i2c: rk3x: Give the tuning value 0 during rk3x_i2c_v0_calc_timings
[cascardo/linux.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54  *      fib_map_alloc           -       allocate the fib objects
55  *      @dev: Adapter to allocate for
56  *
57  *      Allocate and map the shared PCI space for the FIB blocks used to
58  *      talk to the Adaptec firmware.
59  */
60
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63         dprintk((KERN_INFO
64           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67         dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68                 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70                 &dev->hw_fib_pa);
71         if (dev->hw_fib_va == NULL)
72                 return -ENOMEM;
73         return 0;
74 }
75
76 /**
77  *      aac_fib_map_free                -       free the fib objects
78  *      @dev: Adapter to free
79  *
80  *      Free the PCI mappings and the memory allocated for FIB blocks
81  *      on this adapter.
82  */
83
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86         if (dev->hw_fib_va && dev->max_fib_size) {
87                 pci_free_consistent(dev->pdev,
88                 (dev->max_fib_size *
89                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
90                 dev->hw_fib_va, dev->hw_fib_pa);
91         }
92         dev->hw_fib_va = NULL;
93         dev->hw_fib_pa = 0;
94 }
95
96 void aac_fib_vector_assign(struct aac_dev *dev)
97 {
98         u32 i = 0;
99         u32 vector = 1;
100         struct fib *fibptr = NULL;
101
102         for (i = 0, fibptr = &dev->fibs[i];
103                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
104                 i++, fibptr++) {
105                 if ((dev->max_msix == 1) ||
106                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
107                         - dev->vector_cap))) {
108                         fibptr->vector_no = 0;
109                 } else {
110                         fibptr->vector_no = vector;
111                         vector++;
112                         if (vector == dev->max_msix)
113                                 vector = 1;
114                 }
115         }
116 }
117
118 /**
119  *      aac_fib_setup   -       setup the fibs
120  *      @dev: Adapter to set up
121  *
122  *      Allocate the PCI space for the fibs, map it and then initialise the
123  *      fib area, the unmapped fib data and also the free list
124  */
125
126 int aac_fib_setup(struct aac_dev * dev)
127 {
128         struct fib *fibptr;
129         struct hw_fib *hw_fib;
130         dma_addr_t hw_fib_pa;
131         int i;
132
133         while (((i = fib_map_alloc(dev)) == -ENOMEM)
134          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
135                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
136                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
137         }
138         if (i<0)
139                 return -ENOMEM;
140
141         /* 32 byte alignment for PMC */
142         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
143         dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
144                 (hw_fib_pa - dev->hw_fib_pa));
145         dev->hw_fib_pa = hw_fib_pa;
146         memset(dev->hw_fib_va, 0,
147                 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
148                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
149
150         /* add Xport header */
151         dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
152                 sizeof(struct aac_fib_xporthdr));
153         dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
154
155         hw_fib = dev->hw_fib_va;
156         hw_fib_pa = dev->hw_fib_pa;
157         /*
158          *      Initialise the fibs
159          */
160         for (i = 0, fibptr = &dev->fibs[i];
161                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
162                 i++, fibptr++)
163         {
164                 fibptr->flags = 0;
165                 fibptr->size = sizeof(struct fib);
166                 fibptr->dev = dev;
167                 fibptr->hw_fib_va = hw_fib;
168                 fibptr->data = (void *) fibptr->hw_fib_va->data;
169                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
170                 sema_init(&fibptr->event_wait, 0);
171                 spin_lock_init(&fibptr->event_lock);
172                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
173                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
174                 fibptr->hw_fib_pa = hw_fib_pa;
175                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
176                         dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
177                 hw_fib_pa = hw_fib_pa +
178                         dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
179         }
180
181         /*
182          *Assign vector numbers to fibs
183          */
184         aac_fib_vector_assign(dev);
185
186         /*
187          *      Add the fib chain to the free list
188          */
189         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
190         /*
191         *       Set 8 fibs aside for management tools
192         */
193         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
194         return 0;
195 }
196
197 /**
198  *      aac_fib_alloc_tag-allocate a fib using tags
199  *      @dev: Adapter to allocate the fib for
200  *
201  *      Allocate a fib from the adapter fib pool using tags
202  *      from the blk layer.
203  */
204
205 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
206 {
207         struct fib *fibptr;
208
209         fibptr = &dev->fibs[scmd->request->tag];
210         /*
211          *      Null out fields that depend on being zero at the start of
212          *      each I/O
213          */
214         fibptr->hw_fib_va->header.XferState = 0;
215         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
216         fibptr->callback_data = NULL;
217         fibptr->callback = NULL;
218
219         return fibptr;
220 }
221
222 /**
223  *      aac_fib_alloc   -       allocate a fib
224  *      @dev: Adapter to allocate the fib for
225  *
226  *      Allocate a fib from the adapter fib pool. If the pool is empty we
227  *      return NULL.
228  */
229
230 struct fib *aac_fib_alloc(struct aac_dev *dev)
231 {
232         struct fib * fibptr;
233         unsigned long flags;
234         spin_lock_irqsave(&dev->fib_lock, flags);
235         fibptr = dev->free_fib;
236         if(!fibptr){
237                 spin_unlock_irqrestore(&dev->fib_lock, flags);
238                 return fibptr;
239         }
240         dev->free_fib = fibptr->next;
241         spin_unlock_irqrestore(&dev->fib_lock, flags);
242         /*
243          *      Set the proper node type code and node byte size
244          */
245         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
246         fibptr->size = sizeof(struct fib);
247         /*
248          *      Null out fields that depend on being zero at the start of
249          *      each I/O
250          */
251         fibptr->hw_fib_va->header.XferState = 0;
252         fibptr->flags = 0;
253         fibptr->callback = NULL;
254         fibptr->callback_data = NULL;
255
256         return fibptr;
257 }
258
259 /**
260  *      aac_fib_free    -       free a fib
261  *      @fibptr: fib to free up
262  *
263  *      Frees up a fib and places it on the appropriate queue
264  */
265
266 void aac_fib_free(struct fib *fibptr)
267 {
268         unsigned long flags;
269
270         if (fibptr->done == 2)
271                 return;
272
273         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
274         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
275                 aac_config.fib_timeouts++;
276         if (fibptr->hw_fib_va->header.XferState != 0) {
277                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
278                          (void*)fibptr,
279                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
280         }
281         fibptr->next = fibptr->dev->free_fib;
282         fibptr->dev->free_fib = fibptr;
283         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
284 }
285
286 /**
287  *      aac_fib_init    -       initialise a fib
288  *      @fibptr: The fib to initialize
289  *
290  *      Set up the generic fib fields ready for use
291  */
292
293 void aac_fib_init(struct fib *fibptr)
294 {
295         struct hw_fib *hw_fib = fibptr->hw_fib_va;
296
297         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
298         hw_fib->header.StructType = FIB_MAGIC;
299         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
300         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
301         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
302         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
303 }
304
305 /**
306  *      fib_deallocate          -       deallocate a fib
307  *      @fibptr: fib to deallocate
308  *
309  *      Will deallocate and return to the free pool the FIB pointed to by the
310  *      caller.
311  */
312
313 static void fib_dealloc(struct fib * fibptr)
314 {
315         struct hw_fib *hw_fib = fibptr->hw_fib_va;
316         hw_fib->header.XferState = 0;
317 }
318
319 /*
320  *      Commuication primitives define and support the queuing method we use to
321  *      support host to adapter commuication. All queue accesses happen through
322  *      these routines and are the only routines which have a knowledge of the
323  *       how these queues are implemented.
324  */
325
326 /**
327  *      aac_get_entry           -       get a queue entry
328  *      @dev: Adapter
329  *      @qid: Queue Number
330  *      @entry: Entry return
331  *      @index: Index return
332  *      @nonotify: notification control
333  *
334  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
335  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
336  *      returned.
