode(char *buf, int mode)
317 {
318         switch (mode) {
319         case REGULATOR_MODE_FAST:
320                 return sprintf(buf, "fast\n");
321         case REGULATOR_MODE_NORMAL:
322                 return sprintf(buf, "normal\n");
323         case REGULATOR_MODE_IDLE:
324                 return sprintf(buf, "idle\n");
325         case REGULATOR_MODE_STANDBY:
326                 return sprintf(buf, "standby\n");
327         }
328         return sprintf(buf, "unknown\n");
329 }
330
331 static ssize_t regulator_opmode_show(struct device *dev,
332                                     struct device_attribute *attr, char *buf)
333 {
334         struct regulator_dev *rdev = dev_get_drvdata(dev);
335
336         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
337 }
338 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
339
340 static ssize_t regulator_print_state(char *buf, int state)
341 {
342         if (state > 0)
343                 return sprintf(buf, "enabled\n");
344         else if (state == 0)
345                 return sprintf(buf, "disabled\n");
346         else
347                 return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_state_show(struct device *dev,
351                                    struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
363
364 static ssize_t regulator_status_show(struct device *dev,
365                                    struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368         int status;
369         char *label;
370
371         status = rdev->desc->ops->get_status(rdev);
372         if (status < 0)
373                 return status;
374
375         switch (status) {
376         case REGULATOR_STATUS_OFF:
377                 label = "off";
378                 break;
379         case REGULATOR_STATUS_ON:
380                 label = "on";
381                 break;
382         case REGULATOR_STATUS_ERROR:
383                 label = "error";
384                 break;
385         case REGULATOR_STATUS_FAST:
386                 label = "fast";
387                 break;
388         case REGULATOR_STATUS_NORMAL:
389                 label = "normal";
390                 break;
391         case REGULATOR_STATUS_IDLE:
392                 label = "idle";
393                 break;
394         case REGULATOR_STATUS_STANDBY:
395                 label = "standby";
396                 break;
397         case REGULATOR_STATUS_UNDEFINED:
398                 label = "undefined";
399                 break;
400         default:
401                 return -ERANGE;
402         }
403
404         return sprintf(buf, "%s\n", label);
405 }
406 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
407
408 static ssize_t regulator_min_uA_show(struct device *dev,
409                                     struct device_attribute *attr, char *buf)
410 {
411         struct regulator_dev *rdev = dev_get_drvdata(dev);
412
413         if (!rdev->constraints)
414                 return sprintf(buf, "constraint not defined\n");
415
416         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
417 }
418 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
419
420 static ssize_t regulator_max_uA_show(struct device *dev,
421                                     struct device_attribute *attr, char *buf)
422 {
423         struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425         if (!rdev->constraints)
426                 return sprintf(buf, "constraint not defined\n");
427
428         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
429 }
430 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
431
432 static ssize_t regulator_min_uV_show(struct device *dev,
433                                     struct device_attribute *attr, char *buf)
434 {
435         struct regulator_dev *rdev = dev_get_drvdata(dev);
436
437         if (!rdev->constraints)
438                 return sprintf(buf, "constraint not defined\n");
439
440         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
441 }
442 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
443
444 static ssize_t regulator_max_uV_show(struct device *dev,
445                                     struct device_attribute *attr, char *buf)
446 {
447         struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449         if (!rdev->constraints)
450                 return sprintf(buf, "constraint not defined\n");
451
452         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
453 }
454 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
455
456 static ssize_t regulator_total_uA_show(struct device *dev,
457                                       struct device_attribute *attr, char *buf)
458 {
459         struct regulator_dev *rdev = dev_get_drvdata(dev);
460         struct regulator *regulator;
461         int uA = 0;
462
463         mutex_lock(&rdev->mutex);
464         list_for_each_entry(regulator, &rdev->consumer_list, list)
465                 uA += regulator->uA_load;
466         mutex_unlock(&rdev->mutex);
467         return sprintf(buf, "%d\n", uA);
468 }
469 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
470
471 static ssize_t regulator_num_users_show(struct device *dev,
472                                       struct device_attribute *attr, char *buf)
473 {
474         struct regulator_dev *rdev = dev_get_drvdata(dev);
475         return sprintf(buf, "%d\n", rdev->use_count);
476 }
477
478 static ssize_t regulator_type_show(struct device *dev,
479                                   struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         switch (rdev->desc->type) {
484         case REGULATOR_VOLTAGE:
485                 return sprintf(buf, "voltage\n");
486         case REGULATOR_CURRENT:
487                 return sprintf(buf, "current\n");
488         }
489         return sprintf(buf, "unknown\n");
490 }
491
492 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
493                                 struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
498 }
499 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
500                 regulator_suspend_mem_uV_show, NULL);
501
502 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
503                                 struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
508 }
509 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
510                 regulator_suspend_disk_uV_show, NULL);
511
512 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
513                                 struct device_attribute *attr, char *buf)
514 {
515         struct regulator_dev *rdev = dev_get_drvdata(dev);
516
517         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
518 }
519 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
520                 regulator_suspend_standby_uV_show, NULL);
521
522 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
523                                 struct device_attribute *attr, char *buf)
524 {
525         struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527         return regulator_print_opmode(buf,
528                 rdev->constraints->state_mem.mode);
529 }
530 static DEVICE_ATTR(suspend_mem_mode, 0444,
531                 regulator_suspend_mem_mode_show, NULL);
532
533 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return regulator_print_opmode(buf,
539                 rdev->constraints->state_disk.mode);
540 }
541 static DEVICE_ATTR(suspend_disk_mode, 0444,
542                 regulator_suspend_disk_mode_show, NULL);
543
544 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
545                                 struct device_attribute *attr, char *buf)
546 {
547         struct regulator_dev *rdev = dev_get_drvdata(dev);
548
549         return regulator_print_opmode(buf,
550                 rdev->constraints->state_standby.mode);
551 }
552 static DEVICE_ATTR(suspend_standby_mode, 0444,
553                 regulator_suspend_standby_mode_show, NULL);
554
555 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
556                                    struct device_attribute *attr, char *buf)
557 {
558         struct regulator_dev *rdev = dev_get_drvdata(dev);
559
560         return regulator_print_state(buf,
561                         rdev->constraints->state_mem.enabled);
562 }
563 static DEVICE_ATTR(suspend_mem_state, 0444,
564                 regulator_suspend_mem_state_show, NULL);
565
566 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
567                                    struct device_attribute *attr, char *buf)
568 {
569         struct regulator_dev *rdev = dev_get_drvdata(dev);
570
571         return regulator_print_state(buf,
572                         rdev->constraints->state_disk.enabled);
573 }
574 static DEVICE_ATTR(suspend_disk_state, 0444,
575                 regulator_suspend_disk_state_show, NULL);
576
577 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
578                                    struct device_attribute *attr, char *buf)
579 {
580         struct regulator_dev *rdev = dev_get_drvdata(dev);
581
582         return regulator_print_state(buf,
583                         rdev->constraints->state_standby.enabled);
584 }
585 static DEVICE_ATTR(suspend_standby_state, 0444,
586                 regulator_suspend_standby_state_show, NULL);
587
588
589 /*
590  * These are the only attributes are present for all regulators.
591  * Other attributes are a function of regulator functionality.
592  */
593 static struct device_attribute regulator_dev_attrs[] = {
594         __ATTR(name, 0444, regulator_name_show, NULL),
595         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
596         __ATTR(type, 0444, regulator_type_show, NULL),
597         __ATTR_NULL,
598 };
599
600 static void regulator_dev_release(struct device *dev)
601 {
602         struct regulator_dev *rdev = dev_get_drvdata(dev);
603         kfree(rdev);
604 }
605
606 static struct class regulator_class = {
607         .name = "regulator",
608         .dev_release = regulator_dev_release,
609         .dev_attrs = regulator_dev_attrs,
610 };
611
612 /* Calculate the new optimum regulator operating mode based on the new total
613  * consumer load. All locks held by caller */
614 static void drms_uA_update(struct regulator_dev *rdev)
615 {
616         struct regulator *sibling;
617         int current_uA = 0, output_uV, input_uV, err;
618         unsigned int mode;
619
620         err = regulator_check_drms(rdev);
621         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
622             (!rdev->desc->ops->get_voltage &&
623              !rdev->desc->ops->get_voltage_sel) ||
624             !rdev->desc->ops->set_mode)
625                 return;
626
627         /* get output voltage */
628         output_uV = _regulator_get_voltage(rdev);
629         if (output_uV <= 0)
630                 return;
631
632         /* get input voltage */
633         input_uV = 0;
634         if (rdev->supply)
635                 input_uV = regulator_get_voltage(rdev->supply);
636         if (input_uV <= 0)
637                 input_uV = rdev->constraints->input_uV;
638         if (input_uV <= 0)
639                 return;
640
641         /* calc total requested load */
642         list_for_each_entry(sibling, &rdev->consumer_list, list)
643                 current_uA += sibling->uA_load;
644
645         /* now get the optimum mode for our new total regulator load */
646         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
647                                                   output_uV, current_uA);
648
649         /* check the new mode is allowed */
650         err = regulator_mode_constrain(rdev, &mode);
651         if (err == 0)
652                 rdev->desc->ops->set_mode(rdev, mode);
653 }
654
655 static int suspend_set_state(struct regulator_dev *rdev,
656         struct regulator_state *rstate)
657 {
658         int ret = 0;
659
660         /* If we have no suspend mode configration don't set anything;
661          * only warn if the driver implements set_suspend_voltage or
662          * set_suspend_mode callback.
663          */
664         if (!rstate->enabled && !rstate->disabled) {
665                 if (rdev->desc->ops->set_suspend_voltage ||
666                     rdev->desc->ops->set_suspend_mode)
667                         rdev_warn(rdev, "No configuration\n");
668                 return 0;
669         }
670
671         if (rstate->enabled && rstate->disabled) {
672                 rdev_err(rdev, "invalid configuration\n");
673                 return -EINVAL;
674         }
675
676         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
677                 ret = rdev->desc->ops->set_suspend_enable(rdev);
678         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
679                 ret = rdev->desc->ops->set_suspend_disable(rdev);
680         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
681                 ret = 0;
682
683         if (ret < 0) {
684                 rdev_err(rdev, "failed to enabled/disable\n");
685                 return ret;
686         }
687
688         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
689                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
690                 if (ret < 0) {
691                         rdev_err(rdev, "failed to set voltage\n");
692                         return ret;
693                 }
694         }
695
696         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
697                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
698                 if (ret < 0) {
699                         rdev_err(rdev, "failed to set mode\n");
700                         return ret;
701                 }
702         }
703         return ret;
704 }
705
706 /* locks held by caller */
707 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
708 {
709         if (!rdev->constraints)
710                 return -EINVAL;
711
712         switch (state) {
713         case PM_SUSPEND_STANDBY:
714                 return suspend_set_state(rdev,
715                         &rdev->constraints->state_standby);
716         case PM_SUSPEND_MEM:
717                 return suspend_set_state(rdev,
718                         &rdev->constraints->state_mem);
719         case PM_SUSPEND_MAX:
720                 return suspend_set_state(rdev,
721                         &rdev->constraints->state_disk);
722         default:
723                 return -EINVAL;
724         }
725 }
726
727 static void print_constraints(struct regulator_dev *rdev)
728 {
729         struct regulation_constraints *constraints = rdev->constraints;
730         char buf[80] = "";
731         int count = 0;
732         int ret;
733
734         if (constraints->min_uV && constraints->max_uV) {
735                 if (constraints->min_uV == constraints->max_uV)
736                         count += sprintf(buf + count, "%d mV ",
737                                          constraints->min_uV / 1000);
738                 else
739                         count += sprintf(buf + count, "%d <--> %d mV ",
740                                          constraints->min_uV / 1000,
741                                          constraints->max_uV / 1000);
742         }
743
744         if (!constraints->min_uV ||
745             constraints->min_uV != constraints->max_uV) {
746                 ret = _regulator_get_voltage(rdev);
747                 if (ret > 0)
748                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
749         }
750
751         if (constraints->uV_offset)
752                 count += sprintf(buf, "%dmV offset ",
753                                  constraints->uV_offset / 1000);
754
755         if (constraints->min_uA && constraints->max_uA) {
756                 if (constraints->min_uA == constraints->max_uA)
757                         count += sprintf(buf + count, "%d mA ",
758                                          constraints->min_uA / 1000);
759                 else
760                         count += sprintf(buf + count, "%d <--> %d mA ",
761                                          constraints->min_uA / 1000,
762                                          constraints->max_uA / 1000);
763         }
764
765         if (!constraints->min_uA ||
766             constraints->min_uA != constraints->max_uA) {
767                 ret = _regulator_get_current_limit(rdev);
768                 if (ret > 0)
769                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
770         }
771
772         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
773                 count += sprintf(buf + count, "fast ");
774         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
775                 count += sprintf(buf + count, "normal ");
776         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
777                 count += sprintf(buf + count, "idle ");
778         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
779                 count += sprintf(buf + count, "standby");
780
781         rdev_info(rdev, "%s\n", buf);
782
783         if ((constraints->min_uV != constraints->max_uV) &&
784             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
785                 rdev_warn(rdev,
786                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
787 }
788
789 static int machine_constraints_voltage(struct regulator_dev *rdev,
790         struct regulation_constraints *constraints)
791 {
792         struct regulator_ops *ops = rdev->desc->ops;
793         int ret;
794
795         /* do we need to apply the constraint voltage */
796         if (rdev->constraints->apply_uV &&
797             rdev->constraints->min_uV == rdev->constraints->max_uV) {
798                 ret = _regulator_do_set_voltage(rdev,
799                                                 rdev->constraints->min_uV,
800                                                 rdev->constraints->max_uV);
801                 if (ret < 0) {
802                         rdev_err(rdev, "failed to apply %duV constraint\n",
803                                  rdev->constraints->min_uV);
804                         return ret;
805                 }
806         }
807
808         /* constrain machine-level voltage specs to fit
809          * the actual range supported by this regulator.