337  */
338
339 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
340 {
341         struct aac_queue * q;
342         unsigned long idx;
343
344         /*
345          *      All of the queues wrap when they reach the end, so we check
346          *      to see if they have reached the end and if they have we just
347          *      set the index back to zero. This is a wrap. You could or off
348          *      the high bits in all updates but this is a bit faster I think.
349          */
350
351         q = &dev->queues->queue[qid];
352
353         idx = *index = le32_to_cpu(*(q->headers.producer));
354         /* Interrupt Moderation, only interrupt for first two entries */
355         if (idx != le32_to_cpu(*(q->headers.consumer))) {
356                 if (--idx == 0) {
357                         if (qid == AdapNormCmdQueue)
358                                 idx = ADAP_NORM_CMD_ENTRIES;
359                         else
360                                 idx = ADAP_NORM_RESP_ENTRIES;
361                 }
362                 if (idx != le32_to_cpu(*(q->headers.consumer)))
363                         *nonotify = 1;
364         }
365
366         if (qid == AdapNormCmdQueue) {
367                 if (*index >= ADAP_NORM_CMD_ENTRIES)
368                         *index = 0; /* Wrap to front of the Producer Queue. */
369         } else {
370                 if (*index >= ADAP_NORM_RESP_ENTRIES)
371                         *index = 0; /* Wrap to front of the Producer Queue. */
372         }
373
374         /* Queue is full */
375         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
376                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
377                                 qid, atomic_read(&q->numpending));
378                 return 0;
379         } else {
380                 *entry = q->base + *index;
381                 return 1;
382         }
383 }
384
385 /**
386  *      aac_queue_get           -       get the next free QE
387  *      @dev: Adapter
388  *      @index: Returned index
389  *      @priority: Priority of fib
390  *      @fib: Fib to associate with the queue entry
391  *      @wait: Wait if queue full
392  *      @fibptr: Driver fib object to go with fib
393  *      @nonotify: Don't notify the adapter
394  *
395  *      Gets the next free QE off the requested priorty adapter command
396  *      queue and associates the Fib with the QE. The QE represented by
397  *      index is ready to insert on the queue when this routine returns
398  *      success.
399  */
400
401 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
402 {
403         struct aac_entry * entry = NULL;
404         int map = 0;
405
406         if (qid == AdapNormCmdQueue) {
407                 /*  if no entries wait for some if caller wants to */
408                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
409                         printk(KERN_ERR "GetEntries failed\n");
410                 }
411                 /*
412                  *      Setup queue entry with a command, status and fib mapped
413                  */
414                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
415                 map = 1;
416         } else {
417                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
418                         /* if no entries wait for some if caller wants to */
419                 }
420                 /*
421                  *      Setup queue entry with command, status and fib mapped
422                  */
423                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
424                 entry->addr = hw_fib->header.SenderFibAddress;
425                         /* Restore adapters pointer to the FIB */
426                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
427                 map = 0;
428         }
429         /*
430          *      If MapFib is true than we need to map the Fib and put pointers
431          *      in the queue entry.
432          */
433         if (map)
434                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
435         return 0;
436 }
437
438 /*
439  *      Define the highest level of host to adapter communication routines.
440  *      These routines will support host to adapter FS commuication. These
441  *      routines have no knowledge of the commuication method used. This level
442  *      sends and receives FIBs. This level has no knowledge of how these FIBs
443  *      get passed back and forth.
444  */
445
446 /**
447  *      aac_fib_send    -       send a fib to the adapter
448  *      @command: Command to send
449  *      @fibptr: The fib
450  *      @size: Size of fib data area
451  *      @priority: Priority of Fib
452  *      @wait: Async/sync select
453  *      @reply: True if a reply is wanted
454  *      @callback: Called with reply
455  *      @callback_data: Passed to callback
456  *
457  *      Sends the requested FIB to the adapter and optionally will wait for a
458  *      response FIB. If the caller does not wish to wait for a response than
459  *      an event to wait on must be supplied. This event will be set when a
460  *      response FIB is received from the adapter.
461  */
462
463 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
464                 int priority, int wait, int reply, fib_callback callback,
465                 void *callback_data)
466 {
467         struct aac_dev * dev = fibptr->dev;
468         struct hw_fib * hw_fib = fibptr->hw_fib_va;
469         unsigned long flags = 0;
470         unsigned long mflags = 0;
471         unsigned long sflags = 0;
472
473
474         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
475                 return -EBUSY;
476         /*
477          *      There are 5 cases with the wait and response requested flags.
478          *      The only invalid cases are if the caller requests to wait and
479          *      does not request a response and if the caller does not want a
480          *      response and the Fib is not allocated from pool. If a response
481          *      is not requesed the Fib will just be deallocaed by the DPC
482          *      routine when the response comes back from the adapter. No
483          *      further processing will be done besides deleting the Fib. We
484          *      will have a debug mode where the adapter can notify the host
485          *      it had a problem and the host can log that fact.
486          */
487         fibptr->flags = 0;
488         if (wait && !reply) {
489                 return -EINVAL;
490         } else if (!wait && reply) {
491                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
492                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
493         } else if (!wait && !reply) {
494                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
495                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
496         } else if (wait && reply) {
497                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
498                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
499         }
500         /*
501          *      Map the fib into 32bits by using the fib number
502          */
503
504         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
505         hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
506         /*
507          *      Set FIB state to indicate where it came from and if we want a
508          *      response from the adapter. Also load the command from the
509          *      caller.
510          *
511          *      Map the hw fib pointer as a 32bit value
512          */
513         hw_fib->header.Command = cpu_to_le16(command);
514         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
515         /*
516          *      Set the size of the Fib we want to send to the adapter
517          */
518         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
519         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
520                 return -EMSGSIZE;
521         }
522         /*
523          *      Get a queue entry connect the FIB to it and send an notify
524          *      the adapter a command is ready.
525          */
526         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
527
528         /*
529          *      Fill in the Callback and CallbackContext if we are not
530          *      going to wait.
531          */
532         if (!wait) {
533                 fibptr->callback = callback;
534                 fibptr->callback_data = callback_data;
535                 fibptr->flags = FIB_CONTEXT_FLAG;
536         }
537
538         fibptr->done = 0;
539
540         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
541
542         dprintk((KERN_DEBUG "Fib contents:.\n"));
543         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
544         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
545         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
546         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
547         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
548         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
549
550         if (!dev->queues)
551                 return -EBUSY;
552
553         if (wait) {
554
555                 spin_lock_irqsave(&dev->manage_lock, mflags);
556                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
557                         printk(KERN_INFO "No management Fibs Available:%d\n",
558                                                 dev->management_fib_count);
559                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
560                         return -EBUSY;
561                 }
562                 dev->management_fib_count++;
563                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
564                 spin_lock_irqsave(&fibptr->event_lock, flags);
565         }
566
567         if (dev->sync_mode) {
568                 if (wait)
569                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
570                 spin_lock_irqsave(&dev->sync_lock, sflags);
571                 if (dev->sync_fib) {
572                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
573                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
574                 } else {
575                         dev->sync_fib = fibptr;
576                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
577                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
578                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
579                                 NULL, NULL, NULL, NULL, NULL);
580                 }
581                 if (wait) {
582                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
583                         if (down_interruptible(&fibptr->event_wait)) {
584                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
585                                 return -EFAULT;
586                         }
587                         return 0;
588                 }
589                 return -EINPROGRESS;
590         }
591
592         if (aac_adapter_deliver(fibptr) != 0) {
593                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
594                 if (wait) {
595                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
596                         spin_lock_irqsave(&dev->manage_lock, mflags);
597                         dev->management_fib_count--;
598                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
599                 }
600                 return -EBUSY;
601         }
602
603
604         /*
605          *      If the caller wanted us to wait for response wait now.
606          */
607
608         if (wait) {
609                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
610                 /* Only set for first known interruptable command */
611                 if (wait < 0) {
612                         /*
613                          * *VERY* Dangerous to time out a command, the
614                          * assumption is made that we have no hope of
615                          * functioning because an interrupt routing or other
616                          * hardware failure has occurred.