810          */
811         if (ops->list_voltage && rdev->desc->n_voltages) {
812                 int     count = rdev->desc->n_voltages;
813                 int     i;
814                 int     min_uV = INT_MAX;
815                 int     max_uV = INT_MIN;
816                 int     cmin = constraints->min_uV;
817                 int     cmax = constraints->max_uV;
818
819                 /* it's safe to autoconfigure fixed-voltage supplies
820                    and the constraints are used by list_voltage. */
821                 if (count == 1 && !cmin) {
822                         cmin = 1;
823                         cmax = INT_MAX;
824                         constraints->min_uV = cmin;
825                         constraints->max_uV = cmax;
826                 }
827
828                 /* voltage constraints are optional */
829                 if ((cmin == 0) && (cmax == 0))
830                         return 0;
831
832                 /* else require explicit machine-level constraints */
833                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
834                         rdev_err(rdev, "invalid voltage constraints\n");
835                         return -EINVAL;
836                 }
837
838                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
839                 for (i = 0; i < count; i++) {
840                         int     value;
841
842                         value = ops->list_voltage(rdev, i);
843                         if (value <= 0)
844                                 continue;
845
846                         /* maybe adjust [min_uV..max_uV] */
847                         if (value >= cmin && value < min_uV)
848                                 min_uV = value;
849                         if (value <= cmax && value > max_uV)
850                                 max_uV = value;
851                 }
852
853                 /* final: [min_uV..max_uV] valid iff constraints valid */
854                 if (max_uV < min_uV) {
855                         rdev_err(rdev, "unsupportable voltage constraints\n");
856                         return -EINVAL;
857                 }
858
859                 /* use regulator's subset of machine constraints */
860                 if (constraints->min_uV < min_uV) {
861                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
862                                  constraints->min_uV, min_uV);
863                         constraints->min_uV = min_uV;
864                 }
865                 if (constraints->max_uV > max_uV) {
866                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
867                                  constraints->max_uV, max_uV);
868                         constraints->max_uV = max_uV;
869                 }
870         }
871
872         return 0;
873 }
874
875 /**
876  * set_machine_constraints - sets regulator constraints
877  * @rdev: regulator source
878  * @constraints: constraints to apply
879  *
880  * Allows platform initialisation code to define and constrain
881  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
882  * Constraints *must* be set by platform code in order for some
883  * regulator operations to proceed i.e. set_voltage, set_current_limit,
884  * set_mode.
885  */
886 static int set_machine_constraints(struct regulator_dev *rdev,
887         const struct regulation_constraints *constraints)
888 {
889         int ret = 0;
890         struct regulator_ops *ops = rdev->desc->ops;
891
892         if (constraints)
893                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
894                                             GFP_KERNEL);
895         else
896                 rdev->constraints = kzalloc(sizeof(*constraints),
897                                             GFP_KERNEL);
898         if (!rdev->constraints)
899                 return -ENOMEM;
900
901         ret = machine_constraints_voltage(rdev, rdev->constraints);
902         if (ret != 0)
903                 goto out;
904
905         /* do we need to setup our suspend state */
906         if (rdev->constraints->initial_state) {
907                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
908                 if (ret < 0) {
909                         rdev_err(rdev, "failed to set suspend state\n");
910                         goto out;
911                 }
912         }
913
914         if (rdev->constraints->initial_mode) {
915                 if (!ops->set_mode) {
916                         rdev_err(rdev, "no set_mode operation\n");
917                         ret = -EINVAL;
918                         goto out;
919                 }
920
921                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
922                 if (ret < 0) {
923                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
924                         goto out;
925                 }
926         }
927
928         /* If the constraints say the regulator should be on at this point
929          * and we have control then make sure it is enabled.
930          */
931         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
932             ops->enable) {
933                 ret = ops->enable(rdev);
934                 if (ret < 0) {
935                         rdev_err(rdev, "failed to enable\n");
936                         goto out;
937                 }
938         }
939
940         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
941                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
942                 if (ret < 0) {
943                         rdev_err(rdev, "failed to set ramp_delay\n");
944                         goto out;
945                 }
946         }
947
948         print_constraints(rdev);
949         return 0;
950 out:
951         kfree(rdev->constraints);
952         rdev->constraints = NULL;
953         return ret;
954 }
955
956 /**
957  * set_supply - set regulator supply regulator
958  * @rdev: regulator name
959  * @supply_rdev: supply regulator name
960  *
961  * Called by platform initialisation code to set the supply regulator for this
962  * regulator. This ensures that a regulators supply will also be enabled by the
963  * core if it's child is enabled.
964  */
965 static int set_supply(struct regulator_dev *rdev,
966                       struct regulator_dev *supply_rdev)
967 {
968         int err;
969
970         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
971
972         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
973         if (rdev->supply == NULL) {
974                 err = -ENOMEM;
975                 return err;
976         }
977
978         return 0;
979 }
980
981 /**
982  * set_consumer_device_supply - Bind a regulator to a symbolic supply
983  * @rdev:         regulator source
984  * @consumer_dev_name: dev_name() string for device supply applies to
985  * @supply:       symbolic name for supply
986  *
987  * Allows platform initialisation code to map physical regulator
988  * sources to symbolic names for supplies for use by devices.  Devices
989  * should use these symbolic names to request regulators, avoiding the
990  * need to provide board-specific regulator names as platform data.
991  */
992 static int set_consumer_device_supply(struct regulator_dev *rdev,
993                                       const char *consumer_dev_name,
994                                       const char *supply)
995 {
996         struct regulator_map *node;
997         int has_dev;
998
999         if (supply == NULL)
1000                 return -EINVAL;
1001
1002         if (consumer_dev_name != NULL)
1003                 has_dev = 1;
1004         else
1005                 has_dev = 0;
1006
1007         list_for_each_entry(node, &regulator_map_list, list) {
1008                 if (node->dev_name && consumer_dev_name) {
1009                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1010                                 continue;
1011                 } else if (node->dev_name || consumer_dev_name) {
1012                         continue;
1013                 }
1014
1015                 if (strcmp(node->supply, supply) != 0)
1016                         continue;
1017
1018                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1019                          consumer_dev_name,
1020                          dev_name(&node->regulator->dev),
1021                          node->regulator->desc->name,
1022                          supply,
1023                          dev_name(&rdev->dev), rdev_get_name(rdev));
1024                 return -EBUSY;
1025         }
1026
1027         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1028         if (node == NULL)
1029                 return -ENOMEM;
1030
1031         node->regulator = rdev;
1032         node->supply = supply;
1033
1034         if (has_dev) {
1035                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1036                 if (node->dev_name == NULL) {
1037                         kfree(node);
1038                         return -ENOMEM;
1039                 }
1040         }
1041
1042         list_add(&node->list, &regulator_map_list);
1043         return 0;
1044 }
1045
1046 static void unset_regulator_supplies(struct regulator_dev *rdev)
1047 {
1048         struct regulator_map *node, *n;
1049
1050         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1051                 if (rdev == node->regulator) {
1052                         list_del(&node->list);
1053                         kfree(node->dev_name);
1054                         kfree(node);
1055                 }
1056         }
1057 }
1058
1059 #define REG_STR_SIZE    64
1060
1061 static struct regulator *create_regulator(struct regulator_dev *rdev,
1062                                           struct device *dev,
1063                                           const char *supply_name)
1064 {
1065         struct regulator *regulator;
1066         char buf[REG_STR_SIZE];
1067         int err, size;
1068
1069         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1070         if (regulator == NULL)
1071                 return NULL;
1072
1073         mutex_lock(&rdev->mutex);
1074         regulator->rdev = rdev;
1075         list_add(&regulator->list, &rdev->consumer_list);
1076
1077         if (dev) {
1078                 regulator->dev = dev;
1079
1080                 /* Add a link to the device sysfs entry */
1081                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1082                                  dev->kobj.name, supply_name);
1083                 if (size >= REG_STR_SIZE)
1084                         goto overflow_err;
1085
1086                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1087                 if (regulator->supply_name == NULL)
1088                         goto overflow_err;
1089
1090                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1091                                         buf);
1092                 if (err) {
1093                         rdev_warn(rdev, "could not add device link %s err %d\n",
1094                                   dev->kobj.name, err);
1095                         /* non-fatal */
1096                 }
1097         } else {
1098                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1099                 if (regulator->supply_name == NULL)
1100                         goto overflow_err;
1101         }
1102
1103         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1104                                                 rdev->debugfs);
1105         if (!regulator->debugfs) {
1106                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1107         } else {
1108                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1109                                    &regulator->uA_load);
1110                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1111                                    &regulator->min_uV);
1112                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1113                                    &regulator->max_uV);
1114         }
1115
1116         /*
1117          * Check now if the regulator is an always on regulator - if
1118          * it is then we don't need to do nearly so much work for
1119          * enable/disable calls.
1120          */
1121         if (!_regulator_can_change_status(rdev) &&
1122             _regulator_is_enabled(rdev))
1123                 regulator->always_on = true;
1124
1125         mutex_unlock(&rdev->mutex);
1126         return regulator;
1127 overflow_err:
1128         list_del(&regulator->list);
1129         kfree(regulator);
1130         mutex_unlock(&rdev->mutex);
1131         return NULL;
1132 }
1133
1134 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1135 {
1136         if (!rdev->desc->ops->enable_time)
1137                 return rdev->desc->enable_time;
1138         return rdev->desc->ops->enable_time(rdev);
1139 }
1140
1141 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1142                                                   const char *supply,
1143                                                   int *ret)
1144 {
1145         struct regulator_dev *r;
1146         struct device_node *node;
1147         struct regulator_map *map;
1148         const char *devname = NULL;
1149
1150         /* first do a dt based lookup */
1151         if (dev && dev->of_node) {
1152                 node = of_get_regulator(dev, supply);
1153                 if (node) {
1154                         list_for_each_entry(r, &regulator_list, list)
1155                                 if (r->dev.parent &&
1156                                         node == r->dev.of_node)
1157                                         return r;
1158                 } else {
1159                         /*
1160                          * If we couldn't even get the node then it's
1161                          * not just that the device didn't register
1162                          * yet, there's no node and we'll never
1163                          * succeed.