617                          */
618                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
619                         while (down_trylock(&fibptr->event_wait)) {
620                                 int blink;
621                                 if (time_is_before_eq_jiffies(timeout)) {
622                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
623                                         atomic_dec(&q->numpending);
624                                         if (wait == -1) {
625                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
626                                                   "Usually a result of a PCI interrupt routing problem;\n"
627                                                   "update mother board BIOS or consider utilizing one of\n"
628                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
629                                         }
630                                         return -ETIMEDOUT;
631                                 }
632                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
633                                         if (wait == -1) {
634                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
635                                                   "Usually a result of a serious unrecoverable hardware problem\n",
636                                                   blink);
637                                         }
638                                         return -EFAULT;
639                                 }
640                                 /*
641                                  * Allow other processes / CPUS to use core
642                                  */
643                                 schedule();
644                         }
645                 } else if (down_interruptible(&fibptr->event_wait)) {
646                         /* Do nothing ... satisfy
647                          * down_interruptible must_check */
648                 }
649
650                 spin_lock_irqsave(&fibptr->event_lock, flags);
651                 if (fibptr->done == 0) {
652                         fibptr->done = 2; /* Tell interrupt we aborted */
653                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
654                         return -ERESTARTSYS;
655                 }
656                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
657                 BUG_ON(fibptr->done == 0);
658
659                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
660                         return -ETIMEDOUT;
661                 return 0;
662         }
663         /*
664          *      If the user does not want a response than return success otherwise
665          *      return pending
666          */
667         if (reply)
668                 return -EINPROGRESS;
669         else
670                 return 0;
671 }
672
673 /**
674  *      aac_consumer_get        -       get the top of the queue
675  *      @dev: Adapter
676  *      @q: Queue
677  *      @entry: Return entry
678  *
679  *      Will return a pointer to the entry on the top of the queue requested that
680  *      we are a consumer of, and return the address of the queue entry. It does
681  *      not change the state of the queue.
682  */
683
684 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
685 {
686         u32 index;
687         int status;
688         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
689                 status = 0;
690         } else {
691                 /*
692                  *      The consumer index must be wrapped if we have reached
693                  *      the end of the queue, else we just use the entry
694                  *      pointed to by the header index
695                  */
696                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
697                         index = 0;
698                 else
699                         index = le32_to_cpu(*q->headers.consumer);
700                 *entry = q->base + index;
701                 status = 1;
702         }
703         return(status);
704 }
705
706 /**
707  *      aac_consumer_free       -       free consumer entry
708  *      @dev: Adapter
709  *      @q: Queue
710  *      @qid: Queue ident
711  *
712  *      Frees up the current top of the queue we are a consumer of. If the
713  *      queue was full notify the producer that the queue is no longer full.
714  */
715
716 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
717 {
718         int wasfull = 0;
719         u32 notify;
720
721         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
722                 wasfull = 1;
723
724         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
725                 *q->headers.consumer = cpu_to_le32(1);
726         else
727                 le32_add_cpu(q->headers.consumer, 1);
728
729         if (wasfull) {
730                 switch (qid) {
731
732                 case HostNormCmdQueue:
733                         notify = HostNormCmdNotFull;
734                         break;
735                 case HostNormRespQueue:
736                         notify = HostNormRespNotFull;
737                         break;
738                 default:
739                         BUG();
740                         return;
741                 }
742                 aac_adapter_notify(dev, notify);
743         }
744 }
745
746 /**
747  *      aac_fib_adapter_complete        -       complete adapter issued fib
748  *      @fibptr: fib to complete
749  *      @size: size of fib
750  *
751  *      Will do all necessary work to complete a FIB that was sent from
752  *      the adapter.
753  */
754
755 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
756 {
757         struct hw_fib * hw_fib = fibptr->hw_fib_va;
758         struct aac_dev * dev = fibptr->dev;
759         struct aac_queue * q;
760         unsigned long nointr = 0;
761         unsigned long qflags;
762
763         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
764             dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
765                 kfree(hw_fib);
766                 return 0;
767         }
768
769         if (hw_fib->header.XferState == 0) {
770                 if (dev->comm_interface == AAC_COMM_MESSAGE)
771                         kfree(hw_fib);
772                 return 0;
773         }
774         /*
775          *      If we plan to do anything check the structure type first.
776          */
777         if (hw_fib->header.StructType != FIB_MAGIC &&
778             hw_fib->header.StructType != FIB_MAGIC2 &&
779             hw_fib->header.StructType != FIB_MAGIC2_64) {
780                 if (dev->comm_interface == AAC_COMM_MESSAGE)
781                         kfree(hw_fib);
782                 return -EINVAL;
783         }
784         /*
785          *      This block handles the case where the adapter had sent us a
786          *      command and we have finished processing the command. We
787          *      call completeFib when we are done processing the command
788          *      and want to send a response back to the adapter. This will
789          *      send the completed cdb to the adapter.
790          */
791         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
792                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
793                         kfree (hw_fib);
794                 } else {
795                         u32 index;
796                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
797                         if (size) {
798                                 size += sizeof(struct aac_fibhdr);
799                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
800                                         return -EMSGSIZE;
801                                 hw_fib->header.Size = cpu_to_le16(size);
802                         }
803                         q = &dev->queues->queue[AdapNormRespQueue];
804                         spin_lock_irqsave(q->lock, qflags);
805                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
806                         *(q->headers.producer) = cpu_to_le32(index + 1);
807                         spin_unlock_irqrestore(q->lock, qflags);
808                         if (!(nointr & (int)aac_config.irq_mod))
809                                 aac_adapter_notify(dev, AdapNormRespQueue);
810                 }
811         } else {
812                 printk(KERN_WARNING "aac_fib_adapter_complete: "
813                         "Unknown xferstate detected.\n");
814                 BUG();
815         }
816         return 0;
817 }
818
819 /**
820  *      aac_fib_complete        -       fib completion handler
821  *      @fib: FIB to complete
822  *
823  *      Will do all necessary work to complete a FIB.
824  */
825
826 int aac_fib_complete(struct fib *fibptr)
827 {
828         struct hw_fib * hw_fib = fibptr->hw_fib_va;
829
830         /*
831          *      Check for a fib which has already been completed
832          */
833
834         if (hw_fib->header.XferState == 0)
835                 return 0;
836         /*
837          *      If we plan to do anything check the structure type first.
838          */
839
840         if (hw_fib->header.StructType != FIB_MAGIC &&
841             hw_fib->header.StructType != FIB_MAGIC2 &&
842             hw_fib->header.StructType != FIB_MAGIC2_64)
843                 return -EINVAL;
844         /*
845          *      This block completes a cdb which orginated on the host and we
846          *      just need to deallocate the cdb or reinit it. At this point the
847          *      command is complete that we had sent to the adapter and this
848          *      cdb could be reused.
849          */
850
851         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
852                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
853         {
854                 fib_dealloc(fibptr);
855         }
856         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
857         {
858                 /*
859                  *      This handles the case when the host has aborted the I/O
860                  *      to the adapter because the adapter is not responding
861                  */
862                 fib_dealloc(fibptr);
863         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
864                 fib_dealloc(fibptr);
865         } else {
866                 BUG();
867         }
868         return 0;
869 }
870
871 /**
872  *      aac_printf      -       handle printf from firmware
873  *      @dev: Adapter
874  *      @val: Message info
875  *
876  *      Print a message passed to us by the controller firmware on the
877  *      Adaptec board
878  */
879
880 void aac_printf(struct aac_dev *dev, u32 val)
881 {
882         char *cp = dev->printfbuf;
883         if (dev->printf_enabled)
884         {
885                 int length = val & 0xffff;
886                 int level = (val >> 16) & 0xffff;
887
888                 /*
889                  *      The size of the printfbuf is set in port.c
890                  *      There is no variable or define for it
891                  */
892                 if (length > 255)
893                         length = 255;
894                 if (cp[length] != 0)
895                         cp[length] = 0;
896                 if (level == LOG_AAC_HIGH_ERROR)
897                         printk(KERN_WARNING "%s:%s", dev->name, cp);
898                 else
899                         printk(KERN_INFO "%s:%s", dev->name, cp);
900         }
901         memset(cp, 0, 256);
902 }
903
904 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
905 {
906         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
907 }
908
909
910 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
911 {
912         switch (aac_aif_data(aifcmd, 1)) {
913         case AifBuCacheDataLoss:
914                 if (aac_aif_data(aifcmd, 2))
915                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
916                         aac_aif_data(aifcmd, 2));
917                 else
918                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
919                 break;
920         case AifBuCacheDataRecover:
921                 if (aac_aif_data(aifcmd, 2))
922                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
923                         aac_aif_data(aifcmd, 2));
924                 else
925                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
926                 break;
927         }
928 }
929
930 /**
931  *      aac_handle_aif          -       Handle a message from the firmware
932  *      @dev: Which adapter this fib is from
933  *      @fibptr: Pointer to fibptr from adapter
934  *
935  *      This routine handles a driver notify fib from the adapter and
936  *      dispatches it to the appropriate routine for handling.