1164                          */
1165                         *ret = -ENODEV;
1166                 }
1167         }
1168
1169         /* if not found, try doing it non-dt way */
1170         if (dev)
1171                 devname = dev_name(dev);
1172
1173         list_for_each_entry(r, &regulator_list, list)
1174                 if (strcmp(rdev_get_name(r), supply) == 0)
1175                         return r;
1176
1177         list_for_each_entry(map, &regulator_map_list, list) {
1178                 /* If the mapping has a device set up it must match */
1179                 if (map->dev_name &&
1180                     (!devname || strcmp(map->dev_name, devname)))
1181                         continue;
1182
1183                 if (strcmp(map->supply, supply) == 0)
1184                         return map->regulator;
1185         }
1186
1187
1188         return NULL;
1189 }
1190
1191 /* Internal regulator request function */
1192 static struct regulator *_regulator_get(struct device *dev, const char *id,
1193                                         int exclusive)
1194 {
1195         struct regulator_dev *rdev;
1196         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1197         const char *devname = NULL;
1198         int ret;
1199
1200         if (id == NULL) {
1201                 pr_err("get() with no identifier\n");
1202                 return regulator;
1203         }
1204
1205         if (dev)
1206                 devname = dev_name(dev);
1207
1208         mutex_lock(&regulator_list_mutex);
1209
1210         rdev = regulator_dev_lookup(dev, id, &ret);
1211         if (rdev)
1212                 goto found;
1213
1214         if (board_wants_dummy_regulator) {
1215                 rdev = dummy_regulator_rdev;
1216                 goto found;
1217         }
1218
1219 #ifdef CONFIG_REGULATOR_DUMMY
1220         if (!devname)
1221                 devname = "deviceless";
1222
1223         /* If the board didn't flag that it was fully constrained then
1224          * substitute in a dummy regulator so consumers can continue.
1225          */
1226         if (!has_full_constraints) {
1227                 pr_warn("%s supply %s not found, using dummy regulator\n",
1228                         devname, id);
1229                 rdev = dummy_regulator_rdev;
1230                 goto found;
1231         }
1232 #endif
1233
1234         mutex_unlock(&regulator_list_mutex);
1235         return regulator;
1236
1237 found:
1238         if (rdev->exclusive) {
1239                 regulator = ERR_PTR(-EPERM);
1240                 goto out;
1241         }
1242
1243         if (exclusive && rdev->open_count) {
1244                 regulator = ERR_PTR(-EBUSY);
1245                 goto out;
1246         }
1247
1248         if (!try_module_get(rdev->owner))
1249                 goto out;
1250
1251         regulator = create_regulator(rdev, dev, id);
1252         if (regulator == NULL) {
1253                 regulator = ERR_PTR(-ENOMEM);
1254                 module_put(rdev->owner);
1255                 goto out;
1256         }
1257
1258         rdev->open_count++;
1259         if (exclusive) {
1260                 rdev->exclusive = 1;
1261
1262                 ret = _regulator_is_enabled(rdev);
1263                 if (ret > 0)
1264                         rdev->use_count = 1;
1265                 else
1266                         rdev->use_count = 0;
1267         }
1268
1269 out:
1270         mutex_unlock(&regulator_list_mutex);
1271
1272         return regulator;
1273 }
1274
1275 /**
1276  * regulator_get - lookup and obtain a reference to a regulator.
1277  * @dev: device for regulator "consumer"
1278  * @id: Supply name or regulator ID.
1279  *
1280  * Returns a struct regulator corresponding to the regulator producer,
1281  * or IS_ERR() condition containing errno.
1282  *
1283  * Use of supply names configured via regulator_set_device_supply() is
1284  * strongly encouraged.  It is recommended that the supply name used
1285  * should match the name used for the supply and/or the relevant
1286  * device pins in the datasheet.
1287  */
1288 struct regulator *regulator_get(struct device *dev, const char *id)
1289 {
1290         return _regulator_get(dev, id, 0);
1291 }
1292 EXPORT_SYMBOL_GPL(regulator_get);
1293
1294 static void devm_regulator_release(struct device *dev, void *res)
1295 {
1296         regulator_put(*(struct regulator **)res);
1297 }
1298
1299 /**
1300  * devm_regulator_get - Resource managed regulator_get()
1301  * @dev: device for regulator "consumer"
1302  * @id: Supply name or regulator ID.
1303  *
1304  * Managed regulator_get(). Regulators returned from this function are
1305  * automatically regulator_put() on driver detach. See regulator_get() for more
1306  * information.
1307  */
1308 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1309 {
1310         struct regulator **ptr, *regulator;
1311
1312         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1313         if (!ptr)
1314                 return ERR_PTR(-ENOMEM);
1315
1316         regulator = regulator_get(dev, id);
1317         if (!IS_ERR(regulator)) {
1318                 *ptr = regulator;
1319                 devres_add(dev, ptr);
1320         } else {
1321                 devres_free(ptr);
1322         }
1323
1324         return regulator;
1325 }
1326 EXPORT_SYMBOL_GPL(devm_regulator_get);
1327
1328 /**
1329  * regulator_get_exclusive - obtain exclusive access to a regulator.
1330  * @dev: device for regulator "consumer"
1331  * @id: Supply name or regulator ID.
1332  *
1333  * Returns a struct regulator corresponding to the regulator producer,
1334  * or IS_ERR() condition containing errno.  Other consumers will be
1335  * unable to obtain this reference is held and the use count for the
1336  * regulator will be initialised to reflect the current state of the
1337  * regulator.
1338  *
1339  * This is intended for use by consumers which cannot tolerate shared
1340  * use of the regulator such as those which need to force the
1341  * regulator off for correct operation of the hardware they are
1342  * controlling.
1343  *
1344  * Use of supply names configured via regulator_set_device_supply() is
1345  * strongly encouraged.  It is recommended that the supply name used
1346  * should match the name used for the supply and/or the relevant
1347  * device pins in the datasheet.
1348  */
1349 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1350 {
1351         return _regulator_get(dev, id, 1);
1352 }
1353 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1354
1355 /**
1356  * regulator_put - "free" the regulator source
1357  * @regulator: regulator source
1358  *
1359  * Note: drivers must ensure that all regulator_enable calls made on this
1360  * regulator source are balanced by regulator_disable calls prior to calling
1361  * this function.
1362  */
1363 void regulator_put(struct regulator *regulator)
1364 {
1365         struct regulator_dev *rdev;
1366
1367         if (regulator == NULL || IS_ERR(regulator))
1368                 return;
1369
1370         mutex_lock(&regulator_list_mutex);
1371         rdev = regulator->rdev;
1372
1373         debugfs_remove_recursive(regulator->debugfs);
1374
1375         /* remove any sysfs entries */
1376         if (regulator->dev)
1377                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1378         kfree(regulator->supply_name);
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381
1382         rdev->open_count--;
1383         rdev->exclusive = 0;
1384
1385         module_put(rdev->owner);
1386         mutex_unlock(&regulator_list_mutex);
1387 }
1388 EXPORT_SYMBOL_GPL(regulator_put);
1389
1390 static int devm_regulator_match(struct device *dev, void *res, void *data)
1391 {
1392         struct regulator **r = res;
1393         if (!r || !*r) {
1394                 WARN_ON(!r || !*r);
1395                 return 0;
1396         }
1397         return *r == data;
1398 }
1399
1400 /**
1401  * devm_regulator_put - Resource managed regulator_put()
1402  * @regulator: regulator to free
1403  *
1404  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1405  * this function will not need to be called and the resource management
1406  * code will ensure that the resource is freed.
1407  */
1408 void devm_regulator_put(struct regulator *regulator)
1409 {
1410         int rc;
1411
1412         rc = devres_release(regulator->dev, devm_regulator_release,
1413                             devm_regulator_match, regulator);
1414         if (rc != 0)
1415                 WARN_ON(rc);
1416 }
1417 EXPORT_SYMBOL_GPL(devm_regulator_put);
1418
1419 static int _regulator_do_enable(struct regulator_dev *rdev)
1420 {
1421         int ret, delay;
1422
1423         /* Query before enabling in case configuration dependent.  */
1424         ret = _regulator_get_enable_time(rdev);
1425         if (ret >= 0) {
1426                 delay = ret;
1427         } else {
1428                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1429                 delay = 0;
1430         }
1431
1432         trace_regulator_enable(rdev_get_name(rdev));
1433
1434         if (rdev->ena_gpio) {
1435                 gpio_set_value_cansleep(rdev->ena_gpio,
1436                                         !rdev->ena_gpio_invert);
1437                 rdev->ena_gpio_state = 1;
1438         } else if (rdev->desc->ops->enable) {
1439                 ret = rdev->desc->ops->enable(rdev);
1440                 if (ret < 0)
1441                         return ret;
1442         } else {
1443                 return -EINVAL;
1444         }
1445
1446         /* Allow the regulator to ramp; it would be useful to extend
1447          * this for bulk operations so that the regulators can ramp
1448          * together.  */
1449         trace_regulator_enable_delay(rdev_get_name(rdev));
1450
1451         if (delay >= 1000) {
1452                 mdelay(delay / 1000);
1453                 udelay(delay % 1000);
1454         } else if (delay) {
1455                 udelay(delay);
1456         }
1457
1458         trace_regulator_enable_complete(rdev_get_name(rdev));
1459
1460         return 0;
1461 }
1462
1463 /* locks held by regulator_enable() */
1464 static int _regulator_enable(struct regulator_dev *rdev)
1465 {
1466         int ret;
1467
1468         /* check voltage and requested load before enabling */
1469         if (rdev->constraints &&
1470             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471                 drms_uA_update(rdev);
1472
1473         if (rdev->use_count == 0) {
1474                 /* The regulator may on if it's not switchable or left on */
1475                 ret = _regulator_is_enabled(rdev);
1476                 if (ret == -EINVAL || ret == 0) {
1477                         if (!_regulator_can_change_status(rdev))
1478                                 return -EPERM;
1479
1480                         ret = _regulator_do_enable(rdev);
1481                         if (ret < 0)
1482                                 return ret;
1483
1484                 } else if (ret < 0) {
1485                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1486                         return ret;
1487                 }
1488                 /* Fallthrough on positive return values - already enabled */
1489         }
1490
1491         rdev->use_count++;
1492
1493         return 0;
1494 }
1495
1496 /**
1497  * regulator_enable - enable regulator output
1498  * @regulator: regulator source
1499  *
1500  * Request that the regulator be enabled with the regulator output at
1501  * the predefined voltage or current value.  Calls to regulator_enable()
1502  * must be balanced with calls to regulator_disable().
1503  *
1504  * NOTE: the output value can be set by other drivers, boot loader or may be
1505  * hardwired in the regulator.
1506  */
1507 int regulator_enable(struct regulator *regulator)
1508 {
1509         struct regulator_dev *rdev = regulator->rdev;
1510         int ret = 0;
1511
1512         if (regulator->always_on)
1513                 return 0;
1514
1515         if (rdev->supply) {
1516                 ret = regulator_enable(rdev->supply);
1517                 if (ret != 0)
1518                         return ret;
1519         }
1520
1521         mutex_lock(&rdev->mutex);
1522         ret = _regulator_enable(rdev);
1523         mutex_unlock(&rdev->mutex);
1524
1525         if (ret != 0 && rdev->supply)
1526                 regulator_disable(rdev->supply);
1527
1528         return ret;
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_enable);
1531
1532 static int _regulator_do_disable(struct regulator_dev *rdev)
1533 {
1534         int ret;
1535
1536         trace_regulator_disable(rdev_get_name(rdev));
1537
1538         if (rdev->ena_gpio) {
1539                 gpio_set_value_cansleep(rdev->ena_gpio,
1540                                         rdev->ena_gpio_invert);
1541                 rdev->ena_gpio_state = 0;
1542
1543         } else if (rdev->desc->ops->disable) {
1544                 ret = rdev->desc->ops->disable(rdev);
1545                 if (ret != 0)
1546                         return ret;
1547         }
1548
1549         trace_regulator_disable_complete(rdev_get_name(rdev));
1550
1551         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1552                              NULL);
1553         return 0;
1554 }
1555
1556 /* locks held by regulator_disable() */
1557 static int _regulator_disable(struct regulator_dev *rdev)
1558 {
1559         int ret = 0;
1560
1561         if (WARN(rdev->use_count <= 0,
1562                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1563                 return -EIO;
1564
1565         /* are we the last user and permitted to disable ? */
1566         if (rdev->use_count == 1 &&
1567             (rdev->constraints && !rdev->constraints->always_on)) {
1568
1569                 /* we are last user */
1570                 if (_regulator_can_change_status(rdev)) {
1571                         ret = _regulator_do_disable(rdev);
1572                         if (ret < 0) {
1573                                 rdev_err(rdev, "failed to disable\n");
1574                                 return ret;
1575                         }
1576                 }
1577
1578                 rdev->use_count = 0;
1579         } else if (rdev->use_count > 1) {
1580
1581                 if (rdev->constraints &&
1582                         (rdev->constraints->valid_ops_mask &
1583                         REGULATOR_CHANGE_DRMS))
1584                         drms_uA_update(rdev);
1585
1586                 rdev->use_count--;
1587         }
1588
1589         return ret;
1590 }
1591
1592 /**
1593  * regulator_disable - disable regulator output
1594  * @regulator: regulator source
1595  *
1596  * Disable the regulator output voltage or current.  Calls to
1597  * regulator_enable() must be balanced with calls to
1598  * regulator_disable().
1599  *
1600  * NOTE: this will only disable the regulator output if no other consumer
1601  * devices have it enabled, the regulator device supports disabling and
1602  * machine constraints permit this operation.
1603  */
1604 int regulator_disable(struct regulator *regulator)
1605 {
1606         struct regulator_dev *rdev = regulator->rdev;
1607         int ret = 0;
1608
1609         if (regulator->always_on)
1610                 return 0;
1611
1612         mutex_lock(&rdev->mutex);
1613         ret = _regulator_disable(rdev);
1614         mutex_unlock(&rdev->mutex);
1615
1616         if (ret == 0 && rdev->supply)
1617                 regulator_disable(rdev->supply);
1618
1619         return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(regulator_disable);
1622
1623 /* locks held by regulator_force_disable() */
1624 static int _regulator_force_disable(struct regulator_dev *rdev)
1625 {
1626         int ret = 0;
1627
1628         /* force disable */
1629         if (rdev->desc->ops->disable) {
1630                 /* ah well, who wants to live forever... */
1631                 ret = rdev->desc->ops->disable(rdev);
1632                 if (ret < 0) {
1633                         rdev_err(rdev, "failed to force disable\n");
1634                         return ret;
1635                 }
1636                 /* notify other consumers that power has been forced off */
1637                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1638                         REGULATOR_EVENT_DISABLE, NULL);
1639         }
1640
1641         return ret;
1642 }
1643
1644 /**
1645  * regulator_force_disable - force disable regulator output
1646  * @regulator: regulator source
1647  *
1648  * Forcibly disable the regulator output voltage or current.
1649  * NOTE: this *will* disable the regulator output even if other consumer
1650  * devices have it enabled. This should be used for situations when device
1651  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1652  */
1653 int regulator_force_disable(struct regulator *regulator)
1654 {
1655         struct regulator_dev *rdev = regulator->rdev;
1656         int ret;
1657
1658         mutex_lock(&rdev->mutex);
1659         regulator->uA_load = 0;
1660         ret = _regulator_force_disable(regulator->rdev);
1661         mutex_unlock(&rdev->mutex);
1662
1663         if (rdev->supply)
1664                 while (rdev->open_count--)
1665                         regulator_disable(rdev->supply);
1666
1667         return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(regulator_force_disable);
1670
1671 static void regulator_disable_work(struct work_struct *work)
1672 {
1673         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1674                                                   disable_work.work);
1675         int count, i, ret;
1676
1677         mutex_lock(&rdev->mutex);
1678
1679         BUG_ON(!rdev->deferred_disables);
1680
1681         count = rdev->deferred_disables;
1682         rdev->deferred_disables = 0;
1683
1684         for (i = 0; i < count; i++) {
1685                 ret = _regulator_disable(rdev);
1686                 if (ret != 0)
1687                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1688         }
1689
1690         mutex_unlock(&rdev->mutex);
1691
1692         if (rdev->supply) {
1693                 for (i = 0; i < count; i++) {
1694                         ret = regulator_disable(rdev->supply);
1695                         if (ret != 0) {
1696                                 rdev_err(rdev,
1697                                          "Supply disable failed: %d\n", ret);
1698                         }
1699                 }
1700         }
1701 }
1702
1703 /**
1704  * regulator_disable_deferred - disable regulator output with delay
1705  * @regulator: regulator source
1706  * @ms: miliseconds until the regulator is disabled
1707  *
1708  * Execute regulator_disable() on the regulator after a delay.  This
1709  * is intended for use with devices that require some time to quiesce.
1710  *
1711  * NOTE: this will only disable the regulator output if no other consumer
1712  * devices have it enabled, the regulator device supports disabling and
1713  * machine constraints permit this operation.
1714  */
1715 int regulator_disable_deferred(struct regulator *regulator, int ms)
1716 {
1717         struct regulator_dev *rdev = regulator->rdev;
1718         int ret;
1719
1720         if (regulator->always_on)
1721                 return 0;
1722
1723         mutex_lock(&rdev->mutex);
1724         rdev->deferred_disables++;
1725         mutex_unlock(&rdev->mutex);
1726
1727         ret = schedule_delayed_work(&rdev->disable_work,
1728                                     msecs_to_jiffies(ms));
1729         if (ret < 0)
1730                 return ret;
1731         else
1732                 return 0;
1733 }
1734 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1735
1736 /**
1737  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1738  *
1739  * @rdev: regulator to operate on
1740  *
1741  * Regulators that use regmap for their register I/O can set the
1742  * enable_reg and enable_mask fields in their descriptor and then use
1743  * this as their is_enabled operation, saving some code.
1744  */
1745 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1746 {
1747         unsigned int val;
1748         int ret;
1749
1750         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1751         if (ret != 0)
1752                 return ret;
1753
1754         return (val & rdev->desc->enable_mask) != 0;
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1757
1758 /**
1759  * regulator_enable_regmap - standard enable() for regmap users
1760  *
1761  * @rdev: regulator to operate on
1762  *
1763  * Regulators that use regmap for their register I/O can set the
1764  * enable_reg and enable_mask fields in their descriptor and then use
1765  * this as their enable() operation, saving some code.
1766  */
1767 int regulator_enable_regmap(struct regulator_dev *rdev)
1768 {
1769         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1770                                   rdev->desc->enable_mask,
1771                                   rdev->desc->enable_mask);
1772 }
1773 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1774
1775 /**
1776  * regulator_disable_regmap - standard disable() for regmap users
1777  *
1778  * @rdev: regulator to operate on
1779  *
1780  * Regulators that use regmap for their register I/O can set the
1781  * enable_reg and enable_mask fields in their descriptor and then use
1782  * this as their disable() operation, saving some code.
1783  */
1784 int regulator_disable_regmap(struct regulator_dev *rdev)
1785 {
1786         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1787                                   rdev->desc->enable_mask, 0);
1788 }
1789 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1790
1791 static int _regulator_is_enabled(struct regulator_dev *rdev)
1792 {
1793         /* A GPIO control always takes precedence */
1794         if (rdev->ena_gpio)
1795                 return rdev->ena_gpio_state;
1796
1797         /* If we don't know then assume that the regulator is always on */
1798         if (!rdev->desc->ops->is_enabled)
1799                 return 1;
1800
1801         return rdev->desc->ops->is_enabled(rdev);
1802 }
1803
1804 /**
1805  * regulator_is_enabled - is the regulator output enabled
1806  * @regulator: regulator source
1807  *
1808  * Returns positive if the regulator driver backing the source/client
1809  * has requested that the device be enabled, zero if it hasn't, else a
1810  * negative errno code.
1811  *
1812  * Note that the device backing this regulator handle can have multiple
1813  * users, so it might be enabled even if regulator_enable() was never
1814  * called for this particular source.
1815  */
1816 int regulator_is_enabled(struct regulator *regulator)
1817 {
1818         int ret;
1819
1820         if (regulator->always_on)
1821                 return 1;
1822
1823         mutex_lock(&regulator->rdev->mutex);
1824         ret = _regulator_is_enabled(regulator->rdev);
1825         mutex_unlock(&regulator->rdev->mutex);
1826
1827         return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1830
1831 /**
1832  * regulator_count_voltages - count regulator_list_voltage() selectors
1833  * @regulator: regulator source
1834  *
1835  * Returns number of selectors, or negative errno.  Selectors are
1836  * numbered starting at zero, and typically correspond to bitfields
1837  * in hardware registers.
1838  */
1839 int regulator_count_voltages(struct regulator *regulator)
1840 {
1841         struct regulator_dev    *rdev = regulator->rdev;
1842
1843         return rdev->desc->n_voltages ? : -EINVAL;
1844 }
1845 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1846
1847 /**
1848  * regulator_list_voltage_linear - List voltages with simple calculation
1849  *
1850  * @rdev: Regulator device
1851  * @selector: Selector to convert into a voltage
1852  *
1853  * Regulators with a simple linear mapping between voltages and
1854  * selectors can set min_uV and uV_step in the regulator descriptor
1855  * and then use this function as their list_voltage() operation,
1856  */
1857 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1858                                   unsigned int selector)
1859 {
1860         if (selector >= rdev->desc->n_voltages)
1861                 return -EINVAL;
1862
1863         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1864 }
1865 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1866
1867 /**
1868  * regulator_list_voltage_table - List voltages with table based mapping
1869  *
1870  * @rdev: Regulator device
1871  * @selector: Selector to convert into a voltage
1872  *
1873  * Regulators with table based mapping between voltages and
1874  * selectors can set volt_table in the regulator descriptor
1875  * and then use this function as their list_voltage() operation.
1876  */
1877 int regulator_list_voltage_table(struct regulator_dev *rdev,
1878                                  unsigned int selector)
1879 {
1880         if (!rdev->desc->volt_table) {
1881                 BUG_ON(!rdev->desc->volt_table);
1882                 return -EINVAL;
1883         }
1884
1885         if (selector >= rdev->desc->n_voltages)
1886                 return -EINVAL;
1887
1888         return rdev->desc->volt_table[selector];
1889 }
1890 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1891
1892 /**
1893  * regulator_list_voltage - enumerate supported voltages
1894  * @regulator: regulator source
1895  * @selector: identify voltage to list
1896  * Context: can sleep
1897  *
1898  * Returns a voltage that can be passed to @regulator_set_voltage(),
1899  * zero if this selector code can't be used on this system, or a
1900  * negative errno.
1901  */
1902 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1903 {
1904         struct regulator_dev    *rdev = regulator->rdev;
1905         struct regulator_ops    *ops = rdev->desc->ops;
1906         int                     ret;
1907
1908         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1909                 return -EINVAL;
1910
1911         mutex_lock(&rdev->mutex);
1912         ret = ops->list_voltage(rdev, selector);
1913         mutex_unlock(&rdev->mutex);
1914
1915         if (ret > 0) {
1916                 if (ret < rdev->constraints->min_uV)
1917                         ret = 0;
1918                 else if (ret > rdev->constraints->max_uV)
1919                         ret = 0;
1920         }
1921
1922         return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1925
1926 /**
1927  * regulator_is_supported_voltage - check if a voltage range can be supported
1928  *
1929  * @regulator: Regulator to check.
1930  * @min_uV: Minimum required voltage in uV.
1931  * @max_uV: Maximum required voltage in uV.
1932  *
1933  * Returns a boolean or a negative error code.
1934  */
1935 int regulator_is_supported_voltage(struct regulator *regulator,
1936                                    int min_uV, int max_uV)
1937 {
1938         struct regulator_dev *rdev = regulator->rdev;
1939         int i, voltages, ret;
1940
1941         /* If we can't change voltage check the current voltage */
1942         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1943                 ret = regulator_get_voltage(regulator);
1944                 if (ret >= 0)
1945                         return (min_uV >= ret && ret <= max_uV);
1946                 else
1947                         return ret;
1948         }
1949
1950         ret = regulator_count_voltages(regulator);
1951         if (ret < 0)
1952                 return ret;
1953         voltages = ret;
1954
1955         for (i = 0; i < voltages; i++) {
1956                 ret = regulator_list_voltage(regulator, i);
1957
1958                 if (ret >= min_uV && ret <= max_uV)
1959                         return 1;
1960         }
1961
1962         return 0;
1963 }
1964 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1965
1966 /**
1967  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1968  *
1969  * @rdev: regulator to operate on
1970  *
1971  * Regulators that use regmap for their register I/O can set the
1972  * vsel_reg and vsel_mask fields in their descriptor and then use this
1973  * as their get_voltage_vsel operation, saving some code.
1974  */
1975 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1976 {
1977         unsigned int val;
1978         int ret;
1979
1980         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1981         if (ret != 0)
1982                 return ret;
1983
1984         val &= rdev->desc->vsel_mask;
1985         val >>= ffs(rdev->desc->vsel_mask) - 1;
1986
1987         return val;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1990
1991 /**
1992  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1993  *
1994  * @rdev: regulator to operate on
1995  * @sel: Selector to set
1996  *
1997  * Regulators that use regmap for their register I/O can set the
1998  * vsel_reg and vsel_mask fields in their descriptor and then use this
1999  * as their set_voltage_vsel operation, saving some code.
2000  */
2001 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2002 {
2003         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2004
2005         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2006                                   rdev->desc->vsel_mask, sel);
2007 }
2008 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2009
2010 /**
2011  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2012  *
2013  * @rdev: Regulator to operate on
2014  * @min_uV: Lower bound for voltage
2015  * @max_uV: Upper bound for voltage
2016  *
2017  * Drivers implementing set_voltage_sel() and list_voltage() can use
2018  * this as their map_voltage() operation.  It will find a suitable
2019  * voltage by calling list_voltage() until it gets something in bounds
2020  * for the requested voltages.