937  */
938
939 #define AIF_SNIFF_TIMEOUT       (500*HZ)
940 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
941 {
942         struct hw_fib * hw_fib = fibptr->hw_fib_va;
943         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
944         u32 channel, id, lun, container;
945         struct scsi_device *device;
946         enum {
947                 NOTHING,
948                 DELETE,
949                 ADD,
950                 CHANGE
951         } device_config_needed = NOTHING;
952
953         /* Sniff for container changes */
954
955         if (!dev || !dev->fsa_dev)
956                 return;
957         container = channel = id = lun = (u32)-1;
958
959         /*
960          *      We have set this up to try and minimize the number of
961          * re-configures that take place. As a result of this when
962          * certain AIF's come in we will set a flag waiting for another
963          * type of AIF before setting the re-config flag.
964          */
965         switch (le32_to_cpu(aifcmd->command)) {
966         case AifCmdDriverNotify:
967                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
968                 case AifRawDeviceRemove:
969                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
970                         if ((container >> 28)) {
971                                 container = (u32)-1;
972                                 break;
973                         }
974                         channel = (container >> 24) & 0xF;
975                         if (channel >= dev->maximum_num_channels) {
976                                 container = (u32)-1;
977                                 break;
978                         }
979                         id = container & 0xFFFF;
980                         if (id >= dev->maximum_num_physicals) {
981                                 container = (u32)-1;
982                                 break;
983                         }
984                         lun = (container >> 16) & 0xFF;
985                         container = (u32)-1;
986                         channel = aac_phys_to_logical(channel);
987                         device_config_needed =
988                           (((__le32 *)aifcmd->data)[0] ==
989                             cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
990
991                         if (device_config_needed == ADD) {
992                                 device = scsi_device_lookup(
993                                         dev->scsi_host_ptr,
994                                         channel, id, lun);
995                                 if (device) {
996                                         scsi_remove_device(device);
997                                         scsi_device_put(device);
998                                 }
999                         }
1000                         break;
1001                 /*
1002                  *      Morph or Expand complete
1003                  */
1004                 case AifDenMorphComplete:
1005                 case AifDenVolumeExtendComplete:
1006                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1007                         if (container >= dev->maximum_num_containers)
1008                                 break;
1009
1010                         /*
1011                          *      Find the scsi_device associated with the SCSI
1012                          * address. Make sure we have the right array, and if
1013                          * so set the flag to initiate a new re-config once we
1014                          * see an AifEnConfigChange AIF come through.
1015                          */
1016
1017                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1018                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1019                                         CONTAINER_TO_CHANNEL(container),
1020                                         CONTAINER_TO_ID(container),
1021                                         CONTAINER_TO_LUN(container));
1022                                 if (device) {
1023                                         dev->fsa_dev[container].config_needed = CHANGE;
1024                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1025                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1026                                         scsi_device_put(device);
1027                                 }
1028                         }
1029                 }
1030
1031                 /*
1032                  *      If we are waiting on something and this happens to be
1033                  * that thing then set the re-configure flag.
1034                  */
1035                 if (container != (u32)-1) {
1036                         if (container >= dev->maximum_num_containers)
1037                                 break;
1038                         if ((dev->fsa_dev[container].config_waiting_on ==
1039                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1040                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1041                                 dev->fsa_dev[container].config_waiting_on = 0;
1042                 } else for (container = 0;
1043                     container < dev->maximum_num_containers; ++container) {
1044                         if ((dev->fsa_dev[container].config_waiting_on ==
1045                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1046                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1047                                 dev->fsa_dev[container].config_waiting_on = 0;
1048                 }
1049                 break;
1050
1051         case AifCmdEventNotify:
1052                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1053                 case AifEnBatteryEvent:
1054                         dev->cache_protected =
1055                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1056                         break;
1057                 /*
1058                  *      Add an Array.
1059                  */
1060                 case AifEnAddContainer:
1061                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1062                         if (container >= dev->maximum_num_containers)
1063                                 break;
1064                         dev->fsa_dev[container].config_needed = ADD;
1065                         dev->fsa_dev[container].config_waiting_on =
1066                                 AifEnConfigChange;
1067                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1068                         break;
1069
1070                 /*
1071                  *      Delete an Array.
1072                  */
1073                 case AifEnDeleteContainer:
1074                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1075                         if (container >= dev->maximum_num_containers)
1076                                 break;
1077                         dev->fsa_dev[container].config_needed = DELETE;
1078                         dev->fsa_dev[container].config_waiting_on =
1079                                 AifEnConfigChange;
1080                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1081                         break;
1082
1083                 /*
1084                  *      Container change detected. If we currently are not
1085                  * waiting on something else, setup to wait on a Config Change.
1086                  */
1087                 case AifEnContainerChange:
1088                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1089                         if (container >= dev->maximum_num_containers)
1090                                 break;
1091                         if (dev->fsa_dev[container].config_waiting_on &&
1092                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1093                                 break;
1094                         dev->fsa_dev[container].config_needed = CHANGE;
1095                         dev->fsa_dev[container].config_waiting_on =
1096                                 AifEnConfigChange;
1097                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1098                         break;
1099
1100                 case AifEnConfigChange:
1101                         break;
1102
1103                 case AifEnAddJBOD:
1104                 case AifEnDeleteJBOD:
1105                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106                         if ((container >> 28)) {
1107                                 container = (u32)-1;
1108                                 break;
1109                         }
1110                         channel = (container >> 24) & 0xF;
1111                         if (channel >= dev->maximum_num_channels) {
1112                                 container = (u32)-1;
1113                                 break;
1114                         }
1115                         id = container & 0xFFFF;
1116                         if (id >= dev->maximum_num_physicals) {
1117                                 container = (u32)-1;
1118                                 break;
1119                         }
1120                         lun = (container >> 16) & 0xFF;
1121                         container = (u32)-1;
1122                         channel = aac_phys_to_logical(channel);
1123                         device_config_needed =
1124                           (((__le32 *)aifcmd->data)[0] ==
1125                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1126                         if (device_config_needed == ADD) {
1127                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1128                                         channel,
1129                                         id,
1130                                         lun);
1131                                 if (device) {
1132                                         scsi_remove_device(device);
1133                                         scsi_device_put(device);
1134                                 }
1135                         }
1136                         break;
1137
1138                 case AifEnEnclosureManagement:
1139                         /*
1140                          * If in JBOD mode, automatic exposure of new
1141                          * physical target to be suppressed until configured.