2021  */
2022 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2023                                   int min_uV, int max_uV)
2024 {
2025         int best_val = INT_MAX;
2026         int selector = 0;
2027         int i, ret;
2028
2029         /* Find the smallest voltage that falls within the specified
2030          * range.
2031          */
2032         for (i = 0; i < rdev->desc->n_voltages; i++) {
2033                 ret = rdev->desc->ops->list_voltage(rdev, i);
2034                 if (ret < 0)
2035                         continue;
2036
2037                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2038                         best_val = ret;
2039                         selector = i;
2040                 }
2041         }
2042
2043         if (best_val != INT_MAX)
2044                 return selector;
2045         else
2046                 return -EINVAL;
2047 }
2048 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2049
2050 /**
2051  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2052  *
2053  * @rdev: Regulator to operate on
2054  * @min_uV: Lower bound for voltage
2055  * @max_uV: Upper bound for voltage
2056  *
2057  * Drivers providing min_uV and uV_step in their regulator_desc can
2058  * use this as their map_voltage() operation.
2059  */
2060 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2061                                  int min_uV, int max_uV)
2062 {
2063         int ret, voltage;
2064
2065         /* Allow uV_step to be 0 for fixed voltage */
2066         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2067                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2068                         return 0;
2069                 else
2070                         return -EINVAL;
2071         }
2072
2073         if (!rdev->desc->uV_step) {
2074                 BUG_ON(!rdev->desc->uV_step);
2075                 return -EINVAL;
2076         }
2077
2078         if (min_uV < rdev->desc->min_uV)
2079                 min_uV = rdev->desc->min_uV;
2080
2081         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2082         if (ret < 0)
2083                 return ret;
2084
2085         /* Map back into a voltage to verify we're still in bounds */
2086         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2087         if (voltage < min_uV || voltage > max_uV)
2088                 return -EINVAL;
2089
2090         return ret;
2091 }
2092 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2093
2094 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2095                                      int min_uV, int max_uV)
2096 {
2097         int ret;
2098         int delay = 0;
2099         int best_val = 0;
2100         unsigned int selector;
2101         int old_selector = -1;
2102
2103         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2104
2105         min_uV += rdev->constraints->uV_offset;
2106         max_uV += rdev->constraints->uV_offset;
2107
2108         /*
2109          * If we can't obtain the old selector there is not enough
2110          * info to call set_voltage_time_sel().
2111          */
2112         if (_regulator_is_enabled(rdev) &&
2113             rdev->desc->ops->set_voltage_time_sel &&
2114             rdev->desc->ops->get_voltage_sel) {
2115                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2116                 if (old_selector < 0)
2117                         return old_selector;
2118         }
2119
2120         if (rdev->desc->ops->set_voltage) {
2121                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2122                                                    &selector);
2123
2124                 if (ret >= 0) {
2125                         if (rdev->desc->ops->list_voltage)
2126                                 best_val = rdev->desc->ops->list_voltage(rdev,
2127                                                                          selector);
2128                         else
2129                                 best_val = _regulator_get_voltage(rdev);
2130                 }
2131
2132         } else if (rdev->desc->ops->set_voltage_sel) {
2133                 if (rdev->desc->ops->map_voltage) {
2134                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2135                                                            max_uV);
2136                 } else {
2137                         if (rdev->desc->ops->list_voltage ==
2138                             regulator_list_voltage_linear)
2139                                 ret = regulator_map_voltage_linear(rdev,
2140                                                                 min_uV, max_uV);
2141                         else
2142                                 ret = regulator_map_voltage_iterate(rdev,
2143                                                                 min_uV, max_uV);
2144                 }
2145
2146                 if (ret >= 0) {
2147                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2148                         if (min_uV <= best_val && max_uV >= best_val) {
2149                                 selector = ret;
2150                                 ret = rdev->desc->ops->set_voltage_sel(rdev,
2151                                                                        ret);
2152                         } else {
2153                                 ret = -EINVAL;
2154                         }
2155                 }
2156         } else {
2157                 ret = -EINVAL;
2158         }
2159
2160         /* Call set_voltage_time_sel if successfully obtained old_selector */
2161         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2162             rdev->desc->ops->set_voltage_time_sel) {
2163
2164                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2165                                                 old_selector, selector);
2166                 if (delay < 0) {
2167                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2168                                   delay);
2169                         delay = 0;
2170                 }
2171
2172                 /* Insert any necessary delays */
2173                 if (delay >= 1000) {
2174                         mdelay(delay / 1000);
2175                         udelay(delay % 1000);
2176                 } else if (delay) {
2177                         udelay(delay);
2178                 }
2179         }
2180
2181         if (ret == 0 && best_val >= 0)
2182                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2183                                      (void *)best_val);
2184
2185         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2186
2187         return ret;
2188 }
2189
2190 /**
2191  * regulator_set_voltage - set regulator output voltage
2192  * @regulator: regulator source
2193  * @min_uV: Minimum required voltage in uV
2194  * @max_uV: Maximum acceptable voltage in uV
2195  *
2196  * Sets a voltage regulator to the desired output voltage. This can be set
2197  * during any regulator state. IOW, regulator can be disabled or enabled.
2198  *
2199  * If the regulator is enabled then the voltage will change to the new value
2200  * immediately otherwise if the regulator is disabled the regulator will
2201  * output at the new voltage when enabled.
2202  *
2203  * NOTE: If the regulator is shared between several devices then the lowest
2204  * request voltage that meets the system constraints will be used.
2205  * Regulator system constraints must be set for this regulator before
2206  * calling this function otherwise this call will fail.
2207  */
2208 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2209 {
2210         struct regulator_dev *rdev = regulator->rdev;
2211         int ret = 0;
2212
2213         mutex_lock(&rdev->mutex);
2214
2215         /* If we're setting the same range as last time the change
2216          * should be a noop (some cpufreq implementations use the same
2217          * voltage for multiple frequencies, for example).
2218          */
2219         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2220                 goto out;
2221
2222         /* sanity check */
2223         if (!rdev->desc->ops->set_voltage &&
2224             !rdev->desc->ops->set_voltage_sel) {
2225                 ret = -EINVAL;
2226                 goto out;
2227         }
2228
2229         /* constraints check */
2230         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2231         if (ret < 0)
2232                 goto out;
2233         regulator->min_uV = min_uV;
2234         regulator->max_uV = max_uV;
2235
2236         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2237         if (ret < 0)
2238                 goto out;
2239
2240         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2241
2242 out:
2243         mutex_unlock(&rdev->mutex);
2244         return ret;
2245 }
2246 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2247
2248 /**
2249  * regulator_set_voltage_time - get raise/fall time
2250  * @regulator: regulator source
2251  * @old_uV: starting voltage in microvolts
2252  * @new_uV: target voltage in microvolts
2253  *
2254  * Provided with the starting and ending voltage, this function attempts to
2255  * calculate the time in microseconds required to rise or fall to this new
2256  * voltage.
2257  */
2258 int regulator_set_voltage_time(struct regulator *regulator,
2259                                int old_uV, int new_uV)
2260 {
2261         struct regulator_dev    *rdev = regulator->rdev;
2262         struct regulator_ops    *ops = rdev->desc->ops;
2263         int old_sel = -1;
2264         int new_sel = -1;
2265         int voltage;
2266         int i;
2267
2268         /* Currently requires operations to do this */
2269         if (!ops->list_voltage || !ops->set_voltage_time_sel
2270             || !rdev->desc->n_voltages)
2271                 return -EINVAL;
2272
2273         for (i = 0; i < rdev->desc->n_voltages; i++) {
2274                 /* We only look for exact voltage matches here */
2275                 voltage = regulator_list_voltage(regulator, i);
2276                 if (voltage < 0)
2277                         return -EINVAL;
2278                 if (voltage == 0)
2279                         continue;
2280                 if (voltage == old_uV)
2281                         old_sel = i;
2282                 if (voltage == new_uV)
2283                         new_sel = i;
2284         }
2285
2286         if (old_sel < 0 || new_sel < 0)
2287                 return -EINVAL;
2288
2289         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2290 }
2291 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2292
2293 /**
2294  *regulator_set_voltage_time_sel - get raise/fall time
2295  * @regulator: regulator source
2296  * @old_selector: selector for starting voltage
2297  * @new_selector: selector for target voltage
2298  *
2299  * Provided with the starting and target voltage selectors, this function
2300  * returns time in microseconds required to rise or fall to this new voltage
2301  *
2302  * Drivers providing ramp_delay in regulation_constraints can use this as their
2303  * set_voltage_time_sel() operation.
2304  */
2305 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2306                                    unsigned int old_selector,
2307                                    unsigned int new_selector)
2308 {
2309         unsigned int ramp_delay = 0;
2310         int old_volt, new_volt;
2311
2312         if (rdev->constraints->ramp_delay)
2313                 ramp_delay = rdev->constraints->ramp_delay;
2314         else if (rdev->desc->ramp_delay)
2315                 ramp_delay = rdev->desc->ramp_delay;
2316
2317         if (ramp_delay == 0) {
2318                 rdev_warn(rdev, "ramp_delay not set\n");
2319                 return 0;
2320         }
2321
2322         /* sanity check */
2323         if (!rdev->desc->ops->list_voltage)
2324                 return -EINVAL;
2325
2326         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2327         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2328
2329         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2332
2333 /**
2334  * regulator_sync_voltage - re-apply last regulator output voltage
2335  * @regulator: regulator source
2336  *
2337  * Re-apply the last configured voltage.  This is intended to be used
2338  * where some external control source the consumer is cooperating with
2339  * has caused the configured voltage to change.
2340  */
2341 int regulator_sync_voltage(struct regulator *regulator)
2342 {
2343         struct regulator_dev *rdev = regulator->rdev;
2344         int ret, min_uV, max_uV;
2345
2346         mutex_lock(&rdev->mutex);
2347
2348         if (!rdev->desc->ops->set_voltage &&
2349             !rdev->desc->ops->set_voltage_sel) {
2350                 ret = -EINVAL;
2351                 goto out;
2352         }
2353
2354         /* This is only going to work if we've had a voltage configured. */
2355         if (!regulator->min_uV && !regulator->max_uV) {
2356                 ret = -EINVAL;
2357                 goto out;
2358         }
2359
2360         min_uV = regulator->min_uV;
2361         max_uV = regulator->max_uV;
2362
2363         /* This should be a paranoia check... */
2364         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2365         if (ret < 0)
2366                 goto out;
2367
2368         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2369         if (ret < 0)
2370                 goto out;
2371
2372         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2373
2374 out:
2375         mutex_unlock(&rdev->mutex);
2376         return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2379
2380 static int _regulator_get_voltage(struct regulator_dev *rdev)
2381 {
2382         int sel, ret;
2383
2384         if (rdev->desc->ops->get_voltage_sel) {
2385                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2386                 if (sel < 0)
2387                         return sel;
2388                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2389         } else if (rdev->desc->ops->get_voltage) {
2390                 ret = rdev->desc->ops->get_voltage(rdev);
2391         } else {
2392                 return -EINVAL;
2393         }
2394
2395         if (ret < 0)
2396                 return ret;
2397         return ret - rdev->constraints->uV_offset;
2398 }
2399
2400 /**
2401  * regulator_get_voltage - get regulator output voltage
2402  * @regulator: regulator source
2403  *
2404  * This returns the current regulator voltage in uV.
2405  *
2406  * NOTE: If the regulator is disabled it will return the voltage value. This
2407  * function should not be used to determine regulator state.
2408  */
2409 int regulator_get_voltage(struct regulator *regulator)
2410 {
2411         int ret;
2412
2413         mutex_lock(&regulator->rdev->mutex);
2414
2415         ret = _regulator_get_voltage(regulator->rdev);
2416
2417         mutex_unlock(&regulator->rdev->mutex);
2418
2419         return ret;
2420 }
2421 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2422
2423 /**
2424  * regulator_set_current_limit - set regulator output current limit
2425  * @regulator: regulator source
2426  * @min_uA: Minimuum supported current in uA
2427  * @max_uA: Maximum supported current in uA
2428  *
2429  * Sets current sink to the desired output current. This can be set during
2430  * any regulator state. IOW, regulator can be disabled or enabled.
2431  *
2432  * If the regulator is enabled then the current will change to the new value
2433  * immediately otherwise if the regulator is disabled the regulator will
2434  * output at the new current when enabled.