1142                          */
1143                         if (dev->jbod)
1144                                 break;
1145                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1146                         case EM_DRIVE_INSERTION:
1147                         case EM_DRIVE_REMOVAL:
1148                         case EM_SES_DRIVE_INSERTION:
1149                         case EM_SES_DRIVE_REMOVAL:
1150                                 container = le32_to_cpu(
1151                                         ((__le32 *)aifcmd->data)[2]);
1152                                 if ((container >> 28)) {
1153                                         container = (u32)-1;
1154                                         break;
1155                                 }
1156                                 channel = (container >> 24) & 0xF;
1157                                 if (channel >= dev->maximum_num_channels) {
1158                                         container = (u32)-1;
1159                                         break;
1160                                 }
1161                                 id = container & 0xFFFF;
1162                                 lun = (container >> 16) & 0xFF;
1163                                 container = (u32)-1;
1164                                 if (id >= dev->maximum_num_physicals) {
1165                                         /* legacy dev_t ? */
1166                                         if ((0x2000 <= id) || lun || channel ||
1167                                           ((channel = (id >> 7) & 0x3F) >=
1168                                           dev->maximum_num_channels))
1169                                                 break;
1170                                         lun = (id >> 4) & 7;
1171                                         id &= 0xF;
1172                                 }
1173                                 channel = aac_phys_to_logical(channel);
1174                                 device_config_needed =
1175                                   ((((__le32 *)aifcmd->data)[3]
1176                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1177                                     (((__le32 *)aifcmd->data)[3]
1178                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1179                                   ADD : DELETE;
1180                                 break;
1181                         }
1182                         case AifBuManagerEvent:
1183                                 aac_handle_aif_bu(dev, aifcmd);
1184                         break;
1185                 }
1186
1187                 /*
1188                  *      If we are waiting on something and this happens to be
1189                  * that thing then set the re-configure flag.
1190                  */
1191                 if (container != (u32)-1) {
1192                         if (container >= dev->maximum_num_containers)
1193                                 break;
1194                         if ((dev->fsa_dev[container].config_waiting_on ==
1195                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1196                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1197                                 dev->fsa_dev[container].config_waiting_on = 0;
1198                 } else for (container = 0;
1199                     container < dev->maximum_num_containers; ++container) {
1200                         if ((dev->fsa_dev[container].config_waiting_on ==
1201                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1202                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1203                                 dev->fsa_dev[container].config_waiting_on = 0;
1204                 }
1205                 break;
1206
1207         case AifCmdJobProgress:
1208                 /*
1209                  *      These are job progress AIF's. When a Clear is being
1210                  * done on a container it is initially created then hidden from
1211                  * the OS. When the clear completes we don't get a config
1212                  * change so we monitor the job status complete on a clear then
1213                  * wait for a container change.
1214                  */
1215
1216                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1217                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1218                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1219                         for (container = 0;
1220                             container < dev->maximum_num_containers;
1221                             ++container) {
1222                                 /*
1223                                  * Stomp on all config sequencing for all
1224                                  * containers?
1225                                  */
1226                                 dev->fsa_dev[container].config_waiting_on =
1227                                         AifEnContainerChange;
1228                                 dev->fsa_dev[container].config_needed = ADD;
1229                                 dev->fsa_dev[container].config_waiting_stamp =
1230                                         jiffies;
1231                         }
1232                 }
1233                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1234                     ((__le32 *)aifcmd->data)[6] == 0 &&
1235                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1236                         for (container = 0;
1237                             container < dev->maximum_num_containers;
1238                             ++container) {
1239                                 /*
1240                                  * Stomp on all config sequencing for all
1241                                  * containers?
1242                                  */
1243                                 dev->fsa_dev[container].config_waiting_on =
1244                                         AifEnContainerChange;
1245                                 dev->fsa_dev[container].config_needed = DELETE;
1246                                 dev->fsa_dev[container].config_waiting_stamp =
1247                                         jiffies;
1248                         }
1249                 }
1250                 break;
1251         }
1252
1253         container = 0;
1254 retry_next:
1255         if (device_config_needed == NOTHING)
1256         for (; container < dev->maximum_num_containers; ++container) {
1257                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1258                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1259                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1260                         device_config_needed =
1261                                 dev->fsa_dev[container].config_needed;
1262                         dev->fsa_dev[container].config_needed = NOTHING;
1263                         channel = CONTAINER_TO_CHANNEL(container);
1264                         id = CONTAINER_TO_ID(container);
1265                         lun = CONTAINER_TO_LUN(container);
1266                         break;
1267                 }
1268         }
1269         if (device_config_needed == NOTHING)
1270                 return;
1271
1272         /*
1273          *      If we decided that a re-configuration needs to be done,
1274          * schedule it here on the way out the door, please close the door
1275          * behind you.
1276          */
1277
1278         /*
1279          *      Find the scsi_device associated with the SCSI address,
1280          * and mark it as changed, invalidating the cache. This deals
1281          * with changes to existing device IDs.
1282          */
1283
1284         if (!dev || !dev->scsi_host_ptr)
1285                 return;
1286         /*
1287          * force reload of disk info via aac_probe_container
1288          */
1289         if ((channel == CONTAINER_CHANNEL) &&
1290           (device_config_needed != NOTHING)) {
1291                 if (dev->fsa_dev[container].valid == 1)
1292                         dev->fsa_dev[container].valid = 2;
1293                 aac_probe_container(dev, container);
1294         }
1295         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1296         if (device) {
1297                 switch (device_config_needed) {
1298                 case DELETE:
1299 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1300                         scsi_remove_device(device);
1301 #else
1302                         if (scsi_device_online(device)) {
1303                                 scsi_device_set_state(device, SDEV_OFFLINE);
1304                                 sdev_printk(KERN_INFO, device,
1305                                         "Device offlined - %s\n",
1306                                         (channel == CONTAINER_CHANNEL) ?
1307                                                 "array deleted" :
1308                                                 "enclosure services event");
1309                         }
1310 #endif
1311                         break;
1312                 case ADD:
1313                         if (!scsi_device_online(device)) {
1314                                 sdev_printk(KERN_INFO, device,
1315                                         "Device online - %s\n",
1316                                         (channel == CONTAINER_CHANNEL) ?
1317                                                 "array created" :
1318                                                 "enclosure services event");
1319                                 scsi_device_set_state(device, SDEV_RUNNING);
1320                         }
1321                         /* FALLTHRU */
1322                 case CHANGE:
1323                         if ((channel == CONTAINER_CHANNEL)
1324                          && (!dev->fsa_dev[container].valid)) {
1325 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1326                                 scsi_remove_device(device);
1327 #else
1328                                 if (!scsi_device_online(device))
1329                                         break;
1330                                 scsi_device_set_state(device, SDEV_OFFLINE);
1331                                 sdev_printk(KERN_INFO, device,
1332                                         "Device offlined - %s\n",
1333                                         "array failed");
1334 #endif
1335                                 break;
1336                         }
1337                         scsi_rescan_device(&device->sdev_gendev);
1338
1339                 default:
1340                         break;
1341                 }
1342                 scsi_device_put(device);
1343                 device_config_needed = NOTHING;
1344         }
1345         if (device_config_needed == ADD)
1346                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1347         if (channel == CONTAINER_CHANNEL) {
1348                 container++;
1349                 device_config_needed = NOTHING;
1350                 goto retry_next;
1351         }
1352 }
1353
1354 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1355 {
1356         int index, quirks;
1357         int retval;
1358         struct Scsi_Host *host;
1359         struct scsi_device *dev;
1360         struct scsi_cmnd *command;
1361         struct scsi_cmnd *command_list;
1362         int jafo = 0;
1363
1364         /*
1365          * Assumptions:
1366          *      - host is locked, unless called by the aacraid thread.
1367          *        (a matter of convenience, due to legacy issues surrounding
1368          *        eh_host_adapter_reset).
1369          *      - in_reset is asserted, so no new i/o is getting to the
1370          *        card.
1371          *      - The card is dead, or will be very shortly ;-/ so no new
1372          *        commands are completing in the interrupt service.
1373          */
1374         host = aac->scsi_host_ptr;
1375         scsi_block_requests(host);
1376         aac_adapter_disable_int(aac);
1377         if (aac->thread->pid != current->pid) {
1378                 spin_unlock_irq(host->host_lock);
1379                 kthread_stop(aac->thread);
1380                 jafo = 1;
1381         }
1382
1383         /*
1384          *      If a positive health, means in a known DEAD PANIC
1385          * state and the adapter could be reset to `try again'.
1386          */
1387         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1388
1389         if (retval)
1390                 goto out;
1391
1392         /*
1393          *      Loop through the fibs, close the synchronous FIBS
1394          */
1395         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1396                 struct fib *fib = &aac->fibs[index];
1397                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1398                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1399                         unsigned long flagv;
1400                         spin_lock_irqsave(&fib->event_lock, flagv);
1401                         up(&fib->event_wait);
1402                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1403                         schedule();
1404                         retval = 0;
1405                 }
1406         }
1407         /* Give some extra time for ioctls to complete. */
1408         if (retval == 0)
1409                 ssleep(2);
1410         index = aac->cardtype;
1411
1412         /*
1413          * Re-initialize the adapter, first free resources, then carefully
1414          * apply the initialization sequence to come back again. Only risk
1415          * is a change in Firmware dropping cache, it is assumed the caller
1416          * will ensure that i/o is queisced and the card is flushed in that
1417          * case.
1418          */
1419         aac_fib_map_free(aac);
1420         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1421         aac->comm_addr = NULL;
1422         aac->comm_phys = 0;
1423         kfree(aac->queues);
1424         aac->queues = NULL;
1425         aac_free_irq(aac);
1426         kfree(aac->fsa_dev);
1427         aac->fsa_dev = NULL;
1428         quirks = aac_get_driver_ident(index)->quirks;
1429         if (quirks & AAC_QUIRK_31BIT) {
1430                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1431                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1432                         goto out;
1433         } else {
1434                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1435                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1436                         goto out;
1437         }
1438         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1439                 goto out;
1440         if (quirks & AAC_QUIRK_31BIT)
1441                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1442                         goto out;
1443         if (jafo) {
1444                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1445                                           aac->name);
1446                 if (IS_ERR(aac->thread)) {
1447                         retval = PTR_ERR(aac->thread);
1448                         goto out;
1449                 }
1450         }
1451         (void)aac_get_adapter_info(aac);
1452         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1453                 host->sg_tablesize = 34;
1454                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1455         }
1456         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1457                 host->sg_tablesize = 17;
1458                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1459         }
1460         aac_get_config_status(aac, 1);
1461         aac_get_containers(aac);
1462         /*
1463          * This is where the assumption that the Adapter is quiesced
1464          * is important.
1465          */
1466         command_list = NULL;
1467         __shost_for_each_device(dev, host) {
1468                 unsigned long flags;
1469                 spin_lock_irqsave(&dev->list_lock, flags);
1470                 list_for_each_entry(command, &dev->cmd_list, list)
1471                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1472                                 command->SCp.buffer = (struct scatterlist *)command_list;
1473                                 command_list = command;
1474                         }
1475                 spin_unlock_irqrestore(&dev->list_lock, flags);
1476         }
1477         while ((command = command_list)) {
1478                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1479                 command->SCp.buffer = NULL;
1480                 command->result = DID_OK << 16
1481                   | COMMAND_COMPLETE << 8
1482                   | SAM_STAT_TASK_SET_FULL;
1483                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1484                 command->scsi_done(command);
1485         }
1486         retval = 0;
1487
1488 out:
1489         aac->in_reset = 0;
1490         scsi_unblock_requests(host);
1491         if (jafo) {
1492                 spin_lock_irq(host->host_lock);
1493         }
1494         return retval;
1495 }
1496
1497 int aac_reset_adapter(struct aac_dev * aac, int forced)
1498 {
1499         unsigned long flagv = 0;
1500         int retval;
1501         struct Scsi_Host * host;
1502
1503         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1504                 return -EBUSY;
1505
1506         if (aac->in_reset) {
1507                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1508                 return -EBUSY;
1509         }
1510         aac->in_reset = 1;
1511         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1512
1513         /*
1514          * Wait for all commands to complete to this specific
1515          * target (block maximum 60 seconds). Although not necessary,
1516          * it does make us a good storage citizen.
1517          */
1518         host = aac->scsi_host_ptr;
1519         scsi_block_requests(host);
1520         if (forced < 2) for (retval = 60; retval; --retval) {
1521                 struct scsi_device * dev;
1522                 struct scsi_cmnd * command;
1523                 int active = 0;
1524
1525                 __shost_for_each_device(dev, host) {
1526                         spin_lock_irqsave(&dev->list_lock, flagv);
1527                         list_for_each_entry(command, &dev->cmd_list, list) {
1528                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1529                                         active++;
1530                                         break;
1531                                 }
1532                         }
1533                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1534                         if (active)
1535                                 break;
1536
1537                 }
1538                 /*
1539                  * We can exit If all the commands are complete
1540                  */
1541                 if (active == 0)
1542                         break;
1543                 ssleep(1);
1544         }
1545
1546         /* Quiesce build, flush cache, write through mode */
1547         if (forced < 2)
1548                 aac_send_shutdown(aac);
1549         spin_lock_irqsave(host->host_lock, flagv);
1550         retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1551         spin_unlock_irqrestore(host->host_lock, flagv);
1552
1553         if ((forced < 2) && (retval == -ENODEV)) {
1554                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1555                 struct fib * fibctx = aac_fib_alloc(aac);
1556                 if (fibctx) {
1557                         struct aac_pause *cmd;
1558                         int status;
1559
1560                         aac_fib_init(fibctx);
1561
1562                         cmd = (struct aac_pause *) fib_data(fibctx);
1563
1564                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1565                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1566                         cmd->timeout = cpu_to_le32(1);
1567                         cmd->min = cpu_to_le32(1);
1568                         cmd->noRescan = cpu_to_le32(1);
1569                         cmd->count = cpu_to_le32(0);
1570
1571                         status = aac_fib_send(ContainerCommand,
1572                           fibctx,
1573                           sizeof(struct aac_pause),
1574                           FsaNormal,
1575                           -2 /* Timeout silently */, 1,
1576                           NULL, NULL);
1577
1578                         if (status >= 0)
1579                                 aac_fib_complete(fibctx);
1580                         /* FIB should be freed only after getting
1581                          * the response from the F/W */
1582                         if (status != -ERESTARTSYS)
1583                                 aac_fib_free(fibctx);
1584                 }
1585         }
1586
1587         return retval;
1588 }
1589
1590 int aac_check_health(struct aac_dev * aac)
1591 {
1592         int BlinkLED;
1593         unsigned long time_now, flagv = 0;
1594         struct list_head * entry;
1595         struct Scsi_Host * host;
1596
1597         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1598         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1599                 return 0;
1600
1601         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1602                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1603                 return 0; /* OK */
1604         }
1605
1606         aac->in_reset = 1;
1607
1608         /* Fake up an AIF:
1609          *      aac_aifcmd.command = AifCmdEventNotify = 1
1610          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1611          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1612          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1613          *      aac.aifcmd.data[2] = AifHighPriority = 3
1614          *      aac.aifcmd.data[3] = BlinkLED
1615          */
1616
1617         time_now = jiffies/HZ;
1618         entry = aac->fib_list.next;
1619
1620         /*
1621          * For each Context that is on the
1622          * fibctxList, make a copy of the
1623          * fib, and then set the event to wake up the
1624          * thread that is waiting for it.
1625          */
1626         while (entry != &aac->fib_list) {
1627                 /*
1628                  * Extract the fibctx
1629                  */
1630                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1631                 struct hw_fib * hw_fib;
1632                 struct fib * fib;
1633                 /*
1634                  * Check if the queue is getting
1635                  * backlogged
1636                  */
1637                 if (fibctx->count > 20) {
1638                         /*
1639                          * It's *not* jiffies folks,
1640                          * but jiffies / HZ, so do not
1641                          * panic ...
1642                          */
1643                         u32 time_last = fibctx->jiffies;
1644                         /*
1645                          * Has it been > 2 minutes
1646                          * since the last read off
1647                          * the queue?