2435  *
2436  * NOTE: Regulator system constraints must be set for this regulator before
2437  * calling this function otherwise this call will fail.
2438  */
2439 int regulator_set_current_limit(struct regulator *regulator,
2440                                int min_uA, int max_uA)
2441 {
2442         struct regulator_dev *rdev = regulator->rdev;
2443         int ret;
2444
2445         mutex_lock(&rdev->mutex);
2446
2447         /* sanity check */
2448         if (!rdev->desc->ops->set_current_limit) {
2449                 ret = -EINVAL;
2450                 goto out;
2451         }
2452
2453         /* constraints check */
2454         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2455         if (ret < 0)
2456                 goto out;
2457
2458         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2459 out:
2460         mutex_unlock(&rdev->mutex);
2461         return ret;
2462 }
2463 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2464
2465 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2466 {
2467         int ret;
2468
2469         mutex_lock(&rdev->mutex);
2470
2471         /* sanity check */
2472         if (!rdev->desc->ops->get_current_limit) {
2473                 ret = -EINVAL;
2474                 goto out;
2475         }
2476
2477         ret = rdev->desc->ops->get_current_limit(rdev);
2478 out:
2479         mutex_unlock(&rdev->mutex);
2480         return ret;
2481 }
2482
2483 /**
2484  * regulator_get_current_limit - get regulator output current
2485  * @regulator: regulator source
2486  *
2487  * This returns the current supplied by the specified current sink in uA.
2488  *
2489  * NOTE: If the regulator is disabled it will return the current value. This
2490  * function should not be used to determine regulator state.
2491  */
2492 int regulator_get_current_limit(struct regulator *regulator)
2493 {
2494         return _regulator_get_current_limit(regulator->rdev);
2495 }
2496 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2497
2498 /**
2499  * regulator_set_mode - set regulator operating mode
2500  * @regulator: regulator source
2501  * @mode: operating mode - one of the REGULATOR_MODE constants
2502  *
2503  * Set regulator operating mode to increase regulator efficiency or improve
2504  * regulation performance.
2505  *
2506  * NOTE: Regulator system constraints must be set for this regulator before
2507  * calling this function otherwise this call will fail.
2508  */
2509 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2510 {
2511         struct regulator_dev *rdev = regulator->rdev;
2512         int ret;
2513         int regulator_curr_mode;
2514
2515         mutex_lock(&rdev->mutex);
2516
2517         /* sanity check */
2518         if (!rdev->desc->ops->set_mode) {
2519                 ret = -EINVAL;
2520                 goto out;
2521         }
2522
2523         /* return if the same mode is requested */
2524         if (rdev->desc->ops->get_mode) {
2525                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2526                 if (regulator_curr_mode == mode) {
2527                         ret = 0;
2528                         goto out;
2529                 }
2530         }
2531
2532         /* constraints check */
2533         ret = regulator_mode_constrain(rdev, &mode);
2534         if (ret < 0)
2535                 goto out;
2536
2537         ret = rdev->desc->ops->set_mode(rdev, mode);
2538 out:
2539         mutex_unlock(&rdev->mutex);
2540         return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regulator_set_mode);
2543
2544 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2545 {
2546         int ret;
2547
2548         mutex_lock(&rdev->mutex);
2549
2550         /* sanity check */
2551         if (!rdev->desc->ops->get_mode) {
2552                 ret = -EINVAL;
2553                 goto out;
2554         }
2555
2556         ret = rdev->desc->ops->get_mode(rdev);
2557 out:
2558         mutex_unlock(&rdev->mutex);
2559         return ret;
2560 }
2561
2562 /**
2563  * regulator_get_mode - get regulator operating mode
2564  * @regulator: regulator source
2565  *
2566  * Get the current regulator operating mode.
2567  */
2568 unsigned int regulator_get_mode(struct regulator *regulator)
2569 {
2570         return _regulator_get_mode(regulator->rdev);
2571 }
2572 EXPORT_SYMBOL_GPL(regulator_get_mode);
2573
2574 /**
2575  * regulator_set_optimum_mode - set regulator optimum operating mode
2576  * @regulator: regulator source
2577  * @uA_load: load current
2578  *
2579  * Notifies the regulator core of a new device load. This is then used by
2580  * DRMS (if enabled by constraints) to set the most efficient regulator
2581  * operating mode for the new regulator loading.
2582  *
2583  * Consumer devices notify their supply regulator of the maximum power
2584  * they will require (can be taken from device datasheet in the power
2585  * consumption tables) when they change operational status and hence power
2586  * state. Examples of operational state changes that can affect power
2587  * consumption are :-
2588  *
2589  *    o Device is opened / closed.
2590  *    o Device I/O is about to begin or has just finished.
2591  *    o Device is idling in between work.
2592  *
2593  * This information is also exported via sysfs to userspace.
2594  *
2595  * DRMS will sum the total requested load on the regulator and change
2596  * to the most efficient operating mode if platform constraints allow.
2597  *
2598  * Returns the new regulator mode or error.
2599  */
2600 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2601 {
2602         struct regulator_dev *rdev = regulator->rdev;
2603         struct regulator *consumer;
2604         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2605         unsigned int mode;
2606
2607         if (rdev->supply)
2608                 input_uV = regulator_get_voltage(rdev->supply);
2609
2610         mutex_lock(&rdev->mutex);
2611
2612         /*
2613          * first check to see if we can set modes at all, otherwise just
2614          * tell the consumer everything is OK.
2615          */
2616         regulator->uA_load = uA_load;
2617         ret = regulator_check_drms(rdev);
2618         if (ret < 0) {
2619                 ret = 0;
2620                 goto out;
2621         }
2622
2623         if (!rdev->desc->ops->get_optimum_mode)
2624                 goto out;
2625
2626         /*
2627          * we can actually do this so any errors are indicators of
2628          * potential real failure.
2629          */
2630         ret = -EINVAL;
2631
2632         if (!rdev->desc->ops->set_mode)
2633                 goto out;
2634
2635         /* get output voltage */
2636         output_uV = _regulator_get_voltage(rdev);
2637         if (output_uV <= 0) {
2638                 rdev_err(rdev, "invalid output voltage found\n");
2639                 goto out;
2640         }
2641
2642         /* No supply? Use constraint voltage */
2643         if (input_uV <= 0)
2644                 input_uV = rdev->constraints->input_uV;
2645         if (input_uV <= 0) {
2646                 rdev_err(rdev, "invalid input voltage found\n");
2647                 goto out;
2648         }
2649
2650         /* calc total requested load for this regulator */
2651         list_for_each_entry(consumer, &rdev->consumer_list, list)
2652                 total_uA_load += consumer->uA_load;
2653
2654         mode = rdev->desc->ops->get_optimum_mode(rdev,
2655                                                  input_uV, output_uV,
2656                                                  total_uA_load);
2657         ret = regulator_mode_constrain(rdev, &mode);
2658         if (ret < 0) {
2659                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2660                          total_uA_load, input_uV, output_uV);
2661                 goto out;
2662         }
2663
2664         ret = rdev->desc->ops->set_mode(rdev, mode);
2665         if (ret < 0) {
2666                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2667                 goto out;
2668         }
2669         ret = mode;
2670 out:
2671         mutex_unlock(&rdev->mutex);
2672         return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2675
2676 /**
2677  * regulator_register_notifier - register regulator event notifier
2678  * @regulator: regulator source
2679  * @nb: notifier block
2680  *
2681  * Register notifier block to receive regulator events.
2682  */
2683 int regulator_register_notifier(struct regulator *regulator,
2684                               struct notifier_block *nb)
2685 {
2686         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2687                                                 nb);
2688 }
2689 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2690
2691 /**
2692  * regulator_unregister_notifier - unregister regulator event notifier
2693  * @regulator: regulator source
2694  * @nb: notifier block
2695  *
2696  * Unregister regulator event notifier block.
2697  */
2698 int regulator_unregister_notifier(struct regulator *regulator,
2699                                 struct notifier_block *nb)
2700 {
2701         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2702                                                   nb);
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2705
2706 /* notify regulator consumers and downstream regulator consumers.
2707  * Note mutex must be held by caller.
2708  */
2709 static void _notifier_call_chain(struct regulator_dev *rdev,
2710                                   unsigned long event, void *data)
2711 {
2712         /* call rdev chain first */
2713         blocking_notifier_call_chain(&rdev->notifier, event, data);
2714 }
2715
2716 /**
2717  * regulator_bulk_get - get multiple regulator consumers
2718  *
2719  * @dev:           Device to supply
2720  * @num_consumers: Number of consumers to register
2721  * @consumers:     Configuration of consumers; clients are stored here.
2722  *
2723  * @return 0 on success, an errno on failure.
2724  *
2725  * This helper function allows drivers to get several regulator
2726  * consumers in one operation.  If any of the regulators cannot be
2727  * acquired then any regulators that were allocated will be freed
2728  * before returning to the caller.
2729  */
2730 int regulator_bulk_get(struct device *dev, int num_consumers,
2731                        struct regulator_bulk_data *consumers)
2732 {
2733         int i;
2734         int ret;
2735
2736         for (i = 0; i < num_consumers; i++)
2737                 consumers[i].consumer = NULL;
2738
2739         for (i = 0; i < num_consumers; i++) {
2740                 consumers[i].consumer = regulator_get(dev,
2741                                                       consumers[i].supply);
2742                 if (IS_ERR(consumers[i].consumer)) {
2743                         ret = PTR_ERR(consumers[i].consumer);
2744                         dev_err(dev, "Failed to get supply '%s': %d\n",
2745                                 consumers[i].supply, ret);
2746                         consumers[i].consumer = NULL;
2747                         goto err;
2748                 }
2749         }
2750
2751         return 0;
2752
2753 err:
2754         while (--i >= 0)
2755                 regulator_put(consumers[i].consumer);
2756
2757         return ret;
2758 }
2759 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2760
2761 /**
2762  * devm_regulator_bulk_get - managed get multiple regulator consumers
2763  *
2764  * @dev:           Device to supply
2765  * @num_consumers: Number of consumers to register
2766  * @consumers:     Configuration of consumers; clients are stored here.
2767  *
2768  * @return 0 on success, an errno on failure.
2769  *
2770  * This helper function allows drivers to get several regulator
2771  * consumers in one operation with management, the regulators will
2772  * automatically be freed when the device is unbound.  If any of the
2773  * regulators cannot be acquired then any regulators that were
2774  * allocated will be freed before returning to the caller.
2775  */
2776 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2777                             struct regulator_bulk_data *consumers)
2778 {
2779         int i;
2780         int ret;
2781
2782         for (i = 0; i < num_consumers; i++)
2783                 consumers[i].consumer = NULL;
2784
2785         for (i = 0; i < num_consumers; i++) {
2786                 consumers[i].consumer = devm_regulator_get(dev,
2787                                                            consumers[i].supply);
2788                 if (IS_ERR(consumers[i].consumer)) {
2789                         ret = PTR_ERR(consumers[i].consumer);
2790                         dev_err(dev, "Failed to get supply '%s': %d\n",
2791                                 consumers[i].supply, ret);
2792                         consumers[i].consumer = NULL;
2793                         goto err;
2794                 }
2795         }
2796
2797         return 0;
2798
2799 err:
2800         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2801                 devm_regulator_put(consumers[i].consumer);
2802
2803         return ret;
2804 }
2805 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2806
2807 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2808 {
2809         struct regulator_bulk_data *bulk = data;
2810
2811         bulk->ret = regulator_enable(bulk->consumer);
2812 }
2813
2814 /**
2815  * regulator_bulk_enable - enable multiple regulator consumers
2816  *
2817  * @num_consumers: Number of consumers
2818  * @consumers:     Consumer data; clients are stored here.
2819  * @return         0 on success, an errno on failure
2820  *
2821  * This convenience API allows consumers to enable multiple regulator
2822  * clients in a single API call.  If any consumers cannot be enabled
2823  * then any others that were enabled will be disabled again prior to
2824  * return.