1648                          */
1649                         if ((time_now - time_last) > aif_timeout) {
1650                                 entry = entry->next;
1651                                 aac_close_fib_context(aac, fibctx);
1652                                 continue;
1653                         }
1654                 }
1655                 /*
1656                  * Warning: no sleep allowed while
1657                  * holding spinlock
1658                  */
1659                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1660                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1661                 if (fib && hw_fib) {
1662                         struct aac_aifcmd * aif;
1663
1664                         fib->hw_fib_va = hw_fib;
1665                         fib->dev = aac;
1666                         aac_fib_init(fib);
1667                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1668                         fib->size = sizeof (struct fib);
1669                         fib->data = hw_fib->data;
1670                         aif = (struct aac_aifcmd *)hw_fib->data;
1671                         aif->command = cpu_to_le32(AifCmdEventNotify);
1672                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1673                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1674                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1675                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1676                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1677
1678                         /*
1679                          * Put the FIB onto the
1680                          * fibctx's fibs
1681                          */
1682                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1683                         fibctx->count++;
1684                         /*
1685                          * Set the event to wake up the
1686                          * thread that will waiting.
1687                          */
1688                         up(&fibctx->wait_sem);
1689                 } else {
1690                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1691                         kfree(fib);
1692                         kfree(hw_fib);
1693                 }
1694                 entry = entry->next;
1695         }
1696
1697         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1698
1699         if (BlinkLED < 0) {
1700                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1701                 goto out;
1702         }
1703
1704         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1705
1706         if (!aac_check_reset || ((aac_check_reset == 1) &&
1707                 (aac->supplement_adapter_info.SupportedOptions2 &
1708                         AAC_OPTION_IGNORE_RESET)))
1709                 goto out;
1710         host = aac->scsi_host_ptr;
1711         if (aac->thread->pid != current->pid)
1712                 spin_lock_irqsave(host->host_lock, flagv);
1713         BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1714         if (aac->thread->pid != current->pid)
1715                 spin_unlock_irqrestore(host->host_lock, flagv);
1716         return BlinkLED;
1717
1718 out:
1719         aac->in_reset = 0;
1720         return BlinkLED;
1721 }
1722
1723
1724 /**
1725  *      aac_command_thread      -       command processing thread
1726  *      @dev: Adapter to monitor
1727  *
1728  *      Waits on the commandready event in it's queue. When the event gets set
1729  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1730  *      until the queue is empty. When the queue is empty it will wait for
1731  *      more FIBs.
1732  */
1733
1734 int aac_command_thread(void *data)
1735 {
1736         struct aac_dev *dev = data;
1737         struct hw_fib *hw_fib, *hw_newfib;
1738         struct fib *fib, *newfib;
1739         struct aac_fib_context *fibctx;
1740         unsigned long flags;
1741         DECLARE_WAITQUEUE(wait, current);
1742         unsigned long next_jiffies = jiffies + HZ;
1743         unsigned long next_check_jiffies = next_jiffies;
1744         long difference = HZ;
1745
1746         /*
1747          *      We can only have one thread per adapter for AIF's.
1748          */
1749         if (dev->aif_thread)
1750                 return -EINVAL;
1751
1752         /*
1753          *      Let the DPC know it has a place to send the AIF's to.
1754          */
1755         dev->aif_thread = 1;
1756         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1757         set_current_state(TASK_INTERRUPTIBLE);
1758         dprintk ((KERN_INFO "aac_command_thread start\n"));
1759         while (1) {
1760                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1761                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1762                         struct list_head *entry;
1763                         struct aac_aifcmd * aifcmd;
1764
1765                         set_current_state(TASK_RUNNING);
1766
1767                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1768                         list_del(entry);
1769
1770                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1771                         fib = list_entry(entry, struct fib, fiblink);
1772                         /*
1773                          *      We will process the FIB here or pass it to a
1774                          *      worker thread that is TBD. We Really can't
1775                          *      do anything at this point since we don't have
1776                          *      anything defined for this thread to do.
1777                          */
1778                         hw_fib = fib->hw_fib_va;
1779                         memset(fib, 0, sizeof(struct fib));
1780                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1781                         fib->size = sizeof(struct fib);
1782                         fib->hw_fib_va = hw_fib;
1783                         fib->data = hw_fib->data;
1784                         fib->dev = dev;
1785                         /*
1786                          *      We only handle AifRequest fibs from the adapter.
1787                          */
1788                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1789                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1790                                 /* Handle Driver Notify Events */
1791                                 aac_handle_aif(dev, fib);
1792                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1793                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1794                         } else {
1795                                 /* The u32 here is important and intended. We are using
1796                                    32bit wrapping time to fit the adapter field */
1797
1798                                 u32 time_now, time_last;
1799                                 unsigned long flagv;
1800                                 unsigned num;
1801                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1802                                 struct fib ** fib_pool, ** fib_p;
1803
1804                                 /* Sniff events */
1805                                 if ((aifcmd->command ==
1806                                      cpu_to_le32(AifCmdEventNotify)) ||
1807                                     (aifcmd->command ==
1808                                      cpu_to_le32(AifCmdJobProgress))) {
1809                                         aac_handle_aif(dev, fib);
1810                                 }
1811
1812                                 time_now = jiffies/HZ;
1813
1814                                 /*
1815                                  * Warning: no sleep allowed while
1816                                  * holding spinlock. We take the estimate
1817                                  * and pre-allocate a set of fibs outside the
1818                                  * lock.
1819                                  */
1820                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1821                                     / sizeof(struct hw_fib); /* some extra */
1822                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1823                                 entry = dev->fib_list.next;
1824                                 while (entry != &dev->fib_list) {
1825                                         entry = entry->next;
1826                                         ++num;
1827                                 }
1828                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1829                                 hw_fib_pool = NULL;
1830                                 fib_pool = NULL;
1831                                 if (num
1832                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1833                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1834                                         hw_fib_p = hw_fib_pool;
1835                                         fib_p = fib_pool;
1836                                         while (hw_fib_p < &hw_fib_pool[num]) {
1837                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1838                                                         --hw_fib_p;
1839                                                         break;
1840                                                 }
1841                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1842                                                         kfree(*(--hw_fib_p));
1843                                                         break;
1844                                                 }
1845                                         }
1846                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1847                                                 kfree(fib_pool);
1848                                                 fib_pool = NULL;
1849                                                 kfree(hw_fib_pool);
1850                                                 hw_fib_pool = NULL;
1851                                         }
1852                                 } else {
1853                                         kfree(hw_fib_pool);
1854                                         hw_fib_pool = NULL;
1855                                 }
1856                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1857                                 entry = dev->fib_list.next;
1858                                 /*
1859                                  * For each Context that is on the
1860                                  * fibctxList, make a copy of the
1861                                  * fib, and then set the event to wake up the
1862                                  * thread that is waiting for it.
1863                                  */
1864                                 hw_fib_p = hw_fib_pool;
1865                                 fib_p = fib_pool;
1866                                 while (entry != &dev->fib_list) {
1867                                         /*
1868                                          * Extract the fibctx
1869                                          */
1870                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1871                                         /*
1872                                          * Check if the queue is getting
1873                                          * backlogged
1874                                          */
1875                                         if (fibctx->count > 20)
1876                                         {
1877                                                 /*
1878                                                  * It's *not* jiffies folks,
1879                                                  * but jiffies / HZ so do not
1880                                                  * panic ...
1881                                                  */
1882                                                 time_last = fibctx->jiffies;
1883                                                 /*
1884                                                  * Has it been > 2 minutes
1885                                                  * since the last read off
1886                                                  * the queue?
1887                                                  */
1888                                                 if ((time_now - time_last) > aif_timeout) {
1889                                                         entry = entry->next;
1890                                                         aac_close_fib_context(dev, fibctx);
1891                                                         continue;
1892                                                 }
1893                                         }
1894                                         /*
1895                                          * Warning: no sleep allowed while
1896                                          * holding spinlock
1897                                          */
1898                                         if (hw_fib_p < &hw_fib_pool[num]) {
1899                                                 hw_newfib = *hw_fib_p;
1900                                                 *(hw_fib_p++) = NULL;
1901                                                 newfib = *fib_p;
1902                                                 *(fib_p++) = NULL;
1903                                                 /*
1904                                                  * Make the copy of the FIB
1905                                                  */
1906                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1907                                                 memcpy(newfib, fib, sizeof(struct fib));
1908                                                 newfib->hw_fib_va = hw_newfib;
1909                                                 /*
1910                                                  * Put the FIB onto the
1911                                                  * fibctx's fibs
1912                                                  */
1913                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1914                                                 fibctx->count++;
1915                                                 /*
1916                                                  * Set the event to wake up the
1917                                                  * thread that is waiting.
1918                                                  */
1919                                                 up(&fibctx->wait_sem);
1920                                         } else {
1921                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1922                                         }
1923                                         entry = entry->next;
1924                                 }
1925                                 /*
1926                                  *      Set the status of this FIB
1927                                  */
1928                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1929                                 aac_fib_adapter_complete(fib, sizeof(u32));
1930                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1931                                 /* Free up the remaining resources */
1932                                 hw_fib_p = hw_fib_pool;
1933                                 fib_p = fib_pool;
1934                                 while (hw_fib_p < &hw_fib_pool[num]) {
1935                                         kfree(*hw_fib_p);
1936                                         kfree(*fib_p);
1937                                         ++fib_p;
1938                                         ++hw_fib_p;
1939                                 }
1940                                 kfree(hw_fib_pool);
1941                                 kfree(fib_pool);
1942                         }
1943                         kfree(fib);
1944                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1945                 }
1946                 /*
1947                  *      There are no more AIF's
1948                  */
1949                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1950
1951                 /*
1952                  *      Background activity
1953                  */
1954                 if ((time_before(next_check_jiffies,next_jiffies))
1955                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
1956                         next_check_jiffies = next_jiffies;
1957                         if (aac_check_health(dev) == 0) {
1958                                 difference = ((long)(unsigned)check_interval)
1959                                            * HZ;
1960                                 next_check_jiffies = jiffies + difference;
1961                         } else if (!dev->queues)
1962                                 break;
1963                 }
1964                 if (!time_before(next_check_jiffies,next_jiffies)
1965                  && ((difference = next_jiffies - jiffies) <= 0)) {
1966                         struct timeval now;
1967                         int ret;
1968
1969                         /* Don't even try to talk to adapter if its sick */
1970                         ret = aac_check_health(dev);
1971                         if (!ret && !dev->queues)
1972                                 break;
1973                         next_check_jiffies = jiffies
1974                                            + ((long)(unsigned)check_interval)
1975                                            * HZ;
1976                         do_gettimeofday(&now);
1977
1978                         /* Synchronize our watches */
1979                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1980                          && (now.tv_usec > (1000000 / HZ)))
1981                                 difference = (((1000000 - now.tv_usec) * HZ)
1982                                   + 500000) / 1000000;
1983                         else if (ret == 0) {
1984                                 struct fib *fibptr;
1985
1986                                 if ((fibptr = aac_fib_alloc(dev))) {
1987                                         int status;
1988                                         __le32 *info;
1989
1990                                         aac_fib_init(fibptr);
1991
1992                                         info = (__le32 *) fib_data(fibptr);
1993                                         if (now.tv_usec > 500000)
1994                                                 ++now.tv_sec;
1995
1996                                         *info = cpu_to_le32(now.tv_sec);
1997
1998                                         status = aac_fib_send(SendHostTime,
1999                                                 fibptr,
2000                                                 sizeof(*info),
2001                                                 FsaNormal,
2002                                                 1, 1,
2003                                                 NULL,
2004                                                 NULL);
2005                                         /* Do not set XferState to zero unless
2006                                          * receives a response from F/W */
2007                                         if (status >= 0)
2008                                                 aac_fib_complete(fibptr);
2009                                         /* FIB should be freed only after
2010                                          * getting the response from the F/W */
2011                                         if (status != -ERESTARTSYS)
2012                                                 aac_fib_free(fibptr);
2013                                 }
2014                                 difference = (long)(unsigned)update_interval*HZ;
2015                         } else {
2016                                 /* retry shortly */
2017                                 difference = 10 * HZ;
2018                         }
2019                         next_jiffies = jiffies + difference;
2020                         if (time_before(next_check_jiffies,next_jiffies))
2021                                 difference = next_check_jiffies - jiffies;
2022                 }
2023                 if (difference <= 0)
2024                         difference = 1;
2025                 set_current_state(TASK_INTERRUPTIBLE);
2026
2027                 if (kthread_should_stop())
2028                         break;
2029
2030                 schedule_timeout(difference);
2031
2032                 if (kthread_should_stop())
2033                         break;
2034         }
2035         if (dev->queues)
2036                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2037         dev->aif_thread = 0;
2038         return 0;
2039 }
2040
2041 int aac_acquire_irq(struct aac_dev *dev)
2042 {
2043         int i;
2044         int j;
2045         int ret = 0;
2046         int cpu;
2047
2048         cpu = cpumask_first(cpu_online_mask);
2049         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2050                 for (i = 0; i < dev->max_msix; i++) {
2051                         dev->aac_msix[i].vector_no = i;
2052                         dev->aac_msix[i].dev = dev;
2053                         if (request_irq(dev->msixentry[i].vector,
2054                                         dev->a_ops.adapter_intr,
2055                                         0, "aacraid", &(dev->aac_msix[i]))) {
2056                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2057                                                 dev->name, dev->id, i);
2058                                 for (j = 0 ; j < i ; j++)
2059                                         free_irq(dev->msixentry[j].vector,
2060                                                  &(dev->aac_msix[j]));
2061                                 pci_disable_msix(dev->pdev);
2062                                 ret = -1;
2063                         }
2064                         if (irq_set_affinity_hint(dev->msixentry[i].vector,
2065                                                         get_cpu_mask(cpu))) {
2066                                 printk(KERN_ERR "%s%d: Failed to set IRQ affinity for cpu %d\n",
2067                                             dev->name, dev->id, cpu);
2068                         }
2069                         cpu = cpumask_next(cpu, cpu_online_mask);
2070                 }
2071         } else {
2072                 dev->aac_msix[0].vector_no = 0;
2073                 dev->aac_msix[0].dev = dev;
2074
2075                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2076                         IRQF_SHARED, "aacraid",
2077                         &(dev->aac_msix[0])) < 0) {
2078                         if (dev->msi)
2079                                 pci_disable_msi(dev->pdev);
2080                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2081                                         dev->name, dev->id);
2082                         ret = -1;
2083                 }
2084         }
2085         return ret;
2086 }
2087
2088 void aac_free_irq(struct aac_dev *dev)
2089 {
2090         int i;
2091         int cpu;
2092
2093         cpu = cpumask_first(cpu_online_mask);
2094         if (dev->pdev->device == PMC_DEVICE_S6 ||
2095             dev->pdev->device == PMC_DEVICE_S7 ||
2096             dev->pdev->device == PMC_DEVICE_S8 ||
2097             dev->pdev->device == PMC_DEVICE_S9) {
2098                 if (dev->max_msix > 1) {
2099                         for (i = 0; i < dev->max_msix; i++) {
2100                                 if (irq_set_affinity_hint(
2101                                         dev->msixentry[i].vector, NULL)) {
2102                                         printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n",
2103                                             dev->name, dev->id, cpu);
2104                                 }
2105                                 cpu = cpumask_next(cpu, cpu_online_mask);
2106                                 free_irq(dev->msixentry[i].vector,
2107                                                 &(dev->aac_msix[i]));
2108                         }
2109                 } else {
2110                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2111                 }
2112         } else {
2113                 free_irq(dev->pdev->irq, dev);
2114         }
2115         if (dev->msi)
2116                 pci_disable_msi(dev->pdev);
2117         else if (dev->max_msix > 1)
2118                 pci_disable_msix(dev->pdev);
2119 }