2825  */
2826 int regulator_bulk_enable(int num_consumers,
2827                           struct regulator_bulk_data *consumers)
2828 {
2829         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2830         int i;
2831         int ret = 0;
2832
2833         for (i = 0; i < num_consumers; i++) {
2834                 if (consumers[i].consumer->always_on)
2835                         consumers[i].ret = 0;
2836                 else
2837                         async_schedule_domain(regulator_bulk_enable_async,
2838                                               &consumers[i], &async_domain);
2839         }
2840
2841         async_synchronize_full_domain(&async_domain);
2842
2843         /* If any consumer failed we need to unwind any that succeeded */
2844         for (i = 0; i < num_consumers; i++) {
2845                 if (consumers[i].ret != 0) {
2846                         ret = consumers[i].ret;
2847                         goto err;
2848                 }
2849         }
2850
2851         return 0;
2852
2853 err:
2854         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2855         while (--i >= 0)
2856                 regulator_disable(consumers[i].consumer);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2861
2862 /**
2863  * regulator_bulk_disable - disable multiple regulator consumers
2864  *
2865  * @num_consumers: Number of consumers
2866  * @consumers:     Consumer data; clients are stored here.
2867  * @return         0 on success, an errno on failure
2868  *
2869  * This convenience API allows consumers to disable multiple regulator
2870  * clients in a single API call.  If any consumers cannot be disabled
2871  * then any others that were disabled will be enabled again prior to
2872  * return.
2873  */
2874 int regulator_bulk_disable(int num_consumers,
2875                            struct regulator_bulk_data *consumers)
2876 {
2877         int i;
2878         int ret, r;
2879
2880         for (i = num_consumers - 1; i >= 0; --i) {
2881                 ret = regulator_disable(consumers[i].consumer);
2882                 if (ret != 0)
2883                         goto err;
2884         }
2885
2886         return 0;
2887
2888 err:
2889         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2890         for (++i; i < num_consumers; ++i) {
2891                 r = regulator_enable(consumers[i].consumer);
2892                 if (r != 0)
2893                         pr_err("Failed to reename %s: %d\n",
2894                                consumers[i].supply, r);
2895         }
2896
2897         return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2900
2901 /**
2902  * regulator_bulk_force_disable - force disable multiple regulator consumers
2903  *
2904  * @num_consumers: Number of consumers
2905  * @consumers:     Consumer data; clients are stored here.
2906  * @return         0 on success, an errno on failure
2907  *
2908  * This convenience API allows consumers to forcibly disable multiple regulator
2909  * clients in a single API call.
2910  * NOTE: This should be used for situations when device damage will
2911  * likely occur if the regulators are not disabled (e.g. over temp).
2912  * Although regulator_force_disable function call for some consumers can
2913  * return error numbers, the function is called for all consumers.
2914  */
2915 int regulator_bulk_force_disable(int num_consumers,
2916                            struct regulator_bulk_data *consumers)
2917 {
2918         int i;
2919         int ret;
2920
2921         for (i = 0; i < num_consumers; i++)
2922                 consumers[i].ret =
2923                             regulator_force_disable(consumers[i].consumer);
2924
2925         for (i = 0; i < num_consumers; i++) {
2926                 if (consumers[i].ret != 0) {
2927                         ret = consumers[i].ret;
2928                         goto out;
2929                 }
2930         }
2931
2932         return 0;
2933 out:
2934         return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2937
2938 /**
2939  * regulator_bulk_free - free multiple regulator consumers
2940  *
2941  * @num_consumers: Number of consumers
2942  * @consumers:     Consumer data; clients are stored here.
2943  *
2944  * This convenience API allows consumers to free multiple regulator
2945  * clients in a single API call.
2946  */
2947 void regulator_bulk_free(int num_consumers,
2948                          struct regulator_bulk_data *consumers)
2949 {
2950         int i;
2951
2952         for (i = 0; i < num_consumers; i++) {
2953                 regulator_put(consumers[i].consumer);
2954                 consumers[i].consumer = NULL;
2955         }
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2958
2959 /**
2960  * regulator_notifier_call_chain - call regulator event notifier
2961  * @rdev: regulator source
2962  * @event: notifier block
2963  * @data: callback-specific data.
2964  *
2965  * Called by regulator drivers to notify clients a regulator event has
2966  * occurred. We also notify regulator clients downstream.
2967  * Note lock must be held by caller.
2968  */
2969 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2970                                   unsigned long event, void *data)
2971 {
2972         _notifier_call_chain(rdev, event, data);
2973         return NOTIFY_DONE;
2974
2975 }
2976 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2977
2978 /**
2979  * regulator_mode_to_status - convert a regulator mode into a status
2980  *
2981  * @mode: Mode to convert
2982  *
2983  * Convert a regulator mode into a status.
2984  */
2985 int regulator_mode_to_status(unsigned int mode)
2986 {
2987         switch (mode) {
2988         case REGULATOR_MODE_FAST:
2989                 return REGULATOR_STATUS_FAST;
2990         case REGULATOR_MODE_NORMAL:
2991                 return REGULATOR_STATUS_NORMAL;
2992         case REGULATOR_MODE_IDLE:
2993                 return REGULATOR_STATUS_IDLE;
2994         case REGULATOR_MODE_STANDBY:
2995                 return REGULATOR_STATUS_STANDBY;
2996         default:
2997                 return REGULATOR_STATUS_UNDEFINED;
2998         }
2999 }
3000 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3001
3002 /*
3003  * To avoid cluttering sysfs (and memory) with useless state, only
3004  * create attributes that can be meaningfully displayed.
3005  */
3006 static int add_regulator_attributes(struct regulator_dev *rdev)
3007 {
3008         struct device           *dev = &rdev->dev;
3009         struct regulator_ops    *ops = rdev->desc->ops;
3010         int                     status = 0;
3011
3012         /* some attributes need specific methods to be displayed */
3013         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3014             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3015                 status = device_create_file(dev, &dev_attr_microvolts);
3016                 if (status < 0)
3017                         return status;
3018         }
3019         if (ops->get_current_limit) {
3020                 status = device_create_file(dev, &dev_attr_microamps);
3021                 if (status < 0)
3022                         return status;
3023         }
3024         if (ops->get_mode) {
3025                 status = device_create_file(dev, &dev_attr_opmode);
3026                 if (status < 0)
3027                         return status;
3028         }
3029         if (ops->is_enabled) {
3030                 status = device_create_file(dev, &dev_attr_state);
3031                 if (status < 0)
3032                         return status;
3033         }
3034         if (ops->get_status) {
3035                 status = device_create_file(dev, &dev_attr_status);
3036                 if (status < 0)
3037                         return status;
3038         }
3039
3040         /* some attributes are type-specific */
3041         if (rdev->desc->type == REGULATOR_CURRENT) {
3042                 status = device_create_file(dev, &dev_attr_requested_microamps);
3043                 if (status < 0)
3044                         return status;
3045         }
3046
3047         /* all the other attributes exist to support constraints;
3048          * don't show them if there are no constraints, or if the
3049          * relevant supporting methods are missing.
3050          */
3051         if (!rdev->constraints)
3052                 return status;
3053
3054         /* constraints need specific supporting methods */
3055         if (ops->set_voltage || ops->set_voltage_sel) {
3056                 status = device_create_file(dev, &dev_attr_min_microvolts);
3057                 if (status < 0)
3058                         return status;
3059                 status = device_create_file(dev, &dev_attr_max_microvolts);
3060                 if (status < 0)
3061                         return status;
3062         }
3063         if (ops->set_current_limit) {
3064                 status = device_create_file(dev, &dev_attr_min_microamps);
3065                 if (status < 0)
3066                         return status;
3067                 status = device_create_file(dev, &dev_attr_max_microamps);
3068                 if (status < 0)
3069                         return status;
3070         }
3071
3072         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3073         if (status < 0)
3074                 return status;
3075         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3076         if (status < 0)
3077                 return status;
3078         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3079         if (status < 0)
3080                 return status;
3081
3082         if (ops->set_suspend_voltage) {
3083                 status = device_create_file(dev,
3084                                 &dev_attr_suspend_standby_microvolts);
3085                 if (status < 0)
3086                         return status;
3087                 status = device_create_file(dev,
3088                                 &dev_attr_suspend_mem_microvolts);
3089                 if (status < 0)
3090                         return status;
3091                 status = device_create_file(dev,
3092                                 &dev_attr_suspend_disk_microvolts);
3093                 if (status < 0)
3094                         return status;
3095         }
3096
3097         if (ops->set_suspend_mode) {
3098                 status = device_create_file(dev,
3099                                 &dev_attr_suspend_standby_mode);
3100                 if (status < 0)
3101                         return status;
3102                 status = device_create_file(dev,
3103                                 &dev_attr_suspend_mem_mode);
3104                 if (status < 0)
3105                         return status;
3106                 status = device_create_file(dev,
3107                                 &dev_attr_suspend_disk_mode);
3108                 if (status < 0)
3109                         return status;
3110         }
3111
3112         return status;
3113 }
3114
3115 static void rdev_init_debugfs(struct regulator_dev *rdev)
3116 {
3117         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3118         if (!rdev->debugfs) {
3119                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3120                 return;
3121         }
3122
3123         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3124                            &rdev->use_count);
3125         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3126                            &rdev->open_count);
3127 }
3128
3129 /**
3130  * regulator_register - register regulator
3131  * @regulator_desc: regulator to register
3132  * @config: runtime configuration for regulator
3133  *
3134  * Called by regulator drivers to register a regulator.
3135  * Returns 0 on success.
3136  */
3137 struct regulator_dev *
3138 regulator_register(const struct regulator_desc *regulator_desc,
3139                    const struct regulator_config *config)
3140 {
3141         const struct regulation_constraints *constraints = NULL;
3142         const struct regulator_init_data *init_data;
3143         static atomic_t regulator_no = ATOMIC_INIT(0);
3144         struct regulator_dev *rdev;
3145         struct device *dev;
3146         int ret, i;
3147         const char *supply = NULL;
3148
3149         if (regulator_desc == NULL || config == NULL)
3150                 return ERR_PTR(-EINVAL);
3151
3152         dev = config->dev;
3153         WARN_ON(!dev);
3154
3155         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3156                 return ERR_PTR(-EINVAL);
3157
3158         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3159             regulator_desc->type != REGULATOR_CURRENT)
3160                 return ERR_PTR(-EINVAL);
3161
3162         /* Only one of each should be implemented */
3163         WARN_ON(regulator_desc->ops->get_voltage &&
3164                 regulator_desc->ops->get_voltage_sel);
3165         WARN_ON(regulator_desc->ops->set_voltage &&
3166                 regulator_desc->ops->set_voltage_sel);
3167
3168         /* If we're using selectors we must implement list_voltage. */
3169         if (regulator_desc->ops->get_voltage_sel &&
3170             !regulator_desc->ops->list_voltage) {
3171                 return ERR_PTR(-EINVAL);
3172         }
3173         if (regulator_desc->ops->set_voltage_sel &&
3174             !regulator_desc->ops->list_voltage) {
3175                 return ERR_PTR(-EINVAL);
3176         }
3177
3178         init_data = config->init_data;
3179
3180         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3181         if (rdev == NULL)
3182                 return ERR_PTR(-ENOMEM);
3183
3184         mutex_lock(&regulator_list_mutex);
3185
3186         mutex_init(&rdev->mutex);
3187         rdev->reg_data = config->driver_data;
3188         rdev->owner = regulator_desc->owner;
3189         rdev->desc = regulator_desc;
3190         if (config->regmap)
3191                 rdev->regmap = config->regmap;
3192         else
3193                 rdev->regmap = dev_get_regmap(dev, NULL);
3194         INIT_LIST_HEAD(&rdev->consumer_list);
3195         INIT_LIST_HEAD(&rdev->list);
3196         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3197         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3198
3199         /* preform any regulator specific init */
3200         if (init_data && init_data->regulator_init) {
3201                 ret = init_data->regulator_init(rdev->reg_data);
3202                 if (ret < 0)
3203                         goto clean;
3204         }
3205
3206         /* register with sysfs */
3207         rdev->dev.class = &regulator_class;
3208         rdev->dev.of_node = config->of_node;
3209         rdev->dev.parent = dev;
3210         dev_set_name(&rdev->dev, "regulator.%d",
3211                      atomic_inc_return(&regulator_no) - 1);
3212         ret = device_register(&rdev->dev);
3213         if (ret != 0) {
3214                 put_device(&rdev->dev);
3215                 goto clean;
3216         }
3217
3218         dev_set_drvdata(&rdev->dev, rdev);
3219
3220         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3221                 ret = gpio_request_one(config->ena_gpio,
3222                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
3223                                        rdev_get_name(rdev));
3224                 if (ret != 0) {
3225                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3226                                  config->ena_gpio, ret);
3227                         goto clean;
3228                 }
3229
3230                 rdev->ena_gpio = config->ena_gpio;
3231                 rdev->ena_gpio_invert = config->ena_gpio_invert;
3232
3233                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3234                         rdev->ena_gpio_state = 1;
3235
3236                 if (rdev->ena_gpio_invert)
3237                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3238         }
3239
3240         /* set regulator constraints */
3241         if (init_data)
3242                 constraints = &init_data->constraints;
3243
3244         ret = set_machine_constraints(rdev, constraints);
3245         if (ret < 0)
3246                 goto scrub;
3247
3248         /* add attributes supported by this regulator */
3249         ret = add_regulator_attributes(rdev);
3250         if (ret < 0)
3251                 goto scrub;
3252
3253         if (init_data && init_data->supply_regulator)
3254                 supply = init_data->supply_regulator;
3255         else if (regulator_desc->supply_name)
3256                 supply = regulator_desc->supply_name;
3257
3258         if (supply) {
3259                 struct regulator_dev *r;
3260
3261                 r = regulator_dev_lookup(dev, supply, &ret);
3262
3263                 if (!r) {
3264                         dev_err(dev, "Failed to find supply %s\n", supply);
3265                         ret = -EPROBE_DEFER;
3266                         goto scrub;
3267                 }
3268
3269                 ret = set_supply(rdev, r);
3270                 if (ret < 0)
3271                         goto scrub;
3272
3273                 /* Enable supply if rail is enabled */
3274                 if (_regulator_is_enabled(rdev)) {
3275                         ret = regulator_enable(rdev->supply);
3276                         if (ret < 0)
3277                                 goto scrub;
3278                 }
3279         }
3280
3281         /* add consumers devices */
3282         if (init_data) {
3283                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3284                         ret = set_consumer_device_supply(rdev,
3285                                 init_data->consumer_supplies[i].dev_name,
3286                                 init_data->consumer_supplies[i].supply);
3287                         if (ret < 0) {
3288                                 dev_err(dev, "Failed to set supply %s\n",
3289                                         init_data->consumer_supplies[i].supply);
3290                                 goto unset_supplies;
3291                         }
3292                 }
3293         }
3294
3295         list_add(&rdev->list, &regulator_list);
3296
3297         rdev_init_debugfs(rdev);
3298 out:
3299         mutex_unlock(&regulator_list_mutex);
3300         return rdev;
3301
3302 unset_supplies:
3303         unset_regulator_supplies(rdev);
3304
3305 scrub:
3306         if (rdev->supply)
3307                 regulator_put(rdev->supply);
3308         if (rdev->ena_gpio)
3309                 gpio_free(rdev->ena_gpio);
3310         kfree(rdev->constraints);
3311         device_unregister(&rdev->dev);
3312         /* device core frees rdev */
3313         rdev = ERR_PTR(ret);
3314         goto out;
3315
3316 clean:
3317         kfree(rdev);
3318         rdev = ERR_PTR(ret);
3319         goto out;
3320 }
3321 EXPORT_SYMBOL_GPL(regulator_register);
3322
3323 /**
3324  * regulator_unregister - unregister regulator
3325  * @rdev: regulator to unregister
3326  *
3327  * Called by regulator drivers to unregister a regulator.
3328  */
3329 void regulator_unregister(struct regulator_dev *rdev)
3330 {
3331         if (rdev == NULL)
3332                 return;
3333
3334         if (rdev->supply)
3335                 regulator_put(rdev->supply);
3336         mutex_lock(&regulator_list_mutex);
3337         debugfs_remove_recursive(rdev->debugfs);
3338         flush_work_sync(&rdev->disable_work.work);
3339         WARN_ON(rdev->open_count);
3340         unset_regulator_supplies(rdev);
3341         list_del(&rdev->list);
3342         kfree(rdev->constraints);
3343         if (rdev->ena_gpio)
3344                 gpio_free(rdev->ena_gpio);
3345         device_unregister(&rdev->dev);
3346         mutex_unlock(&regulator_list_mutex);
3347 }
3348 EXPORT_SYMBOL_GPL(regulator_unregister);
3349
3350 /**
3351  * regulator_suspend_prepare - prepare regulators for system wide suspend
3352  * @state: system suspend state
3353  *
3354  * Configure each regulator with it's suspend operating parameters for state.
3355  * This will usually be called by machine suspend code prior to supending.
3356  */
3357 int regulator_suspend_prepare(suspend_state_t state)
3358 {
3359         struct regulator_dev *rdev;
3360         int ret = 0;
3361
3362         /* ON is handled by regulator active state */
3363         if (state == PM_SUSPEND_ON)
3364                 return -EINVAL;
3365
3366         mutex_lock(&regulator_list_mutex);
3367         list_for_each_entry(rdev, &regulator_list, list) {
3368
3369                 mutex_lock(&rdev->mutex);
3370                 ret = suspend_prepare(rdev, state);
3371                 mutex_unlock(&rdev->mutex);
3372
3373                 if (ret < 0) {
3374                         rdev_err(rdev, "failed to prepare\n");
3375                         goto out;
3376                 }
3377         }
3378 out:
3379         mutex_unlock(&regulator_list_mutex);
3380         return ret;
3381 }
3382 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3383
3384 /**
3385  * regulator_suspend_finish - resume regulators from system wide suspend
3386  *
3387  * Turn on regulators that might be turned off by regulator_suspend_prepare
3388  * and that should be turned on according to the regulators properties.
3389  */
3390 int regulator_suspend_finish(void)
3391 {
3392         struct regulator_dev *rdev;
3393         int ret = 0, error;
3394
3395         mutex_lock(&regulator_list_mutex);
3396         list_for_each_entry(rdev, &regulator_list, list) {
3397                 struct regulator_ops *ops = rdev->desc->ops;
3398
3399                 mutex_lock(&rdev->mutex);
3400                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3401                                 ops->enable) {
3402                         error = ops->enable(rdev);
3403                         if (error)
3404                                 ret = error;
3405                 } else {
3406                         if (!has_full_constraints)
3407                                 goto unlock;
3408                         if (!ops->disable)
3409                                 goto unlock;
3410                         if (!_regulator_is_enabled(rdev))
3411                                 goto unlock;
3412
3413                         error = ops->disable(rdev);
3414                         if (error)
3415                                 ret = error;
3416                 }
3417 unlock:
3418                 mutex_unlock(&rdev->mutex);
3419         }
3420         mutex_unlock(&regulator_list_mutex);
3421         return ret;
3422 }
3423 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3424
3425 /**
3426  * regulator_has_full_constraints - the system has fully specified constraints
3427  *
3428  * Calling this function will cause the regulator API to disable all
3429  * regulators which have a zero use count and don't have an always_on
3430  * constraint in a late_initcall.
3431  *
3432  * The intention is that this will become the default behaviour in a
3433  * future kernel release so users are encouraged to use this facility
3434  * now.
3435  */
3436 void regulator_has_full_constraints(void)
3437 {
3438         has_full_constraints = 1;
3439 }
3440 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3441
3442 /**
3443  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3444  *
3445  * Calling this function will cause the regulator API to provide a
3446  * dummy regulator to consumers if no physical regulator is found,
3447  * allowing most consumers to proceed as though a regulator were
3448  * configured.  This allows systems such as those with software
3449  * controllable regulators for the CPU core only to be brought up more
3450  * readily.
3451  */
3452 void regulator_use_dummy_regulator(void)
3453 {
3454         board_wants_dummy_regulator = true;
3455 }
3456 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3457
3458 /**
3459  * rdev_get_drvdata - get rdev regulator driver data
3460  * @rdev: regulator
3461  *
3462  * Get rdev regulator driver private data. This call can be used in the
3463  * regulator driver context.
3464  */
3465 void *rdev_get_drvdata(struct regulator_dev *rdev)
3466 {
3467         return rdev->reg_data;
3468 }
3469 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3470
3471 /**
3472  * regulator_get_drvdata - get regulator driver data
3473  * @regulator: regulator
3474  *
3475  * Get regulator driver private data. This call can be used in the consumer
3476  * driver context when non API regulator specific functions need to be called.
3477  */
3478 void *regulator_get_drvdata(struct regulator *regulator)
3479 {
3480         return regulator->rdev->reg_data;
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3483
3484 /**
3485  * regulator_set_drvdata - set regulator driver data
3486  * @regulator: regulator
3487  * @data: data
3488  */
3489 void regulator_set_drvdata(struct regulator *regulator, void *data)
3490 {
3491         regulator->rdev->reg_data = data;
3492 }
3493 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3494
3495 /**
3496  * regulator_get_id - get regulator ID
3497  * @rdev: regulator
3498  */
3499 int rdev_get_id(struct regulator_dev *rdev)
3500 {
3501         return rdev->desc->id;
3502 }
3503 EXPORT_SYMBOL_GPL(rdev_get_id);
3504
3505 struct device *rdev_get_dev(struct regulator_dev *rdev)
3506 {
3507         return &rdev->dev;
3508 }
3509 EXPORT_SYMBOL_GPL(rdev_get_dev);
3510
3511 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3512 {
3513         return reg_init_data->driver_data;
3514 }
3515 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3516
3517 #ifdef CONFIG_DEBUG_FS
3518 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3519                                     size_t count, loff_t *ppos)
3520 {
3521         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3522         ssize_t len, ret = 0;
3523         struct regulator_map *map;
3524
3525         if (!buf)
3526                 return -ENOMEM;
3527
3528         list_for_each_entry(map, &regulator_map_list, list) {
3529                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3530                                "%s -> %s.%s\n",
3531                                rdev_get_name(map->regulator), map->dev_name,
3532                                map->supply);
3533                 if (len >= 0)
3534                         ret += len;
3535                 if (ret > PAGE_SIZE) {
3536                         ret = PAGE_SIZE;
3537                         break;
3538                 }
3539         }
3540
3541         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3542
3543         kfree(buf);
3544
3545         return ret;
3546 }
3547 #endif
3548
3549 static const struct file_operations supply_map_fops = {
3550 #ifdef CONFIG_DEBUG_FS
3551         .read = supply_map_read_file,
3552         .llseek = default_llseek,
3553 #endif
3554 };
3555
3556 static int __init regulator_init(void)
3557 {
3558         int ret;
3559
3560         ret = class_register(&regulator_class);
3561
3562         debugfs_root = debugfs_create_dir("regulator", NULL);
3563         if (!debugfs_root)
3564                 pr_warn("regulator: Failed to create debugfs directory\n");
3565
3566         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3567                             &supply_map_fops);
3568
3569         regulator_dummy_init();
3570
3571         return ret;
3572 }
3573
3574 /* init early to allow our consumers to complete system booting */
3575 core_initcall(regulator_init);
3576
3577 static int __init regulator_init_complete(void)
3578 {
3579         struct regulator_dev *rdev;
3580         struct regulator_ops *ops;
3581         struct regulation_constraints *c;
3582         int enabled, ret;
3583
3584         /*
3585          * Since DT doesn't provide an idiomatic mechanism for
3586          * enabling full constraints and since it's much more natural
3587          * with DT to provide them just assume that a DT enabled
3588          * system has full constraints.
3589          */
3590         if (of_have_populated_dt())
3591                 has_full_constraints = true;
3592
3593         mutex_lock(&regulator_list_mutex);
3594
3595         /* If we have a full configuration then disable any regulators
3596          * which are not in use or always_on.  This will become the
3597          * default behaviour in the future.
3598          */
3599         list_for_each_entry(rdev, &regulator_list, list) {
3600                 ops = rdev->desc->ops;
3601                 c = rdev->constraints;
3602
3603                 if (!ops->disable || (c && c->always_on))
3604                         continue;
3605
3606                 mutex_lock(&rdev->mutex);
3607
3608                 if (rdev->use_count)
3609                         goto unlock;
3610
3611                 /* If we can't read the status assume it's on. */
3612                 if (ops->is_enabled)
3613                         enabled = ops->is_enabled(rdev);
3614                 else
3615                         enabled = 1;
3616
3617                 if (!enabled)
3618                         goto unlock;
3619
3620                 if (has_full_constraints) {
3621                         /* We log since this may kill the system if it
3622                          * goes wrong. */
3623                         rdev_info(rdev, "disabling\n");
3624                         ret = ops->disable(rdev);
3625                         if (ret != 0) {
3626                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3627                         }
3628                 } else {
3629                         /* The intention is that in future we will
3630                          * assume that full constraints are provided
3631                          * so warn even if we aren't going to do
3632                          * anything here.
3633                          */
3634                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3635                 }
3636
3637 unlock:
3638                 mutex_unlock(&rdev->mutex);
3639         }
3640
3641         mutex_unlock(&regulator_list_mutex);
3642
3643         return 0;
3644 }
3645 late_initcall(regulator_init_complete);